FI91806C - Surface Plasma Resonance Sensor with Integrated Optics for Measurement of Liquids and Gases and Method of Preparation thereof - Google Patents

Surface Plasma Resonance Sensor with Integrated Optics for Measurement of Liquids and Gases and Method of Preparation thereof Download PDF

Info

Publication number
FI91806C
FI91806C FI920412A FI920412A FI91806C FI 91806 C FI91806 C FI 91806C FI 920412 A FI920412 A FI 920412A FI 920412 A FI920412 A FI 920412A FI 91806 C FI91806 C FI 91806C
Authority
FI
Finland
Prior art keywords
electromagnetic radiation
radiation
coupling
silicon
integrated optics
Prior art date
Application number
FI920412A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI920412A0 (en
FI91806B (en
FI920412A (en
Inventor
Jaakko Aarnio
Seppo Honkanen
Original Assignee
Valtion Teknillinen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valtion Teknillinen filed Critical Valtion Teknillinen
Priority to FI920412A priority Critical patent/FI91806C/en
Publication of FI920412A0 publication Critical patent/FI920412A0/en
Publication of FI920412A publication Critical patent/FI920412A/en
Application granted granted Critical
Publication of FI91806B publication Critical patent/FI91806B/en
Publication of FI91806C publication Critical patent/FI91806C/en

Links

Description

91 Βϋ691 Βϋ6

Pintaplasmonresonanssiin perustuva integroidun optiikan anturi nesteiden ja kaasujen mittaamista vårten sekå menetelmå anturin valmistamiseksiSurface plasmon resonance integrated optics sensor for measuring liquids and gases and a method for manufacturing the sensor

Keksinnon kohteena on patenttivaatimuksen 1 johdannon mukainen pintaplasmon-5 resonanssiin perustuva integroidun optiikan anturi nesteiden ja kaasujen mittaamista vårten.The invention relates to an integrated optics sensor based on surface plasmon resonance according to the preamble of claim 1 for measuring liquids and gases.

Keksinnon kohteena on myos menetelmå anturin valmistamiseksi.The invention also relates to a method for manufacturing a sensor.

10 Tunnetaan mikro-optiikalla toteutettuja pintaplasmonresonanssiin perustuvia antureita. Nåmå ovat kuitenkin hankalia valmistaa ja nåin hinnaltaan kalliita. Valon kulkutienå nåisså ratkaisuissa on pååasiassa ilma ja tåmå aiheuttaa monimutkaisen sååtomekaniikan oikean kohdistuksen aikaansaamiseksi.10 Surface plasmon resonance sensors implemented with micro-optics are known. However, these are difficult to manufacture and therefore expensive. The path of light in these solutions is mainly air and this causes a complex scattering mechanics to achieve the correct alignment.

15 Tunnettuja anturin valmistusmenetelmiå on kuvattu viitteisså /1/, /3/ ja /4/. Nåmå menetelmåt perustuvat kolmen valoa johtavan eristekerroksen kasvattamiseen piikiekolle. Passiivisena tasoaaltojohderakenteena voivat toimia myos viitteesså /5/ kuvatun menetelmån mukaiset ionivaihdetut lasiaaltojohteet.15 Known sensor manufacturing methods are described in references / 1 /, / 3 / and / 4 /. These methods are based on the growth of three light-conducting insulating layers on a silicon wafer. Ion-exchanged glass waveguides according to the method described in reference / 5 / can also act as a passive planar waveguide structure.

20 Tåmån keksinnon tarkoituksena on aikaansaada aivan uudentyyppinen pintaplasmonresonanssiin perustuva anturi sekå menetelmå tåmån valmistamiseksi.The object of the present invention is to provide a completely new type of sensor based on surface plasmon resonance and a method for manufacturing the same.

Keksinto perustuu siihen, ettå anturi valmistetaan miniatyrisoituna integroidun optiikan keinoin piisubstraatille siten, ettå keskeisimmåt bioanturin komponentit 25 sijoitetaan tasoaaltojohteeseen yhdelle piisirulle, jolloin såteilyn kulkureittinå toimii tasoaaltojohde.The invention is based on the fact that the sensor is manufactured miniaturized by means of integrated optics on a silicon substrate, so that the most important biosensor components 25 are placed in a planar waveguide on a single silicon chip, whereby a plane waveguide acts as a radiation path.

Keksinnon mukainen valmistusmenetelmå puolestaan perustuu siihen, ettå tasoaal-tojohteen kytkentåpinta muodostetaan siten, ettå mårkåetsataan piisirun pintaan V-30 uria piisirun < 100> kidesuunnan suuntaisesti ja katkaistaan siru urien suuntaisesti.The manufacturing method according to the invention, in turn, is based on the fact that the connection surface of the planar waveguide is formed by marking V-30 grooves on the surface of the silicon chip in the direction of the crystal direction of the silicon chip and cutting the chip in the direction of the grooves.

Tåsmållisemmin sanottuna keksinnon mukaiselle anturille on tunnusomaista se, mikå on esitetty patenttivaatimuksen 1 tunnusmerkkiosassa.More specifically, the sensor according to the invention is characterized by what is set forth in the characterizing part of claim 1.

91806 291806 2

Keksinnon mukaiselle valmistusmenetelmålle puolestaan on tunnusomaista se, mikå on esitetty patenttivaatimuksen 4 tunnusmerkkiosassa.The manufacturing method according to the invention, in turn, is characterized by what is stated in the characterizing part of claim 4.

Keksinnon avulla saavutetaan huomattavia etuja.The invention provides considerable advantages.

55

Keksinnon mukainen ratkaisu taijoaa mahdollisuudet valmistaa bioanturi, joka on yksinkertainen, pieni ja halpa ja joka on herkin såhkomagneettista evanecent-aaltoa kåyttåvistå menetelmistå. Keksinnon mukainen integroitu optiikka piisubstraatilla taijoaa optisten toimintojen miniatyrisoinnin monoliittisen integroinnin avulla, misså 10 mahdollisimman monta optista osakomponenttia, mukaanlukien pintaplasmon-resonanssin aktiivinen alue, sijoitetaan tasoaaltojohteeseen yhdelle piisirulle. Keksinnon mukaisessa anturissa mikroelektroniikan prosessointilaitteita ja -vaiheita voidaan soveltaa anturiteknologiaan. Kåytetty tasoaaltoteknologia takaa erittåin hyvån toistettavuuden ja saannon valmistuksessa. Valon kytkentaoptiikka integ-15 roidun optiikan anturipiiriin voidaan tehdå hyvin luotettavaksi, koska kohdis-tustarkkuusvaatimukset eivåt ole kriittisiå. Piikiekko on halpa, suuripinta-alainen ja sillå on erittain hyvåt optiset ja mekaaniset ominaisuudet perusmateriaaliksi. Kiekon paloittelu voidaan tehdå teollisesti, V-uratekniikka taijoaa tåhån myos hyvån ratkaisun. Passiivisten osakomponenttien keskinåinen kohdistustarkkuus on 20 erittåin hyvå (n. 0,2 μιη) piisirun sisållå. Mekaanisten osien måårå våhenee ratkaisevasti mikro-optiikkaan perustuvaan anturiin verrattuna.The solution according to the invention offers possibilities to manufacture a biosensor which is simple, small and inexpensive and which is the most sensitive of the methods using the electromagnetic evanecent wave. The integrated optics according to the invention on a silicon substrate enable the miniaturization of optical functions by monolithic integration, in which as many optical components as possible, including the active region of the surface plasmon resonance, are placed in a planar waveguide on a single silicon chip. In the sensor according to the invention, the microelectronics processing devices and steps can be applied to the sensor technology. The plane wave technology used guarantees very good reproducibility and yield in manufacturing. The light switching optics to the sensor circuit of the integrated optics can be made very reliable because the alignment accuracy requirements are not critical. Silicon wafer is cheap, has a large surface area and has very good optical and mechanical properties as a base material. The cutting of the disc can be done industrially, V-groove technology also offers a good solution. The average alignment accuracy of the passive subcomponents is 20 very good (approx. 0.2 μιη) inside the silicon chip. The number of mechanical parts is decisively reduced compared to a sensor based on micro-optics.

Keksintoå ryhdytåån seuraavassa låhemmin tarkastelemaan oheisten kuvioiden mukaisten suoritusesimerkkien avulla.The invention will now be examined in more detail with the aid of exemplary embodiments according to the accompanying figures.

2525

Kuvio 1 esittåå perspektiivikuvantona yhtå keksinnon mukaista anturia.Figure 1 shows a perspective view of one sensor according to the invention.

Kuvio 2 esittåå yksityiskohtaa kuvion 1 mukaisesta anturista.Figure 2 shows a detail of the sensor of Figure 1.

30 Kuvio 3 esittåå ylåkuvantona keksinnon mukaisen anturin V-urien valmistusvai-hetta.Fig. 3 shows a plan view of the step of manufacturing the V-grooves of the sensor according to the invention.

I: 91 8ΰ6 3I: 91 8ΰ6 3

Kuvio 4 esittåå sivukuvantona leikkausta A-A kuvion 3 mukaisesta valmistusvai-heesta.Fig. 4 shows a side view of section A-A of the manufacturing step according to Fig. 3.

Kuvion 1 mukaisesti keksinnon mukainen komponentti kasittåa tasoaaltojohteen 5 taitekerroinrakenteen, joka on valmistettu esimerkiksi viitteiden /1,2,3 tai 4/ mukai-silla menetelmillå. Taitekerroinrakenne on optimoitu yksimuotoiseksi kåytetyillå aallonpituuksilla. Polarisoitu valo 2 johdetaan laserista 11 suoraan pistelåhteenå toimivan raon 3 tai kuidun tai V-uran avulla tasoaaltojohteeseen 1, jossa se etenee suurella numeerisella aukolla kokonaisheijastavan ellipsin 4 pinnaile, joka on 10 syovytetty kohtisuoraan piikiekon 5 pintaa vastaan. Ellipsillå 4 kohdistettu ja tåsta heijastuva valo heråttåå pintaplasmonresonanssin tietyllå tulokulman arvolla tasoaaltojohteen hoyrystetysså metallikalvossa 6, joka on sopivasti kultaa (Au), hopeaa (Ag) tai alumiinia (Al). Metallikalvon 6 paksuus on sopivasti 50 - 150 nm. Resonanssi on erittåin herkkå taitekertoimen muutoksille kalvon 6 pinnalla, mikå 15 voidaan havaita heijastuksen håviåmisenå tietyllå tulokulmanarvolla. Heijastuva såde ohjataan kokonaisheijastavan paraabelin 8 avulla piisirun 5 reunaan hybridoi-tavaan CCD-rakenteeseen 9, joka kytketåån edelleen elektroniikkaan.According to Figure 1, the component according to the invention comprises a refractive index structure of a planar waveguide 5, which has been manufactured, for example, by the methods according to references (1,2,3 or 4). The refractive index structure is optimized for the uniform wavelengths used. The polarized light 2 is guided from the laser 11 directly by means of a slit 3 or a fiber or V-groove acting as a point source to a planar waveguide 1, where it propagates through a large numerical aperture to a surface of a total reflective ellipse 4 etched perpendicular to the silicon wafer 5. The light directed at and reflected from the ellipse 4 excites the surface plasmon resonance at a certain value of the angle of incidence in the vaporized metal foil 6 of the planar waveguide, which is suitably gold (Au), silver (Ag) or aluminum (Al). The thickness of the metal film 6 is suitably 50 to 150 nm. The resonance is very sensitive to changes in the refractive index on the surface of the film 6, which can be observed as the loss of reflection at a certain angle of incidence. The reflected beam is directed by means of a total reflective parabola 8 to a CCD structure 9 which hybridizes to the edge of the silicon chip 5, which is further connected to the electronics.

Kuviossa 2 on esitetty suurennettu kaaviokuva valon kytkentåkohdasta 10 piisirun 20 5 reunassa resonanssialueella. Valon kytkentåkohta 10 syovytetåån aluksi aniso- trooppisesti reaktiivisella ionietsauksella (RIE) samassa maskivaiheessa yhdesså muiden osarakenteiden kanssa tasoaaltojohteeseen, joka on kuviossa piirrostason suuntainen. Nåin menetellen ei kohdistusvirheitå synny. Toisin sanoen ellipsiltå 4 tulevan såteen polttopiste jåijestetåån oikealle kohdalle syovyttåmållå kytkentåkoh-25 daksi 10 tarkoitettua piipalan 5 sivua.Figure 2 shows an enlarged schematic view of the light switching point 10 at the edge of the silicon chip 20 5 in the resonant region. The light switching point 10 is initially etched by anisotropic reactive ion etching (RIE) in the same mask phase together with the other substructures in a planar waveguide parallel to the drawing plane in the figure. This procedure does not result in alignment errors. That is, the focal point of the beam coming from the ellipse 4 is aligned to the correct position by etching the side of the barrel 5 intended as the coupling point 10.

Kuvion 3 mukaisesti tasainen ja kohtisuora pinta kytkentåkohtaa 10 vårten voidaan piipohjaisessa komponentissa muodostaa myos katkaisemalla piisiru kuvion mukaisesti. Perusajatus on kåyttåå tunnettuja KOHrssa mårkåetsattavia V-uria 20 30 piisirun 5 ja samalla tasoaaltojohteen katkaisuun oikealta kohdalta, jolloin kuvion V-urien 20 suunnassa piisubstraatti ja tasoaaltojohteen reuna katkeavat teråvåsti n. 90° kulmassa. Tållå menetelmållå reaktiiviseen ionietsaukseen (RIE) verrattuna 91806 4 tasoaaltojohteen reunan kaltevuuden ja erityisesti tasaisuuden epåideaalisuudet eivåt muodostu ongelmaksi kriittiseilå resonanssialueella 10, koska epåtasaisuus leventåå CCD-rakenteella mitattavaa intensiteettiminimiå ja huonontaa pintaplas-monresonanssimittauksen tarkkuutta.According to Fig. 3, a flat and perpendicular surface along the connection point 10 can also be formed in the silicon-based component by cutting the silicon chip according to the figure. The basic idea is to use known KOH-treadable V-grooves 20 30 to cut the silicon chip 5 and at the same time the planar waveguide at the right place, whereby in the direction of the V-grooves 20 in the figure the silicon substrate and the plane waveguide edge are sharply cut at about 90 °. With this method, compared to reactive ion etching (RIE), the non-idealities of the slope and especially the flatness of the 91806 4 planar waveguide edge do not become a problem in the critical resonance region 10, because the unevenness widens the intensity intensity measured with the CCD structure and worsens the surface area multiplier.

55

Kuviossa 4 on esitetty kuvion 3 rakenne leikkauksena A-A katkaisun jålkeen. V-urien 20 leveys ja etåisyys toisistaan optimoidaan kokeellisesti. V-urien suunta valitaan piikiekon 5 <100>- kidesuunnan mukaiseksi. Kuvan 3 esimerkisså uran 20 leveys on 50 μπι ja urien vålinen matka n. 100 μπα.Fig. 4 shows the structure of Fig. 3 in section A-A after cutting. The width and distance between the V-grooves 20 are experimentally optimized. The direction of the V-grooves is selected according to the <100> crystal direction of the silicon wafer 5. In the example of Figure 3, the width of the groove 20 is 50 μπι and the distance between the grooves is about 100 μπα.

1010

Kuvion 4 mukaisesti tasoaaltojohteen ja kidetason <111> vålinen kulma muodos-tuu KOH-etsisså 55°:ksi.According to Fig. 4, the angle between the planar waveguide and the crystal plane <111> is 55 ° in the KOH viewfinder.

Tåmån jålkeen hoyiystetåån halutun paksuinen metallikalvo 6. Metallikalvo ja 15 tasoaaltojohteen reuna muodostavat pintaplasmonresonanssialueen, joka sopii biologisen aineen, nesteen tai kaasun taitekertoimien muutosten mittaamiseen. Metallikalvon 6 pinnalla oleva neste, kaasu tai biologinen aine muuttavat resonans-sikulmaa, mikå nåkyy intensiteetin pienenemisenå vastaavalla heijastuskulmalla. Kuvion 1 mukaisesti eri heijastuskulmia vastaavat intensiteetin paikat ja paikan 20 muutokset mååritetåån kokonaisheijastavan paraabelin 8 ja CCD-rakenteen 9 avulla.A metal film 6 of the desired thickness is then deposited. The metal film and the edge of the planar conductor 15 form a surface plasmon resonance region suitable for measuring changes in the refractive indices of a biological substance, liquid or gas. A liquid, gas or biological substance on the surface of the metal film 6 changes the resonant angle, which is reflected in a decrease in intensity at the corresponding reflection angle. According to Figure 1, the intensity positions corresponding to the different reflection angles and the changes in position 20 are determined by means of the total reflective parabola 8 and the CCD structure 9.

Viitteet: 25 /1/ G. Grand, S. Valette, G. J. Cannell, J. Aamio, M. del Giudice, "Fiber PigtailedReferences: 25/1 / G. Grand, S. Valette, G. J. Cannell, J. Aamio, M. del Giudice, "Fiber Pigtailed

Silicon Based Low Cost Passive Optical Components", Proc. of 16th European conference on Optical Communication, Amsterdam, Netherlands, pp. 525-528 (1990).Silicon Based Low Cost Passive Optical Components ", Proc. Of the 16th European Conference on Optical Communication, Amsterdam, The Netherlands, pp. 525-528 (1990).

30 /2/ P. Heimala, J. Aamio, U. Gyllenberg, H. Ronkanen, "Evaluation of LPCVD30/2 / P. Heimala, J. Aamio, U. Gyllenberg, H. Ronkanen, "Evaluation of LPCVD

PSG-layers for applications in integrated optics", Proc. of 14th Nordic Semiconductor Meeting, Århus, Denmark, Technical University of Denmark & University of l, 91806 5 Århus, pp. 194-197 (1990).PSG layers for applications in integrated optics ", Proc. Of the 14th Nordic Semiconductor Meeting, Aarhus, Denmark, Technical University of Denmark & University of l, 91806 5 Aarhus, pp. 194-197 (1990).

/3/ J. Aamio: "An Integrated-optic polarization splitter on silicon substrate", Proc. of 14th ECOC, IEE, Brighton, I, pp. 34-37 (1988) 5 /4/ J. Bismuth, P. Gidon, F. Revol, S. Valette, "Low-loss ring resonators fabricated from silicon based integrated optics technologies", Electronics letterrs, 27, pp. 722-724 (1991) 10 /5/ A. Tervonen, "Optical waveguides by ion exchange in glas: Fabrication proces ses for integrated optics applications", Commentationes Physio-Mathematicae 109/1990, Dissertationes No 28, The Finnish Society of Sciences and Letters . ·/ 3 / J. Aamio: "An Integrated-Optic Polarization Splitter on Silicon Substrate", Proc. Of 14th ECOC, IEE, Brighton, I, p. 34-37 (1988) 5/4 / J. Bismuth, P. Gidon, F. Revol, S. Valette, "Low-loss ring resonators fabricated from Silicon based integrated optics technologies", Electronics letterrs, 27, p. 722-724 (1991) 10/5 / A. Tervonen, "Optical waveguides by ion exchange in glass: Fabrication processes for integrated optics applications", Commentary Physio-Mathematicae 109/1990, Dissertations No 28, The Finnish Society of Sciences and Letters. ·

Claims (4)

1. Ytplasmonresonansbaserad givare med integrerad optik for måtning av våtskor och 5 gaser, omfattande - organ (11) for alstring av polariserad elektromagnetisk strålning (2), - en for strålningen (2) avsedd passage (1), som den polariserede 10 elektromagnetiska strålningen (2) kan ledas till, - en punktkålla (3) for omvandling av den polariserede elektromagnetiska strålningen i punktform, 15. ett inriktningsdon (4), med vilket den punktformiga elektromagnetiska strålningen kan riktas mot ett kopplingsstalle (10), - en bakom kopplingsstallet (10) bildad metallfolie (6), 20. ett riktdon, med vilket den mot kopplingsstallet (10) riktade elektromagnetiska strålningen kan riktas for att bli detekterad, och - ett detekteringsdon (9), medelst vilket de optiska egenskapema hos ett material bakom metallfolien (6) kan bestammas utgående från den strålning 25 som återkastas darav, kånnetecknad darav, att - passagen (1) for strålningen utgors av en planvågsledare, och 30 - punktkallan (3), inriktningsdonet (4), riktdonet (8) och detekteringsdonet (9) år bildade på samma enhetliga kiselbit (5) i planvågsledaren (1). 91806 91. Surface plasmon resonance based sensor with integrated optics for measuring liquids and gases, comprising - means (11) for generating polarized electromagnetic radiation (2), - a passage (1) for radiation (2), such as the polarized electromagnetic radiation (2) can be led to, - a point source (3) for converting the polarized electromagnetic radiation into a point form, a directing device (4) with which the point-shaped electromagnetic radiation can be directed to a coupling stall (10), - one behind the coupling stall (10) formed a metal foil (6), a directional means by which the electromagnetic radiation directed at the coupling number (10) can be directed to be detected, and - a detection device (9), by means of which the optical properties of a material behind the metal foil (6) can be determined from the radiation reflected therefrom, characterized therefrom, that - the passage (1) for the radiation is constituted by a plane wave conductor, and The point source (3), the alignment device (4), the alignment device (8) and the detection device (9) are formed on the same uniform silicon piece (5) in the planar conductor (1). 91806 9 2. Givare enligt patentkravet 1, kånnetecknad dårav, att inriktningsdonet (4) år en totalreflekterande ellipsyta och riktdonet (8) år en totalreflekterande parabelyta.2. Sensor according to claim 1, characterized in that the alignment device (4) is a total reflecting ellipse surface and the directional device (8) is a total reflecting parabola surface. 3. Givare enligt patentkravet 1, kånnetecknad dårav, att detekteringsdonet (9) år 5 en CCD-cell.3. Sensor according to claim 1, characterized in that the detector (9) is a CCD cell. 4. Forfarande for tillverkning av en givare enligt patentkravet 1, kånnetecknat dårav, att planvågsledarens (1) kopplingsyta (10) bildas så, att V-spår (20) våtetsas på ytan av en kiselbit (5) parallellt med kiselbitens (5) < 100 > kristallriktning och kiselbiten (5) 10 bryts av i riktningen for spåren (20).4. A method of manufacturing a sensor according to claim 1, characterized in that the coupling surface (10) of the planar conductor (1) is formed so that V-grooves (20) are wetted on the surface of a silicon piece (5) parallel to the silicon bit (5) < 100> crystal direction and the silicon bit (5) 10 is interrupted in the direction of the grooves (20).
FI920412A 1992-01-30 1992-01-30 Surface Plasma Resonance Sensor with Integrated Optics for Measurement of Liquids and Gases and Method of Preparation thereof FI91806C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FI920412A FI91806C (en) 1992-01-30 1992-01-30 Surface Plasma Resonance Sensor with Integrated Optics for Measurement of Liquids and Gases and Method of Preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI920412A FI91806C (en) 1992-01-30 1992-01-30 Surface Plasma Resonance Sensor with Integrated Optics for Measurement of Liquids and Gases and Method of Preparation thereof
FI920412 1992-01-30

Publications (4)

Publication Number Publication Date
FI920412A0 FI920412A0 (en) 1992-01-30
FI920412A FI920412A (en) 1993-07-31
FI91806B FI91806B (en) 1994-04-29
FI91806C true FI91806C (en) 1994-08-10

Family

ID=8534320

Family Applications (1)

Application Number Title Priority Date Filing Date
FI920412A FI91806C (en) 1992-01-30 1992-01-30 Surface Plasma Resonance Sensor with Integrated Optics for Measurement of Liquids and Gases and Method of Preparation thereof

Country Status (1)

Country Link
FI (1) FI91806C (en)

Also Published As

Publication number Publication date
FI920412A0 (en) 1992-01-30
FI91806B (en) 1994-04-29
FI920412A (en) 1993-07-31

Similar Documents

Publication Publication Date Title
JP3139770B2 (en) Chip-level waveguide sensor
Melendez et al. A commercial solution for surface plasmon sensing
US6100991A (en) Near normal incidence optical assaying method and system having wavelength and angle sensitivity
US8620120B2 (en) Retro-reflective structures
US6621951B1 (en) Thin film structures in devices with a fiber on a substrate
US7304734B2 (en) Fluorescence analysis optical multiplexer/demultiplexer, fluorescence analysis optical module, fluorescence analyzer, fluorescence/photothermal conversion spectroscopic analyzer, and fluorescence analysis chip
US7933019B2 (en) Surface plasmon resonance sensor using rotating mirror
JPH07311141A (en) Optical detector
JPH01313736A (en) Method and apparatus for measuring refractive index n of material
US20060215165A1 (en) High sensitivity optical detection by temperature independent differential polarization surface plasmon resonance
EP1308714B1 (en) Measuring plate for a sensor utilising attenuated total reflection
EP1030160A1 (en) Optical position sensor
EP1319940B1 (en) Measuring chip for a surface plasmon resonance measurement apparatus
US5245410A (en) Optical fiber sensor based on the excitation of surface plasmon
JPH0650882A (en) Optical measuring device
FI91806C (en) Surface Plasma Resonance Sensor with Integrated Optics for Measurement of Liquids and Gases and Method of Preparation thereof
JP3883926B2 (en) measuring device
JPS63132139A (en) Liquid refractive index meter
JP2013061301A (en) Spr sensor cell and spr sensor
JP3691209B2 (en) Method for measuring critical micelle concentration
KR20110059108A (en) Surface plasmon resonance sensor and sensing method using surface plasmon resonance
JP2016085160A (en) Spr sensor cell and spr sensor
Bali et al. New approach to the measurement of refractive index
JP3928403B2 (en) Waveguide with reflection mirror and manufacturing method thereof
de Cesare et al. Electro-optical detector for lab-on-chip applications

Legal Events

Date Code Title Description
BB Publication of examined application
MM Patent lapsed