FI92212C - Process for producing an oxide resistant and stable olefin copolymer - Google Patents
Process for producing an oxide resistant and stable olefin copolymer Download PDFInfo
- Publication number
- FI92212C FI92212C FI905498A FI905498A FI92212C FI 92212 C FI92212 C FI 92212C FI 905498 A FI905498 A FI 905498A FI 905498 A FI905498 A FI 905498A FI 92212 C FI92212 C FI 92212C
- Authority
- FI
- Finland
- Prior art keywords
- compound
- product
- formula
- enyl
- added
- Prior art date
Links
Landscapes
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Description
9221292212
Menetelmå hapenkeståvån ja stabiilin olefiinikopolymeerin valmistamiseksi - Forfarande f6r framstållning av en oxid-beståndig och stabil olefinkopolymer 5Process for the preparation of an oxygen-resistant and stable olefin copolymer - Process for the preparation of an oxygen-stable and stable olefin copolymer 5
Keksintå koskee menetelmåå stabiilin α-olefiinikopolymee-rin valmistamiseksi, jossa α-olefiini saatetaan reagoimaan 10 kompleksin kanssa, joka kåsittåå johonkin jaksollisen jår-jestelmån ryhmistå I-IV kuuluvan metallin ja siihen hete-roatomillaan ligandiksi koordinoituneen a-alkenyylisubsti-tuoidun stabilisaattorin, jolloin låsnå on titaaniyhdis-teeseen perustuva prokatalyytti ja organometalliyhdistee-15 seen perustuva kokatalyytti.The invention relates to a process for the preparation of a stable α-olefin copolymer, in which an α-olefin is reacted with a complex comprising a metal belonging to a group I-IV of the Periodic Table and an α-alkenyl substituent coordinated thereto by a heteroatom, is a procatalyst based on a titanium compound and a cocatalyst based on an organometallic compound.
Olefiinien polymerointiin kåytetåån yleisesti Ziegler-Natta -katalyyttisysteemiå, joka koostuu ns. prokatalyy-tistå ja kokatalyytistå. Prokatalyytti perustuu alkuainei-20 den jaksollisen jårjestelmån johonkin ryhmistå IVA-VIII kuuluvan siirtymåmetallin yhdisteeseen ja kokatalyytti perustuu alkuaineiden jaksollisen jårjestelmån johonkin ryhmistå IA-III(B) kuuluvan metallin organometalliseen yhdisteeseen (ryhmåt merkitty Hubbardin mukaan, ks. mm.The Ziegler-Natta catalyst system, which consists of the so-called Ziegler-Natta catalyst system, is commonly used for the polymerization of olefins. procatalyst and cocatalyst. The procatalyst is based on a transition metal compound of Groups IVA-VIII of the Periodic Table of the Elements and the cocatalyst is based on an organometallic compound of a metal of Groups IA-III (B) of the Periodic Table of the Elements (groups designated according to Hubbard.
25 L. Rompp, 8. painos, s. 3051).25 L. Rompp, 8th ed., P. 3051).
Yleisesti prokatalyytin siirtymåmetalleja ovat mm. titaa-ni, vanadiini ja zirkonium. Prokatalyytit saattavat tålloin perustua titaanikloridiin, TiCl4, joka kåytettynå yhdesså 30 trietyylialumiinin kanssa muodostaa perinteisen katalyytti- tyypin. Muodostuvan polymeerin saantoa ja etenkin sen ste-reospesif isyyttå voidaan lisåtå kåyttåmål] å kolmantena komponent tina elektronidonoria. Tåmån tyyppisiilå katalyyt- 2 92212 tisysteemeillå aktiivisuustaso on n. 1-2 kg polypropeenia/g katalyyttiå.In general, the transition metals of the procatalyst are e.g. titanium, vanadium and zirconium. The procatalysts may then be based on titanium chloride, TiCl4, which, when used in combination with triethylaluminum, forms a conventional type of catalyst. The yield of the polymer formed, and in particular its stereospecificity, can be increased by using an electron donor as a third component. In this type of silo with catalyst systems, the activity level is about 1-2 kg of polypropylene / g of catalyst.
Nykyåan valmistetaan stereoselektiivisiå ja korkeasaantoisia 5 Ziegler-Natta -katalyyttisysteemin prokatalyytteja kerrosta-malla siirtymåmetalliyhdiste ja mahdollinen donori kiinteål-le magnesiumyhdistekantajaile. On laskettu, ettå tåmSntyyp-pisten prokatalyyttien aktiivisten keskusten maårå on vShin-taan kaksinkertainen verrattuna prokatalyytteihin, joilta 10 puuttuu kantaja. Modifioima11a kantoainetta eri tavoin voidaan katalyytin aktiivisuutta parantaa entiseståan. Siten on uusien prokatalyyttien aktiivisuus saatu jopa tasolle 30 g polymeeriå/g katalyyttia.Today, stereoselective and high-yield procatalysts of the 5 Ziegler-Natta catalyst system are prepared by depositing a transition metal compound and a potential donor on solid magnesium compound supports. It has been calculated that the number of active centers for procatalysts of this type is twice the number of procatalysts compared to procatalysts lacking a support. By modifying the support in various ways, the activity of the catalyst can be further improved. Thus, the activity of the new procatalysts has been brought up to a level of 30 g polymer / g catalyst.
15 Korkeasaantoisille katalyyteille on myos tyypillistå niiden kyky antaa syntyvalle polymeerille alkuperåisen katalyytin hiukkasmuoto, joka toistuu halkaisijaltaan 0,2-5 mm:n poly-meerihiukkasissa. Syntyvåt polymeerihiukkaset ovat kuitenkin huokoisia ja hapettuvat siksi helposti. Ilman stabiilisuutta 20 parantavia lisaaineita tallainen tuote hajoaa kemiallisesti kåytosså. Yleisena kaytantona onkin, ettå reaktorista saatu polymeeri sulatetaan, siihen lisåtåån stabilisaattoreita, minka jalkeen tuote granuloidaan.High yield catalysts are also characterized by their ability to impart to the resulting polymer the particulate form of the original catalyst, which is repeated in polymer particles of 0.2-5 mm in diameter. However, the resulting polymer particles are porous and therefore easily oxidized. Without stability-enhancing additives, such a product decomposes chemically in use. It is therefore common practice to melt the polymer obtained from the reactor, to which stabilizers are added, after which the product is granulated.
25 Polymeerin valmistuksen jalkeen tapahtuva sulasekoitus stabilisaattoreiden kanssa ja sita seuraava granulointi voitaisiin eliminoida, jos stabilointi suoritettaisiin polymerointivaiheen aikana. Talloin polymerointituote olisi sellaisenaan valmis jatkotyostoon. Stabilointiongelmien 30 vuoksi ei polymeerituotteiden kohdalla ole pystytty taysin hyodyntamaån partikkelimaista tuotetta valmistavaa proses-sia.Melt blending with stabilizers after polymer preparation and subsequent granulation could be eliminated if stabilization were performed during the polymerization step. In that case, the polymerization product would be ready for further processing as such. Due to the stabilization problems 30, a process for the production of a particulate product has not been fully utilized for polymer products.
Stabilisaattorit ja muut lisåaineet saattavat kåyton aikana 35 kulkeutua tuotteiden pinnalle, jolloin stabilointivaikutus heikkenee. Syinå lisaainehavikkeihin saattavat olla sula-tydstdn yhteydessa tapahtuva haihtuminen, pesuvaiheen aikana tapahtuva havikki ja polaaristen lisaainekomponenttienStabilizers and other additives may migrate to the surface of the products during use, thereby reducing the stabilizing effect. The causes of additive losses may be evaporation during melting, loss during the washing phase and loss of polar additive components.
IIII
3 9221 2 kulkeutuminen seka stabilisaattorilisaaineiden epåtasainen jakautuminen polymeerimatriisissa. Viimeksi mainittuun on usein syyna stabilisaattoreiden korkeasta polaarisuudesta aiheutuva yhteensopimattomuus parafiinityyppisten hiilivety-5 pohjaisten polymeerien kanssa. Erityisesti amiinistabili-saattorit, kuten parafenyleenidiamidijohdannaiset, pyrkivat erottumaan polyolefiinimatriisista. Tainan lisaksi lisStta-vissa oleva mååra stabilisaattoria polyolefiineihin on rajoitettu, koska lisMaine pyrkii kiteytymåån.3,921 2 migration and uneven distribution of stabilizer additives in the polymer matrix. The latter is often due to incompatibility with paraffin-type hydrocarbon-based polymers due to the high polarity of the stabilizers. In particular, amine stabilizers, such as paraphenylenediamide derivatives, tend to separate from the polyolefin matrix. The amount of stabilizer in polyolefins in addition to the dough is limited because the additive tends to crystallize.
1010
Aikaisemmin tunnetun tekniikan mukaista on kayttåå lisåai-neina molekyylimassaltaan suuria stabilisaattoreita kuten tertiaarisen butyylifenolin ja pentaerytritolin johdannai-sia. Toinen tunnettu tapa on kåyttaå polymeeripohjaisia 15 oligomeerisia molekyylejå. Tainan toimenpiteen rajoituksena on kuitenkin samanaikaisesti huonontunut lisaaineen liukoi-suus polymeeriin. Tunnettua tekniikkaa on myos menetelma, jossa hiilivetypohjainen steerisesti suojattu hydroksyyli-ryhman sisaltava komponentti, johon lisaksi on liittynyt 20 våhintaan kahden atomin etaisyydellH α-vinyyliryhma, voidaan normaaleissa olefiinien polymerointiolosuhteissa kopolyme-roida. Niinpa DE-julkaisu 1 947 590 esittaa menetelmaa kopolymeerin valmistamiseksi, jossa α-olefiini saatetaan reagoimaan etyleenisesti tyydyttamattoman metallifenoksidin 25 kanssa titaani- tai vanadiinihalogeeniyhdisteen ja organo-alumiini- tai organosinkkiyhdisteen muodostaman katalyytin lasnaollessa. Organometalliyhdisteet voidaan jattåa pois, mikali metallifenoksidissa on metalli-hiilisidos.It is prior art to use high molecular weight stabilizers such as tertiary butylphenol and pentaerythritol derivatives as additives. Another known way is to use polymer-based oligomeric molecules. However, the limitation of the dough operation is at the same time the reduced solubility of the additive in the polymer. The prior art is also a process in which a hydrocarbon-based sterically protected hydroxyl group-containing component additionally attached to a α-vinyl group at a distance of at least two atoms can be copolymerized under normal olefin polymerization conditions. Accordingly, DE 1 947 590 discloses a process for preparing a copolymer in which an α-olefin is reacted with an ethylenically unsaturated metal phenoxide 25 in the presence of a catalyst formed by a titanium or vanadium halide compound and an organoaluminum or organozinc compound. Organometallic compounds can be omitted if the metal phenoxide has a metal-carbon bond.
30 Taman tunnetun tekniikan mukaisesti polymeroimalla polyme-rointiaktiivisuus on ollut niin heikko, etta menetelma on jaanyt laboratoriokuriositeetiksi. Polymeroinnit on nimit-tain suoritettu vanhanaikaisella katalyytilla, joka perustuu titaanitrikloridiin tai titaanitetrakloridiin ja alkyylialu-35 miiniyhdisteisiin.According to this prior art, the polymerization activity by polymerization has been so low that the process has been divided into laboratory curiosity. Namely, the polymerizations have been carried out with an old-fashioned catalyst based on titanium trichloride or titanium tetrachloride and alkylaluminum compounds.
Myohemmin olefiinien polymerointikatalyyttiteknologia on kehittynyt nykyiselle tasolle, jossa gramma katalysaattoria 4 92212 pystyy polymeroimaan jopa edella xnainitut yli 30 kg a-ole-fiinia. Polaaristen komponenttien kopolymerointi nåilla suursaantokatalyyteillå ei teollisessa mittakaavassa ole ollut tunnettua johtuen naiden komponenttien pyrkimyksesta 5 muodostaa katalyytin aktiivisten keskusten kanssa yhdistei-tå, jotka eståvat polymeroitumisen. Niinpa polaarisia komponentte ja, kuten alkoholia, vetta ja asetonia onkin kåytet-ty keskeyttåmaan polymerointi silloin, kun toivottu mooli-massa on saavutettu. Toisena esteenS on ilmeisesti, etta 10 steerisesti suurikokoinen stabilisaattorimonomeeri ei poly-meroinnissa pysty lahestymåån kantoaineen pinnalla olevia aktiivisia keskuksia.Subsequently, olefin polymerization catalyst technology has advanced to the current level, where a gram of catalyst 4 92212 is capable of polymerizing even the above x 30 kg of α-olefin. Copolymerization of the polar components with these high yield catalysts has not been known on an industrial scale due to the tendency of these components to form a catalyst with active centers of compounds that inhibit polymerization. Thus, polar components such as alcohol, water and acetone have been used to interrupt the polymerization when the desired molecular weight is reached. Another obstacle is apparently that the sterically large stabilizer monomer is unable to approach the active centers on the surface of the support in the polymerization.
Esillå olevan keksinnon tarkoituksena on aikaansaada mene-15 telma stabiilin α-olefiinin kopolymeerin valmistamiseksi mahdollisimman suurella saannolla. Lahempånå pyrkimyksenå on α-olefiinin kopolymeroiminen monomeerityyppisen stabi-lisaattorin kanssa kayttåen uudentyyppista korkeasaantoista Ziegler-Natta -katalyyttisysteemiå. Suunnitelmana on tålloin 20 valmistaa suoraan polymerointivaiheesta sopivankokoisia stabiloituja polymeeripartikkeleita. Keskeisena tavoitteena on myos aikaansaada kayttokelpoinen kopolymeeri, jonka stabilisaattorikomponentti pysyy tasaisesti jakautuneena polymeerituotteessa ilman erottumista erilliseksi faasiksi. 25It is an object of the present invention to provide a process for preparing a stable α-olefin copolymer in the highest possible yield. A closer effort is to copolymerize α-olefin with a monomer-type stabilizer using a new type of high yield Ziegler-Natta catalyst system. The plan is then to produce stabilized polymer particles of suitable size directly from the polymerization step. A key object is also to provide a usable copolymer whose stabilizer component remains evenly distributed in the polymer product without separation into a separate phase. 25
Edella mainitut tavoitteet on nyt saavutettu uudella mene-telmålla stabiilin α-olefiinikopolymeerin valmistamiseksi, jolle on pååasiassa tunnusomaista se, mita sanotaan patent-tivaatimuksen 1 tunnusmerkkiosasssa.The above objects have now been achieved by a new process for the preparation of a stable α-olefin copolymer, which is mainly characterized by what is stated in the characterizing part of claim 1.
3030
Menetelmåssa α-olefiini saatetaan reagoimaan kompleksin kanssa, joka kasittaa johonkin jaksollisen jarjestelmån ryhmista I-IV kuuluvan metallin ja siihen heteroatomillaan ligandiksi koordinoituneen α-alkenyylisubstituoidun stabi-35 lisaattorin, jolloin lasna on titaaniyhdisteeseen perustuva prokatalyytti ja organometalliyhdisteeseen perustuva kokata-lyytti. Keksinto perustuu siihen, etta kåytettåesså prokata-lyyttinå magnesiumyhdistekantajalla olevaa titaaniyhdistet-In the process, an α-olefin is reacted with a complex that encapsulates a metal of Groups I-IV of the Periodic Table and an α-alkenyl-substituted stabilizer 35 coordinated thereto as a ligand with a heteroatom, wherein the glass is a titanium compound-based procatalyst and an organometallic compound. The invention is based on the fact that when a titanium compound supported on a magnesium compound is used as the procatalyst.
IIII
5 92212 tå, kompleksin α-alkenyylisubstituoituna stabilisaattori-ligandina on kåytettåvå seuraavan kaavan mukaista yhdis-tettå (I)5,92212, the α-alkenyl-substituted stabilizer ligand of the complex is a compound of the following formula (I)
5 CH2=CH— (CH2) R ICH2 = CH- (CH2) R1
jossa R on heteroatomeja sisåltåvå stabilisaattorijåånnos ja n on kokonaisluku vålillå 5-15. Keksinndn oivallus pe-rustuu siis siihen, ettå kantoaineperustaista prokatalyyt- 10 tiå kåytettåesså stabilisaattorijåånnoksen ja polymeroin- tifunktionaalisen tyydyttåmåttomyyden vålillå on oltava våhintåån 5 hiiliatomin pituinen ketju.wherein R is a stabilizer residue containing heteroatoms and n is an integer from 5 to 15. Thus, the invention is based on the fact that when using a support-based procatalyst, there must be a chain of at least 5 carbon atoms between the stabilizer residue and the polymerization functional unsaturation.
Prokatalyytin magnesiumyhdisteeseen perustuva kantajakom- 15 ponentti voi olla mikå tahansa hydroksi-, alkoksi- ja/tai halogeenipitoinen magnesiumyhdiste, kuten Mg(OH)Cl,The support component of the procatalyst based on the magnesium compound can be any hydroxy-, alkoxy- and / or halogen-containing magnesium compound, such as Mg (OH) Cl,
Mg(OH)2, Mg(OR)2 tai MgCl2. Nåistå magnesiumdikloridi MgCl2 on erityisen edullinen.Mg (OH) 2, Mg (OR) 2 or MgCl2. Of these, magnesium dichloride MgCl2 is particularly preferred.
20 Kantajalla oleva titaaniyhdiste voi olla esim. titaanial-koksidi, titaanialkoksihalogenidi tai titaanihalogenidi. Erityisen edullinen titaaniyhdiste on titaanitetrakloridi TiCl4.The supported titanium compound may be, for example, titanium alkoxide, titanium alkoxy halide or titanium halide. A particularly preferred titanium compound is titanium tetrachloride TiCl4.
25 Komonomeerina kåytetyn korapleksin kaavan I mukaisena cx-alkenyylisubstituoituna stabilisaattoriligandina voidaan kåyttåå amiinin tai fenolin jåånnostå. Amiineista mainit-takoon alkyylipiperidiinit, fenyylinaftyyliamiinit, sub-stituoidut difenyyliamiinit ja parafenyleenidiamidijohdan- 30 naiset. Fenoleista mainittakoon substituoidut fenolit ja fenyylialkaanit. Sulfideista mainittakoon fenyylisulfidit -:· ja fosfiiteistå esim. tris-(p)-nonyylifenyyli- tai -fenyy- lifosfiitti.The amine or phenol string can be used as the α-alkenyl-substituted stabilizer ligand of the coraplex of formula I used as a comonomer. Examples of amines include alkylpiperidines, phenylnaphthylamines, substituted diphenylamines and paraphenylenediamide derivatives. Phenols include substituted phenols and phenylalkanes. Of the sulphides, mention may be made of phenyl sulphides - and of phosphites, for example, tris- (p) -onylphenyl or phenyl phosphite.
35 On edullista kåyttåå kaavan I mukaista a-alkenyylisubsti-tuoitua stabilisaattoriligandia, jossa R on 92212 6 -^OV-OH 11 ja/tai 5It is preferred to use an α-alkenyl-substituted stabilizer ligand of formula I wherein R is 92212 6 - ^ OV-OH 11 and / or 5
—/ N-H III- / N-H III
Kaavan I/II mukaisista 4-alkyyli-2,6-ditert.-butyylifeno-10 leista mainittakoon 4-(hept-6-enyyli)-2,6-ditert.-butyyli- fenoli, 4-(non-8-enyyli)-2,6-ditert.-butyylifenoli, 4-(undek-10-enyyil)-2,6-ditert.-butyylifenoli ja 4-(dodek-11-enyyli)-2,6-ditert.-butyylifenoli.Of the 4-alkyl-2,6-dertert-butylphenols of formula I / II, mention may be made of 4- (hept-6-enyl) -2,6-dertert-butylphenol, 4- (non-8-enyl ) -2,6-di-tert-butylphenol, 4- (undec-10-enyl) -2,6-di-tert-butylphenol and 4- (dodec-11-enyl) -2,6-di-tert-butylphenol.
15 Kaavan I/III mukaisista 4-alkyyli-2,2,6,6-tetrametyyli- piperidiineistå mainittakoon 4-(hept-6-enyyli)-2,2,6,6-tetrametyylipiperidiini, 4-(non-8-enyyli)-2,2,6,6-tetrame-tyylipiperidiini, 4-(undek-10-enyyli)-2,2,6,6-tetrametyy-lipiperidiini ja 4-(dodek-11-enyyli)-2,2,6,6-tetrametyyli-20 piperidiini.Of the 4-alkyl-2,2,6,6-tetramethylpiperidines of the formula I / III, mention may be made of 4- (hept-6-enyl) -2,2,6,6-tetramethylpiperidine, 4- (non-8-enyl ) -2,2,6,6-tetramethylpiperidine, 4- (undec-10-enyl) -2,2,6,6-tetramethylpiperidine and 4- (dodec-11-enyl) -2.2, 6,6-tetramethyl-20 piperidine.
Esillå olevan keksinnån mukaisessa menetelmåsså stabiilin α-olefiinin valmistamiseksi kåytetåån siis kompleksia, joka on saatu koordinoimalla kaavan I mukainen yhdiste 25 organometallisen yhdisteen kanssa. Koordinoituminen tapah- tuu parhaiten kaavan I mukaisella yhdisteellå, jossa ryh-mån R heteroatomi on jaksollisen jårjestelmån ryhmån V tai VI atomi. Organometallinen yhdiste perustuu jaksollisen jårjestelmån ryhmåån I, II, III tai IV kuuluvaan metalliin 30 ja edullisesti halogeeniatomiin ja/tai hiilivetyryhmåån.Thus, in the process of the present invention for the preparation of a stable α-olefin, a complex obtained by coordinating a compound of formula I with an organometallic compound is used. Coordination is best accomplished with a compound of formula I wherein the heteroatom of the R group is a V or VI atom of the Periodic Table. The organometallic compound is based on a metal belonging to group I, II, III or IV of the Periodic Table and preferably on a halogen atom and / or a hydrocarbon group.
Edullisinta on kåyttåå kompleksia, joka on saatu koordinoimalla kaavan I mukainen yhdiste, jossa ryhmån R heteroatomi on O, N, P tai S, organoalumiiniyhdisteen kanssa. Joissakin suoritusmuodoissa organoalumiiniyhdiste voi 35 toimia sekå kaavan I mukaisen yhdisteen kompleksoijana ettå polymeroinnin kokatalyyttinå.Most preferably, a complex obtained by coordinating a compound of formula I wherein the heteroatom of the group R is O, N, P or S with an organoaluminum compound is used. In some embodiments, the organoaluminum compound can act as both a complexing agent for a compound of Formula I and a cocatalyst for polymerization.
7 9221 27 9221 2
Keksinnollå syntyvån polymeerin rakenneyksikot ovat seuraa-van kaavan mukaiset —CH,—CH—The structural units of the polymer formed by the invention are -CH, -CH- according to the following formula
5 I IV5 I IV
R1 jossa R1 on vety tai korkeintaan 10 hiiliatomin hiilivety-ryhmå, ja uutta on se, ettå siihen on sisållytetty keksinndn 10 mukaisella menetelmållå seuraavan kaavan mukaisia rakenneyk-sikkojå.R 1 wherein R 1 is hydrogen or a hydrocarbon group of up to 10 carbon atoms, and what is new is that structural units of the following formula are included in the process according to the invention.
—CH,—CH—CH, -CH-
I VI V
15 (CH2)n15 (CH2) n
RR
jossa R on heteroatomin sisåltåmå stabilisaattorijåånnds ja 20 n on kokonaisluku vålillå 15, edullisesti vålillå 5-9. Kopo-lymeerin kaavan V mukaisessa rakenneyksikosså on edullista, ettå R on amiinistabilisaattorin tai fenolistabilisaattorin akt iivinen j åånnos.wherein R is a stabilizer residue contained in the heteroatom and 20 n is an integer between 15, preferably between 5-9. In the structural unit of the copolymer of formula V, it is preferred that R is an active residue of an amine stabilizer or a phenol stabilizer.
25 Kaavan V mukaisen rakenneyksikon ryhmå R on edullisestiThe group R of the structural unit of formula V is preferably
—( N-H III- (N-H III
3030
Jos halutaan synergisesti yhdiståå amiini- ja fenolistabi-lisaattorien ominaisuudet, ne kannattaa molemmat sisållyttåå samaan α-olefiinin kopolymeeriketjuun, jolloin kaavan V mu-• : kaisen toistoyksikdn ryhmåksi R tulee sekå 35If it is desired to synergistically combine the properties of the amine and phenolic stabilizers, it is advisable to include them both in the same α-olefin copolymer chain, whereby the group R of the repeating unit of formula V becomes
—^~H 111 ettå Η II- ^ ~ H 111 ettå Η II
8 922128,92212
On myos edullista, ettå se sisåltåå 0,05-0,35 paino-% kaavan V mukaisia rakenneyksikkojå.It is also preferred that it contains 0.05 to 0.35% by weight of structural units of formula V.
Stabilisaattorikomonomeerin funktionaaliset ryhmåt prekom-5 pleksoidaan ennen polymerointia metallialkyylikomponentilla. Tåmå koskee eritoten amiini- ja fenolityyppisiå stabilisaat-torimonomeerejå, jotka sisåltåvåt labiilin vetyatomin. Stabil isaattorimonomeeri kompleksoidaan metalliorgaanisen yh-disteen (esim. trietyylialumiinin, isobutyylialumiinin) 10 kanssa, jolloin syntyy seuraavat yhdisteet OH 0A1(C2H5)2 A1(C2H5)3 -> + C2H6 (CH2)n (CH2)n 20 CH=CH2 CH=CH2 25 A1(CH3)3 + HN )—(CH2)nCH=CH2 -> (CH3)3A1 <— NH^ ^—(CH2)nCH=CH2 30The functional groups of the stabilizer comonomer are precomplexed before polymerization with a metal alkyl component. This applies in particular to amine- and phenol-type stabilizer monomers which contain a labile hydrogen atom. The stable stabilizer monomer is complexed with an organometallic compound (e.g. triethylaluminum, isobutylaluminum) 10 to give the following compounds OH 0A1 (C2H5) 2 A1 (C2H5) 3 -> + C2H6 (CH2) n (CH2) n 20 CH = CH2 CH = CH2 25 A1 (CH3) 3 + HN) - (CH2) nCH = CH2 -> (CH3) 3A1 <- NH4 ^ - (CH2) nCH = CH2
Mikåli stabilisaattorimonomeerejå ei esikompleksoida, deak-tivoituu Ziegler-Natta -katalysaattori, mikå ilmenee liit-teestå 3.If the stabilizer monomers are not pre-complexed, the Ziegler-Natta catalyst is deactivated, as shown in Appendix 3.
35 Aktiivisuuden riippuvuus ns. spacer-ryhmån (= (-CH2-)n) pi-tuudesta on osoitettu liitteesså 4. Tåmån mukaisesti on edullista kåyttåå yhdistettå, jossa hiilivetyketjun pituus on 5-9 hiiliatomia. 1 ll35 Activity dependence so-called The length of the spacer group (= (-CH 2 -) n) is shown in Appendix 4. Accordingly, it is preferable to use a compound having a hydrocarbon chain length of 5 to 9 carbon atoms. 1 ll
Keksinnon mukaisella menetelmållå valmistettuja polymeerejå voidaan kåyttåå tuotteiden valmistukseen joko sellaisenaan 92212 9 tai sekoitettuna muihin polymeereihin. Polymeerisen raken-teensa ansiosta lisåaineet eivåt migroidu tuotteen pinnalle samalla, kun tuote saadaan toivotulla tavalla modifioiduksi tai stabiloiduksi. Stabiilisuuden parantamista on esitetty 5 esimerkeisså 1-6. Nåin modifioitujen polymeerien yhteensopi-vuus (kompatibiliteetti) muiden polymeerien, erityisesti polyolefiinien kanssa, paranee, samoin kuin adheesio-ominai-suudet. Elintarvikesovellutuksissa voidaan vålttåå ko. liså-aineiden migroituminen elintarvikkeisiin.The polymers produced by the process according to the invention can be used for the production of products either as such 922129 or mixed with other polymers. Due to their polymeric structure, the additives do not migrate to the surface of the product while the product is modified or stabilized as desired. The improvement of stability is shown in Examples 1-6. The compatibility of the polymers thus modified with other polymers, in particular polyolefins, is improved, as are the adhesion properties. In food applications, this can be avoided. migration of additives into food.
1010
Keksinnon toimivuutta kuvaavat seuraavat esimerkit.The functionality of the invention is illustrated by the following examples.
Esimerkki 1Example 1
Polymeroinnit suoritettiin sekoituksella varustetussa 1 l:n 15 teråsreaktorissa. Stabilisaattorimonomeeri (valmistus esitetty liitteesså 1), stokiometrinen måårå trietyylialumiinia ja 0,4 1 heptaania syotettiin reaktoriiin typen låsnåollessa ja sekoitettiin 70°C:ssa 60 minuutin ajan. Trietyylialumiini ja ulkoisena donorina kåytetty dimetoksidifenyylisilaani 20 sekoitettiin sitten typpikaapissa 100 ml:aan heptaania. Sen jålkeen noin 40 mg neljånnen sukupolven Ziegler-Natta -kata-lyyttiå sekoitettiin kokatalyytti-elektronidonoriliuokseen 100 ml:n teråsastiassa ja seos syotettiin reaktoriin typpi-paineen avulla.The polymerizations were carried out in a stirred 1 L 15 steel reactor. The stabilizer monomer (preparation shown in Appendix 1), a stoichiometric amount of triethylaluminum and 0.4 L of heptane were charged to the reactor in the presence of nitrogen and stirred at 70 ° C for 60 minutes. Triethylaluminum and dimethoxydiphenylsilane 20 used as an external donor were then mixed in a nitrogen cabinet with 100 ml of heptane. Thereafter, about 40 mg of the fourth generation Ziegler-Natta catalyst was mixed with the cocatalyst-electron donor solution in a 100 ml steel vessel and the mixture was fed to the reactor under nitrogen pressure.
25 ·· Neljånnen sukupolven Ziegler-Natta -katalysaattorilla tar- koitetaan katalyyttisysteemiå, jonka prokatalyytti (esim. Ti-pitoisuus 1,5-6 %, Mg-pitoisuus 8-30 %, Cl-pitoisuus 35-70 %, donoriyhdisteen pitoisuus 0,5-15 %, ominaispinta-30 ala = 150-250 m2/g) muodostuu kerrostamalla siirtymåmetal-liyhdiste (esim. TiCl4) ja sisåinen donori kiinteålle mag-: nesiumyhdistekantajalle (esim. MgCl2) · Kokatalyytti muodos tuu alkuaineiden jaksollisen jårjestelmån johonkin ryhmistå IA-III(B) kuuluvan metallin organometallisesta yhdisteestå 35 (esim. A1(C2H5)3). Katalyyttisysteemin kolmas osa on ulkoinen donori (esim. dimetoksidifenyylisilaani). Tållainen 10 92212 neljfinnen sukupolven Ziegler-Natta -katalysaattori on ste-reoselektiivisempi ja sillfi on korkeampi saanto kuin aikai-semplen polvien katalysaattoreilla. Lisfiksi ainoastaan neljfinnen polven Ziegler-Natta -katalysaattorille on tun-5 nusomaista ohjattu morfologia (kyky antaa syntyvfille poly-meerille alkuperfiisen katalyytin hiukkasmuoto.25 ·· The fourth generation Ziegler-Natta catalyst refers to a catalyst system with a procatalyst (e.g. Ti content 1.5-6%, Mg content 8-30%, Cl content 35-70%, donor compound content 0, 5-15%, specific surface area = 150-250 m2 / g) is formed by depositing a transition metal compound (e.g. TiCl4) and an internal donor on a solid magnesium compound support (e.g. MgCl2) · A cocatalyst is formed in a periodic table of elements in a group of elements. -III (B) from an organometallic compound 35 (e.g. A1 (C2H5) 3). The third part of the catalyst system is an external donor (e.g. dimethoxydiphenylsilane). Such a 10,92212 fourth generation Ziegler-Natta catalyst is more stereoselective and has a higher yield than previous generation catalysts. Lisfix only for the four-generation Ziegler-Natta catalyst is characterized by a controlled morphology (the ability to give the resulting polymer the particulate form of the original catalyst.
Reaktoriin syOtettiin vetyfi ja polymerointi aloitettiin lisfifimfillfi propeenia, kunnes saavutettiin haluttu osapaine. 10 Alumiinialkyylin (trietyylialumiini) ja dimetoksidifenyyli-silaanin moolisuhde sfifidettiin 15:ksi. Alumiinia ja titaa-nia sisfiltfivfin katalyyttisekoittimen moolisuhde sfifidettiin 200:ksi. Sekoittimen pydrimisnopeus oli 500 kierrosta minuu-tissa.Hydrogen was fed to the reactor and the polymerization was started with hydrogen sulfide propylene until the desired partial pressure was reached. The molar ratio of aluminum alkyl (triethylaluminum) to dimethoxydiphenylsilane was determined to be 15. The molar ratio of aluminum to titanium cisphilf catalyst stirrer was determined to be 200. The stirrer speed was 500 rpm.
1515
Polymeroinnit keskeytettiin kolmen tunnin kuluttua lisfifimal-lfi etanolia ja suolahappoa (mikfili polymeroinnissa kfiytet-tiin piperidiinimonomeeria, kfisiteltiin polymeeri etanolilla ja ammoniakkiliuoksella). Polymeeri suodatettiin ja kuivat-20 tiin 50eC:ssa ja punnittiin. Isotaktisuusindeksi mfifiritet-tiin heptaaniuutolla. Sen jfilkeen, kun kopolymeerifi oli uutettu joko kiehuvassa n-heptaanissa 3 tuntia tax Soxhlet-laitteistossa 15 tuntia, analysoitiin fenolisen stabilisaat-torin mfifirfi kopolymeerissa UV-spektrofotometrin avulla.The polymerizations were stopped after 3 hours with lisfifimal-ethanol and hydrochloric acid (the piperidine monomer was used in the polymerization, the polymer was dissolved in ethanol and ammonia solution). The polymer was filtered and dried at 50 ° C and weighed. The isotacticity index was determined by heptane extraction. After the copolymer was extracted in either boiling n-heptane for 3 hours in a tax Soxhlet apparatus for 15 hours, the phenolic stabilizer in the copolymer was analyzed by UV spectrophotometer.
2525
Propeenin ja 4-(hept-6-enyyli)-2,6-di-tert.-butyylifenolin kopolymeroinnit suoritettiin muuttamalla monomeerien vfilistå konsentraatiosuhdetta (nfiin voidaan komonomeeripitoisuus sfiatåa halutulle tasolle). Tulokset on esitetty liitteessa 30 5.Copolymerizations of propylene and 4- (hept-6-enyl) -2,6-di-tert-butylphenol were performed by changing the vfile concentration ratio of the monomers (the comonomer content can be adjusted to the desired level). The results are presented in Annex 30 5.
Saadut kopolymeerituotteet muodostuivat pallomaisista par-tikkeleista. Polymeerien hapetuskesto testattiin Differential Scanning Calorimetry (=DSC) -laitteistolla siten, ettfi 35 polymeerinfiyte asetettiin happiatmosffifiriin, minkfi jfilkeen polymeeri lfimmitettiin nopeudella 10°C minuutissa. Tfimfin jfilkeen rekisterOitiin lfimpOtila, jossa hapettuminen alkoi (0ΙΤ = oxidation induction temperature). Kopolymeerin hape-The resulting copolymer products consisted of spherical particles. The oxidation resistance of the polymers was tested by Differential Scanning Calorimetry (= DSC) by placing 35 polymer samples in an oxygen atmosphere, and the polymer was polymerized at a rate of 10 ° C per minute. The state in which oxidation began (0ΙΤ = oxidation induction temperature) was recorded. Copolymer oxygen
IIII
92212 11 tuksen kestoa verrattiin puhtaaseen polypropeeniin (no 4), kaupalliseen polypropeeniin (no 5) ja polypropeeniin, johon oli lisatty 0,75 paino-% Irganox 1010 -stabilisaattoria ekstruuderissa (no 6). Sekå kaupallinen, ettå polypropeeni, 5 johon oli lisatty Irganox 1010 -stabilisaattoria, menettivat stabiilisuutta stabilisaattorin uuttovaiheessa. Sitavastoin uutetuilla kopolymeereillå oli vielå xnelkein yhta hyvå stabiilisuus kuin uuttamattomalla kaupallisella polypro-peenilla.92212 11 was compared to pure polypropylene (No. 4), commercial polypropylene (No. 5) and polypropylene to which 0.75% by weight of Irganox 1010 stabilizer was added in an extruder (No. 6). Both commercial and polypropylene, to which Irganox 1010 stabilizer had been added, lost stability in the stabilizer extraction step. In contrast, the extracted copolymers still had almost as much stability as the unextracted commercial polypropylene.
1010
Myos vanhenemiskoe suoritettiin uunissa 110°C:n låmpotilas-sa, minkå jålkeen mååråajoin tutkittiin 1708 cm-1 -absorp-tiopiikin syntyå infrapunaspektrofotometrillå (IR). Kysei-nen absorptiopiikki voidaan yhdiståå polymeerihapettumis-15 tuotteiden (ketonit, aldehydit, jne.) muodostumiseen. Stabi-loitumaton polypropeeni hapettuu nåisså olosuhteissa 6 tunnissa. Sitavastoin uutetut kopolymeerit hapettuvat vasta noin 12 påivån jålkeen.An aging test was also performed in an oven at 110 ° C, after which the formation of the 1708 cm-1 absorption peak was periodically examined by infrared spectrophotometry (IR). This absorption peak can be combined with the formation of polymer oxidation products (ketones, aldehydes, etc.). Unstabilized polypropylene oxidizes under these conditions in 6 hours. In contrast, the extracted copolymers do not oxidize until after about 12 days.
20 Esimerkki 220 Example 2
Aktiivisuuden riippuvuus spacer-ryhmån (-CH2-)« pituudesta tutkittiin polyxneroimalla seuraavat funktionaaliset monomee-rit, joiden valmistus on esitetty liitteesså 1 (liite 4) 25 4-(butyyli-3-enyyli)-2,6-ditert.-butyylifenoli (vertailuesi- merkki) 4-(pent-4-enyyli)-2,6-ditert.-butyylifenoli 4-(heks-5-enyyli)-2,6-ditert.-butyylifenoli 4-(hept-6-enyyli)-2,6-ditert.-butyylifenoli 30 4-(non-8-enyyli)-2,6-ditert.-butyylifenoli 4-(undek-10-enyyli)-2,6-ditert.-butyylifenoli ·. 4-(dodek-ll-enyyli)-2,6-ditert.-butyylifenoli propeenin kanssa. Polymerointiolosuhteet olivat samanlaiset 35 kuin esimerkisså 1, propeenin osapaine oli kuitenkin 4 baaria, vedyn osapaine 0,1 baaria, reaktori 2 1 ja heptaanin måårå 1 1. Kopolymeerit sisåltåvåt 0,05-0,15 paino-% stabilisaattoria. Tulokset polymerontiaktiivisuudesta on esitetty 92212 12 liitteesså 4. Tåmån mukaisesti on edullista kåyttåå yhdis-tettå, jossa hiilivetyketjun pituus on 5-9 hiiliatomia.The dependence of the activity on the length of the spacer group (-CH2-) was investigated by polyxnering the following functional monomers, the preparation of which is shown in Appendix 1 (Appendix 4) 4- (butyl-3-enyl) -2,6-ditert-butylphenol ( Comparative Example) 4- (pent-4-enyl) -2,6-di-tert-butylphenol 4- (hex-5-enyl) -2,6-di-tert-butylphenol 4- (hept-6-enyl) - 2,6-dertert-butylphenol 4- (non-8-enyl) -2,6-ditert-butylphenol 4- (undec-10-enyl) -2,6-dertert-butylphenol ·. 4- (dodec-11-enyl) -2,6-ditert-butylphenol with propylene. The polymerization conditions were similar to those in Example 1, except that the partial pressure of propylene was 4 bar, the partial pressure of hydrogen was 0.1 bar, the reactor was 2 l and the amount of heptane was 1 l. The copolymers contained 0.05 to 0.15% by weight of stabilizer. The results for polymerone activity are shown in Appendix 4 to 92212 12. Accordingly, it is preferable to use a compound having a hydrocarbon chain length of 5 to 9 carbon atoms.
Esimerkki 3 5 Polymeroinnit suoritettiin panospolymerointeina siten, ettå 1 l:n teråsreaktoriin syotettiin 1,4 moolia/1 propeenia, 0. 5 1 heptaania ja 0,3 moolia/1 fenolimonomeeria (lukuun ot-tamatta 4-(pent-4-enyyli)-2,6-ditert.-butyylifenolia, jota syotettiin 0,15 moolia/1). Muuten polymerointiolosuhteet 10 olivat samanlaiset kuin esimerkisså 1.Example 3 The polymerizations were carried out as batch polymerizations by feeding 1.4 mol / l of propylene, 0.5 l of heptane and 0.3 mol / l of phenol monomer (except for 4- (pent-4-enyl)) into a 1 l steel reactor. -2,6-ditert-butylphenol fed 0.15 mol / l). Otherwise, the polymerization conditions 10 were similar to Example 1.
Kopolymeerit sisåltåvåt 0,15-0,350 paino-% stabilisaattoria. Tulokset kopolymeerien stabiilisuuksista on esitetty taulu-kossa 1.The copolymers contain 0.15-0.350% by weight of stabilizer. The results for the stability of the copolymers are shown in Table 1.
1515
Taulukko 1table 1
No Aika hapettumisen alkuun _IR-menetelmållå_ 20No Time to start oxidation by _IR method_ 20
Puhdas polypropeeni < 1/2 påivååPure polypropylene <1/2 day
Spacer n = 2 >12Spacer n = 2> 12
Spacer n = 3 >12Spacer n = 3> 12
Spacer n = 4 >12 25 Spacer n = 5 >12 ··; Spacer n = 7 >12Spacer n = 4> 12 25 Spacer n = 5> 12 ··; Spacer n = 7> 12
Spacer n = 9 >12Spacer n = 9> 12
Spacer n = 10 >12 30Spacer n = 10> 12 30
Esimerkki 4Example 4
Polymerointiolosuhteet olivat samanlaiset kuin esimerkisså 1, paine oli 0,3 baaria, jotta spektroskooppinen tarkastelu polymeerille oli mahdollinen. (Spektroskooppiset menetelmåt 35 vaativat våhintåån 1 paino-% pitoisuuden. Stabilointiin riittåå 0,01 paino-% pitoisuus.) Funktionaalisena monomee-rina kåytettiin 4-(hept-6-enyl)-2,6-ditert.-butyylifeno-; . lia (0,15 moolia/1) ja 4-(heks-5-enyyli)-2,2,6,6-tetra- 13 92212 metyylipiperidiiniå (0,15 moolia/1, valmistus esitetty liit-teesså 2). Polymeerisaanto oli 0,13 kg/g katalyyttiå, vas-taavissa polyxnerointiolosuhteissa propeenin homopolymeroin-nin aktiivisuus oli 0,15 kg/g katalyyttiå. Terpolymeerin 5 isotaktisuusindeksi on 97 % ja hapetuksen kesto DSC-menetel-mållå oli 210°C. Saatu terpolymeerituote on puhtaan valkoi-nen ja muodostuu pallomaisista partikkeleista. (M„ 10'3 = 45,The polymerization conditions were similar to Example 1, the pressure was 0.3 bar to allow spectroscopic examination of the polymer. (Spectroscopic methods 35 require a concentration of at least 1% by weight. A concentration of 0.01% by weight is sufficient for stabilization.) 4- (Hept-6-enyl) -2,6-ditert-butylpheno- was used as the functional monomer; . (0.15 mol / L) and 4- (hex-5-enyl) -2,2,6,6-tetra-13,92212 methylpiperidine (0.15 mol / L, preparation shown in Appendix 2). The polymer yield was 0.13 kg / g of catalyst, under the corresponding polyxerification conditions the homopolymerization activity of propylene was 0.15 kg / g of catalyst. Terpolymer 5 has an isotacticity index of 97% and an oxidation time by DSC of 210 ° C. The terpolymer product obtained is pure white and consists of spherical particles. (M „10'3 = 45,
Mw 10’3 = 221 ja PD= 4,9) 10 Esimerkki 5 (Vertailuesimerkki)Mw 10’3 = 221 and PD = 4.9) 10 Example 5 (Comparative Example)
Polymerointiolosuhteet olivat samanlaiset kuin esimerkisså 4. Funktionaalisena komonomeerinå kåytettiin 4-(heks-5-enyy-li)-2,2,6,6-tetrametyylipiperidiiniå (valmistus liitteen 2 mukainen) (0,3 moolia/1). Polymeerisaanto oli 0,16 kg/g ka- 15 talyyttiå. Saatu tuote oli puhtaan valkoinen ja pallomainen, isotaktisuusindeksi 96 % ja hapetuksen kesto DSC-menetelmål-lå oli 210°C. (M„ 10'3 = 52, Mw 10‘3 = 265 ja PD = 5,1)The polymerization conditions were similar to those in Example 4. 4- (Hex-5-enyl) -2,2,6,6-tetramethylpiperidine (prepared according to Annex 2) (0.3 mol / l) was used as the functional comonomer. The polymer yield was 0.16 kg / g of catalyst. The product obtained was pure white and spherical, with an isotacticity index of 96% and an oxidation time by DSC of 210 ° C. (M '10'3 = 52, Mw 10'3 = 265 and PD = 5.1)
Esimerkki 6 20 4-(hept-6-enyyli)-2,6-ditert.-butyylifenolia (0,17 moolia) homopolymeroitiin esimerkin 1 olosuhteissa. Polymeerisaanto oli 1,1 kg/g katalyyttiå (2,4 g polymeeriå). Polymerointiai-ka oli 18 tuntia. Tuote oli suhteellisen pallomainen. Kalo-rimetrisså 320°C:ssa tuote ei hajonnut hapen låsnåollessa.Example 6 4- (Hept-6-enyl) -2,6-ditert-butylphenol (0.17 mol) was homopolymerized under the conditions of Example 1. The polymer yield was 1.1 kg / g of catalyst (2.4 g of polymer). The polymerization time was 18 hours. The product was relatively spherical. In a calorimeter at 320 ° C, the product did not decompose in the presence of oxygen.
25 t » · 92212 1) NaH 1) Mg H0jCH2V0-CH2^0 C,,CH2,3-OH --CHCH2,3-0-CH2^0> g) > c /)<CH325 t »· 92212 1) NaH 1) Mg H0jCH2VO-CH2 ^ 0 C ,, CH2,3-OH --CHCH2.3-O-CH2 ^ 0> g)> c /) <CH3
BrCH2^ CH3BrCH2 ^ CH3
DMF I I rMDMF I rM
H-C-l J<CH3 (I) 3 CH, (") l-LC | °"3H-C-1 J <CH3 (I) 3 CH, (") 1-LC | °" 3
3 H3 H
1) soci21) soci2
YY
,,mr -— ^SA“,·,, mr -— ^ SA “, ·
H 3 H HH 3 H H
(V) (,V) (III) 1) CH2=CH-CH2MgBr ^(ch2)4-ch=ch2 -► H3C^vJ<CH3 »J ? CH3(V) (, V) (III) 1) CH2 = CH-CH2MgBr ^ (ch2) 4-ch = ch2-► H3C ^ vJ <CH3 »J? CH3
3 H3 H
(VI)(VI)
Kuva 1.4-(heks-5-enyyli)-2,2,6,6-tetrametyylipiperidiinin valmistustapa.Figure 1.4- (Hex-5-enyl) -2,2,6,6-tetramethylpiperidine.
ii 92212 I) 0.83 moolia natriumhydridiå liuotettiin eetteriin, johon lisåttiin 0.66 moolia Cl-(CH2)3-OH :ta puolessa tunnissa, jonka jålkeen 0.73 moolia bentsyylibromidia lisåttiin seokseen 5 tippaa sekunnissa. Kahden tunnin jålkeen seos jååhdytettiin 0 °C asteiseksi, jonka jålkeen dimetyyliformamiidi (100 ml) lisåttiin varovasti seokseen. Seos sai reagoida 10 tuntia, jonka jålkeen tuote tislattiin ( k.p 115 °C /10 mmHg, saanto 87%).ii 92212 I) 0.83 moles of sodium hydride was dissolved in ether to which 0.66 moles of Cl- (CH2) 3-OH was added in half an hour, after which 0.73 moles of benzyl bromide were added to the mixture at 5 drops per second. After 2 hours, the mixture was cooled to 0 ° C, after which dimethylformamide (100 ml) was carefully added to the mixture. The mixture was allowed to react for 10 hours, after which the product was distilled (b.p. 115 ° C / 10 mmHg, yield 87%).
II) 0.28 moolia ko. tuotetta (kohta I) lisåttiin magnesiumhiutaleisiin (0.34 moolia) eet-terisså. Tåmån jålkeen seokseen lisåttiin 2,2,6,6,- tetrametyyli-piperidonia (0.19 moolia). Seos sai reagoida 12 tuntia, jonka jålkeen lisåttiin vettå ja suolahappoa, kunnes seoksen PH oli 3. Tuote uutettiin eetterillå ja vesifaasi tehtiin emåksiseksi ammoniakkiliuoksella, jonka jålkeen tuote tislattiin (k.p 156 °C/1 mmHg, saanto 62% ).II) 0.28 mol. the product (point I) was added to magnesium flakes (0.34 moles) in ether. Thereafter, 2,2,6,6-tetramethyl-piperidone (0.19 mol) was added to the mixture. The mixture was allowed to react for 12 hours, after which water and hydrochloric acid were added until the pH of the mixture was 3. The product was extracted with ether and the aqueous phase was basified with ammonia solution, after which the product was distilled (b.p. 156 ° C / 1 mmHg, yield 62%).
III) Tuote (0.066 moolia)(kohta II) liuotettiin 100 ml:aan eetteriå, johon lisåttiin suolahappoa, kunnes seoksen PH oli 2.5. Eetteri haihdutettiin evaporaattorissa ja suo-la liuotettiin kloroformiin (100 ml). Tåhån seokseen lisåttiin tionyylikloridia (138.5 g) ja seoksen låmpotila nostettiin 60°C:een. Seos sai reagoida tåsså låmpotilassa 10 tuntia, jonka jålkeen ylimååråinen tionyylikloridi haihdutettiin evaporaattorissa. Tuotteeseen lisåttiin 50 ml vettå ja liuos tehtiin emåksiseksi natriumhydroksidilla. Tåmån jålkeen seos uutettiin eetterillå. Tuote tislattiin (k.p 130 °C/lmmHg, saanto 74%).III) The product (0.066 mol) (point II) was dissolved in 100 ml of ether to which hydrochloric acid was added until the pH of the mixture was 2.5. The ether was evaporated on an evaporator and the salt was dissolved in chloroform (100 ml). To this mixture was added thionyl chloride (138.5 g) and the temperature of the mixture was raised to 60 ° C. The mixture was allowed to react at this temperature for 10 hours, after which the excess thionyl chloride was evaporated on a evaporator. To the product was added 50 ml of water and the solution was basified with sodium hydroxide. The mixture was then extracted with ether. The product was distilled (b.p. 130 ° C / 1 mmHg, 74% yield).
IV) Tuote (0.0435 moolia)(kohta III) liuotettiin etanoliin (150 ml), johon lisåttiin suolahappoa, kunnes PH oli 2. Tåmån jålkeen seokseen lisåttiin platinaoksidikatalysaattoria (0.85 g). Reaktoriastia evakuoitiin, jonka jålkeen vetyå lisåttiin reaktoriin, kunnes paine oli 2 baaria. Hydreerausreaktion pååtyttyå tåydellisesti 24 tuntia myohemmin etanoli evapo-roitiin. Tuote liuotettiin veteen ja tehtiin emåksiseksi natriumhydroksidilla, jonka jålkeen tuote uutettiin eetterillå. Muodustunut tuote oli kristallidi.(saanto 97%) ; : V) Tuote (0.042 moolia) (kohta IV) lisåttiin 60%:seen HBr:åån (29.6 g) ja seoksen låm potila nostettiin 110 °C:een kolmeksi tunniksi. Sen jålkeen låmpotila laskettiin 70 °C, jossa seos sai reagoida 16 tuntia. Tuote tehtiin emåksiseksi natriumhydroksidilla. Tuote tislattiin (k.p 98 °C/2mmHg, saanto 41%).IV) The product (0.0435 moles) (point III) was dissolved in ethanol (150 ml) to which hydrochloric acid was added until the pH was 2. Then a platinum oxide catalyst (0.85 g) was added to the mixture. The reactor vessel was evacuated, after which hydrogen was added to the reactor until the pressure was 2 bar. After completion of the hydrogenation reaction, ethanol was evaporated 24 hours later. The product was dissolved in water and basified with sodium hydroxide, after which the product was extracted with ether. The product formed was crystallide (yield 97%); : V) The product (0.042 moles) (point IV) was added to 60% HBr (29.6 g) and the patient was raised to 110 ° C for three hours. Thereafter, the temperature was lowered to 70 ° C, where the mixture was allowed to react for 16 hours. The product was basified with sodium hydroxide. The product was distilled (b.p. 98 ° C / 2mmHg, 41% yield).
VI) CH2=CH-CH2-Br (0.017 moolia) lisåttiin magnesiumhiutaleisiin (0.017 moolia) eet-• ' terisså. Tåmån jålkeen seokseen lisåttiin tuote (0.00574 moolia) (kohta λ7). Tuote uutettiin eetterillå ja vesifaasi tehtin emåksiseksi ammoniakkiliuoksella, jonka jålkeen tuote 4-(heks- 5-enyyli)-2,2,6,6-tetrametyylipiperidiini tislattiin ( k.p 95 °C/2 mmHg, saanto 60%).VI) CH 2 = CH-CH 2 -Br (0.017 moles) was added to magnesium flakes (0.017 moles) in ether. The product (0.00574 moles) was then added to the mixture (λ7). The product was extracted with ether and the aqueous phase was basified with ammonia solution, after which the product 4- (hex-5-enyl) -2,2,6,6-tetramethylpiperidine was distilled off (b.p. 95 ° C / 2 mmHg, yield 60%).
16 9221 216 9221 2
OH OHOH OH
Paraformaldehydi HCL(g) CH2C! + CH2=CH-(CH2) -MgBr n-1Paraformaldehyde HCl (g) CH 2 Cl 2 + CH2 = CH- (CH2) -MgBr n-1
OHOH
vv< o -—1 (CH2) -ch=ch2 n n = 2,3.....,10vv <o -—1 (CH2) -ch = ch2 n n = 2,3 ....., 10
Eri bromoalkeenien valmistus:Preparation of various bromoalkenes:
HMPAHMPA
1) Br-(CH2) -Br ->► CH2=CH-(CH2) -Br n+1 T=195C n-1 n = 3,4,5 (Ni) 2) CH2=CH-CH2-MgBr + Br-(CH2) -Br ->- CH2=CH-(CH2) -Br n-2 n-1 n = 6,7,8 pBr3 3) CH?=CH-(CH?) -OH -W CH2=CH-(CH2) -Br 2 2 n-1 ^ n·1 n = 9,101) Br- (CH2) -Br -> ► CH2 = CH- (CH2) -Br n + 1 T = 195C n-1 n = 3,4,5 (Ni) 2) CH2 = CH-CH2-MgBr + Br- (CH2) -Br -> - CH2 = CH- (CH2) -Br n-2 n-1 n = 6,7,8 pBr3 3) CH2 = CH- (CH2) -OH -W CH2 = CH- (CH2) -Br2 2 n-1 ^ n · 1 n = 9.10
Kuva 2. Eri a-alkenyylifenolien valmistustapa.Figure 2. Preparation of different α-alkenylphenols.
17 9221 2 1) Paraformaldehydi 2.49 moolia liuotettiin 450 mlraan bentseeniå ja seos låmmitettiin 50 °C:een. Seokseen johdettiin kaasumaista suolahappoa siten, ettå liuos oli koko ajan kyllåinen. Tåhån seokseen lisåttiin 2,6-di-tert-butyyli£enoli, joka oli liuotettu 80 ml:aan bentseenia. Tåmån jålkeen reaktio sai jatkua 8 tuntia liuoksen pysyesså koko ajan kyllåi-senå. Tåmån jålkeen tuotteeseen lisåttiin vettå ja suolahappoa. Tuote uutettiin eetterillå, jonka jålkeen saatiin 4-kloorimetyyli-2,6-di-tert-butyylifenoli (saanto 85%). 1 2) 4-(butyl-3-enyl)-2,6-di-tert-butyylifenolin valmistus. Allyylibromidi (1.66 moolia) lisåttiin magnesiumhiutaleisiin (1.66 moolia) eetterisså. Tåmån jålkeen seokseen lisåttiin tuote (0.51 moolia)(kohta 1). Seos sai reagoida 12 tuntia, jonka jålkeen lisåttiin vettå ja NH4CI. Tuote uutettiin eetterillå, jonka jålkeen tuote tislattiin (110 °C/1.5 mmHg, saanto 44%) 3) 4-(pent-4-enyl)-2,6-ditert-butyylifenolin valmistus. Br-(CH2)4-Br låmpotila nostettiin 195 °C, jonka jålkeen lisåttiin 250 ml heksametyylifosforitriamiidia (=HMPA), jolloin muo-dustuu CH2=CH-CH2-CH2-Br (k.p 98 °C/760mmHg, saanto 46%). 2 CH2=CH-CH2-CH2-Br (133 g) lisåttiin magnesiumhiutaleihin eetterisså. Tåmån jålkeen seokseen lisåttiin tuote (0.30 moolia)(kohta 1). Seos sai reagoida 12 tuntia, jonka jålkeen lisåttiin vettå ja NH4CI. Tuote uutettiin eetterillå, jonka jålkeen tuote tislattiin (124 °C/1.5 mmHg, saanto 37%) 4) 4-(heks-5-enyl)-2,6-ditert-butyylifenolin valmistus. Sama valmistustapa kuin kohdassa 3, sillå erolla, ettå Br-(CH2)s-Br kåytettiin Br-(CH2)4-Br sijasta. Tuote tislattiin ( k.p 138 °C/1.5 mmHg, saanto 45%).17 9221 2 1) 2.49 moles of paraformaldehyde was dissolved in 450 ml of benzene and the mixture was heated to 50 ° C. Gaseous hydrochloric acid was introduced into the mixture so that the solution was always saturated. To this mixture was added 2,6-di-tert-butyl-enol dissolved in 80 ml of benzene. Thereafter, the reaction was allowed to proceed for 8 hours while the solution remained saturated. Water and hydrochloric acid were then added to the product. The product was extracted with ether to give 4-chloromethyl-2,6-di-tert-butylphenol (85% yield). 1 2) Preparation of 4- (butyl-3-enyl) -2,6-di-tert-butylphenol. Allyl bromide (1.66 moles) was added to magnesium flakes (1.66 moles) in ether. The product (0.51 moles) was then added to the mixture (step 1). The mixture was allowed to react for 12 hours, after which water and NH 4 Cl were added. The product was extracted with ether, after which the product was distilled (110 ° C / 1.5 mmHg, yield 44%) 3) Preparation of 4- (pent-4-enyl) -2,6-ditert-butylphenol. The temperature of Br- (CH2) 4-Br was raised to 195 ° C, after which 250 ml of hexamethylphosphoric triamide (= HMPA) was added to form CH2 = CH-CH2-CH2-Br (b.p. 98 ° C / 760mmHg, yield 46%). . 2 CH 2 = CH-CH 2 -CH 2 -Br (133 g) was added to magnesium flakes in ether. The product (0.30 moles) was then added to the mixture (step 1). The mixture was allowed to react for 12 hours, after which water and NH 4 Cl were added. The product was extracted with ether, after which the product was distilled (124 ° C / 1.5 mmHg, yield 37%) 4) Preparation of 4- (hex-5-enyl) -2,6-ditert-butylphenol. Same procedure as in 3, except that Br- (CH2) s-Br was used instead of Br- (CH2) 4-Br. The product was distilled (b.p. 138 ° C / 1.5 mmHg, 45% yield).
5) 4-(hept-6-enyl)-2,6-ditert-butyylifenolin valmistus. Sama valmistustapa kuin kohdassa 3, sillå erolla, ettå Br-(CH2)6-Br kåytettiin Br-(CH2)4-Br sijasta. Tuote tislattiin ( k.p 151 °C/1.5 mmHg, saanto 41%).5) Preparation of 4- (hept-6-enyl) -2,6-ditert-butylphenol. Same procedure as in 3, except that Br- (CH2) 6-Br was used instead of Br- (CH2) 4-Br. The product was distilled (b.p. 151 ° C / 1.5 mmHg, 41% yield).
6) 4-(non-8-enyl)-2,6-ditert-butyylifenolin valmistus. Allyylibromidi (1 moolia) lisåttiin magnesiumhiutaleisiin (1 moolia) eetterisså. Tåmån jålkeen seos jååhdytettiin 0 °C asteiseksi, jonka jålkeen lisåttiin 7-bromo-l-heptaania ja 1 g Ni katalysaattoria (bis(triphenylphosphinenickel(II) chloride). Seos sai reagoida 12 tuntia, jonka jålkeen lisåttiin vettå ja suolahappoa. Tuote (0.26 moolia, saanto 26 %) 8-bromo-l-okteeni lisåttiin magnesiumhiutaleisiin eetterisså. Tåmån jålkeen lisåttiin (0.086 moolia) tuotetta (kohta . : 1). Seos sai reagoida 12 tuntia, jonka jålkeen lisåttiin vettå ja NH4CI. Tuote tislattiin (k.p 172 °C/2mmHg, saanto 52%).6) Preparation of 4- (non-8-enyl) -2,6-ditert-butylphenol. Allyl bromide (1 mole) was added to magnesium flakes (1 mole) in ether. The mixture was then cooled to 0 ° C, followed by the addition of 7-bromo-1-heptane and 1 g of Ni catalyst (bis (triphenylphosphinenickel (II) chloride)) and the mixture was allowed to react for 12 hours, after which water and hydrochloric acid were added. moles, yield 26%) 8-bromo-1-octene was added to the magnesium flakes in ether, followed by the addition of (0.086 moles) of product (item: 1) and the reaction was allowed to react for 12 hours, after which water and NH 4 Cl were added. ° C / 2mmHg, yield 52%).
7) 4-(undek-10-enyl)-2,6-ditert-butyylifenolin valmistus. (1.09 moolia) 9-deken-l-oli lisåttiin 24.6 g pyridiiniå ja 300 ml dikloorimetaania. Seos jååhdytettiin -35 °C -asteiseksi, jonka jålkeen lisåttiin (0.45 moolia) ΡΒγ3· Seos sai reagoida 4 tuntia, jonka jålkeen tuote 9-bromo-dekeni tislattiin (k.p 168 °C/10 mmHg, saanto 45.8%).7) Preparation of 4- (undec-10-enyl) -2,6-ditert-butylphenol. (1.09 moles) 9-Deken-1-ol was added 24.6 g of pyridine and 300 ml of dichloromethane. The mixture was cooled to -35 ° C, after which 0.4γ3 was added (0.45 moles). The mixture was allowed to react for 4 hours, after which the product 9-bromo-decene was distilled off (b.p. 168 ° C / 10 mmHg, yield 45.8%).
T. L. Patton, J. T. Horeczy ja D. E. Delson, (Esso), US 3 477 991, (1969).T. L. Patton, J. T. Horeczy, and D. E. Delson, (Esso), U.S. 3,477,991, (1969).
2 G. A. Kraus ja K. Lardberge, Synthesis, No. 10, pp. 885, (19S4).2 G. A. Kraus and K. Lardberge, Synthesis, no. 10, p. 885, (19S4).
,β 92212 9-bromo-dekeni (0.5 moolia) lisåttiin magnesiumhiutaleisiin ( 0.5 moolia) eetterisså, jonka jålkeen seokseen lisåttiin tuotetta (0.17 moolia) (kohta 1). Seos sai reagoida 12 tuntia, jonka jålkeen lisåttiin vettå ja NH4C1. Tuote tislattiin (k.p 180 °C/2mmHg, saanto 47%)., β 92212 9-Bromo-decene (0.5 moles) was added to the magnesium flakes (0.5 moles) in ether, followed by the addition of product (0.17 moles) to the mixture (step 1). The mixture was allowed to react for 12 hours, after which water and NH 4 Cl were added. The product was distilled (b.p. 180 ° C / 2mmHg, 47% yield).
8) 4-(dodek-ll-enyl)-2,6-di-tert-butyylifenolin valmistus. Sama valmistus tapa kuin koh-dassa 7, sillå erolla ettå 10-undeken-l-olia kåytettiin 9-deken-l-olin sijasta. Tuote tislattiin ( k.p 188 °C/1.5 mmHg, saanto 45%).8) Preparation of 4- (dodec-11-enyl) -2,6-di-tert-butylphenol. The same preparation as in step 7, except that 10-undeken-1-ol was used instead of 9-Deken-1-ol. The product was distilled (b.p. 188 ° C / 1.5 mmHg, 45% yield).
IIII
„ 922Ί 2 j p ·ν> |! " :- g o * P* EC “ Qj o t-' 5. <u h-> — r-r in to So c :r 3 -i rr ui —·„922Ί 2 j p · ν> |! ": - g o * P * EC“ Qj o t- '5. <u h-> - r-r in to So c: r 3 -i rr ui - ·
rr —' CT Orr - 'CT O
o to ω „ ° rt « rt l/> ° ^ X ΙΛ § c < -i - 3^5 —o to ω „° rt« rt l /> ° ^ X ΙΛ § c <-i - 3 ^ 5 -
Ο I— >— >— ·— I—* >— ·— OOqoTCΟ I—> -> - · - I— *> - · - OOqoTC
** ~ v--- h- Ό >__in** ~ v --- h- Ό> __ in
O Ln Ln ui t_n i_n i_n p. ο OO Ln Ln ui t_n i_n i_n p. Ο O
1Λ O ro — B h- p· - Ο <Λ rj <X> X 31Λ O ro - B h- p · - Ο <Λ rj <X> X 3
XX
P- < Π) NJ 3P- <Π) NJ 3
. LO. LO
CC
(/5(/ 5
CDCD
toto
XX
o 3 Ό -- Ϊ O £U ^ CD (/H Μ I CT £ O O OOO-fc* u H* z.o 3 Ό - Ϊ O £ U ^ CD (/ H Μ I CT £ O O OOO-fc * u H * z.
w 5 3 J—' rq O O OOOO OP* g o C/l γϊ P- D ri-w 5 3 J— 'rq O O OOOO OP * g o C / l γϊ P- D ri-
P- D OP- D O
& rr 3& rr 3
^ rr C^ rr C
P- O CP- O C
Π CLΠ CL
j—· CDj— · CD
. D. D
< ω x c rr<ω x c rr
CC
(/5 Ό(/ 5 Ό
OO
Ό CO -< Ο Ο 3Ό CO - <Ο Ο 3
h- Cj CDh- Cj CD
*<3 - ‘ w ^ ^ s ** Γ-r -- cd fsj ο η- a u XO (/>* <3 - ‘w ^ ^ s ** Γ-r - cd fsj ο η- a u XO (/>
' * to O'* to O
ώ 2 r-τ- & h- *< rr rr P-ώ 2 r-τ- & h- * <rr rr P-
Ci 20 922'12Ci 20 922'12
Liite 4. Aktiivisuuden riippuvuus spacer-ryhmån pituudesta (katso esimerkki 2) spacer Propeeni Stab. Saanto n moolia/1 10'3 Poly kg/g moolia/1 katalyyttiå 4 -(bytyl- 3 -enyl)-2,6- ditert-butyylifenoli 2 1,5 7,5 1,0 1.5 15 0,8 4 -(pent - 4 -enyl)-2,6- ditert-butyylifenoli 3 η 1,5 7,5 1,5 1.5 15 1,3 4 -(heks - 5 -enyl)-2,6- ditert-butyylifenoli 4 1,5 7,5 2,4 -"- 1,5 15 2,1 4 -(hept- 6 -enyl)-2,6- ditert-butyylifenoli 5 1,5 7,5 2,8 1.5 15 2,5 4-(non-8-enyl)-2,6- di-tert-butyylifenoli 7 1,5 7,5 2,9 4-(undec-10-enyl)-2,6- di-tert-butyylifenoli 9 1,5 7,5 3,2 1.5 15 2,8 4-(dodec-ll-enyl)-2,6- ditert-butyylifenoli 10 1,5 7,5 2,7 .1,5 15 2,1Appendix 4. Dependence of activity on spacer group length (see Example 2) spacer Propylene Stab. Yield n moles / 1 10'3 Poly kg / g moles / 1 catalyst 4- (bytyl-3-enyl) -2,6-ditert-butylphenol 2 1.5 7.5 1.0 1.5 15 0.8 4 - (pent-4-enyl) -2,6-ditert-butylphenol 3 η 1.5 7.5 1.5 1.5 15 1.3 4- (hex-5-enyl) -2,6-ditert-butylphenol 4 1 .5 7.5 2.4 - "- 1.5 15 2.1 4- (hept-6-enyl) -2,6-ditert-butylphenol 5 1.5 7.5 2.8 1.5 15 2.5 4- (non-8-enyl) -2,6-di-tert-butylphenol 7 1.5 7.5 2.9 4- (undec-10-enyl) -2,6-di-tert-butylphenol 9 1 .5 7.5 3.2 1.5 1.5 2.8 4- (dodec-11-enyl) -2,6-ditert-butylphenol 10 1.5 7.5 2.7 .1.5 15 2.1
Ainoastaan propeenia 1,5 - 2,4Propylene only 1.5 - 2.4
Polymerointiolosuhteet, katso esimerkki 2. vertailuesimerkki 11 92212 T3Polymerization conditions, see Example 2. Comparative Example 11 92212 T3
r-> C C C Cr-> C C C C
CJ O O OCJ O O O
o c c c c c c c co c c c c c c c c
•Η -Η O Ή O -<-< O *H O• Η -Η O Ή O - <- <O * H O
cnQcracrocrOCcnQcracrocrOC
O “ *H m Ή P Ή £ -HO “* H m Ή P Ή £ -H
-H OO OO OO OO · O —t -*! X r-i r-i u.-H OO OO OO OO · O —t - *! X r-i r-i u.
-H *—f *-H >—I <—H *—( »—\ ·—1 f—i M Li fO O O ίΟ O O 10 f0 O-o o« > ^ > cu> o, > > ' "" 0-1-H * —f * -H> —I <—H * - (»- \ · —1 f — i M Li fO OO ίΟ OO 10 f0 Oo o«> ^> cu> o,>> '' "0 -1
° -H° -H
1 c 3 (N · ΓΊ ΓΝ lT) > HH cM3 -H O CJv CT\1 c 3 (N · ΓΊ ΓΝ lT)> HH cM3 -H O CJv CT \
__ M O__ M O
**
0 -S0 -S
CO UCO U
*-> o r\j η r\» Qj <Ό Ϊ0 <-H r-H ·—< \ cj* -> o r \ j η r \ »Qj <Ό Ϊ0 <-H r-H · - <\ cj
cx > -η Scx> -η S
-O i—* 1 “ §--O i— * 1 “§-
s Is I
οι uhoooooo o „ E conOr\ir4r\icococo [2 >. Q O <N 04 CM c-I—(—, p 1. “ ° H § -* UE->OOiooom cm (Λ HH 'U lA «Τ CO f\J ΤΓ o ^ QOi^AJrsj^Hrg r\j j_>οι uhoooooo o „E ConOr \ ir4r \ icococo [2>. Q O <N 04 CM c-I - (-, p 1. “° H § - * UE-> OOiooom cm (Λ HH 'U lA« Τ CO f \ J ΤΓ o ^ QOi ^ AJrsj ^ Hrg r \ j j_>
’_ LO‘_ LO
0 S -H0 S -H
c -*· to QJ Ώ «*® Μ V»c - * · to QJ Ώ «* ® Μ V»
U_ Ή I D QJU_ Ή I D QJ
.— r—I O *-“* ^3 ,— W O C <T\ O r"> OJj- >- -11 C Ή s « ► I Cl >- «3 O O —i o <0 tn “Σ'" o· fa f Ί-. « 44 _ _ Μ ·Ή , 3 o 44 m Ω -- ro 44 øp ^ ϋ α,<-ΜΓ--Η4-> I „ rø ™ 10 O -H 4-1 X) C ^ o 1 ‘-J -H o 10.— r — IO * - “* ^ 3, - WOC <T \ O r"> OJj-> - -11 C Ή s «► I Cl> -« 3 OO —io <0 tn “Σ '" o · fa f Ί-. «44 _ _ Μ · Ή, 3 o 44 m Ω - ro 44 øp ^ ϋ α, <- ΜΓ - Η4-> I„ rø ™ 10 O -H 4-1 X) C ^ o 1 '-J -H o 10
vO __ E (0 d -HvO __ E (0 d -H
~ O CT\ »-4 Q, CJ~ O CT \ -4 -4 Q, CJ
04 ΣΙ 4Γ CO -H >4-4 ||04 ΣΙ 4Γ CO -H> 4-4 ||
i ro —i r- o m -H fMi ro —i r- o m -H fM
.--* Γ— >~* HH.-- * Γ—> ~ * HH
— -> >> M- -> >> M
— . O ϊη >- C un r- co . 4-> >- Σ i γμ in >ni0 3-h C o-> -H -Ά L< 0 44 U, I ω 1 cn jo o * cj vD O — in 4-» 44 rz * 44 4-4 Ή -H 44 ^4 44 C>,<0 O C Ή 10 “ O- 10^444:-1 O CO O O 10 _!o (0 iOO>n<T.in4-i<ucin "-—o.-. O ϊη> - C and r- co. 4->> - Σ i γμ in> ni0 3-h C o-> -H -Ά L <0 44 U, I ω 1 cn jo o * cj vD O - in 4- »44 rz * 44 4-4 Ή -H 44 ^ 4 44 C>, <0 OC Ή 10 “O- 10 ^ 444: -1 O CO OO 10 _! O (0 100> n <T.in4-i <ucin" -—o.
-C 1/iD.cn σι^-ιο,ο-Η , v 44 2 c 1 \ 5 · -3- -4.0 aox) fNj 44-C 1 / iD.cn σι ^ -ιο, ο-Η, v 44 2 c 1 \ 5 · -3- -4.0 aox) fNj 44
-ιιΟ-τ-σ-ιτ >4 j; 10 IO-ιιΟ-τ-σ-ιτ> 4 j; 10 IO
. 0 £3 -r4 rn rn n 44 O 44 ^44. 0 £ 3 -r4 rn rn n 44 O 44 ^ 44
' <0 Ή O O O O τη 10 -(4 D'<0 Ή O O O O τη 10 - (4 D
f- 44 q ^ (n 1 Cl. „ r—tZ3 __ COOOOO -4 o >, c E c Cd >,0 <u α o o c 44 o) c φ .-4 ο mf- 44 q ^ (n 1 Cl. „r — tZ3 __ COOOOO -4 o>, c E c Cd>, 0 <u α o o c 44 o) c φ.-4 ο m
CL Ή -HQ. lOCL Ή -HQ. lO
O C .Η Ή O XO C .Η Ή O X
s- O ·-. 44 14 O I 10s- O · -. 44 14 O I 10
CL CJIOOOOOIOCLC ‘-‘CCL CJIOOOOOIOCLC ‘-’C
Q. -H1O O CO CO Q,>nl0 Q.j_, ΟΉΟΓ4ΓΝΙΓ4 C (H OJ °0 uo-- — — COM -'-•Q, 0,00 O 44 -4 ic:a,LH 'f'ro E 1 jc c <r _ " u -o ^ O S -Q. -H1O O CO CO Q,> nl0 Q.j_, ΟΉΟΓ4ΓΝΙΓ4 C (H OJ ° 0 uo-- - - COM -'- • Q, 0.00 O 44 -4 ic: a, LH 'f'ro E 1 jc c <r _ "u -o ^ OS -
Z —Η ΓΝ) n lA v£> OZ —Η ΓΝ) n lA v £> O
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI905498A FI92212C (en) | 1990-11-06 | 1990-11-06 | Process for producing an oxide resistant and stable olefin copolymer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI905498 | 1990-11-06 | ||
FI905498A FI92212C (en) | 1990-11-06 | 1990-11-06 | Process for producing an oxide resistant and stable olefin copolymer |
Publications (4)
Publication Number | Publication Date |
---|---|
FI905498A0 FI905498A0 (en) | 1990-11-06 |
FI905498A FI905498A (en) | 1992-05-07 |
FI92212B FI92212B (en) | 1994-06-30 |
FI92212C true FI92212C (en) | 1994-10-10 |
Family
ID=8531377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FI905498A FI92212C (en) | 1990-11-06 | 1990-11-06 | Process for producing an oxide resistant and stable olefin copolymer |
Country Status (1)
Country | Link |
---|---|
FI (1) | FI92212C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI941662A (en) * | 1994-04-11 | 1995-10-12 | Borealis Holding As | Process for preparing alpha-olefin copolymer |
-
1990
- 1990-11-06 FI FI905498A patent/FI92212C/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
FI905498A (en) | 1992-05-07 |
FI92212B (en) | 1994-06-30 |
FI905498A0 (en) | 1990-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4535068A (en) | Olefin polymerization catalyst compositions and polymerization process | |
DE69129600T2 (en) | Process for the preparation of norbornene polymers | |
EP1751195B1 (en) | Method for the preparation of olefin polymerisation catalyst | |
CA2061303C (en) | Olefin polymerization catalyst | |
US4614727A (en) | Polymerization catalyst | |
Kröll et al. | Access to Heterogeneous Atom‐Transfer Radical Polymerization (ATRP) Catalysts Based on Dipyridylamine and Terpyridine via Ring‐Opening Metathesis Polymerization (ROMP) | |
JP5102863B2 (en) | Ligand synthesis | |
KR20230110323A (en) | Solution Process for Production of Halide- or Tertiary Amine-Functionalized Polyolefins | |
US10465019B2 (en) | Catalysts for preparation of ultra high molecular weight polyethylene (UHMWPE) and process for preparation thereof | |
EA018583B1 (en) | Group 3 post-metallocene complexes based on bis(naphthoxy)pyridine and bis(naphthoxy)thiophene ligands for the ring-opening polymerisation of polar cyclic monomers | |
JPS6224442B2 (en) | ||
FI92212C (en) | Process for producing an oxide resistant and stable olefin copolymer | |
EP0449302A2 (en) | Hyperpure propylene polymers | |
US4497905A (en) | Olefin polymerization catalyst compositions and polymerization process | |
US6410663B2 (en) | Electron donors in a Ziegler-Natta catalyst for the production of high melt flow copolymers | |
Pei et al. | Bis (β-ketoamino) copper complexes for vinyl polymerization of norbornene: Correlation between precursor structure and catalytic activity | |
EP2738187A1 (en) | Process for the manufacture of vinyl chloride-containing copolymers | |
US20210047462A1 (en) | Method for synthesizing polyolefin material with controlled degree of branching | |
Gong et al. | Zirconium and hafnium complexes supported by linked bis (β-diketiminate) ligands: synthesis, characterization and catalytic application in ethylene polymerization | |
US5128430A (en) | Preparation of polysilanes | |
US4657995A (en) | Olefin polymerization catalyst compositions and polymerization process | |
Wilén et al. | Copolymerization of propylene and 4-(ω-alkenyl)-2, 6-di-t-butylphenol over a supported high-activity Ziegler-Natta catalyst | |
EP3678775A1 (en) | Catalysts suitable for the ring-opening polymerisation of cyclic esters and cyclic amides | |
Carlini | Reactivity of 4‐vinylpyridine in the presence of Ziegler–Natta catalysts | |
EP0135973A2 (en) | Olefin polymerization catalyst components and polymerization process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG | Patent granted |
Owner name: BOREALIS HOLDING A/S |
|
GB | Transfer or assigment of application |
Owner name: BOREALIS HOLDING A/S |
|
BB | Publication of examined application | ||
GB | Transfer or assigment of application |
Owner name: BOREALIS HOLDING A/S |
|
MM | Patent lapsed | ||
MM | Patent lapsed |
Owner name: BOREALIS HOLDING A/S |