FR2738343A1 - Optical microstratigraphy equipment - Google Patents

Optical microstratigraphy equipment Download PDF

Info

Publication number
FR2738343A1
FR2738343A1 FR9510401A FR9510401A FR2738343A1 FR 2738343 A1 FR2738343 A1 FR 2738343A1 FR 9510401 A FR9510401 A FR 9510401A FR 9510401 A FR9510401 A FR 9510401A FR 2738343 A1 FR2738343 A1 FR 2738343A1
Authority
FR
France
Prior art keywords
optical
polychromatic
optical fiber
fiber
interfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR9510401A
Other languages
French (fr)
Other versions
FR2738343B1 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sciences Et Techniques Industrielles de la Lum Fr
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR9510401A priority Critical patent/FR2738343B1/en
Publication of FR2738343A1 publication Critical patent/FR2738343A1/en
Application granted granted Critical
Publication of FR2738343B1 publication Critical patent/FR2738343B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0064Optical details of the image generation multi-spectral or wavelength-selective arrangements, e.g. wavelength fan-out, chromatic profiling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The equipment uses a luminous polychromatic source (10) to illuminate an optical fibre (13) through focussing (11). The light passes through a coupler (17) and a second optical fibre (18) to an extended field confocal probe (21) where the extremity (19) acts as a point source. A projection objective (20) forms a group of monochromatic images (22) and also receives returning light sending it back to the coupler (17) and then to a spectrograph (25) via optical fibres (18,23). The spectrograph (25) comprises an angular disperser (26) and a photoelectric detector (27). Control and processing equipment (28-31) is also included.

Description

La présente invention concerne un dispositif de microstratigraphie optique fonctionnant sur le principe de l'imagerie confocale à profondeur de champ étendue codée chromatiquement, permettant la détection et la localisation simultanées et en un instantané d'une ou de plusieurs interfaces située(s) à l'intérieur d'un objet et caractérisée(s) par son (leurs) saut(s) d'indice de réfraction complexe(s) respectifs(s).The present invention relates to an optical microstratigraphy device operating on the principle of confocal imaging with extended depth of field chromatically coded, allowing the simultaneous detection and localization of one or more interfaces located at the same time. interior of an object and characterized by its jump (s) in the respective complex refractive index (s).

Le dispositif optoélectronique comprend quatre éléments * Une sonde optique dont le chromatisme axial connu code l'espace de mesure selon un
segment de droite correspondant à sa profondeur de champ.
The optoelectronic device comprises four elements * An optical probe whose known axial chromatism codes the measurement space according to a
line segment corresponding to its depth of field.

* Un boîtier commun à l'éclairage et à la détection comprenant
. une source lumineuse polychromatique à spectre continu,
. un dispositif d'analyse spectrale du flux réfléchi/rétrodiffùs par la(les) interfaces
située(s) dans la profondeur de champ du codage,
.un détecteur photoélectrique linéaire multiéléments permettant la détermination
simultanée des positions des interfaces, chacune étant caractérisée par la longueur
d'onde centrale du pic qui lui est associé sur le signal analogique issu du détecteur.
* A common lighting and detection box including
. a polychromatic continuous spectrum light source,
. a spectral analysis device for the flux reflected / backscattered by the interface (s)
located in the depth of field of the coding,
a linear multi-element photoelectric detector allowing the determination
simultaneous positions of the interfaces, each characterized by the length
central wave of the peak associated with it on the analog signal from the detector.

* Un système intégré à entrées/sorties sur fibres optiques de type coupleur ou circulateur
optique, permettant de relier la sonde au boîtier commun à l'éclairage et à la détection, et
de réaliser la séparation entre les flux lumineux de codage (de la source vers la sonde) et
de mesure (de la sonde vers l'analyseur spectral).
* An integrated system with inputs / outputs on optical fibers of the coupler or circulator type
optical, allowing the probe to be connected to the common box for lighting and detection, and
to separate the coding light fluxes (from the source to the probe) and
measurement (from the probe to the spectral analyzer).

* Des moyens électroniques et informatiques permettant d'enregistrer, traiter et visualiser
les signaux acquis et d'en extraire en temps réel les informations recherchées telles que les
positions respectives de toutes les interfaces observées, les écarts d'indice de réfraction et
l'ensemble des caractérisations optiques qui en découlent.
* Electronic and computer means for recording, processing and viewing
the signals acquired and extract from them in real time the information sought such as the
respective positions of all observed interfaces, differences in refractive index and
all the optical characterizations which result therefrom.

Certains travaux, récemment publiés sous forme de Brevets et/ou d'articles dans des revues spécialisées, sont parfaitement connus de l'homme de l'art et briévement examinés ci-aprês. Certain works, recently published in the form of Patents and / or articles in specialized journals, are perfectly known to those skilled in the art and briefly examined below.

Ces travaux peuvent être classés en deux grandes familles en distinguant: ~D'une part les dispositifs utilisant l'association du chromatisme axial d'objectifs à un
système optique de type confocal, comme les brevets EP 0142464 ou EP 0327425, ou la
publication de H.J.TIZIANI (APPLIED OPTICS Vol 33 N"10, avril 1994).
These works can be classified into two main families, distinguishing: ~ On the one hand, devices using the association of axial chromaticism of objectives with a
confocal type optical system, such as patents EP 0142464 or EP 0327425, or the
publication of HJTIZIANI (APPLIED OPTICS Vol 33 N "10, April 1994).

- D'autre part les dispositifs permettant de déporter au moyen de fibres optiques un ou
plusieurs éléments d'un systéme optique de type confocal, comme dans les publications de
T.DABBS (APPLED OPTICS, Vol3 1 N"6, Février 1992), qui déporte la source laser et
le détecteur au moyen de fibres optiques, ou A.F.GMITRO (OPTICS LETTERS, Volt8
N"8, Avril 1993) qui déporte la zone d'observation d'un microscope confocal à balayage
au moyen d'un faisceau ordonné de fibres optiques, ou encore T.DABBS (APPLIED
OPTICS, Vol3 1 N"16, Juin1992) qui utilise un coupleur monomode pour le déport de la
tête de mesure d'un microscope confocal laser.
- On the other hand, the devices making it possible to deport by means of optical fibers one or
several elements of a confocal type optical system, as in the publications of
T. DABBS (APPLED OPTICS, Vol3 1 N "6, February 1992), which deports the laser source and
the detector by means of optical fibers, or AFGMITRO (OPTICS LETTERS, Volt8
No. 8, April 1993) which deported the observation area from a confocal scanning microscope
by means of an ordered bundle of optical fibers, or also T.DABBS (APPLIED
OPTICS, Vol3 1 N "16, June 1992) which uses a single mode coupler for the offset of the
measuring head of a confocal laser microscope.

Dans les références de la première famille, les auteurs décrivent divers procédés de profilométrie de surface utilisant l'aberration chromatique axiale pour coder l'espace d'observation en imagerie confocale dans lesquels l'analyse soit spectrale, soit colorimétrique, permet de déterminer la longueur d'onde dominante du flux rétrodifflisé par l'objet, et donc l'altitude z de la surface. In the references of the first family, the authors describe various surface profilometry methods using axial chromatic aberration to code the observation space in confocal imagery in which the analysis, either spectral or colorimetric, makes it possible to determine the length dominant wave of the flux backscattered by the object, and therefore the altitude z of the surface.

Notre invention differe notablement de ces dispositifs en ce qu'elle permet la détection simultanée de toutes les interfaces caractérisées par une variation d'indice de réfraction rencontrées sur le trajet du pinceau lumineux polychromatique de codage, et qui donnent naissance soit à une réflexion spéculaire dans le cas d'un dioptre idéal, soit à une rétrodiffusion pour un milieu diffusant.Our invention differs notably from these devices in that it allows the simultaneous detection of all interfaces characterized by a variation in refractive index encountered on the path of the polychromatic coding light brush, and which give rise either to a specular reflection in the case of an ideal diopter, that is to say a backscatter for a diffusing medium.

De plus l'utilisation d'un coupleur achromatique à fibres optiques permet de réaliser à l'aide d'un seul composant les fonctions de déport de la sonde de mesure et la séparation des flux lumineux aller et retour.In addition, the use of an achromatic fiber optic coupler makes it possible to carry out, using a single component, the offset functions of the measurement probe and the separation of the outward and return light fluxes.

Dans les références de la deuxième famille, aucun dispositif ne met en oeuvre l'association du codage chromatique de l'espace de mesure à l'aide d'un objectif à chromatisme axial contrôlé et du déport par fibre d'un systéme confocal.In the references of the second family, no device implements the association of the chromatic coding of the measurement space using a lens with controlled axial chromatism and the offset by fiber of a confocal system.

1:1 en résulte qu'aucun de ces équipements n'est capable de mesurer simultanément plusieurs interfaces, comme c'est le cas pour notre invention. 1: 1 results in that none of this equipment is capable of simultaneously measuring several interfaces, as is the case for our invention.

L'examen des brevets et publications antérieurs conforte donc le caractère innovant de l'invention, qui présente à la fois une structure originale et des domaines d'application nouveaux, jusqu'ici inaccessibles.Examination of previous patents and publications therefore confirms the innovative nature of the invention, which presents both an original structure and new fields of application, hitherto inaccessible.

La configuration optogéométrique du dispositif de microstratigraphie optique objet de la présente invention offre par ailleurs les avantages significatifs suivants: le coeur de l'extrémité de la fibre optique atteignant la sonde joue à la fois le rôle de trou
source et de trou de filtrage spatial du dispositif confocal , ils sont ainsi toujours
parfaitement conjugués, ce qui garantit une stabilité et une robustesse accrues, - le coupleur à fibres optiques qui est un composant monolithique et donc robuste, remplace
les moyens conventionnels de séparation de faisceaux tels que les lames ou cubes semi
réfléchissants travaillant en trajet collimaté en entrée/sortie d'optiques de focalisation sur
les différentes extrémités de fibres optiques, - l'analyse spectrale exhaustive du flux lumineux à l'aide d'un spectrographe comprenant un
capteur linéaire multiéléments donne accès à la détection simultanée de plusieurs
interfaces (variation d'indice de réfraction) situées dans la profondeur de champ du codage
chromatique, contrairement à tous les dispositifs cités précédemment qui se limitent
strictement à une profilométrie de surfaces.
The optogeometric configuration of the optical microstratigraphy device which is the subject of the present invention also offers the following significant advantages: the core of the end of the optical fiber reaching the probe plays both the role of a hole
source and spatial filtering hole of the confocal device, so they're always
perfectly combined, which guarantees increased stability and robustness, - the fiber optic coupler which is a monolithic component and therefore robust, replaces
conventional means of separation of beams such as blades or semi cubes
reflectors working in collimated path in input / output of focusing optics on
the different ends of optical fibers, - the exhaustive spectral analysis of the light flux using a spectrograph comprising a
linear multi-element sensor gives access to the simultaneous detection of several
interfaces (variation in refractive index) located in the depth of field of the coding
chromatic, unlike all the devices mentioned above which are limited
strictly to a surface profilometry.

En effet, pour chaque interface située dans la profondeur de champ de l'objectif à
chromatisme axial, on observe un pic sur le capteur linéaire multiéléments dont:
. la forme est définie par les caractéristiques optogéométriques de la sonde de mesure,
. la longueur d'onde centrale est représentative de la position de cette interface,
. l'amplitude est représentative de la variation d'indice rencontrée, c'est-à-dire de l'albédo
local.
Indeed, for each interface located in the depth of field of the objective to
axial chromatism, there is a peak on the linear multi-element sensor of which:
. the shape is defined by the optogeometric characteristics of the measurement probe,
. the central wavelength is representative of the position of this interface,
. the amplitude is representative of the variation in index encountered, i.e. the albedo
local.

De plus, les mesures de position des interfaces rencontrées sont ici, contrairement à la grande majorité des systèmes de proximétrie optique, très peu sensibles à la structure colorimétrique et photométrique des objets examinés. Une variation locale de couleur ou de réflectivité provoque bien sur une variation de la hauteur du pic associé sur le détecteur, mais sa longueur d'onde centrale reste quasiment constante, fournissant ainsi une mesure de distance indépendante de la hauteur de ce pic. In addition, the position measurements of the interfaces encountered are here, unlike the vast majority of optical proximity systems, very little sensitive to the colorimetric and photometric structure of the objects examined. A local variation in color or reflectivity of course causes a variation in the height of the associated peak on the detector, but its central wavelength remains almost constant, thus providing a distance measurement independent of the height of this peak.

En particulier, cette indépendance de la mesure à l'intensité du flux rétrodiffusé rend le capteur insensible aux propriétés optiques de la fibre servant au transport de ce flux, qui peut donc être de longueur, de composition (matériau et technologie), de diamètre (monomode ou multimodes) quelconques. De même les atténuations provoquées par les modifications de courbure le long du trajet de la fibre ou la présence de connecteurs sont sans effet sur la mesure.In particular, this independence of the measurement at the intensity of the backscattered flux makes the sensor insensitive to the optical properties of the fiber used for the transport of this flux, which can therefore be of length, composition (material and technology), diameter ( any mode or multimode). Similarly, the attenuations caused by changes in curvature along the path of the fiber or the presence of connectors have no effect on the measurement.

Les domaines d'application de ce nouveau procédé sont très variés ainsi que le montre la liste non exhaustive et non limitative suivante . Mesure d'épaisseur d'objets transparents ou translucides, caractérisation de films fins, . Localisation de bulles, d'inclusions ou de défauts à l'intérieur de milieux partiellement
transparents, . Caractérisation de ces inclusions ou de ces défauts par mesure des indices de réfraction, .Analyse de structures multicouches dans l'industrie (plastiques, semi-conducteurs,
traitements de surface), . Biologie (structures cellulaires multicouches telles que cornée ou rétine in vitro)
Dans le cas où la sonde est en poste fixe au-dessus de l'objet sous examen, le dispositif permet d'étudier l'évolution temporelle de la structure interne de cet objet.
The fields of application of this new process are very varied as shown by the following non-exhaustive and non-limiting list. Thickness measurement of transparent or translucent objects, characterization of thin films,. Localization of bubbles, inclusions or defects inside media partially
transparencies,. Characterization of these inclusions or these defects by measuring refractive indices, .Analysis of multilayer structures in industry (plastics, semiconductors,
surface treatments),. Biology (multilayer cellular structures such as cornea or retina in vitro)
In the case where the probe is in a fixed position above the object under examination, the device makes it possible to study the temporal evolution of the internal structure of this object.

Lorsque le dispositif est relié à un système automatisé de translation/rotation de la sonde et d'acquisition des mesures, il est possible de procéder à la cartographie volumique des structures internes de l'objet.When the device is connected to an automated system for translating / rotating the probe and acquiring measurements, it is possible to carry out volume mapping of the internal structures of the object.

Des modes de réalisation préférés du dispositif de microstratigraphie optique objet de la présente invention sont décrits ci-après à titre d'exemple, en référence à la figure annexée ciaprès dans laquelle est représenté un mode de réalisation du dispositif selon l'invention qui fonctionne de la façon décrite ci-après: * La source lumineuse (10) polychromatique et à spectre continu éclaire, au moyen d'une
optique de focalisation (11), l'extrémité d'entrée (12) d'une fibre optique (13).
Preferred embodiments of the optical microstratigraphy device object of the present invention are described below by way of example, with reference to the appended figure below in which is shown an embodiment of the device according to the invention which operates as described below: * The polychromatic and continuous spectrum light source (10) illuminates by means of a
focusing optic (11), the input end (12) of an optical fiber (13).

* Cette fibre optique (13) transporte le flux lumineux collecté jusqu'au port d'entrée (14)
d'un coupleur à fibres optiques polychromatique (17), lequel dirige ledit flux via son port
de sortie (16) et une seconde fibre optique (18) vers la sonde de mesure (21) et ce de
façon sélective en évitant tout couplage indésirable vers son second port de sortie (15).
* This optical fiber (13) transports the collected light flux to the input port (14)
a polychromatic optical fiber coupler (17), which directs said flow via its port
output (16) and a second optical fiber (18) to the measurement probe (21) and this
selectively avoiding unwanted coupling to its second output port (15).

* Le coeur de l'extrémité de sortie de la seconde fibre optique (18) agissant comme un
sténopé (19) joue le rôle de source lumineuse quasi-ponctuelle pour la sonde confocale à
champ étendu (21).
* The core of the output end of the second optical fiber (18) acting as a
pinhole (19) acts as a quasi-point light source for the confocal probe to
extended field (21).

* La source (21) comporte un objectif de projection (20) présentant un chromatisme axial
connu et formant un ensemble d'images monochromatiques du sténopé (19) définissant
ainsi un segment de droite d'observation AB (22) dans l'espace objet, chaque image du
sténopé (19) étant définie par sa longueur d'onde et sa distance de focalisation par
rapport à l'objectif de projection (20).
* The source (21) comprises a projection objective (20) having an axial chromatism
known and forming a set of monochromatic pinhole images (19) defining
thus an observation line segment AB (22) in object space, each image of the
pinhole (19) being defined by its wavelength and its focusing distance by
relative to the projection objective (20).

* Le même objectif de projection (20), fonctionnant selon le principe optique du retour
inverse de la lumière, collecte les pinceaux rétrodifflisés par la droite d'observation AB
(22) dans l'objet pour former, sur l'extrémité (19) de la fibre optique (18) qui joue
maintenant le rôle de trou de filtrage spatial de la sonde optique confocale, une image
polychromatique unique dont les longueurs d'ondes qui la composent sont celles
correspondant aux positions selon z des interfaces.
* The same projection objective (20), operating on the optical principle of the return
reverse of the light, collects the brushes backscattered by the observation line AB
(22) in the object to form, on the end (19) of the optical fiber (18) which plays
now the role of spatial filtering hole of the confocal optical probe, an image
polychromatic unique whose wavelengths that compose it are those
corresponding to the positions along z of the interfaces.

* Le flux lumineux polychromatique ainsi recueilli est transporté par la fibre optique (18)
jusqu'au port (16) du coupleur à fibre (17), lequel dirige ledit flux via son port de sortie
(15) et une troisième fibre (23) vers un spectrographe (25) et ce de façon sélective en
évitant tout couplage indésirable vers son port d'entrée (14).
* The polychromatic light flux thus collected is transported by optical fiber (18)
to the port (16) of the fiber coupler (17), which directs said flow via its output port
(15) and a third fiber (23) to a spectrograph (25) and this selectively by
avoiding any unwanted coupling to its input port (14).

* Le spectrographe (25), dont l'entrée est le coeur de l'extrémité de sortie (24) de le fibre
optique (23), comporte un sous-ensemble de dispersion chromatique angulaire (26) et un
détecteur photoélectrique linéaire multiéléments (27) qui fournit, à l'aide de son
électronique de pilotage et de traitement (28), une image instantanée des interfaces
rencontrées le long du segment de droite d'observation AB (22).
* The spectrograph (25), the inlet of which is the heart of the outlet end (24) of the fiber
optical (23), comprises an angular chromatic dispersion sub-assembly (26) and a
linear multi-element photoelectric detector (27) which provides, using its
control and processing electronics (28), a snapshot of the interfaces
encountered along the observation line segment AB (22).

* Des moyens électroniques et informatiques (29) permettent d'enregistrer, traiter et
visualiser les signaux acquis, et d'en déduire, si nécessaire en temps réel, les informations
recherchées sur l'objet examiné, telles que la position des interfaces, les écarts d'indices
de réfraction, et toutes les propriétés optiques ou physiques qui en découlent.
* Electronic and computer means (29) make it possible to record, process and
visualize the acquired signals, and deduce, if necessary in real time, the information
searched for on the object examined, such as the position of the interfaces, the index differences
of refraction, and all the optical or physical properties which result therefrom.

* Des moyens mécaniques (30) de translation/rotation multi-axes, équipés des moyens
électromécaniques et informatiques (31) de pilotage, contrôle-commande et
automatisation des déplacements, permettent d'orienter la sonde optique (21) selon toute
direction de l'espace de mesure, manuellement et/ou automatiquement, afin de pouvoir
travailler sur toutes formes d'objets.
* Mechanical means (30) of multi-axis translation / rotation, equipped with the means
electromechanical and computer (31) piloting, control-command and
movement automation, allow to orient the optical probe (21) according to any
direction of the measurement space, manually and / or automatically, in order to be able to
work on all forms of objects.

Selon des modes préférés de réalisation, l'optique à chromatisme axial contrôlé peut être du type optique réfractive (association de lentilles de forme et composition adéquates), ou du type diffractive (lentille holographique), ou formée d'une combinaison des deux technologies.According to preferred embodiments, the optics with controlled axial chromatism can be of the refractive optical type (association of lenses of suitable shape and composition), or of the diffractive type (holographic lens), or formed of a combination of the two technologies.

Selon des modes préférés de réalisation, et selon les gammes de longueurs d'onde envisagées, le dispositif d'analyse spectrale peut utiliser un prisme ou un réseau comme élément dispersif, ou une combinaison des deux technologies. According to preferred embodiments, and according to the wavelength ranges envisaged, the spectral analysis device can use a prism or an array as a dispersing element, or a combination of the two technologies.

Claims (1)

REVENDICATtONS Dispositif de microstratigraphie optique destiné à la détection et la localisation simultanées et en un instantané d'une ou de plusieurs interfaces située(s) à l'intérieur d'un objet et caractérisée(s) par son (leurs) saut(s) d'indice(s) de réfraction complexes(s) respectif(s) ledit dispositif optoélectronique étant caractérisé en ce qu'il comporte une source lumineuse (10) polychromatique éclairant au moyen d'une optique de focalisation (11) une fibre optique (13) laquelle transporte le flux lumineux collecté jusqu'au port d'entrée (14) d'un coupleur à fibres optiques polychromatique (17) lequel dirige ledit flux via son port de sortie (16) vers une seconde fibre optique (18) dont l'extrémité (19) joue le rôle de source ponctuelle polychromatique pour la sonde confocale à champ étendu (21) dont l'objectif de projection (20) présentant un chromatisme axial connu forme un ensemble d'images monochromatiques définissant un segment de droite d'observation (22) dans l'espace objet chaque image étant définie par sa longueur d'onde et sa distance de focalisation. Le même objectif de projection (20) fonctionnant selon le principe du retour inverse de la lumière forme sur l'extrémité (19) de la fibre (18) une image polychromatique unique dont les longueurs d'onde qui la composent correspondent aux positions selon z des interfaces interceptées par le segment d'observation (22).Le flux lumineux recueilli par la fibre (18) est transporté jusqu'au port (16) du coupleur (17) lequel le dirige via son port de sortie (15) vers une troisième fibre optique (23) dont l'extrémité de sortie (24) est placée à l'entrée d'un spectrographe (25) comprenant un sousensemble de dispersion chromatique angulaire (26) et un détecteur photoélectrique linéaire multiéléments (27) sur lequel se forme l'image instantanée des interfaces rencontrées le long du segment d'observation AB (22). Le dispositif comprend également des moyens électroniques de pilotage et de traitement (28) du détecteur photoélectrique ainsi que des moyens électroniques et informatiques (29) d'enregistrement, de traitement et de visualisation des signaux acquis. Optical microstratigraphy device intended for the simultaneous detection and localization and in a snapshot of one or more interfaces located inside an object and characterized by its jump (s) d 'respective refractive index (s) of complex (s) said optoelectronic device being characterized in that it comprises a polychromatic light source (10) illuminating by means of a focusing optic (11) an optical fiber (13 ) which transports the collected light flux to the input port (14) of a polychromatic optical fiber coupler (17) which directs said flux via its output port (16) to a second optical fiber (18), the l the end (19) acts as a polychromatic point source for the wide field confocal probe (21) whose projection objective (20) having known axial chromatism forms a set of monochromatic images defining a line segment of observation (22) da ns the object space each image being defined by its wavelength and its focusing distance. The same projection objective (20) operating on the principle of reverse light return forms on the end (19) of the fiber (18) a single polychromatic image whose wavelengths which compose it correspond to the positions along z interfaces intercepted by the observation segment (22). The light flux collected by the fiber (18) is transported to the port (16) of the coupler (17) which directs it via its output port (15) to a third optical fiber (23) whose output end (24) is placed at the entrance of a spectrograph (25) comprising an angular chromatic dispersion subset (26) and a linear multi-element photoelectric detector (27) on which forms the instantaneous image of the interfaces encountered along the observation segment AB (22). The device also comprises electronic means for controlling and processing (28) the photoelectric detector as well as electronic and computer means (29) for recording, processing and viewing the acquired signals. Dispositif selon la revendication 1, caractérisé en ce que sont adjoints des moyens mécaniques (30) de translation/rotation multi-axes équipés des moyens électromécaniques et informatiques (31) de pilotage, contrôle-commande et automatisation desdites translations/rotations. Device according to claim 1, characterized in that mechanical means (30) for multi-axis translation / rotation are added, equipped with electromechanical and computer means (31) for controlling, controlling and automating said translations / rotations. Dispositif selon la revendication 1, caractérisé en ce que la source lumineuse polychromatique (10) est réalisée par couplage optique de plusieurs sources élémentaires polychromatiques pouvant être de compositions spectrales différentes. Device according to claim 1, characterized in that the polychromatic light source (10) is produced by optical coupling of several elementary polychromatic sources which may be of different spectral compositions. Dispositif selon la revendication 1, caractérisé en ce que l'objectif de projection (20) peut être du type optique réfractive ou du type optique diffractive ou formé d'une combinaison des deux. Device according to claim 1, characterized in that the projection objective (20) can be of the refractive optical type or of the diffractive optical type or formed of a combination of the two. Dispositif selon la revendication 1, caractérisé en ce que selon les gammes de longueurs d'onde envisagées le spectrographe (25) peut utiliser un prisme ou un réseau comme élément dispersif angulaire ou une combinaison des deux technologies.  Device according to claim 1, characterized in that, depending on the wavelength ranges envisaged, the spectrograph (25) can use a prism or an array as an angular dispersive element or a combination of the two technologies.
FR9510401A 1995-08-30 1995-08-30 OPTICAL MICROSTRATIGRAPHY DEVICE Expired - Fee Related FR2738343B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR9510401A FR2738343B1 (en) 1995-08-30 1995-08-30 OPTICAL MICROSTRATIGRAPHY DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9510401A FR2738343B1 (en) 1995-08-30 1995-08-30 OPTICAL MICROSTRATIGRAPHY DEVICE

Publications (2)

Publication Number Publication Date
FR2738343A1 true FR2738343A1 (en) 1997-03-07
FR2738343B1 FR2738343B1 (en) 1997-10-24

Family

ID=9482284

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9510401A Expired - Fee Related FR2738343B1 (en) 1995-08-30 1995-08-30 OPTICAL MICROSTRATIGRAPHY DEVICE

Country Status (1)

Country Link
FR (1) FR2738343B1 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1057063A1 (en) * 1998-02-26 2000-12-06 The General Hospital Corporation Confocal microscopy with multi-spectral encoding
FR2824903A1 (en) * 2001-05-21 2002-11-22 Sciences Tech Ind De La Lumier Non-contact method for measuring the dimensions of an object using an optical confocal imaging system with a chromatic retarder, so that axial chromatism can be adjusted to suit the required measurement range
FR2839637A1 (en) * 2002-05-17 2003-11-21 Biophymed Optoelectronic in vivo tomobiopsy system for skin imaging and cancer detection has scanning mirror with aberration corrected chromatic spatial coding objective
US6934019B2 (en) 2001-10-25 2005-08-23 Camtek Ltd. Confocal wafer-inspection system
FR2950441A1 (en) * 2009-09-23 2011-03-25 Sabban Youssef Cohen Modular multipoint chromatic confocal altitude sensor e.g. field static multipoint chromatic confocal sensor, for high frequency and high resolution contactless three-dimensional digitization field, has supply block to supply power to LEDs
FR2958298A1 (en) * 2010-04-06 2011-10-07 Commissariat Energie Atomique METHOD FOR DETECTING AMAS FROM BIOLOGICAL PARTICLES
EP2698599A1 (en) 2012-08-17 2014-02-19 Hexagon Technology Center GmbH Coordinate measuring method and coordinate measurement machine for measuring surfaces with an optical sensor
EP2762832A1 (en) 2013-01-30 2014-08-06 Hexagon Technology Center GmbH Optical single-point measurement
EP2887011A1 (en) 2013-12-20 2015-06-24 Hexagon Technology Center GmbH Coordinate measuring machine with high precision 3D printing functionality
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US9668652B2 (en) 2013-07-26 2017-06-06 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
DE202016006669U1 (en) 2016-10-26 2017-08-29 Tesa Sa Optical sensor with variable measuring channels
DE202017107827U1 (en) 2017-06-12 2018-01-12 Tesa Sa Rotary / swivel head for optical measuring probes, coordinate measuring system and tool holder
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10241028B2 (en) 2011-08-25 2019-03-26 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US10413175B2 (en) 2006-05-10 2019-09-17 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
USRE47675E1 (en) 2003-06-06 2019-10-29 The General Hospital Corporation Process and apparatus for a wavelength tuning source
EP3567339A1 (en) * 2018-05-10 2019-11-13 Nanovea, Inc. 3d surface scanning white light axial chromatism device and method
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
EP3581881A1 (en) 2018-06-15 2019-12-18 Hexagon Technology Center GmbH Surface measurement by means of excited fluorescence
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US10591279B2 (en) 2014-12-09 2020-03-17 Asentys Sas Integrated optical device for contactless measurement of altitudes and thicknesses
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
FR3095506A1 (en) 2019-04-29 2020-10-30 Tiama Inspection line for empty glass containers
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US10939825B2 (en) 2010-05-25 2021-03-09 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE454845T1 (en) 2000-10-30 2010-01-15 Gen Hospital Corp OPTICAL SYSTEMS FOR TISSUE ANALYSIS
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
GB2408797B (en) 2001-05-01 2006-09-20 Gen Hospital Corp Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US8054468B2 (en) 2003-01-24 2011-11-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
CA2519937C (en) 2003-03-31 2012-11-20 Guillermo J. Tearney Speckle reduction in optical coherence tomography by path length encoded angular compounding
WO2005047813A1 (en) 2003-10-27 2005-05-26 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
WO2005117534A2 (en) 2004-05-29 2005-12-15 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging
WO2006017837A2 (en) 2004-08-06 2006-02-16 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
ATE538714T1 (en) 2004-08-24 2012-01-15 Gen Hospital Corp METHOD, SYSTEM AND SOFTWARE ARRANGEMENT FOR DETERMINING THE ELASTIC MODULE
EP2272420B1 (en) 2004-08-24 2013-06-19 The General Hospital Corporation Apparatus for imaging of vessel segments
KR101269455B1 (en) 2004-09-10 2013-05-30 더 제너럴 하스피탈 코포레이션 System and method for optical coherence imaging
WO2006037132A1 (en) 2004-09-29 2006-04-06 The General Hospital Corporation System and method for optical coherence imaging
EP2278266A3 (en) 2004-11-24 2011-06-29 The General Hospital Corporation Common-Path Interferometer for Endoscopic OCT
ES2337497T3 (en) 2005-04-28 2010-04-26 The General Hospital Corporation EVALUATION OF CHARACTERISTICS OF THE IMAGE OF AN ANATOMICAL STRUCTURE IN IMAGES OF TOMOGRAPHY OF OPTICAL COHERENCE.
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
CN101238347B (en) 2005-08-09 2011-05-25 通用医疗公司 Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
WO2007038787A1 (en) 2005-09-29 2007-04-05 General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
EP1945094B1 (en) 2005-10-14 2018-09-05 The General Hospital Corporation Spectral- and frequency- encoded fluorescence imaging
EP1971848B1 (en) 2006-01-10 2019-12-04 The General Hospital Corporation Systems and methods for generating data based on one or more spectrally-encoded endoscopy techniques
WO2007084903A2 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and method for producing one or more optical arrangements
WO2007149603A2 (en) 2006-02-01 2007-12-27 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
JP5135324B2 (en) 2006-04-05 2013-02-06 ザ ジェネラル ホスピタル コーポレイション Method, arrangement and system for polarization sensitive optical frequency domain imaging of samples
WO2007133964A2 (en) 2006-05-12 2007-11-22 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
US7920271B2 (en) 2006-08-25 2011-04-05 The General Hospital Corporation Apparatus and methods for enhancing optical coherence tomography imaging using volumetric filtering techniques
US8838213B2 (en) 2006-10-19 2014-09-16 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
JP2010517080A (en) 2007-01-19 2010-05-20 ザ ジェネラル ホスピタル コーポレイション Rotating disk reflection for fast wavelength scanning of dispersive broadband light
US9176319B2 (en) 2007-03-23 2015-11-03 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
WO2008131082A1 (en) 2007-04-17 2008-10-30 The General Hospital Corporation Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy techniques
EP2173254A2 (en) 2007-07-31 2010-04-14 The General Hospital Corporation Systems and methods for providing beam scan patterns for high speed doppler optical frequency domain imaging
EP2191254B1 (en) 2007-08-31 2017-07-19 The General Hospital Corporation System and method for self-interference fluorescence microscopy, and computer-accessible medium associated therewith
US7933021B2 (en) 2007-10-30 2011-04-26 The General Hospital Corporation System and method for cladding mode detection
US7898656B2 (en) 2008-04-30 2011-03-01 The General Hospital Corporation Apparatus and method for cross axis parallel spectroscopy
WO2009137701A2 (en) 2008-05-07 2009-11-12 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
EP2288948A4 (en) 2008-06-20 2011-12-28 Gen Hospital Corp Fused fiber optic coupler arrangement and method for use thereof
WO2010068764A2 (en) 2008-12-10 2010-06-17 The General Hospital Corporation Systems, apparatus and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
US8097864B2 (en) 2009-01-26 2012-01-17 The General Hospital Corporation System, method and computer-accessible medium for providing wide-field superresolution microscopy
US9351642B2 (en) 2009-03-12 2016-05-31 The General Hospital Corporation Non-contact optical system, computer-accessible medium and method for measurement at least one mechanical property of tissue using coherent speckle technique(s)
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
WO2013066631A1 (en) 2011-10-18 2013-05-10 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0142464A1 (en) * 1983-09-12 1985-05-22 Battelle Memorial Institute Process and device to determine the position of an object with respect to a reference
EP0327425A1 (en) * 1988-01-27 1989-08-09 Commissariat A L'energie Atomique Method for optical scanning microscopy in confocal arrangement with large depth of field and apparatus to perform this method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0142464A1 (en) * 1983-09-12 1985-05-22 Battelle Memorial Institute Process and device to determine the position of an object with respect to a reference
EP0327425A1 (en) * 1988-01-27 1989-08-09 Commissariat A L'energie Atomique Method for optical scanning microscopy in confocal arrangement with large depth of field and apparatus to perform this method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DABBS T ET AL: "FIBER-OPTIC CONFOCAL MICROSCOPE: FOCON", APPLIED OPTICS, vol. 31, no. 16, 1 June 1992 (1992-06-01), pages 3030 - 3035, XP000274821 *
DABBS T ET AL: "SINGLE-MODE FIBERS USED AS CONFOCAL MICROSCOPE PINHOLES", APPLIED OPTICS, vol. 31, no. 6, 20 February 1992 (1992-02-20), pages 705 - 706, XP000248584 *

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1057063A4 (en) * 1998-02-26 2004-10-06 Gen Hospital Corp Confocal microscopy with multi-spectral encoding
JP2002505434A (en) * 1998-02-26 2002-02-19 ザ ジェネラル ホスピタル コーポレーション Confocal microscope using multispectral coding
EP1057063A1 (en) * 1998-02-26 2000-12-06 The General Hospital Corporation Confocal microscopy with multi-spectral encoding
JP4709969B2 (en) * 1998-02-26 2011-06-29 ザ ジェネラル ホスピタル コーポレイション Confocal microscopy using multispectral coding
EP2267506A3 (en) * 1998-02-26 2011-03-02 The General Hospital Corporation Confocal microscopy with multi-spectral encoding
WO2002095475A1 (en) * 2001-05-21 2002-11-28 Sciences Et Techniques Industrielles De La Lumiere Method and device for measurement by extended chromatism confocal imaging
FR2824903A1 (en) * 2001-05-21 2002-11-22 Sciences Tech Ind De La Lumier Non-contact method for measuring the dimensions of an object using an optical confocal imaging system with a chromatic retarder, so that axial chromatism can be adjusted to suit the required measurement range
US6934019B2 (en) 2001-10-25 2005-08-23 Camtek Ltd. Confocal wafer-inspection system
WO2003096900A3 (en) * 2002-05-17 2004-03-11 Biophymed Method and device for in vivo confocal optical tomographic section
WO2003096900A2 (en) * 2002-05-17 2003-11-27 Biophymed Method and device for in vivo confocal optical tomographic section
FR2839637A1 (en) * 2002-05-17 2003-11-21 Biophymed Optoelectronic in vivo tomobiopsy system for skin imaging and cancer detection has scanning mirror with aberration corrected chromatic spatial coding objective
USRE47675E1 (en) 2003-06-06 2019-10-29 The General Hospital Corporation Process and apparatus for a wavelength tuning source
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US10987000B2 (en) 2006-01-19 2021-04-27 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US10413175B2 (en) 2006-05-10 2019-09-17 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
FR2950441A1 (en) * 2009-09-23 2011-03-25 Sabban Youssef Cohen Modular multipoint chromatic confocal altitude sensor e.g. field static multipoint chromatic confocal sensor, for high frequency and high resolution contactless three-dimensional digitization field, has supply block to supply power to LEDs
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US10463254B2 (en) 2010-03-05 2019-11-05 The General Hospital Corporation Light tunnel and lens which provide extended focal depth of at least one anatomical structure at a particular resolution
RU2604794C2 (en) * 2010-04-06 2016-12-10 Коммиссариат А Л`Энержи Атомик Э О Энержи Альтернатив Method for detection of clusters of biological particles
FR2958298A1 (en) * 2010-04-06 2011-10-07 Commissariat Energie Atomique METHOD FOR DETECTING AMAS FROM BIOLOGICAL PARTICLES
US8855397B2 (en) 2010-04-06 2014-10-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for detecting clusters of biological particles
WO2011125033A1 (en) 2010-04-06 2011-10-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for detecting clusters of biological particles
JP2013523147A (en) * 2010-04-06 2013-06-17 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ Method for detecting clusters of biological particles
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US10939825B2 (en) 2010-05-25 2021-03-09 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US10241028B2 (en) 2011-08-25 2019-03-26 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US9587928B2 (en) 2012-08-17 2017-03-07 Hexagon Technology Center Gmbh Coordinate measuring method and coordinate measuring machine for measuring surfaces, comprising an optical sensor
EP2698599A1 (en) 2012-08-17 2014-02-19 Hexagon Technology Center GmbH Coordinate measuring method and coordinate measurement machine for measuring surfaces with an optical sensor
WO2014027052A1 (en) 2012-08-17 2014-02-20 Hexagon Technology Center Gmbh Coordinate measuring method and coordinate measuring machine for measuring surfaces, comprising an optical sensor
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US10042054B2 (en) 2013-01-30 2018-08-07 Hexagon Technology Center Gmbh Optical individual-point measurement
EP2762832A1 (en) 2013-01-30 2014-08-06 Hexagon Technology Center GmbH Optical single-point measurement
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US9668652B2 (en) 2013-07-26 2017-06-06 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
EP2887011A1 (en) 2013-12-20 2015-06-24 Hexagon Technology Center GmbH Coordinate measuring machine with high precision 3D printing functionality
US9803966B2 (en) 2013-12-20 2017-10-31 Hexagon Technology Center Gmbh Coordinate measuring machine having high-precision 3-D printing functionality
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US10591279B2 (en) 2014-12-09 2020-03-17 Asentys Sas Integrated optical device for contactless measurement of altitudes and thicknesses
DE202016006669U1 (en) 2016-10-26 2017-08-29 Tesa Sa Optical sensor with variable measuring channels
US10234272B2 (en) 2016-10-26 2019-03-19 Tesa Sa Optical sensor having variable measuring channels
DE202017107827U1 (en) 2017-06-12 2018-01-12 Tesa Sa Rotary / swivel head for optical measuring probes, coordinate measuring system and tool holder
US10557702B2 (en) 2017-06-12 2020-02-11 Tesa Sarl Articulating head for optical probes, coordinate measuring system, and tool holder
EP3567339A1 (en) * 2018-05-10 2019-11-13 Nanovea, Inc. 3d surface scanning white light axial chromatism device and method
US10837770B2 (en) 2018-06-15 2020-11-17 Hexagon Technology Center Gmbh Surface measurement by means of excited fluorescence
EP3581881A1 (en) 2018-06-15 2019-12-18 Hexagon Technology Center GmbH Surface measurement by means of excited fluorescence
WO2020221975A1 (en) 2019-04-29 2020-11-05 Tiama Line for inspecting empty glass containers
FR3095506A1 (en) 2019-04-29 2020-10-30 Tiama Inspection line for empty glass containers
US11927542B2 (en) 2019-04-29 2024-03-12 Tiama Line for inspecting empty glass containers

Also Published As

Publication number Publication date
FR2738343B1 (en) 1997-10-24

Similar Documents

Publication Publication Date Title
FR2738343A1 (en) Optical microstratigraphy equipment
JP3459327B2 (en) Method and apparatus for measuring layer thickness and refractive index of laminated structure
US5703692A (en) Lens scatterometer system employing source light beam scanning means
US5923423A (en) Heterodyne scatterometer for detecting and analyzing wafer surface defects
EP0647828B1 (en) Cofocal optical systems for thickness measurements of patterned wafers
EP0142464A1 (en) Process and device to determine the position of an object with respect to a reference
EP2160591B1 (en) Imaging optical inspection device with a pinhole camera
JPH0771925A (en) Equipment and method for thick wafer measurement
FR2615279A1 (en) OPTICAL FIBER DISPLACEMENT SENSOR OFFSET
FR2766923A1 (en) Optical instrument measures the refractive index of a fluid e.g., sea-water
US9239237B2 (en) Optical alignment apparatus and methodology for a video based metrology tool
Loerke et al. Super-resolution measurements with evanescent-wave fluorescence-excitation using variable beam incidence
CN109724955B (en) Method and device for measuring and calculating Tamm coupling emergence angle based on excitation registration
CN107561007A (en) A kind of measured thin film apparatus and method
WO1999064816A1 (en) Method and device for optoelectric acquisition of shapes by axial illumination
EP0654661B1 (en) Intensity detector for light diffused by films in colloidal media
FR2729220A1 (en) COLORIMETRIC MEASUREMENT DEVICE OF A DISPLAY SCREEN
FR2800163A1 (en) Device for measuring spatial distribution of spectral emission of an object for determination of color properties of display screens, has improved spectral resolution as a function of wavelength
FR2968402A1 (en) MULTITECHNICAL IMAGING SYSTEM AND METHOD FOR THE CHEMICAL, BIOLOGICAL OR BIOCHEMICAL ANALYSIS OF A SAMPLE.
FR2707018A1 (en)
FR2517837A1 (en) DEVICE OPTIMIZING THE COUPLING OF TWO OPTICAL SYSTEMS FOR OBJECT OBSERVATION AND ANALYSIS
FR2766922A1 (en) Optical instrument measures the refractive index of a fluid e.g. sea-water
FR2848664A1 (en) Position and reflectivity meter for use in photometry and metrology has a light source with at least two different wavelengths that are processed separately by a measurement system
WO2003001268A1 (en) Autofocus system, method and device for optically testing parts in said system
FR2535053A1 (en) Optical sensing of multi-parameter properties of individual particles

Legal Events

Date Code Title Description
RN Application for restoration
ST Notification of lapse
FC Decision of inpi director general to approve request for restoration
TP Transmission of property

Owner name: SCIENCES ET TECHNIQUES INDUSTRIELLES DE LA LUM, FR

Effective date: 20120104