FI92109C - Method for determining the combustion properties of residual liquor formed in the production of cellulose - Google Patents
Method for determining the combustion properties of residual liquor formed in the production of cellulose Download PDFInfo
- Publication number
- FI92109C FI92109C FI915436A FI915436A FI92109C FI 92109 C FI92109 C FI 92109C FI 915436 A FI915436 A FI 915436A FI 915436 A FI915436 A FI 915436A FI 92109 C FI92109 C FI 92109C
- Authority
- FI
- Finland
- Prior art keywords
- combustion
- properties
- cellulose
- spectral peaks
- measured
- Prior art date
Links
Landscapes
- Paper (AREA)
- Incineration Of Waste (AREA)
Description
9210992109
Menetelmå selluloosan valmistuksessa muodostuvan jåtelie-men poltto-ominaisuuksien måårittåmiseksiMethod for determining the combustion properties of a waste liquid formed in the manufacture of cellulose
Keksinnon kohteena on menetelmå selluloosavalmis-5 tuksessa muodostuvan fysikaallsilta ja kemiallisilta omi- naisuuksiltaan vaihtelevan jåteliemen poltto-ominaisuuksien måårittelemiseksi, jossa menetelmåsså jåteliemestå måå-ritetåån ennen sen syottåmistå soodakattilaan ennaltamåå-råtyt poltto-ominaisuuksia kuvaavat arvot jåteliemestå 10 otetusta nåytteestå.The invention relates to a method for determining the combustion properties of waste liquor of varying physical and chemical properties formed in cellulose production, in which method the waste liquor is determined before it is fed to a recovery boiler.
Selluloosakeitossa puuraaka-ainetta keitetåån yleenså voimakkaasti alkaalisessa liuoksessa, jolloin sel-luloosakuituja toisiinsa sitova ligniini erottuu. Keiton aikana muodostunut jåteliemi, jota yleisesti nimitetåån 15 mustalipeåksi, kåsittåå nåin olien ligniiniå, sen hajo-amistuotteita sekå myos hiilihydraattiaineksen eli selluloosan ja liemiselluloosien hajoamistuotteita sekå erilai-sia uuteaineita. Mustalipeån koostumus vaihtelee varsin suuresti riippuen siitå, minkålaista puuraaka-ainetta on 20 kåytetty ja siten sen kemialliset ja fysikaaliset ominai-suudet vaihtelevat suuresti.In cellulose cooking, the wood raw material is usually boiled in a strongly alkaline solution, whereby the lignin, which binds the cellulose fibers together, separates. The effluent formed during cooking, commonly referred to as black liquor, thus comprises lignin, its decomposition products as well as the decomposition products of the carbohydrate material, i.e. cellulose and broth celluloses, as well as various extractants. The composition of the black liquor varies quite a lot depending on the type of wood raw material used and thus its chemical and physical properties vary greatly.
Mustalipeå sisåltåå melkoisesti erilaisia aines-osia, jotka ovat taloudellisesti merkittåviå ja joiden talteenotto on kannattavaa. Lisåksi mustalipeå sisåltåå 25 materiaalia, jota voidaan polttaa ja siten saadaan talteen energiaa, joka muuten jouduttaisiin hankkimaan. Mustalipeå hyodynnetåån haihduttamalla siitå ensin pois vettå ja polttamalla se sen jålkeen tyypillisesti 60 - 70 % kuiva-ainepitoisena soodakattilassa. Tålloin mustalipeån sisål-30 tåmåt epåorgaaniset suolat saadaan talteen niin, ettå ne ovat uudelleen kåytettåvisså keittoliuokseen sopivien kå-sittelyvaiheiden jålkeen. Koska energian hinta on jatku-vasti nous sut, on poltto pyritty toteuttamaan mahdollisim-man tehokkaasti. Tålloin tarkoituksena on sekå saada ai-35 kaan mahdollisimman hyvå energian hyotysuhde, mahdollisim- 2 92109 man tehokas kemikaalien regenerointi ja lisaksi pienet hukkapååstot. Polton såadon ongelmana on kuitenkin se, etta mustalipean erilaiset ominaisuudet vaikuttavat hyvin suuresti sen palamiseen ja lipean fysikaalisten ja kemial-5 listen ominaisuuksien vaihtelu aiheuttaa myoskin sen, etta lipean palaminen edellyttaa erilaisia olosuhteita ja saå-totoimenpiteitå. Samoin kuiva-ainepitoisuuden vaihtelu vaikuttaa suuresti palamisominaisuuksiin. Aikaisemmin tat a. ongelmaa on pyritty valttamaan silla, etta selluloosan 10 keittoprosessi ja sen seurauksena siten mustalipean fysi-· kaaliset ja kemikaaliset ominaisuudet on pyritty pitamåån mahdollisimman vakiona. Talloin oli mahdollista suorittaa poltto suhteellisen kiinteillå asetusarvoilla, joihin paa-dyttiin kaytannon koeajojen perusteella. Taman menettely-15 tavan soveltaminen edellyttaa kuitenkin useimmiten vain yhden hakelaadun kåyttamista ja tietynlaisen saman sellu-loosamassalaadun valmistamista, jolloin prosessivaihtelut pysyvåt pienenå ja syntyvå mustalipea suhteellisen tasa-laatuisena. Nykyoloissa on kuitenkin varsin tyypillista, 20 ettå kåytetåån erilaisia hakelaatuja tilanteen mukaan, tuotetaan ominaisuuksiltaan erilaisia selluloosamassoja, kåytetåån suljettua kiertoa jåtevesien vålttåmiseksi jne, jonka seurauksena samassa laitoksessa muodostuvan mustalipean koostumus vaihtelee niin kemiallisesti kuin fysikaa-25 lisestikin paljon ja joskus jopa varsin nopeastikin.Black liquor contains quite a variety of ingredients that are economically significant and profitable to recover. In addition, the black liquor contains 25 materials that can be burned and thus recover energy that would otherwise have to be obtained. The black liquor is utilized by first evaporating the water out of it and then burning it, typically at a dry matter content of 60-70% in a recovery boiler. In this case, these inorganic salts in the black liquor are recovered so that they can be re-used after the treatment steps suitable for the cooking solution. As the price of energy is constantly rising, efforts have been made to carry out combustion as efficiently as possible. In this case, the aim is both to achieve the best possible energy efficiency, the most efficient 2 92109 possible chemical regeneration and, in addition, low waste emissions. However, the problem with the incineration crop is that the different properties of black liquor greatly affect its combustion, and the variation in the physical and chemical properties of the liquor also causes the combustion of the liquor to require different conditions and yield measures. Similarly, variation in dry matter content greatly affects combustion properties. In the past, the problem has been avoided by the fact that the cooking process of the cellulose 10 and, consequently, the physical and chemical properties of the black liquor have been kept as constant as possible. In this case, it was possible to carry out the combustion at relatively fixed setpoints, which were reached on the basis of test runs. However, the application of this procedure-15 most often requires the use of only one chip grade and the production of a certain type of the same cellulose pulp grade, whereby the process variations remain small and the resulting black liquor is relatively uniform. However, it is quite typical in the present conditions to use different types of chips depending on the situation, to produce cellulosic pulps with different properties, to use a closed loop to avoid wastewater, etc., as a result of which
Mustalipean poltossa kåytetåån erilaisia sååtopara-metreja, kuten mustalipeån ominaisuuksia kuvaavia pareunet-reja, prosessin toimintaa kuvaavia parametreja sekå erilaisia tuotanto- ja pååstoarvoja. Yleisesti mustalipean 30 polttokåyttåytymistå on pyritty mittaamaan soveltamalla erilaisia menetelmiå, jotka perustuvat DTA-tekniikalla mååriteltåviin lipeiden aktivoitumisenergioihin ja oletet-tuihin yhteyksiin niiden ja lipeiden poltettavuuden vålil-lå. Saavutetut tulokset tåsså suhteessa eivåt kuitenkaan 35 ole riittåvån hyvåt eikå polttoa pystytå tehokkaasti oh- 92109 3 jaamaan nåiden perusteella. Lipeån poltettavuutta on myos tutkittu polttamalla lipeåpisaroita laboratoriouunissa ilman lasnåollessa samalla, kun polttotapahtuma on kuvattu videokamera11a. Tållå tavalla tutkimalla on todettu, ettå 5 mustalipeån palaminen soodakattilassa voidaan jakaa nel-jåån erilliseen peråkkåiseen vaiheeseen, jotka kukin ovat selvåsti riippuvaisia poltettavan lipeån koostumuksesta. Vaihe yksi on suhteellisen pitkå kuivumisvaihe, jossa pi-sarasta haihtuu vetta. Tainan jålkeen pisara leimahtaa 10 åkillisesti liekkiin, jolloin niin sanotussa pyrolyysivai-heessa eli toisessa vaiheessa vapautuvat pyrolyysikaasut palavat suhteellisen lyhyen ajan kuluessa. Tåsså vaiheessa pisara tavallisesti myos paisuu voimakkaasti. Tåmån jålkeen alkuperåiseen pisaraan verrattuna monta kertaa suu-15 remmaksi paisunut huokoinen koksijåånnos alkaa palaa pin-naltaan. Tåmån kolmannen vaiheen kesto vaihtelee hyvin voimakkaasti erityyppisten lipeiden vålillå. Lopuksi nel-jånnesså palamisvaiheessa epåorgaaninen jåånnos hapettuu yleisesti tunnettujen reaktioiden mukaisesti. Nåmå eri 20 palamisvaiheet ovat sinånså yleisesti tunnettuja eikå nii-tå sen yksityiskohtaisemmin tåmån vuoksi selvitetå. Lipeån poltteunisen kannalta olisi kuitenkin erityisen vålttåmå-tontå tietåå syotettåvån lipeån ominaisuudet nåiden pala-misvaiheiden suhteen, jotta poltto olisi såådettåvisså 25 mahdollisimman hyvin. Tåtå ei nykyisillå tunnetuilla såå-tdtekniikoilla kuitenkaan ole kyetty toteuttamaan millåån tavalla.Various emission parameters are used in the combustion of black liquor, such as pareunet, which describes the properties of black liquor, parameters describing the operation of the process, and various production and emission values. In general, an attempt has been made to measure the combustion behavior of black liquor 30 by applying various methods based on the activation energies of the lipids as determined by the DTA technique and the putative relationships between them and the combustibility of the liquors. However, the results obtained in this respect are not 35 good enough and the combustion cannot be efficiently controlled on the basis of these. The combustibility of the lye has also been studied by burning the lye droplets in a laboratory furnace with air in place while the combustion event is being recorded by a video camera11a. By examining in this way, it has been found that the combustion of 5 black liquors in a recovery boiler can be divided into four separate successive stages, each of which is clearly dependent on the composition of the lye to be burned. Step one is a relatively long drying step in which water evaporates from the pi-sar. After the dough, the drop suddenly flashes into the flame, whereby the pyrolysis gases released in the so-called pyrolysis stage, i.e. the second stage, burn within a relatively short time. At this point, the drop usually also swells strongly. Thereafter, the porous coke residue, which has swelled several times compared to the original droplet, begins to return to its surface. The duration of this third stage varies very strongly between different types of lyes. Finally, in the fourth combustion step, the inorganic residue is oxidized according to generally known reactions. These various combustion steps are generally known per se and will not be explained in more detail for this reason. However, from the point of view of the combustion of the lye, it would be particularly necessary to know the properties of the lye to be fed with respect to these combustion stages, so that the combustion can be controlled as well as possible. However, this has not been possible in any way with the currently known weathering techniques.
Lipeån palamiseen vaikuttaa muun muassa lipeån pisarakoko, johon vaikuttavat sekå lipeån viskositeetti ettå 30 pintajånnitys. Pisarakoko puolestaan måårittelee lipeån låmpoå vastaanottavan pinnan ja siten kuivumisajan sekå kuivumisvaiheen pååttymispaikan lipeån syottokohdasta tu-lipesåån. Kuiva-aineen paisuntaominaisuus vaikuttaa musta-lipeåstå syntyneen kuiva-ainepartikkelin lentorataan tuli-35 pesåsså ja siten pyrolyysin tapahtumapaikkaan kattilassa 4 92109 sekå koksin jåannoksen palamiseen. Edelleen lipeåpisaroi-den heikko paisuminen nåyttåå vaikuttavan merkittåvåsti soodakattilan pohjalla olevan keon korkeuden kasvuun. Lisaksi paisuntaominaisuus kuvaa lipeån palavuusominaisuut-5 ta, koska paisuminen lisåå hapen reagoivan pinnan alaa ja siten parantaa palavuutta. Vastaavasti muutos lipeån pai-sumisessa muuttaa pisaroiden lentorataa soodakattilassa ja saattaa ylenmååråisenå aiheuttaa pisaroiden kulkeutumisen kattilan ylåosiin. Runsaasti paisuvan lipeån koksi palaa 10 myos nopeammin kuin våhån paisuneen lipeån koksi, mikå ainakin osittain johtuu suuremmasta reaktiopinta-alasta. Edelleen koksin palamisnopeus on tekijå, joka måårittelee ehkå merkittåvimmin mustalipeån palavuutta soodakattilassa.The combustion of the lye is affected by, among other things, the droplet size of the lye, which is affected by both the viscosity of the lye and the surface tension. The droplet size, in turn, determines the heat-receiving surface of the liquor and thus the drying time and the end point of the drying phase from the liquor inlet to the inlet. The expansion property of the dry matter affects the trajectory of the dry matter particle generated from the black liquor in the fire-35 nest and thus the pyrolysis site in the boiler 4 92109 as well as the combustion of the coke residue. Furthermore, the slight swelling of the lye droplets appears to have a significant effect on the increase in the height of the heap at the bottom of the recovery boiler. In addition, the expansion property describes the flammability properties of the liquor, because the expansion increases the area of the reactive surface of the oxygen and thus improves the flammability. Correspondingly, a change in the effluent of the liquor changes the trajectory of the droplets in the recovery boiler and, in excess, may cause the droplets to travel to the tops of the boiler. Coke with a high-expansion lye burns 10 times faster than coke with a low-expansion liquor, which is due, at least in part, to a larger reaction area. Furthermore, the burning rate of coke is a factor that perhaps most significantly determines the flammability of black liquor in a recovery boiler.
15 Mustalipeiden kemiallisia ominaisuuksia on mååri- telty erilaisten kromatografisin analyysimenetelmin, jol-loin muun muassa puunjalostukseen liittyvisså, låhinnå selluloosakuidun ja muun selluloosapitoisen materiaalin måårittelyn yhteydesså on ryhdytty soveltamaan infrapunas-20 pektrometria ja erityisesti Fourier-muunnos infrapunas-pektrometria (FTIR), jonka avulla on mahdollista saada sinånså tunnetulla ns. DRIFT-tekniikalla IR-såteilyå vas-taava heijastusspektri. FTIR on analyysimenetelmånå varsin tarkka ja nopea ja huolimatta siitå, ettå sitå ei voi ai-25 nakaan nykyisellåån soveltaa online-mittaukseen, sen vaa-tima nåytteen valmistus on helppo ja nopea tehdå. DE-jul-kaisusta 35 04 486 on tunnettua mitata selluloosan keiton etenemistå mittaamalla keittoliuosta FTIR-menetelmån mu-kaisesti. Tåmån julkaisun mukainen sovellutus ei kuiten-30 kaan millåån tavalla liity mustalipeån poltto-ominaisuuk-siin tai niiden måårittelyyn.15 The chemical properties of black liquors have been determined by various chromatographic analysis methods, in which, inter alia, in connection with the determination of cellulose fiber and other cellulosic material in connection with wood processing, infr it is possible to get the so-called With DRIFT technology, the reflection spectrum corresponding to IR radiation. FTIR is quite accurate and fast in its method of analysis, and despite the fact that it cannot currently be applied to online measurement, the sample preparation it requires is easy and fast to do. It is known from DE 35 04 486 to measure the progress of cooking cellulose by measuring the cooking solution according to the FTIR method. However, the application according to this publication is in no way related to the combustion properties of black liquor or their definition.
Tåmån keksinnon tarkoituksena on saada aikaan menete lmå selluloosan valmistuksessa syntyneen jåteliemen poltto-ominaisuuksien måårittelemiseksi mahdollisimman 35 helposti ja yksinkertaisesti mittaamalla. Keksinnon mukai- 92109 5 seile menetelmålle on ominaista, etta naytteesta mitataan infrapunaspektri, etta infrapunaspektrin eri taajuuksilla ilmenevistå spektripiikeistå valitaan kaksi spektripiikkia kutakin mååritettåvåå poltto-ominaisuutta vårten, etta 5 kunkln poltto-ominaisuuden måårittelemiseksi lasketaan vallttujen spektrlpiikkien intensiteettien suhde.The object of the present invention is to provide a method for determining the combustion properties of waste liquor produced in the manufacture of cellulose by measuring it as easily and simply as possible. The method according to the invention is characterized in that the infrared spectrum is measured from the sample, that two spectral peaks are selected from the spectral peaks occurring at different frequencies of the infrared spectrum for each measurable burning characteristic, and that the combustion of each spectrum is determined.
Yllåttåen on havaittu, etta FTIR-tekniikalla suori-tetussa mittauksissa tiettyjen infrapunaspektrin spektri-piikkien intensiteettien keskinåisen suhteen ja mustali-10 pean tiettyjen poltto-ominaisuuksien vålillå on loydettå-visså aritmeettisesti esitettåvissa olevat olennaisesti lineaariset riippuvuudet. Keksinnon olennaisena ajatuksena on, etta kattilaan syotettåvå mustalipeå mitataan IR- tai FTIR-tekniikalla ja sen tietyt poltto-ominaisuudet mååri-15 tellåån ennalta valittujen infrapunaspektrin taajuuspiik- kien intensiteettisuhteiden avulla, jolloin kattilan polt-to-olosuhteita voidaan sååtåå nåiden mittaamalla mååritet-tyjen parametrien mukaan. Keksinnon edulliselle sovellu-tusmuodolle olennaista on, ettå mustalipeåstå otettu nåyte 20 mitataan FTIR-menetelmållå ja tiettyjen ennaltamååråttyjen piikkien intensiteettien suhteen perusteella mååritellåån suhteellinen kuivumis-, pyrolyysi- ja koksinpalamisaika sekå ominaispaisunta, jolloin lipeån polttoa soodakatti-lassa voidaan sååtåå nåiden poltto-ominaisuuksia ilmaise-25 vien tunnuslukuarvojen mukaan.Surprisingly, it has been found that in measurements performed by the FTIR technique, there are essentially linear dependencies between the ratios of the intensities of certain spectral peaks of the infrared spectral peaks and certain combustion properties of the blackhead. The essential idea of the invention is that the black liquor fed to the boiler is measured by IR or FTIR technology and its certain combustion properties are determined by means of preselected infrared spectrum frequency peak intensity ratios, whereby the boiler combustion conditions can be determined by. It is essential for a preferred embodiment of the invention that the sample 20 taken from the black liquor is measured by the FTIR method and the relative drying time, pyrolysis and coke burning time as well as the specific expansion of the liquor can be determined on the basis of the intensities of certain predetermined peaks. According to 25 key figures.
Keksintoå selostetaan låhemmin oheisissa esimer-keisså ja niihin liittyvisså piirustuksissa, jolloin kuviossa 1 on esitetty måntysulfaattimustalipeån kuiva-aineen suhteellinen koostumus keittoajan funktiona, 30 kuviossa 2 on esitetty spektripiikkien I14S( ja I1505 intensiteettien suhde suhteellisen kuivumisajan funktiona måntysulfaattimustalipeålle, kuviossa 3 on esitetty spektripiikkien Il456 ja I1505 intensiteettien suhde suhteellisen pyrolyysiajan funktiona 35 måntysulfaattimustalipeålle, 6 92109 kuviossa 4 on esitetty spektripiikkien I1595 ja I17J5 intensiteettien suhde koksin suhteellisen palamisajan funktiona mantysulfaattimustalipealle, kuviossa 5 on esitetty spektripiikkien I14S6/I1505 in-5 tensiteettien suhde suhteellisen ominaispaisunnan funktiona mantysulfaattimustalipealle, kuviossa 6 on esitetty koivusulfaattimustalipean kuiva-aineen suhteellinen koostumus keittoajan funktiona, kuviossa 7 on esitetty spektripiikkien I1350 ja I1U7 10 intensiteettien suhde kuivumisajan funktiona koivusulfaattimustalipealle, kuviossa 8 on esitetty spektripiikkien I1350 ja IU17 intensiteettien suhde suhteellisen pyrolyysiajan funktiona koivusulfaattimustalipealle ja 15 kuviossa 9 on esitetty spektripiikkien I1350 ja I1S50 intensiteettien suhde ominaispaisunnan funktiona koivusulfaattimustalipealle .The invention is described in more detail in the accompanying examples and the accompanying drawings, in which Figure 1 shows the relative composition of the dry matter of pine sulphate black liquor as a function of cooking time, Figure 2 shows the I1505 ratio of intensities as a function of the relative pyrolysis 35 måntysulfaattimustalipeålle, 4 is a 6 92109 Figure spectral peaks I1595 and I17J5 a function of the intensity ratio of coke relatively burning time mantysulfaattimustalipealle, shown in Figure 5 the spectral I14S6 / I1505 in-5 intensity ratio as a function of the relative ominaispaisunnan mantysulfaattimustalipealle, shown in Figure 6 koivusulfaattimustalipean relative composition of dry matter as a function of cooking time, Figure 7 shows the ratio of the intensities of spectral peaks I1350 and I1U7 10 to drying as a function of time for the birch sulphate blackhead, Fig. 8 shows the ratio of the intensities of the spectral peaks I1350 and IU17 as a function of the relative pyrolysis time for the birch sulphate blackhead and Fig. 9 shows the ratio of the intensities of the spectral peaks I1350 and I1S50 as a function of the specific expansion.
Seuraavissa esimerkeissa on yksityiskohtaisemmin selostettu, miten tiettyjen FTIR-spektrin piikkien inten-20 siteettien suhde ja mantysulfaattimustalipeån ja vastaa-vasti koivusulfaattimustalipean palamisominaisuudet korre-loivat keskenåån. Vaikka tåsså yhteydesså onkin kasitelty pelkåståån måntysulfaattimustalipeåå ja koivusulfaattimus-talipeåa, on itsestaån selvåå, etta vastaavalla tavalla 25 menetelmaå on sovellettavissa muihin selluloosankeitto-prosesseihin ja niistå saataviin jåteliemiin. On myoskin alan ammattimiehelle selvåå jåljempånå esitettyjen esi-merkkien perusteella, kuinka nåiden lipeiden ominaisuuksia vastaavat intensiteettipiikit mååritellåån ja valitaan 30 keksinnon soveltamiseksi. Esimerkeisså on valmistettu ke-mialliselta koostumukseltaan ja fysikaalisilta ominaisuuk-siltaan vaihtelevia mustalipeitå ottamalla sopivin vålein nåytteitå lipeåstå månty- ja koivusulfaattikeiton aikana. Nåytteet on tåmån jålkeen analysoitu FTIR-tekniikalla ja 35 niiden poltto-ominaisuudet on kussakin tapauksessa mååri- i 92109 7 telty erikseen polttamalla ne laboratorio-olosuhteissa tunnetulla tavalla.The following examples illustrate in more detail how the ratio of the intensities of certain peaks in the FTIR spectrum and the combustion properties of mantesulfate black liquor and birch sulfate black liquor, respectively, correlate. Although only pine sulphate black liquor and birch sulphate tallow liquor have been treated in this context, it is self-evident that in a similar manner 25 methods are applicable to other cellulose cooking processes and waste liquors derived therefrom. It will also be apparent to those skilled in the art from the examples set forth below how intensity peaks corresponding to the properties of these lipids are determined and selected for application of the invention. In the examples, black liquors of varying chemical composition and physical properties have been prepared by sampling the liquor at appropriate intervals during pine and birch sulphate cooking. The samples have then been analyzed by FTIR and their combustion properties have been determined separately in each case by incineration under laboratory conditions in a known manner.
Esimerkki 1Example 1
Teollisesta måntyhakkeesta i Pinus svlvestris) seulottiin tankoseuloilla 2-4 mm jae. Hakkeita keitettiin 8-paikkai-5 sessa (8 x 225 mL) oljyhaudekeittimesså ja mustalipeånåyt-teitå otettlin keiton aikana kelttoajan vaihdellessa 75 minuutista 250 minuuttlin.A 2-4 mm fraction of industrial pine chips (Pinus svlvestris) was screened with rod screens. The chips were boiled in an 8-position (8 x 225 mL) oil bath digester and black liquor samples during cooking, with a yellowing time ranging from 75 minutes to 250 minutes.
Keitto-olosuhteet olivat seuraavat: 10 aktiivialkall 22 % puusta (NaOH:nå) sulfiditeetti 30 % neste/puu-suhde 4 L/kg lampotilan nostoaika 90 minCooking conditions were as follows: 10 active alkalis 22% wood (as NaOH) sulphidity 30% liquid / wood ratio 4 L / kg temperature rise time 90 min
15 maksimilampotila 175 °C15 maximum lamp temperature 175 ° C
Kussakin koepisteesså autoklaavi poistettiin oljy-hauteesta tietyn keittoajan jalkeen ja jååhdytettiin vesi-hauteessa. Mustalipeå erotettiin suodattamalla massasta, 20 joka pestiin ja kuivatettiin vakiopainoon.At each test point, the autoclave was removed from the oil bath after a certain cooking time and cooled in a water bath. The black liquor was separated by filtration from a mass which was washed and dried to constant weight.
Ennen keittoa hakkeista mååritettiin kuiva-aine, uuteainepitoisuus (asetoni- ja dikloorimetaaniuutto; 8 ja 8 tuntia) ja ligniinipitoisuus. Keitetyistå hakkeista tai massoista mååritettiin kuiva-aine kokonaissaannon 1askemi-25 seksi ja klooriluku. Ligniinipitoisuuden måårittåmiseksi klooriluku kerrottiin klooriluvun suuruudesta riippuen luvulla 0,82 - 0,90. Mustalipeån sisåltåmåt hydroksimono-ja dikarboksyylihapot analysoitiin kaasukromatografisesti trimetyylijohdannaisinaan. Nåytteiden muurahais- ja etik-30 kahappopitoisuudet mååritettiin vastaavasti valmistamalla kyseisistå hapoista bentsyyliesterit. Lisåksi analysoitiin mustalipeån tiheys ja kuiva-aine. Keitossa oletettiin 90 % uuteaineista poistuvan keittoliuoksen jo keitoksesta låm- 921 09 8 potilan nosto-vaiheen aikana. Mustalipeån kuiva-aineen koostumus on esitetty kuvassa 1.Before cooking, the dry matter, extractant content (acetone and dichloromethane extraction; 8 and 8 hours) and lignin content were determined from the chips. From the cooked chips or pulps, the total dry matter yield was determined to be 1 to 25 and the chlorine number. To determine the lignin content, the chlorine number was multiplied by 0.82 to 0.90, depending on the magnitude of the chlorine number. The hydroxymono and dicarboxylic acids contained in the black liquor were analyzed by gas chromatography as their trimethyl derivatives. The formic and acetic acid contents of the samples were determined by preparing benzyl esters from these acids, respectively. In addition, the density and dry matter of the black liquor were analyzed. In the broth, it was assumed that 90% of the extractants would already be removed from the broth during the warm-up phase of the patient. The dry matter composition of black liquor is shown in Figure 1.
Mustalipeånåytteiden polttokokeet tehtiin tunnetun tekniikan mukaisesti. Kussakin tapauksessa maaritettiin 5 800°C:ssa kuivumis-, pyrolyysi- ja koksinpalamisaika seka suhteellinen paisunta.Combustion tests of black liquor samples were performed according to the prior art. In each case, the drying, pyrolysis and coke burn times as well as the relative expansion were determined at 5,800 ° C.
Mustalipeånåytteiden FTIR-analyysia vårten kalium-bromidijauheen pinnalle annosteltiin pisara tutkittavaa lipeåå ja seosta ravisteltiin kolme minuuttia vibraatio-10 kuulamyllysså, minkå jålkeen nåyte tasoitettiin ns. mikro-kuppiin (halkaisija 3 nun ja syvyys 2 mm). Mittaukset tehtiin aaltolukualueella 4000 - 400 1/cm DRIFT-tekniikan avulla ja saaduista transmittanssispektreistå laskettiin Kubelka-Munk-muunnokset.For FTIR analysis of black liquor samples, a drop of test liquor was applied to the surface of the potassium bromide powder and the mixture was shaken for three minutes in a vibrating-10 ball mill, after which the sample was smoothed. in a micro-cup (diameter 3 nun and depth 2 mm). Measurements were made in the wavelength range of 4000 to 400 1 / cm using DRIFT technique, and Kubelka-Munk transforms were calculated from the obtained transmittance spectra.
15 Edellå esitetyt analyysit ja mååritykset seka mit- tauspiikkien intensiteetin laskeminen ovat sinånså alan ammattimiehelle tåysin tunnettuja ja itseståån selviå eikå niitå sen vuoksi tåmån tarkemmin tåsså selitetå.15 The analyzes and measurements presented above, as well as the calculation of the intensity of the measurement peaks, are in themselves well known to a person skilled in the art and are self-evident and will therefore not be explained in more detail here.
Kuvassa 2 on esitetty suhde I1456/I1505 suhteellisen 20 kuivumisajan funktiona, kuvassa 3 suhde Ι145β/Ι1505 suhteellisen pyrolyysiajan, kuvassa 4 suhde I1595/I1735 suhteellisen koksinpalamisajan ja kuvassa 5 suhde I1456/I1505 ominais-paisunnan funktiona. Merkintå ln tarkoittaa taajuudella xx mitatun spektripiikin intensiteettiå eli piikin pinta-alaa 25 ja vastaavasti 1^/1^ kertoo taajuuksilla xx ja vastaavasti yy saatujen spektripiikkien pinta-alojen suhdetta. Kuten kuvista ilmenee, jokaisessa tapauksessa on selva korrelaa-tio ja saatua informaatiota on helppo hyodyntåå soodakat-tilassa tapahtuvan lipeåpolton ennakoimisessa. Muita man-30 tysulfaattimustalipeån poltto-ominaisuuksien måårittelysså kysymykseen tulevia FTIR-piikkien intensiteettisuhteita ovat mm. Ιι45β/Ιι4ίΐ* ^1650^1735' ^1595^^1505 ^leso^^isos· 92109 9Figure 2 shows the ratio I1456 / I1505 as a function of relative drying time, Figure 3 the ratio Ι145β / Ι1505 as a function of relative pyrolysis time, Figure 4 the ratio I1595 / I1735 as a function of relative coke burn time and Figure 5 the ratio I1456 / I1505 as a function of specific expansion. The notation ln denotes the intensity of the spectral peak measured at frequency xx, i.e. the area of the peak 25 and 1 ^ / 1 ^, respectively, denotes the ratio of the areas of the spectral peaks obtained at frequencies xx and yy, respectively. As can be seen from the figures, there is a clear correlation in each case and the information obtained is easy to utilize in predicting lye combustion in the recovery mode. Other intensity ratios of FTIR peaks that can be considered in the determination of the combustion properties of man-30 thysulfate black liquor are e.g. Ιι45β / Ιι4ίΐ * ^ 1650 ^ 1735 '^ 1595 ^^ 1505 ^ leso ^^ isos · 92109 9
Esimerkki 2Example 2
Teollista koivuhaketta keitettiin esimerkin 1 mu-kaisesti, jolloin keitto-olosuhteet olivat seuraavat: 5 aktiivialkali 20 % puusta (NaOHrnå) sulfiditeetti 30 % neste/puu-suhde 4 L/kg låmpotilan nostoaika 90 minIndustrial birch chips were boiled according to Example 1, the cooking conditions being as follows: 5 active alkali 20% wood (NaOHrnå) sulphidity 30% liquid / wood ratio 4 L / kg temperature rise time 90 min
maksimilåmpotila 165 °Cmaximum temperature 165 ° C
10 Nåytteitå otettiin kuvan 6 esittåmin våliajoin ja ne sekå hake- ja massanåytteet analysoitiin esimerkin 1 mukaisesti. Samoin mustalipeånåytteiden polttokokeet ja FTIR-analyysit tehtiin esimerkin 1 mukaisesti.Samples were taken at the intervals shown in Figure 6 and the chips and pulp samples were analyzed according to Example 1. Similarly, combustion tests and FTIR analyzes of black liquor samples were performed according to Example 1.
15 Mustalipeån kuiva-aineen koosturnus on tåsså tapauk- sessa esitetty kuvassa 6.15 The co-rot of the black liquor dry matter in this case is shown in Figure 6.
Kuvassa 7 on esitetty suhde Il350/I1117 suhteellisen kuivumisajan funktiona, kuvassa 8 suhde Il350/I1117 suhteellisen pyrolyysiajan ja kuvassa 9 suhde I1350/I1650 ominais-20 paisunnan funktiona. Kuten kuvista ilmenee myos tåsså ta-pauksessa on selvå korrelaatio FTIR-spektritiedon ja lipe-ån poltto-ominaisuuksien vålillå ja saatua informaatiota on helppo hyodyntåå soodakattilassa tapahtuvan lipeåpolton ennakoimisessa. Muita koivusulfaattimustalipeån poltto-25 ominaisuuksien maårittelysså kysymykseen tulevia FTIR-piikkien intensiteettisuhteita ovat mm. I1350/Il461/ ja ^1231^^1650 *Figure 7 shows the ratio Il350 / I1117 as a function of relative drying time, Figure 8 the ratio Il350 / I1117 as a function of relative pyrolysis time and Figure 9 the ratio I1350 / I1150 as a function of specific expansion. As can also be seen from the figures, in this case there is a clear correlation between the FTIR spectral information and the combustion properties of the Lipe, and the information obtained can be easily utilized in predicting the combustion of the liquor in the recovery boiler. Other intensity ratios of FTIR peaks that can be considered in the determination of the combustion-25 properties of birch sulphate black liquor are e.g. I1350 / Il461 / and ^ 1231 ^^ 1650 *
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI915436A FI92109C (en) | 1991-11-18 | 1991-11-18 | Method for determining the combustion properties of residual liquor formed in the production of cellulose |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI915436 | 1991-11-18 | ||
FI915436A FI92109C (en) | 1991-11-18 | 1991-11-18 | Method for determining the combustion properties of residual liquor formed in the production of cellulose |
Publications (4)
Publication Number | Publication Date |
---|---|
FI915436A0 FI915436A0 (en) | 1991-11-18 |
FI915436A FI915436A (en) | 1993-05-19 |
FI92109B FI92109B (en) | 1994-06-15 |
FI92109C true FI92109C (en) | 1994-09-26 |
Family
ID=8533520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FI915436A FI92109C (en) | 1991-11-18 | 1991-11-18 | Method for determining the combustion properties of residual liquor formed in the production of cellulose |
Country Status (1)
Country | Link |
---|---|
FI (1) | FI92109C (en) |
-
1991
- 1991-11-18 FI FI915436A patent/FI92109C/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
FI915436A0 (en) | 1991-11-18 |
FI915436A (en) | 1993-05-19 |
FI92109B (en) | 1994-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | An improved methodology for the quantification of uronic acid units in xylans and other polysaccharides | |
Kelley et al. | Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry | |
Mussatto et al. | Lignin recovery from brewer’s spent grain black liquor | |
Adams | Analysis of printing and writing papers by using direct analysis in real time mass spectrometry | |
Gosselink et al. | Analytical protocols for characterisation of sulphur-free lignin | |
CA2138048C (en) | Determination and control of effective alkali in kraft liquors by ir spectroscopy | |
Klett et al. | Recovering ultraclean lignins of controlled molecular weight from Kraft black-liquor lignins | |
US5486915A (en) | On-line measurement of lignin in wood pulp by color shift of fluorescence | |
Rodrigues et al. | Comprehensive approach of methods for microstructural analysis and analytical tools in lignocellulosic biomass assessment–a review | |
Agblevor et al. | Analysis of biomass sugars using a novel HPLC method | |
Ullah et al. | A comparable study on the hot-water treatment of wheat straw and okra stalk prior to delignification | |
FI92109C (en) | Method for determining the combustion properties of residual liquor formed in the production of cellulose | |
Zhang et al. | A spectroscopic method for quantitating lignin in lignocellulosic biomass based on the completely dissolved solution of biomass in LiCl/DMSO | |
Koch et al. | Topochemical investigations on delignification of Picea abies [L.] Karst. during alkaline sulfite (ASA) and bisulfite pulping by scanning UV microspectrophotometry | |
Strlič et al. | Evaluating and enhancing paper stability-Needs and recent trends | |
Battistel et al. | Evaluation of the volatile organic compound emissions in modern and naturally aged Japanese paper | |
Yoon et al. | In-digester reduction of organic sulfur compounds in kraft pulping | |
FI94446B (en) | Method for determining combustion characteristics of spent liquor formed in the manufacture of cellulose | |
Tian et al. | Structural characterization of lignin isolated from wheat-straw during the alkali cooking process | |
Pažitný et al. | Application of distillery refuse in papermaking: Novel methods of treated distillery refuse spectral analysis | |
Pushpa et al. | Application of rice straw as raw material for the production of handmade paper | |
Wulfhorst et al. | Compositional analysis of pretreated (beech) wood using differential scanning calorimetry and multivariate data analysis | |
CN108051389B (en) | Method for quantitatively determining content of lignin in wood fiber without separation | |
Giesel et al. | Effect of the log storage of Pinus taeda L. on the quality of kraft pulp. | |
Ruggiero et al. | Photodegradation of sugar cane bagasse acidolysis lignins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG | Patent granted |
Owner name: TAMPELLA POWER OY |
|
BB | Publication of examined application | ||
MM | Patent lapsed |