FI90995C - Process for the preparation of chiral compounds as pure optical isomers - Google Patents

Process for the preparation of chiral compounds as pure optical isomers Download PDF

Info

Publication number
FI90995C
FI90995C FI912377A FI912377A FI90995C FI 90995 C FI90995 C FI 90995C FI 912377 A FI912377 A FI 912377A FI 912377 A FI912377 A FI 912377A FI 90995 C FI90995 C FI 90995C
Authority
FI
Finland
Prior art keywords
carbon dioxide
chiral
supercritical carbon
ibuprofen
racemic
Prior art date
Application number
FI912377A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI90995B (en
FI912377A0 (en
FI912377A (en
Inventor
Olli Aaltonen
Markku Rantakylae
Original Assignee
Valtion Teknillinen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valtion Teknillinen filed Critical Valtion Teknillinen
Priority to FI912377A priority Critical patent/FI90995C/en
Publication of FI912377A0 publication Critical patent/FI912377A0/en
Priority to EP92909747A priority patent/EP0588809A1/en
Priority to PCT/FI1992/000151 priority patent/WO1992020812A1/en
Publication of FI912377A publication Critical patent/FI912377A/en
Publication of FI90995B publication Critical patent/FI90995B/en
Application granted granted Critical
Publication of FI90995C publication Critical patent/FI90995C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0203Solvent extraction of solids with a supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/005Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of carboxylic acid groups in the enantiomers or the inverse reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

9099590995

MENETELMÅ KIRAALISTEN YHDISTEIDEN VALMISTAMISEKSI PUHTAINA OPTISINA ISOMEEREINAPROCEDURE FOR THE PREPARATION OF CHIRAL COMPOUNDS AS PURE OPTICAL ISOMERS

5 Keksinnon kohteena on tuotantomenetelmå kiraalisten yhdisteiden optisten isomeerien valmistamiseksi, jolloin kiraalisen ja ei-kiraalisen låhtoaineen annetaan reagoida entsyymien katalysoimana ylikriittisen hiilidioksidin ollessa reaktiovåliaineena niin, ettå pååasiassa vain toinen kiraalisen yhdisteen optinen isomeeri reagoi ja syntyy uusi kiraalinen reaktiotuote, jonka enantiomeerinen 10 puhtaus on suurempi kuin låhtoaineen optinen puhtaus.The invention relates to a production process for the preparation of optical isomers of chiral compounds, in which a chiral and a non-chiral starting material are reacted with enzymes catalyzed by supercritical carbon dioxide as a reaction medium such that only one of the optical purity of the starting material.

Huomattava osa (40 %) nykyisin kåytosså olevista lååkeaineista on molekyylejå, joissa on yksi tai useampia kiraalisia keskuksia. Myos suuri osa maataloudessa kåytettåvistå tuholaisten, ja kasvitautien torjunta-aineista on kiraalisia yhdisteitå.A significant proportion (40%) of the drugs currently in use are in molecules with one or more chiral centers. Many of the pests used in agriculture and plant disease pesticides are also chiral compounds.

15 On tunnettua, ettå yleenså vain toisella kiraalisen yhdisteen optiselia isomeerillå, enantiomeerillå, on haluttu farmakologinen tai biologinen vaikutus. Kuitenkin esimerkiksi vain n. 12 % lååkeaineista valmistetaan tållå hetkellå puhtaina optisina isomeereinå. Pååosa valmistetaan ja kåytetåån raseemisina seoksina.It is known that, in general, only one optical optical isomer, the enantiomer, of a chiral compound has the desired pharmacological or biological effect. However, for example, only about 12% of drugs are currently prepared as pure optical isomers. The main part is prepared and used as racemic mixtures.

20 Raseemiseoksen ei-haluttu enantiomeeri on usein lååkeaineena vailla vaikutuksia, joskus se voi olla sivuvaikutusten aiheuttaja ja pahimmassa tapauksessa se voi olla myrkyllinen. On ilmeistå, ettå pååosa kiraalisista lååkeaineista ja agrokemikaaleista tulisi valmistaa ja kåyttåå puhtaina optisina isomeereinå. Uusi lainssåådånto ja uusien, edullisempien valmistustekniikoiden 25 kehittåminen tuovat velvoitteita ja mahdollisuuksia erityisesti uusien, kiraalisten lååkeaineiden valmistamiseksi puhtaina optisina isomeereinå.The undesired enantiomer of the racemic mixture is often unaffected as a drug, can sometimes cause side effects and, in the worst case, can be toxic. It is obvious that the majority of chiral drugs and agrochemicals should be prepared and used as pure optical isomers. New legislation and the development of new, less expensive manufacturing technologies 25 bring obligations and opportunities, especially for the production of new, chiral drugs in pure optical isomers.

On tunnettua syntetisoida optisesti aktiivisia yhdisteitå ilman entsyymejå kåyttåmållå reagensseina esimerkiksi asymmetrisellå epoksidoinnilla valmistettuja 30 vålituotteita. (Esim. K.B. Sharpless, Chemtech Nov. 1985, s. 682). Tållaisten kiraalisten reagenssien valmistaminen on monimutkaista ja ne ovat erittåin kalliita. Menetelmå on kaikenkaikkiaan kallis mikå on osasyynå siihen ettei lååkeaineita tai agrokemikaaleja valmisteta nykyistå laajemmin puhtaina 2 enantiomeereina.It is known to synthesize optically active compounds without enzymes using as intermediates, for example, intermediates prepared by asymmetric epoxidation. (Ex. K.B. Sharpless, Chemtech Nov. 1985, p. 682). The preparation of such chiral reagents is complex and very expensive. Overall, the process is expensive, which is part of the reason why drugs or agrochemicals are not produced more extensively as pure 2 enantiomers.

On myos tunnettua valmistaa enantiomeerisesti puhtaita kiraalisia yhdisteitå 5 erottamalla raseemiseoksen enantiomeerit toisistaan kromatografisin menetelmin ( G.GCjbitz, Chromatographia Vol. 30, No 9/10,1990, 555 * 564). Voidaan kåyttåå nestekromatografiaa, jossa eluenttina on orgaanisten liuottimien seos. Useat kiinteåt, kiraaliset faasit voivat tulla nestekromatografiassa kysymykseen. Yleiskåyttoistå kiraalista pakkausmateriaalia ei kuitenkaan ole nåkopiirisså ja 10kuhunkin kiraaliseen erotukseen on nåinollen kehitettåvå oma menetelmånså. Nestekromatografisessa tuotantoprosessissa joudutaan kåyttåmåån suuria mååriå orgaanisia liuottimia, joista aiheutuu palovaaraa, tyosuojeluongelmia ja ympåristoriskejå. Lisåksi niistå jåå pieniå liuotinjååmiå tuotteisiin. Haluttu optisesti puhdas tuote joudutaan erottamaan eluentista haihduttamalla liuottimet. 15Liuottimet on edelleen puhdistettava uudelleenkåyttfiå vårten tislaamalla, mikå kuluttaa runsaasti energiaa.It is also known to prepare enantiomerically pure chiral compounds by separating the enantiomers of the racemic mixture by chromatographic methods (G. GCjbitz, Chromatography Vol. 30, No. 9/10, 1990, 555 * 564). Liquid chromatography using a mixture of organic solvents as eluent can be used. Several solid, chiral phases can be considered in liquid chromatography. However, there is no general-purpose chiral packaging material in the field of view, and it is thus necessary to develop its own method for each chiral separation. The liquid chromatographic production process requires the use of large amounts of organic solvents, which pose a fire hazard, occupational safety problems and environmental risks. In addition, there should be a small amount of solvent residue in the products. The desired optically pure product must be separated from the eluent by evaporation of the solvents. 15Solvents still need to be purified by distillation for reuse, which consumes a lot of energy.

On myos tunnettua kåyttåå hyvåksi entsyymien stereo- eli enantiomeeristå spesifisyyttå katalysoimaan kiraalisen yhdisteen tietyn enantiomeerin synteesiå 20 orgaanisissa liuottimissa (M.Schneider, Performance Chemicals, April 1989, 28 -31). Menetelmåsså kåytettåvåt orgaaniset liuottimet ovat palovaarallisia, toksisia ja tuotteet on otettava niistå talteen tislaamalla kuten nestekromatografisissa raseemiseoksen erotusmenetelmissåkin. Menetelmåsså joudutaan myos kåsittelemåån suuria mååriå hyvin laimeita orgaanisia liuoksia.It is also known to utilize the stereo- or enantiomeric specificity of enzymes to catalyze the synthesis of a particular enantiomer of a chiral compound in organic solvents (M. Schneider, Performance Chemicals, April 1989, 28-31). The organic solvents used in the process are flammable, toxic and the products must be recovered by distillation as in liquid chromatographic separation methods for the racemic mixture. The process also requires the treatment of large amounts of very dilute organic solutions.

2525

On kuitenkin myos tunnettua, ettå monet entsyymit voivat katalysoida reaktioita epåenantiospesifisesti myos ylikriittisesså hiilidioksidiympåristosså (esim. US Pat. 4 925 790 ja A. Marty et. al., Biotechnology Letters, Vol 12, No 1,1990,11 - 16). Ylikriittisellå hiilidioksidilla tarkoitetaan hiilidioksidia, jonka låmpotila on korkeampi 30 kuin hiilidioksidin kriittinen låmpotila eli korkeampi kuin 32 C ja jonka paine on suurempi kuin vastaava kriittinen paine, eli suurempi kuin 72 bar. Tåsså ylikriittisesså tilassa hiilidioksidia voidaan kåyttåå liuottimena helposti haihtuville tai hydrofobisille aineille. Ylikriittinen hiilidioksidi on myrkytbn, palamaton ja halpaHowever, it is also known that many enzymes can catalyze reactions non-enantiospecifically even in a supercritical carbon dioxide environment (e.g., U.S. Pat. 4,925,790 and A. Marty et al., Biotechnology Letters, Vol 12, No. 1,1990,11-16). Supercritical carbon dioxide means carbon dioxide with a temperature higher than 30 than the critical temperature of carbon dioxide, ie higher than 32 ° C, and with a pressure higher than the corresponding critical pressure, i.e. greater than 72 bar. In this supercritical state, carbon dioxide can be used as a solvent for volatile or hydrophobic substances. Supercritical carbon dioxide is toxic, non-combustible and inexpensive

IIII

3 90995 liuotin. Kåyttåmållå ylikriittistå hiilidioksidia reaktiovåliaineena voidaan vålttåå suurten orgaanisten liuotinmåårien kåsittelystå koituvat tyosuojelu- ja pååstoongelmat sekå paloriski. Etuna on edelleen se, ettå hiilidioksidin kierråtys 5 uudelleenkåytettåvåksi kuluttaa vain pienen osan siitå energiamååråstå, joka tarvitaan orgaanisten liuottimien talteenottamiseksi tislaamalla.3 90995 solvent. By using supercritical carbon dioxide as the reaction medium, occupational safety and emission problems as well as fire risks arising from the handling of large amounts of organic solvents can be avoided. A further advantage is that the recycling of carbon dioxide 5 for reuse consumes only a small part of the amount of energy required to recover organic solvents by distillation.

Olemme yllåttåen havainneet, ettå erååt entsyymit voivat ylikriittisesså hiilidioksidissa katalysoida selektiivisesti kiraalisten yhdisteiden toisen 10 enantiomeerin reaktioita. Havainto tekee mahdolliseksi uuden, kiraalisten yhdisteiden puhtaiden optisten isomeerien valmistusmenetelmån.We have surprisingly found that some enzymes can selectively catalyze the reactions of the second enantiomer of chiral compounds in supercritical carbon dioxide. The finding makes possible a new process for the preparation of pure optical isomers of chiral compounds.

Esillå olevan keksinnon tarkoituksena on aikaansaada uusi, aikaisemmin tunnettuja menetelmiå edullisempi menetelmå kiraalisten yhdisteiden optisten 15 isomeerien valmistamiseksi. Keksinnon tarkoituksena on aikaansaada menetelmå, jossa aikaisemmista menetelmistå poiketen kåytetåån ylikriittisesså tilassa olevaa hiilidioksidia våliaineena entsyymien katalysoimissa, enantioselektiivisisså reaktioissa.It is an object of the present invention to provide a new method for the preparation of optical isomers of chiral compounds which is more advantageous than previously known methods. The object of the invention is to provide a process in which, unlike the previous methods, carbon dioxide in the supercritical state is used as a medium in enzyme-catalyzed, enantioselective reactions.

20 Keksinnon mukaisen menetelmån etuihin kuuluu se, ettå yhtå palamatonta, myrkytGntå ja halpaa liuotinta, hiilidioksidia, kåytetåån låhtoaineiden liuotuksessa, våliaineena entsyymien katalysoimissa enantioselektiivisisså reaktioissa ja mahdollisesti vielå reaktioseoksen fraktioinnissa ja tuotteiden puhdistuksessa. Menetelmån etuihin kuuluu edelleen se, ettå hiilidioksidi muodostaa låhtoaineille 25 ja reaktiotuotteille hapettumiselta suojaavan atmosfåårin. Edelleen etuihin kuuluu ylikriittisen hiilidioksidin liuotuskyvyn såådettåvyys. Tållå tarkoitetaan sitå, ettå ylikriittisen hiilidioksidin kyky liuottaa hydrofobisia aineita riippuu jyrkåsti sen tiheydestå. Tåmå ominaisuus tekee mahdolliseksi saostaa reaktioseos hiilidioksidista yksinkertaisesti alentamalla hiilidioksidin painetta. Tållå tavoin 30 hiilidioksidi saadaan erotetuksi reaktioseoksesta ja se voidaan kierråttåå takaisin låhtoaineiden liuotukseen hyvin pienellå energiankulutuksella. Keksinnon mukaisen menetelmån etuihin kuuluu edelleen se, ettå ylikriittisellå hiilidioksidilla on nestemåisiin liuottimiin verrattuna erittåin hyvåt aineensiirto-ominaisuudet.Advantages of the process according to the invention include that a non-combustible, toxic and inexpensive solvent, carbon dioxide, is used in the dissolution of starting materials, as an intermediate in enzyme-catalyzed enantioselective reactions and possibly further in the fractionation of the reaction mixture and purification of products. A further advantage of the process is that the carbon dioxide forms an oxidation-protective atmosphere for the starting materials and the reaction products. Further advantages are the controllability of the solubility of the supercritical carbon dioxide. By this is meant that the ability of the supercritical carbon dioxide to dissolve hydrophobic substances strongly depends on its density. This property makes it possible to precipitate the reaction mixture from carbon dioxide simply by reducing the pressure of the carbon dioxide. In this way, the carbon dioxide is separated from the reaction mixture and can be recycled back to the dissolution of the starting materials with very low energy consumption. A further advantage of the process according to the invention is that the supercritical carbon dioxide has very good mass transfer properties compared to liquid solvents.

4 Tåmå hiilidioksidin ominaisuus nopeuttaa låhtoaineiden liukenemista ja ediståå aineensiirron rajoittamia reaktioita. Keksinnon mukaisen menetelmån etuihin kuuluu myos se, ettå tuotantoprosessi on kåytånnollisesti katsoen tåysin suljettu.4 This property of carbon dioxide accelerates the dissolution of starting materials and promotes reactions limited by mass transfer. Another advantage of the method according to the invention is that the production process is practically completely closed.

5 Liuotinpååstojå ei ole, jåtevesien syntyminen on erittåin våhåistå, prosessitila on hyvin suojassa vieraalta mikrobikontaminaatiolta ja prosessin osat ovat helposti tarvittaessa steriloitavissa. Hiilidioksidista ei myoskåån jåå tuotteisiin haitallisia liuotinjååmiå.5 There are no solvent releases, the generation of wastewater is very low, the process space is well protected from foreign microbial contamination and parts of the process can be easily sterilized if necessary. Carbon dioxide also does not leave harmful solvent residues in the products.

10 Keksinnon mukaisen menetelmån yksi edullinen sovellusmuoto on kiraalisen yhdisteen raseemisen seoksen resoluutio. Tåsså sovelluksessa raseemiseos ja ei-kiraalinen reagenssi saatetaan ylikriittisesså hiilidioksidissa kosketuksiin entsyymien kanssa siten, ettå pååasiassa vain toinen raseemiseoksen enantiomeeri reagoi. Syntynyt kiraalinen reaktiotuote on enantiomeerisesti I5puhdas ja eroaa raseemisesta låhtoaineesta fysikaalis-kemiallisesti niin paljon, ettå se on erotettavissa reaktioseoksesta tavanomaisin menetelmin, kuten esimerkiksi uuttamalla, kiteyttåmållå tai haihduttamalla. Saadusta enantiomeerisesti puhtaasta reaktiotuotteesta voidaan tarvittaessa edelleen valmistaa muita optisesti puhtaita isomeereja tavanomaisin kemiallisin 20 menetelmin. Menetelmån etuhin, verrattuna esimerkiksi kiraalisilla reagensseilla tehtåvåån resoluutioon, kuuluu se, ettå keksinnon mukaisessa menetelmåsså voidaan kalliiden kiraalisten reagenssien sijasta kåyttåå halpoja, yksinkertaisia aineita kuten esimerkiksi karboksyylihappoja tai alkoholeja.One preferred embodiment of the method according to the invention is the resolution of a racemic mixture of a chiral compound. In this application, the racemic mixture and the non-chiral reagent are contacted with the enzymes in supercritical carbon dioxide such that essentially only one enantiomer of the racemic mixture reacts. The resulting chiral reaction product is enantiomerically pure and differs from the racemic starting material physicochemically to such an extent that it can be separated from the reaction mixture by conventional methods such as extraction, crystallization or evaporation. If necessary, other optically pure isomers can be further prepared from the enantiomerically pure reaction product obtained by conventional chemical methods. One of the advantages of the process, compared with, for example, resolution with chiral reagents, is that in the process according to the invention, cheap, simple substances such as carboxylic acids or alcohols can be used instead of expensive chiral reagents.

25 Seuraavat esimerkit havainnollistavat menetelmån eråitå sovellusmuotoja.25 The following examples illustrate some embodiments of the method.

Esimerkki 1 4.9 g ioninvaihtohartsiin immobilisoitua Mucor m/e/ie/'-hiivan tuottamaa lipaasia 30 (EC 3.1.1.3) punnittiin 250 ml:n tilavuiseen paineastiaan, joka suljettiin ja huuhdeltiin ilmattomaksi normaalipaineisella hiilidioksidilla. Pain east i a låmmitettiin 50°C:een ja siihen pumpattiin hiilidioksidia siten, ettå paine astian sisållå kohosi 150 bar:iin. Hiilidioksidin mukana astiaan syotettiin 0.3 ml vettå, 45 mmol I: 5 90995 raseemista ibuprofeenia ja 105 mmol propanolia, butanolia tai amyylialkoholia. Paineastian sisåltoå sekoitettiin astian sisåån sijoitetulla magneettisauvalla jota pyoritettiin astian pohjan låpi johdetulla magneettikentållå.Example 1 4.9 g of lipase 30 (EC 3.1.1.3) produced by the yeast Mucor m / e / ie / 'immobilized on an ion exchange resin was weighed into a 250 ml pressure vessel which was sealed and purged with atmospheric carbon dioxide. The pressure east i a was heated to 50 ° C and pumped with carbon dioxide so that the pressure inside the vessel rose to 150 bar. With carbon dioxide, the vessel was charged with 0.3 mL of water, 45 mmol of I: 90995 racemic ibuprofen, and 105 mmol of propanol, butanol, or amyl alcohol. The contents of the pressure vessel were agitated with a magnetic rod placed inside the vessel and rotated by a magnetic field passed through the bottom of the vessel.

55

Paineastian sisållostå otettiin reaktion kuluessa pieniå nåytteitå, jotka analysoitiin kaasukromatografisesti ja nestekromatografisesti kiraalisia kolonneja kåyttåen.During the reaction, small samples were taken from the contents of the pressure vessel and analyzed by gas chromatography and liquid chromatography using chiral columns.

Kokeen jålkeen paineastian sisålto johdettiin paineenalennusventtiilin kautta 10 atmosfåårisesså paineessa olevaan astiaan. Paineenalennuksessa reaktioseoksen komponentit saostuivat hiilidioksidista. Ne pisaroituivat ja laskeutuivat keruuastian pohjalle. Reaktioseoksen liuottimena ollut ylikriittinen hiilidioksidi kaasuuntui ja poistui keruuastian ylåosasta.After the experiment, the contents of the pressure vessel were passed through a pressure relief valve to a vessel at 10 atmospheric pressure. Under reduced pressure, the components of the reaction mixture precipitated from carbon dioxide. They dripped and settled to the bottom of the collecting vessel. The supercritical carbon dioxide as the solvent in the reaction mixture gasified and escaped from the top of the collecting vessel.

15 Analyysitulosten mukaan ibuprofeenin S-enantiomeerin esteroitymisnopeus nåiden alkoholien kanssa oli noin yhdeksånkertainen verrattuna ibuprofeenin R-enantiomeerin esteråitymisnopeuteen.According to the results of the analysis, the rate of esterification of the S-enantiomer of ibuprofen with these alcohols was about nine times the rate of esterification of the R-enantiomer of ibuprofen.

Reaktio S-ibuprofeenin esterin 20 enantiomeerinen _puhtaus_ S,R-lbuprofeeni + amyylialkoholi 85 % S,R-lbuprofeeni + butyylialkoholi 85 % S,R-lbuprofeeni + propyylialkoholi 85 % S,R-lbuprofeeni + etyylialkoholi 85 %Reaction Enantiomeric _purity_ of S-ibuprofen ester 20 S, R-1buprofen + amyl alcohol 85% S, R-1buprofen + butyl alcohol 85% S, R-1buprofen + propyl alcohol 85% S, R-1bbrofen + ethyl alcohol 85%

Taulukko 1. Raseemisen ibuprofeenin ja alkoholien vålisesså lipaasin katalysoimassa reaktiossa syntyneen S-ibuprofeenin propyyliesterin enantiomeerinen puhtaus kun 25 % raseemisesta ibuprofeenista on reagoinut.Table 1. Enantiomeric purity of the propyl ester of S-ibuprofen formed in a lipase-catalyzed reaction between racemic ibuprofen and alcohols after 25% of racemic ibuprofen has reacted.

3030

Esimerkki 2 6Example 2 6

Esimerkisså 1 kuvatussa koejårjestelysså vaihdeltiin hiilidioksidin mukana 5 reaktoriin syotettåvån veden mååråå reaktion nopeuden ja enantioselektiivisyyden kannalta optimaalisen kosteuden loytamiseksi. Reaktiolåhtoaineina kaytettiin raseemista ibuprofeenia ja propanolia. Tulokset olivat taulukossa 2 esitetyn mukaisia.In the experimental set-up described in Example 1, the amount of water fed to the reactor with carbon dioxide was varied to find the optimum moisture for the reaction rate and enantioselectivity. Racemic ibuprofen and propanol were used as reaction starting materials. The results were as shown in Table 2.

Tulosten mukaan edullinen vesipitoisuus reaktionopeuden kannalta on 0.35 - 1.3 10 ml vettå / I hiilidioksidia. Syntyvån esterin enantiomeeriseen puhtauteen vesipitoisuudella ei ollut vaikutusta.According to the results, the preferred water content for the reaction rate is 0.35 to 1.3 10 ml of water / l of carbon dioxide. The enantiomeric purity of the resulting ester was not affected by water content.

15 S-ibuprofeenin esterin15 S-ibuprofen ester

Hiilidioksidin Reaktionopeus enantiomeerinen vesipitoisuus puhtaus mmol / ml /1 (kg lipaasia * h) % 0__6J__85.4 20 0.3__6JJ__84.5 0.35__6JJ__84.1 0.55__8J5__84.4 0.85__8Λ__84.4 1.3__416__83.6 25 1.75 3.5 85.3Carbon dioxide Reaction rate enantiomeric water content purity mmol / ml / l (kg lipase * h)% 0__6J__85.4 20 0.3__6JJ__84.5 0.35__6JJ__84.1 0.55__8J5__84.4 0.85__8Λ__84.4 1.3__416__83.6 25 1.75 3.5 85.3

Taulukko 2. Ylikriittisen hiilidioksidin vesipitoisuuden vaikutus raseemisen ibuprofeenin konversionopeuteen ja syntyvån kiraalisen esterin enantiomeeriseen puhtauteen lipaasin katalysoimassa ibuprofeenin ja propanolin 3Q esteråitymisreaktiossa.Table 2. Effect of supercritical carbon dioxide water content on the conversion rate of racemic ibuprofen and the enantiomeric purity of the resulting chiral ester in the lipase-catalyzed 3Q esterification reaction of ibuprofen and propanol.

I;I;

Esimerkki 3.Example 3.

7 909957 90995

Esimerkisså 1 kuvatussa koejårjestelysså vaihdeltiin raseemisen ibuprofeenin 5 kanssa reagoivan ei-kiraalisen propanolin pitoisuutta tarkoituksella selvittåå propanoliylimåårån vaikutus ibuprofeenin reaktionopeuteen ja syntyvån esterin enantiomeeriseen puhtauteen. Raseemisen ibuprofeenin pitoisuus tåsså koesarjassa oli 12 mmol/litra. Tulokset on esitetty taulukossa 3.In the experimental setup described in Example 1, the effect of excess propanol on the reaction rate of ibuprofen and the enantiomeric purity of the resulting ester was varied to deliberately determine the content of non-chiral propanol reacting with racemic ibuprofen 5. The concentration of racemic ibuprofen in this series of experiments was 12 mmol / liter. The results are shown in Table 3.

10 Tåsså koesarjassa reaktionopeuden kannalta edulliseksi propanoliylimååråksi osoittautui 3-16 mol propanolia / mol ibuprofeenia. Syntyvån S-ibuprofeenin propyyliesterin enantiomeeriseen puhtauteen propanoliylimåårållå ei ollut ratkaisevaa vaikutusta.In this series of experiments, a preferred excess of propanol in terms of reaction rate proved to be 3-16 mol propanol / mol ibuprofen. The enantiomeric purity of the resulting propyl ester of S-ibuprofen in excess propanol did not have a decisive effect.

1515

Propanolipitoisuus Reaktionopeus S-ibuprofeenin propyyliesterin enantiomeerinen puhtaus 20 mmol /1 mmol / _(kg entsyymiå * h)__%_ 30 5.6 82.9 40 9.8 83.5 60 9.6 83.5 80 10.8 84 25 110 10.4 82.6 210__9^2__80.1Propanol content Reaction rate Enantiomeric purity of S-ibuprofen propyl ester 20 mmol / l mmol / _ (kg enzyme * h) __% _ 30 5.6 82.9 40 9.8 83.5 60 9.6 83.5 80 10.8 84 25 110 10.4 82.6 210__9 ^ 2__80.1

Taulukko 3. Propanolipitoisuuden vaikutus raseemisen ibuprofeenin konversio-nopeuteen ja syntyvån kiraalisen S-ibuprofeeniesterin enantiomeeriseen 30 puhtauteen lipaasin katalysoimassa esteroitymisreaktiossa.Table 3. Effect of propanol content on the conversion rate of racemic ibuprofen and the enantiomeric purity of the resulting chiral S-ibuprofen ester in a lipase-catalyzed esterification reaction.

Esimerkki 4.Example 4.

88

Esimerkisså 1 kuvatussa koejårjestelysså vaihdeltiin reaktiolåmpotilaa ja painetta. 5 Niiden vaikutus raseemisen ibuprofeenin ja propanolin vålisen reaktion nopeuteen ja syntyvån kiraalisen S-ibuprofeenin propyyliesterin enantiomeeriseen puhtauteen on esitetty taulukossa 4.In the experimental setup described in Example 1, the reaction temperature and pressure were varied. 5 Their effect on the rate of reaction between racemic ibuprofen and propanol and the enantiomeric purity of the resulting chiral S-ibuprofen propyl ester is shown in Table 4.

Låmpotila Paine Reaktionopeus S-ibuprofeenin propyyliesterin 0 enantiomeerinen ___puhtaus_ C__bar__mmol / (kg * h) % 50 250 7.9 83 50 150 11.7 83.5 50 110 22.1 82.6 15 36 150 7.3 83.8 42 150 10.7 82.3 62 150 9.2 83.7Temperature Pressure Reaction rate S-ibuprofen propyl ester 0 enantiomeric ___purity_ C__bar__mmol / (kg * h)% 50 250 7.9 83 50 150 11.7 83.5 50 110 22.1 82.6 15 36 150 7.3 83.8 42 150 10.7 82.3 62 150 9.2 83.7

Taulukko 4. Låmpotilan ja paineen vaikutus raseemisen ibuprofeenin ja 20 propanolin esteroitymisnopeuteen lipaasin katalysoimassa reaktiossa.Table 4. Effect of temperature and pressure on the rate of esterification of racemic ibuprofen and propanol in a lipase-catalyzed reaction.

Esimerkki 5.Example 5.

25 Esimerkisså 1 kuvatussa koejårjestelysså kåytettiin kiraalisena, raseemisena låhtoaineena 45 mmol 2-oktanolia ja ei-kiraalisena reagenssina 105 mmol heksaanihappoa. Syntyvån esterin tuottonopeus kokeessa oli 12.5 mmol esteriå kg lipaasia ja tuntia kohti. Syntyneen R-2-oktanolin enantiomeerinen puhtaus oli 84 % kun 50 % raseemisesta 2-oktanolista oli reagoinut.In the experimental setup described in Example 1, 45 mmol of 2-octanol was used as the chiral, racemic starting material and 105 mmol of hexanoic acid as the non-chiral reagent. The rate of production of the resulting ester in the experiment was 12.5 mmol of ester per kg of lipase and per hour. The enantiomeric purity of the resulting R-2-octanol was 84% after 50% of the racemic 2-octanol had reacted.

IIII

3030

Esimerkki 6.Example 6.

9 909959 90995

Esimerkisså 1 kuvatussa koejårjestelysså kåytettiin kiraalisena, raseemisena 5 låhtoaineena 45 mmol ibuprofeenin propyyliesteriå ja ei-kiraalisena reagenssina 105 mmol amyylialkoholia. Alkoholyysireaktion nopeudeksi mitattiin 17.5 mmol ibuprofeenin amyyliesteriå / (kg lipaasia * h). Syntyneen S-ibuprofeenin amyyliesterin enantiomeerinen puhtaus oli 60 % kun 25 % raseemisesta låhtoaineesta oli reagoinut 10 15 20 25 30In the experimental setup described in Example 1, 45 mmol of ibuprofen propyl ester was used as the chiral, racemic starting material and 105 mmol of amyl alcohol as the non-chiral reagent. The rate of the alcoholysis reaction was measured to be 17.5 mmol of ibuprofen amyl ester / (kg of lipase * h). The enantiomeric purity of the resulting S-ibuprofen amyl ester was 60% after 25% of the racemic starting material had reacted 10 15 20 25 30

Claims (3)

1: Menetelmå kiraalisten yhdisteiden valmistamiseksi optisina isomeereina t u η n e t t u siitå, ettå a) karboksyylihappojen tai estereiden ryhmiin kuuluvaa yhdistettå ja sen kanssa reagoivaa alkoholia, jolloin toinen reagoivista yhdisteistå on kiraalinen ja toinen ei-kiraalinen, liuotetaan ylikriittisessa tilassa oievaan hiilidioksidiin, b) saatu kiraalisen ja ei-kiraalisen yhdisteen liuos ylikriittisessa tilassa olevassa hiilidioksidissa saatetaan kosketukseen lipaasiryhmåån (EC 3.1.1.3) kuuluvan, Mucor miehei- hiivan tuottaman entsyymin kanssa lampotilassa 35 - 70 C ja paineessa 80 - 250 bar, jolloin ylikriittisessa tilassa olevassa hiilidioksidissa on 0.4 - 1.5 ml vettå hiilidioksidilitraa kohti siten, ettå pååosin vain yksi kiraalisen yhdisteen stereoisomeerinen muoto reagoi ei-kiraalisen yhdisteen kanssa.1: A process for the preparation of chiral compounds as optical isomers, characterized in that a) a compound belonging to the groups of carboxylic acids or esters and an alcohol reacting therewith, one of the reactive compounds being chiral and the other non-chiral, are dissolved in supercritical carbon dioxide, and a solution of the non-chiral compound in the supercritical carbon dioxide is contacted with an enzyme belonging to the lipase group (EC 3.1.1.3) produced by Mucor male yeast at a temperature of 35 to 70 ° C and a pressure of 80 to 250 bar, the supercritical carbon dioxide containing 0.4 to 1.5 ml. water per liter of carbon dioxide so that mainly only one stereoisomeric form of the chiral compound reacts with the non-chiral compound. 2: Patenttivaatimuksen 1 mukainen menetelmå t u η n e t t u siitå, ettå ylikriittisessa tilassa oievaan hiilidioksidiin liuotettava kiraalinen yhdiste muodostaa raseemisen seoksen.Process according to Claim 1, characterized in that the chiral compound to be dissolved in the supercritical carbon dioxide forms a racemic mixture. 3: Patenttivaatimuksen 1 mukainen menetelmå t u η n e t t u siitå, ettå ylikriittisesså tilassa oievaan hiilidioksidiin liuotettava kiraalinen yhdiste on raseeminen ibuprofeeni. 90995Process according to Claim 1, characterized in that the chiral compound to be dissolved in the supercritical carbon dioxide is racemic ibuprofen. 90995
FI912377A 1991-05-16 1991-05-16 Process for the preparation of chiral compounds as pure optical isomers FI90995C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FI912377A FI90995C (en) 1991-05-16 1991-05-16 Process for the preparation of chiral compounds as pure optical isomers
EP92909747A EP0588809A1 (en) 1991-05-16 1992-05-14 Process for producing chiral compounds as pure optical isomers
PCT/FI1992/000151 WO1992020812A1 (en) 1991-05-16 1992-05-14 Process for producing chiral compounds as pure optical isomers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI912377 1991-05-16
FI912377A FI90995C (en) 1991-05-16 1991-05-16 Process for the preparation of chiral compounds as pure optical isomers

Publications (4)

Publication Number Publication Date
FI912377A0 FI912377A0 (en) 1991-05-16
FI912377A FI912377A (en) 1992-11-17
FI90995B FI90995B (en) 1994-01-14
FI90995C true FI90995C (en) 1994-04-25

Family

ID=8532533

Family Applications (1)

Application Number Title Priority Date Filing Date
FI912377A FI90995C (en) 1991-05-16 1991-05-16 Process for the preparation of chiral compounds as pure optical isomers

Country Status (3)

Country Link
EP (1) EP0588809A1 (en)
FI (1) FI90995C (en)
WO (1) WO1992020812A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI93833C (en) * 1992-05-14 1995-06-12 Orion Yhtymae Oy Process for the preparation of propionic acid derivatives
JP3289058B2 (en) * 1992-09-11 2002-06-04 工業技術院長 Method for producing ester using enzyme
US6486355B1 (en) 2000-02-23 2002-11-26 Brookhaven Science Associates Llc Application of chiral critical clusters to assymetric synthesis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925790A (en) * 1985-08-30 1990-05-15 The Regents Of The University Of California Method of producing products by enzyme-catalyzed reactions in supercritical fluids
DE3919029A1 (en) * 1989-06-10 1990-12-13 Hoechst Ag METHOD FOR ENZYMATICLY CLEAVING 2-ARYLPROPIONIC ACID VINYL ESTER
CA2039857A1 (en) * 1990-04-26 1991-10-27 Wilfred Po-Sum Shum Process for producing epoxyalcohols of high optical purity

Also Published As

Publication number Publication date
EP0588809A1 (en) 1994-03-30
FI90995B (en) 1994-01-14
FI912377A0 (en) 1991-05-16
FI912377A (en) 1992-11-17
WO1992020812A1 (en) 1992-11-26

Similar Documents

Publication Publication Date Title
KR970005052B1 (en) Method for resolution of stereo-isomers in multiphase and extractive membrane reactors
Carvalho et al. Alternatives for the separation of drug enantiomers: ibuprofen as a model compound
CN108642119B (en) Method for resolution of 2- (4-methylphenyl) propionic acid enantiomer by stereoselective enzyme catalytic esterification
Ueji et al. Solvent-induced inversion of enantiosflectivity in lipase-catalyzed esterification of 2-phenoxypropionic acids
Lee et al. Enzymatic resolution of racemic ibuprofen esters: effects of organic cosolvents and temperature
Eleveld et al. Enantioselective deprotonation of two racemic cyclic carbonyl compounds by a chiral lithium amide
Petri et al. Efficient immobilization of epoxide hydrolase onto silica gel and use in the enantioselective hydrolysis of racemic para-nitrostyrene oxide
Hernández-Fernández et al. On the development of an integrated membrane process with ionic liquids for the kinetic resolution of rac-2-pentanol
Fishman et al. Chemo-enzymatic synthesis of (S)-α-cyano-3-phenoxybenzyl alcohol
Roberts et al. Lipase catalysed resolution of the Lotrafiban intermediate 2, 3, 4, 5-tetrahydro-4-methyl-3-oxo-1H-1, 4-benzodiazepine-2-acetic acid methyl ester in ionic liquids: comparison to the industrial t-butanol process
Fishman et al. A two‐step enzymatic resolution process for large‐scale production of (S)‐and (R)‐ethyl‐3‐hydroxybutyrate
FI90995C (en) Process for the preparation of chiral compounds as pure optical isomers
Liu et al. Problems of Acyl Migration in Lipase-Catalyzed Enantioselecttve Transformation of Meso-1, 3-Diol Systems
KR20230118396A (en) A novel method for enzymatic synthesis of naringin acetate and a kit for producing the same
Mitsuda et al. Enantioselective Hydrolysis of α-Cyano-3-phenoxybenzyl Acetate with Arthvobacter Lipase
Jurček et al. Selected chiral alcohols: Enzymic resolution and reduction of convenient substrates
CN109295152B (en) Method for catalyzing, esterifying and splitting 2-phenylpropionic acid enantiomer by Novozym435 lipase
CA2064676A1 (en) Immobilized biocatalyst, its preparation and use for ester synthesis in a column reactor
Kanerva et al. Lipase catalysis in the optical resolution of 2-amino-1-phenylethanol derivatives
EP0657544B1 (en) Process for preparing optically active glycidate esters
Qayed et al. Lipases-catalyzed enantioselective kinetic resolution of alcohols
CN1656230B (en) Enzymatic resolution of propylene glycol alkyl (or aryl) ethers and ether acetates
Patel et al. Stereoselective enzymatic hydrolysis of (exo, exo)-7-oxabicyclo [2.2. 1] heptane-2, 3-dimethanol diacetate ester in a biphasic system
US5403739A (en) Method for esterification of (S)-citronellol using lipase in supercritical carbon dioxide
Ceynowa et al. Lipase‐catalyzed kinetic resolution of (R, S)‐1‐phenylethyl propionate in an enzyme membrane reactor

Legal Events

Date Code Title Description
FG Patent granted

Owner name: VALTION TEKNILLINEN TUTKIMUSKESKUS

BB Publication of examined application