FI90707C - Method of forming the coupling routes in a cross coupler - Google Patents
Method of forming the coupling routes in a cross coupler Download PDFInfo
- Publication number
- FI90707C FI90707C FI921834A FI921834A FI90707C FI 90707 C FI90707 C FI 90707C FI 921834 A FI921834 A FI 921834A FI 921834 A FI921834 A FI 921834A FI 90707 C FI90707 C FI 90707C
- Authority
- FI
- Finland
- Prior art keywords
- time
- switch
- cross
- configuration
- switching
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 45
- 230000008878 coupling Effects 0.000 title claims description 6
- 238000010168 coupling process Methods 0.000 title claims description 6
- 238000005859 coupling reaction Methods 0.000 title claims description 6
- 239000011159 matrix material Substances 0.000 claims description 23
- 230000005540 biological transmission Effects 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000001360 synchronised effect Effects 0.000 claims description 6
- 230000002457 bidirectional effect Effects 0.000 claims description 3
- 238000005315 distribution function Methods 0.000 claims description 3
- 230000003111 delayed effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 230000011664 signaling Effects 0.000 claims 3
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000007164 Oryza sativa Nutrition 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 230000001902 propagating effect Effects 0.000 claims 1
- 235000009566 rice Nutrition 0.000 claims 1
- 230000008054 signal transmission Effects 0.000 claims 1
- 229940081330 tena Drugs 0.000 claims 1
- 238000012795 verification Methods 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/04—Selecting arrangements for multiplex systems for time-division multiplexing
- H04Q11/0428—Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
- H04Q11/0478—Provisions for broadband connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/04—Selecting arrangements for multiplex systems for time-division multiplexing
- H04Q11/06—Time-space-time switching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J2203/00—Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
- H04J2203/0001—Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
- H04J2203/0003—Switching fabrics, e.g. transport network, control network
- H04J2203/0005—Switching elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J2203/00—Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
- H04J2203/0001—Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
- H04J2203/0003—Switching fabrics, e.g. transport network, control network
- H04J2203/0012—Switching modules and their interconnections
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
- Time-Division Multiplex Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Description
1 907071 90707
Menetelma ristikytkimen kytkentareittien muodostamiseksi -FOrfarande fiSr att bilda kopplingsrutterna i en korskopplare 5 KeksintO koskee patenttivaatimuksen 1 johdannon mukaista mene-telmaa digitaalisten siirtolinjojen ristikytkimen estotonta konfigurointia vårten ristikytkentétarpeen muutostilanteissa. KeksintO koskee myOs menetelmSn toteuttavaa ristikytkinta ja sen kayttoa.The invention relates to a method according to the preamble of claim 1 for the unobstructed configuration of a cross-switch for digital transmission lines in the event of a change in the need for cross-connection. The invention also relates to a cross-switch implementing the method and its use.
1010
Synkroninen digitaalinen hierarkia (SDH) kasittaa varsin laa-jan ja pitkaile kehitetyn kokonaisuuden aikajakoisten signaa-lien siirtdmiseksi televerkossa, jonka runkosiirtoverkko on kehittymassa erillisista PCM-koodatuista linkeista kohti kau-15 ko-ohjattua ristikytkentaverkkoa. Suositus CCITT G.707 maarit-telee SDH-signaalien ensimmaisen tason synkronisen kuljetusmo-duulin (STM-1, Synchronous Transport Module) signaalin, jonka siirtonopeus on 155,520 Mbit/s. STM-1 peruskehys muodostuu tavuista (8 bit), joita valvontalohkot mukaan lukien kehykses-20 sa on 2430; tailOin STM-1 kehyksessa siirretaan 63 TU-12, Tributary Unit 2 Mbit/s signaalia, joka voi sisaitaa tavallisen 30-kanavaisen PCM-jarjestelman 2 Mbit/s signaalin. STM-1 kehys toistuu 8000 kertaa sekunnissa, joka on sama kuin alijarjes-telmåssa; jokainen kehyksen tavu muodostaa tailOin 64 kbit/s 25 kanavan. SDH-signaalit eli kuljetusmoduulit muodostetaan ali- — jarjestelmien signaaleista tavuja lomittamalla.The synchronous digital hierarchy (SDH) is quite extensive and holds the developed entity for the transmission of time-division signals in a telecommunication network whose backbone transmission network is evolving from separate PCM-coded links towards a remote-controlled cross-link network. Recommendation CCITT G.707 Maarit interprets the signal of the first level Synchronous Transport Module (STM-1) of SDH signals with a transmission rate of 155.520 Mbit / s. The basic frame of STM-1 consists of bytes (8 bits) of 2430 in frame-20 sa, including control blocks; tailOin The STM-1 frame transmits 63 TU-12, Tributary Unit 2 Mbit / s signals that can accommodate a 2 Mbit / s signal from a standard 30-channel PCM system. The STM-1 frame repeats 8000 times per second, which is the same as in the subsystem; each byte of the frame forms a tailOin 64 kbit / s 25 channels. The SDH signals, i.e. the transport modules, are formed from the signals of the subsystems by interleaving bytes.
SDH-ristikytkin (DXC) voi vaiittaa liikennetta eri SDH-tasojen vaiilia seka kytkea liikennetta eri signaalien valilia. Tyy- - . 30 pillinen ylemman tason ristikytkin (DXC, Digital Cross Con nect, CCITT suositusluonnokset G.sdxc-1...-3) on ns. 4/1-ris-tikytkin, jossa tulo- ja lahtOporttien valilia kytketaan 2 Mbit/s-kanavia. Ristikytkimen tarkeana tavoitteena on siirto-verkon kapasiteetin kayttOasteen optimoiminen. Lisaksi silia 35 on voitava hoitaa verkon joustava rekonfigurointi, eli yhteyk-sien uudelleen reititys, ja taattava varayhteyksien nopea kayttOOnotto verkon vikatilanteissa. Mainitut CCITT ;n SDH-suo-situkset pyrkivat maarittelemaan loogisen toiminnan, ts. lait- 2 90707 teiden toiminnallisen rakenteen, mutta valttavat laitteiden yksityiskohtaisen rakennekuvauksen.The SDH cross switch (DXC) can silence traffic between different SDH levels and switch traffic between different signals. Type- -. The 30-whistle upper level cross switch (DXC, Digital Cross Con nect, CCITT draft recommendations G.sdxc-1 ...- 3) is the so-called 4/1-risk switch with 2 Mbit / s channels connected to the input and output ports. The specific goal of the cross-connect is to optimize the capacity utilization rate of the transmission network. In addition, Silia 35 must be able to handle the flexible reconfiguration of the network, i.e. the rerouting of connections, and guarantee the rapid use of backup connections in the event of a network failure. Said CCITT SDH recommendations seek to define the logical operation, i.e. the functional structure of the devices, but go beyond the detailed structural description of the devices.
Digitaalista ristikytkentaa on tutkittu runsaasti optimaaliset 5 ehdot tMyttavSn arkkitehtuurin lOytamiseksi. Kapasiteetin, estottomuuden ja toteutettavuuden ehdot hyvin tayttava rakenne on TST-rakenne (Time-Space-Time), eli aika-tila-aika -risti-kytkenta, jonka kaaviollinen esitys on kuvassa 1. TST-kytken-tarakenteessa estottoman kytkennan liiytaminen on paljon las-10 kentaa vaativa tehtava, valkka TST-kytkin periaatteessa onkin estoton. OsatekijS suureen laskentatarpeeseen on esim. STM-N signaalien sisaitama suuri tavu- eli kanavamaara. TST-arkki-tehtuurin hyvana puolena on se, etta ristikytkimen koko voi-daan kulloinkin mitoittaa tarvittavalle kytkentakapasiteetille 15 niin, etta laiteratkaisu on edullisempi kuin muilla arkkiteh-tuureilla (esim. T-S-T jne).Digital cross-connectivity has been extensively studied for optimal 5 conditions for finding a usable architecture. A structure that satisfies the conditions of capacity, unobstructedness and feasibility is the TST (Time-Space-Time) structure, i.e. a time-space-time cross-connection, the schematic representation of which is shown in Figure 1. In the TST-switching structure, the addition of an unobstructed connection is much more -10 field demanding task, the white TST switch is basically unobstructed. A component of a large computational need is, for example, the large number of bytes or channels included in the STM-N signals. The advantage of the TST sheet architecture is that the size of the cross-switch can in each case be dimensioned for the required switching capacity 15, so that the hardware solution is more advantageous than with other architectures (e.g. T-S-T, etc.).
Perinteisissa TST-ristikytkennan arkkitehtuureissa ristikyt-kenta on kokonaisuudessaan tai osaksi kahdennettu, jolloin 20 estottoman kytkennan laskemiseen on edullisemmat mahdollisuu-det. Nain on menetelty esim. puhelinkeskuksissa, joissa kytki-meen liitetaan 2 Mbit/s-linjoja ja joissa tarkoituksena on nopeasti luoda ja purkaa kanavakohtaisia kytkentfija 64 kbit/s-linjojen vaiilia. Keskuksen TST-kytkimen tapauksessa on aika-25 rajoitusten sallimissa rajoissa etsittava vapaa reitti kytki-men lapi, jolloin myiJs esto voidaan hyvaksya, vaikka kytkimes-sa olisikin vapaata kapasiteettia, koska esto kohdistuu vain yhteen kanavaan kerrallaan. Tailaista toimintaa ei voida hyvaksya siirtoteiden kasittelyssa ristikytkimissa, joissa kaik-30 ki sisaantulot on pystyttava reitittamaan ulostuloihinsa. Siirtoteiden yhteysajat ovat pitkia, eivétka yhteydet muutu nopeasti. Lisaksi siirtoteita kytkettaessa perusehtona on siirtoteiden ja myOs ristikytkimen kapasiteetin tehokas hyOty-kayttO, toisin kuin puhelinkeskuksissa, joissa estotilanteiden 35 torjumiseksi voidaan mytts kayttaa ylimitoitettua kapasiteet tia.In traditional TST cross-connect architectures, the cross-connection is completely or partially duplicated, whereby there are more advantageous possibilities for calculating 20 non-blocking connections. This has been done, for example, in telephone exchanges where 2 Mbit / s lines are connected to the switch and where the purpose is to quickly create and decompress channel-specific 64 kbit / s lines. In the case of the control panel's TST switch, within the limits allowed by the time-25 restrictions, a free route must be searched through the switch, so that the block can be accepted even if the switch has free capacity, because the block is only applied to one channel at a time. Such operation cannot be accepted in the handling of transmission paths in cross-switches, where all 30 inputs must be able to be routed to their outputs. The connection times of the transmission paths are long, and the connections do not change quickly. In addition, when connecting transmission paths, the basic condition is the efficient use of the capacity of the transmission paths and the myOs cross-switch, in contrast to telephone exchanges, where overcapacity can be used to combat blocking situations.
3 907073 90707
PerinteisissS SDH-ristikytkimissa, joissa kaytetaan TST-raken-netta, estottoman reitin lOytamisen ongelmaa on kierretty ti-lakytkimen kapasiteettia nostamalla, esim. kahdentamalla tila-kytkimen taajuus. Kuvassa 1 vasemmalla ovat tulevat signaalit 5 II...In (tassa STM-1 signaaleja) ja oikealla lahtevat signaa lit 01...On. Jokaista linjaa kohti on oma aikakytkin. Tulo- ja lahtiipuolen aikakytkimet Til...Tin ja vastaavasti Tol...Ton vaihtavat aikavaiien eli tavujen paikkaa (kehyksen puitteissa) signaalin sisaiia. Keskeinen tilakytkin S siirtaa aikakytki-10 melta tulevan signaalin tavun toiselle aikakytkimelle menevaan signaaliin. Aikavaii eli tavu muodostaa 64 kbit/s kanavan. Periaatteessa aikakytkimet ovat muistielementteja ja tilakytkin muodostuu kytkinelementeista. Yleensa ristikytkenta to-teutetaan moduulirakenteisesti. Ensimmainen aikakytkin ja ti-15 lakytkin vaikuttavat estottoman kytkennan muodostamiseen mista tahansa tulolinjan aikavaiista oikeaan lahtttlinjaan. LahtOpuo-len aikakytkin ei vaikuta estottoman kytkennan saavuttamiseen, vaan kytkee pelkastaan kanavat eli aikavaiit oikeaan jarjes-tykseen lahtOlinjan vaatimalla tavalla.In conventional SDH cross-switches using the TST structure, the problem of finding an unobstructed path has been circumvented by increasing the capacity of the state switch, e.g. by doubling the frequency of the state switch. In Figure 1, on the left are the incoming signals 5 II ... In (here STM-1 signals) and on the right are the outgoing signals lit 01 ... On. Each line has its own time switch. The input and lahtiipuolen time switches Til ... Tin and Tol ... Ton, to change a number of bytes aikavaiien positions (within a frame) signal sisaiia. The central mode switch S transfers the byte of the signal from the time switch-10 to the signal going to the second time switch. The time or byte forms a 64 kbit / s channel. In principle, the time switches are memory elements and the state switch consists of switch elements. In general, cross-connection is implemented in a modular manner. The first time switch and the ti-15 law switch affect the establishment of an unobstructed connection from any time line of the input line to the correct source line. The time switch on the open side does not affect the achievement of an unobstructed connection, but merely switches the channels, i.e. the time slots, in the correct order as required by the open line.
2020
Keksinnfin tavoitteena on osoittaa suurinopeuksisten digitaa-listen signaalien ristikytkentaa vårten sellainen menetelma ja menetelman toteuttava arkkitehtuuri, jolla voidaan toteuttaa estoton kytkenta ja vaittaa tunnetut puutteet ja haitat.The object of the invention is to show a method and an architecture implementing the method for cross-linking high-speed digital signals, which can implement unobstructed switching and obviate the known shortcomings and disadvantages.
2525
Tama tehtava ratkaistaan patenttivaatimuksen 1 mukaisella ai-kajaksoittain toteutettavalla konfiguraation laskentamenetel-maiia. Ristikytkennan rakennetta kehitetaan edelleen patenttivaatimuksen 6 mukaisella menetelmaiia reittivarmennuksen kyt-30 kemiseksi. KeksinnOn muita edullisia toteutusmuotoja on esi-tetty muissa epaitsenaisissa patenttivaatimuksissa.This task is solved by a periodic configuration calculation method according to claim 1. The cross-connect structure is further developed by a method according to claim 6 for switching route verification. Other preferred embodiments of the invention are set out in the other dependent claims.
KeksinnOlia saavutetaan etuna se, etta koko ristikytkentaka-pasiteetti hyOdynnetaan. Estottoman toiminnan takaaminen ei 35 edellyta ylimaaraista ristikytkentakapasiteettia. Lisaksi kek-sinniin mukaisella menetelmaiia voidaan toteuttaa synkroninen toiminta, eli samalla kellolla toimivien ristikytkinmoduulien kytkentåmatriisin virheetfin vaihtaminen.The advantage of the invention is that the entire cross-connect capacity is utilized. Ensuring unobstructed operation 35 does not require additional cross-connection capacity. In addition, the method according to the invention can be used for synchronous operation, i.e. for changing the error faults of the switching matrix of the cross-switch modules operating at the same clock.
s 90707s 90707
Keksintoa voidaan soveltaa synkronisessa digitaalisessa hie-rarkiassa (SDH) standardoitujen kuljetusmoduulien (STM-N) kyt-kemiseen. Keksintoa voidaan soveltaa myds plesiokronisen siir-tohierarkian (PDH) mukaisessa ristikytkennassa. KeksinnOn mu-5 kaista menetelmaa voidaan kayttaa eri tasojen ristikytkenta-laitteissa, esim. 4/1-ristikytkimessa tai 3/1-ristikytkimessa, joka kytkee 34 Mbit/s tasolla liitettyja 2 Mbit/s signaaleja.The invention can be applied to the connection of transport modules (STM-N) standardized in synchronous digital hierarchy (SDH). The invention can be applied to cross-linking according to the myds plesiochronous transfer hierarchy (PDH). The method according to the invention can be used in cross-switching devices of different levels, e.g. a 4/1 cross-switch or a 3/1 cross-switch which switches 2 Mbit / s signals connected at the 34 Mbit / s level.
Keksintoa selitetaan seuraavassa esimerkkien avulla oheisiin 10 kuviin viitaten.The invention will now be described by way of example with reference to the accompanying drawings.
Kuvassa 1 on esitetty aika-tila-aika-ristikytkennan periaate.Figure 1 shows the principle of time-space-time cross-connection.
Kuvassa 2 on kaaviollisesti esitetty keksinnttn mukainen risti- 15 kytkennån ohjaus.Figure 2 schematically shows a cross-connection control according to the invention.
Kuvassa 3 on keksinndn mukaisen aikajaksotteisen menetelmån yksinkertaistettu vuokaavio.Figure 3 is a simplified flow chart of a time-intermittent method according to the invention.
20 Kuva 4 esittaa yksinkertaistettuna vuokaaviona kytkettavan aikavaiin keksinnOn mukaista valintamenettelya.Figure 4 shows a simplified flow chart of a selection procedure according to the invention for a time slot to be switched.
Kuva 5 on 1:N/N:1 reittivarmennuksen toteutus.Figure 5 is an implementation of 1: N / N: 1 route verification.
25 Kuvassa 1 kuvataan periaatteellisesti myOs keksinnOssa kayte- tyn aika-tila-aika-ristikytkimen rakennetta, jota jo yleisessa osassa selitettiin. Kuvassa 2 on esitetty TST-ristikytkinra-kenne 10, jolla keksinndn mukaista menetelmaa voidaan soveltaa, ja jossa ristikytkimen ohjausosa 20 pystyy yhtaikaisesti 30 ohjaamaan kaikkia sisaanmenopuolen aikakytkimia 1...N suorit-tamaan L aikavaiin keskinaiset kytkennat. Tilakytkin S kasit-taa N*N kytkinta, joilla toteutetaan kytkenta N tulosta N lah-tikin. LahtOpuolella on jalleen N aikakytkinta, jotka kulloin-kin suorittavat L aikavaiin keskinaiset kytkennat-35Figure 1 illustrates in principle the structure of the time-space-time cross-switch used in the present invention, which has already been explained in the general part. Figure 2 shows a TST-structure ristikytkinra 10, with which the method according to the keksinndn can be applied, and wherein the cross-connect control section 20 is able to simultaneously control all the 30 time switch sisaanmenopuolen 1 ... is carried out in badger-L aikavaiin medium women coupling. The state switch S comprises N * N switches, which are used to implement N outputs even N outputs. On the Laht side, there are again N time switches, which in each case perform L time interval mutual connections-35
Kuvassa 2 oleva ristikytkimen ohjaus 20 pystyy samanaikaisesti (synkronisesti) toteuttamaan tulo- ja lahtdpuolen aikakytkimi-en ja tilakytkimen kytkentamatriisin 31 (CM, Connection Mat-2 shows a cross-connect control 20 is capable of simultaneously (synchronously) to carry out the input time switch and lahtdpuolen-I and the state of the switch 31 of the switching matrix (CM Connection mat-
I. II. I
5 90707 rix, tai kytkentakartta) vaihtamisen siten, etta kytkentakon-figuraation muutostilanteessa voidaan aika- ja tilakytkimet kokonaan uudelleen konfiguroida vastaamaan uutta kytkentakon-figuraatiota. Prosessorissa 30 on siis kulloinkin kåytttssS 5 oleva aktiivinen kytkentamatriisi 31 ja varalla/kasittelyn alla oleva varakytkentSmatriisi (31b, ei esitetty). Ristikyt-kentaa ohjaavan prosessorin 30 konfiguraatiolaskin 32 muodos-taa jaijempåna esitetylia konfigurointimenetelmaiia uuden kon-figuraation, joka talletetaan varakytkentamatriisiin, jolla 10 kytkentakonfiguraation paivitys tehdaan. Lahtdtietoina konfi-gurointilaskimella on kanavajako tuloissa ja haluttu lahtOlin-ja kanaville. Ristikytkimen ohjausyksikkd 20 kayttaa paivitet-tya matriisia 31b hyvakseen, kun se ohjaa aika- ja tilakytkimet vastaamaan uutta kytkentakonfiguraatiota.5 90707 rix, or circuit diagram) so that in the event of a change in the circuit configuration, the time and mode switches can be completely reconfigured to correspond to the new circuit configuration. Thus, the processor 30 has an active switching matrix 31 in use in each case and a backup switching matrix (31b, not shown) in use. The configuration calculator 32 of the cross-connect control processor 30 generates a new configuration of the configuration method shown below, which is stored in the backup switching matrix with which the switching configuration update 10 is performed. As output data, the configuration calculator has the channel division at the inputs and the desired output and channels. The cross-switch control unit 20 utilizes the updated matrix 31b when controlling the time and mode switches to match the new switching configuration.
1515
Ristikytkimen keksinnbn mukainen konfiguraation laskennan te-hokas toteutus perustuu TST-ristikytkimen siihen ominaisuu-teen, etta uusi konfiguraatio voidaan ratkaista aikavaii ker-rallaan. Toisin sanoen, kun tulopuolen N aikakytkimessa ja 20 N*N-tilakytkimen kautta lOytyy estoton tila mielivaltaiselle aikavaiille K, voidaan olla varmoja siita, etta muutkin aika-vaiit K+l, K+2, ..., L voidaan ratkaista samalla periaatteel-la. N3in olien ristikytkimelle voidaan laskea konfiguraatio aikavaii kerrallaan siten, etta estoton kytkentakonfiguraatio 25 etsitaan aina jaijelia olevien aikavaiien K, K+l, K+2, ..., L tulopuolen aikakytkimessa ja tilakytkimen kautta.The efficient implementation of the configuration calculation according to the invention of the cross-switch according to the invention is based on the feature of the TST cross-switch that the new configuration can be solved one time at a time. In other words, when the input side of the time switch 20 and the N * N space switch can be found in non-blocking mode an arbitrary aikavaiille K, one can be assured that other time-vaiit K + l, K + 2, ..., L can be solved at the same time of principle la. N3in ols configuration of the cross connect can be calculated aikavaii at a time so that the non-blocking connection configuration 25 is always the search for jaijelia aikavaiien K, K + l, K + 2, ..., L, the input side time switch and the space switch.
Maaratyn aikavaiin tilakytkenta on estoton silloin, kun tilakytkimen kaikki lahdOt ovat kaytiissa. Toisin sanoen, tulopuo-30 len aikakytkimen on kytkettava kaikki aikavaiit eli kanavat siten, etta tilakytkimen tulojen kaikki aikakytketyt aikavaiit johdetaan eri lahtdihin. Ellei tulossa ole aikavaiia, joka pitaisi reitittaa tiettyyn lahtOOn, niin tata lahttta ei tie-tenkaan tarvitse kayttaa. Nain olien tilakytkimen edessa ole-35 van tulopuolen aikakytkimen tehtavana on jakaa kanavat tasai-sesti aikavaleittain siten, etta tilakytkin voi kytkea ne oi-keisiin, haluttuihin lahtOihin. Tarkemmin sanoen tilakytkimes- 6 90707 sa on vaitettava estotilanne, Jossa samassa aikavaiissa olisi enemman kuin yksi samaan lahtOaikavaiiin reititettava kanava.The mode switching of the set time interval is unobstructed when all the outputs of the mode switch are in use. In other words, the time switch of the input side must switch all time slots, i.e. the channels, so that all the time-switched time slots of the inputs of the state switch are routed to different bays. Unless there is a time slot coming that should be routed to a particular bay, then that bay does not need to be used. This is not the 35-ols of the space switch van in front of the input side time switch is to distribute the tasks of channels, a steady-time slots so that the space switch can connect them, O-keisiin, desired outputs. More specifically, the state switch must silence a blocking situation in which there would be more than one channel to be routed to the same time slot in the same time slot.
KeksinnOn mukaisella menetelmaiia konfigurointilaskin muodos-5 taa kytkentamatriisin siten, etta kuvan 2 mukainen ristikyt-kenta toimii estottomasti.According to the method of the invention, the configuration calculator forms a switching matrix such that the cross-connection according to Fig. 2 operates without hindrance.
KytkentapyynniSn perusteella laskin 32 rakentaa tausta-ajona uuden kytkentamatriisin 31b (ei esitetty), joka talletetaan 10 prosessorin 30 muistiin. Kun kytkentamatriisi 31b on valmiiksi laskettu, ohjausyksikkd 20 paivittaa ristikytkinmoduulien ti-lat kokonaisuudessaan, uuden kytkentamatriisin mukaisesti. Uudet yhteydet siis lisataan kytkentamatriisiin tai vanhoja yhteyksia poistetaan siita silia perusteella, etta kaikki ris-15 tikytkimen yhteydet kytketaan uudestaan uuden kytkentatilan-teen pohjalta. Siten vanhatkin kytkennat, jotka jaavat voi-maan mybs kytkentakonfiguraation vaihtamisen jalkeen, voivat saada uuden reitityksen ristikytkennan lapi. Paivitys toteute-taan tarkasti synkronointisignaalin avulla, joka tulee ennalta 20 maaratysta kellosta juuri ennen uuden konfIguraation voimaan saattamista. Taman synkronointisignaalin avulla varmistetaan, etta vanhat, voimassa pidettavat yhteydet tulolinjasta lahtd-1injaan eivat hairiinny kun kytkentamatriisin paivitys to-teutetaan.Based on the switching request, the counter 32 constructs a new switching matrix 31b (not shown) as a background run, which is stored in the memory of the processor 30. Once the switching matrix 31b has been calculated, the control unit 20 updates the states of the cross-connect modules in their entirety, according to the new switching matrix. Thus, new connections are added to the connection matrix or old connections are removed from it on the basis of Silia, so that all connections of the risk switch 15 are reconnected on the basis of the new connection state. Thus, even old connections that share power after changing the mybs switching configuration can get a new routing crossover. The update is performed precisely by means of a synchronization signal coming from 20 predetermined clocks just before the new configuration takes effect. This synchronization signal ensures that old, valid connections from the input line to the output line are not disrupted when the switching matrix update is implemented.
2525
Kytkentamenetelmaiia lasketaan ristikytkimen konfiguraatio aikavaii kerrallaan. Ensin tulokanavat eli kehyksessa olevat tavut jaetaan yhta moneen ryhmaan kuin liittyman kuljetus-mo-duulissa on ristikytkettavia signaaleja 1. aikajaksoja. Esim. 30 tulopuolen aikakytkimeen liitetylia SDH:n STM-1 linjalla on siirtonopeudella 155 Mbit/s 63 2 Mbit/s-signaalin aikajaksoa, eli alijarjestelman kontaineria (esim. TU-1, Tributary Unit, joka voi sisaitaa tavallisen 30-kanavaisen PCM-jarjestelman 2 Mbit/s signaalin). Jokaisen keksinndn mukaisesti valitun aika-35 jakson sijainti kehyksessa saadaan suoraan standardin mukaisen osoittimen (pointer) avulla tai siita laskemalla. Vastaavasti plesiokronisen siirtohierarkian (PDH) mukaisessa linjassa 140 Mbit/s nopeudella on 64 2 Mbit/s-signaalin aikajaksoa. Jokai- i- .The switching method is calculated by the cross-switch configuration time by time. First, the input channels, i.e. the bytes in the frame, are divided into as many groups as there are cross-connectable signals in the 1st transport period of the transport module of the interface. For example, 30 input side time switch liitetylia SDH. The STM-1 line has a transmission rate of 155 Mbit / s 63 2 Mbit / s signal of a time period, a subsystem containers (e.g. TU-1, Tributary Unit, which can your built ordinary 30-channel PCM. system 2 Mbit / s signal). The position of each time-35 period selected according to the invention in the frame is obtained directly by means of a standard pointer or by calculating it. Correspondingly, a line according to the plesiochronous transmission hierarchy (PDH) at a speed of 140 Mbit / s has 64 2 Mbit / s signal time periods. Every- i-.
7 90707 sen taiia tavalla maaritellyn ryhman puitteissa ratkaistaan ristikytkentareitit siten, etta silia toteutunut kytkentakon-figuraatio mytts tarkoittaa, etta vieia laskematta olevat aika-vaiit mytts voidaan kytkea. Koko ristikytkentakentan ratkaisu 5 saadaan nain olien kuvan 3 mukaisella aikajaksottaisella mene-telmaiia.7 90707 within the group defined in this way, the cross-connection paths are solved in such a way that the switching configuration mytts realized by Silia means that the time-counted mytts that have not been calculated can be switched. The solution 5 of the entire cross-connection field is thus obtained by the periodic method according to Fig. 3.
Tassa menetelmassa yhta tarkasteltavaa kytkentaaikavaiia las-kettaessa aikakytkimista valitaan ensin ne, joihin liittyvat 10 tilakytkimen tulot ja lahdOt ovat taynna, eli joilla kytkemat-tOmia kanavia on yhta paljon kuin kayttamattOmia aikavaieja on jaijelia. Kytkentapaatttkset tehdaan ensin talle ryhmaile, jota kutsutaan prioriteettiryhmaksi. Sellaisia lahtOja, jotka eivat ole taysin kaytOssa, ei tarvitse kayttaa jokaisessa aikavaiis-15 sa. Tama tarkoittaa sita, etta ne tulot ja lahdOt, jotka ovat taysin kaytdssa, on kaytettava tassa aikavaiissa; muut vapaat kytkennat voidaan jattaa kayttamatta, jos sopivia kanavia ei lttydy. Kuvan 3 mukaisesti toiminta alkaa kohdasta 'aloitus'. Ensimmåisena vaiheena on estottoman kytkennan toteuttaminen 20 tulo-aikakytkimien ja tilakytkimen kautta tassa vuorossa ole-vassa aikavaiissa. Sen jaikeen tutkitaan onko kaikki aikavaiit kasitelty eli kytketty. Jos kytkettavia aikavaieja on jaijelia siirrytaan takaisin alkuun ja toteutetaan estottoman kytkennan laskeminen seuraavalle aikavaiille. Viimeisen aikavaiin jai-25 keen siirrytaan kohtaan 'loppu'.In this method, when calculating one switching time period to be considered, the time switches are first selected from those in which the associated inputs and outputs of the state switch 10 are full, i.e., which have as many unconnected channels as there are unused time periods. Switching decisions are first made to a group called a priority group. Sources that are not fully used need not be used at every time. This means that the income and outputs that are fully used must be used during this period; other free connections can be left unused if suitable channels are not available. As shown in Figure 3, the operation starts from the 'start' point. The first step is to implement uninterrupted switching through the 20 input time switches and the state switch in this time slot. Its verse examines whether all time slots have been processed, i.e. connected. If there are time slots to be switched and the signal is moved back to the beginning and the calculation of the unobstructed connection for the next time slot is performed. The last time period and 25 are moved to 'end'.
Kuvassa 4 esitetaan yhden aikavaiin valintamenettely vuokaavi-on muodossa. Aloituksen jaikeen siirrytaan tarkistuslohkoon SI, jossa tarkistetaan, mitka tulot ja lahddt ovat valittavis-30 sa, kun haetaan reitti tulon ja lahdOn vaiille. Taildin mai-nittu prioriteettiryhma aina valitaan ensimmaiseksi. Ellei prioriteettikytkentOja ldydy, asetetaan muut tulot ja lahdOt valittavaksi.Figure 4 shows a single time slot selection procedure in the form of a flowchart. The start is moved to the check block SI, where it is checked which inputs and outputs are selectable when searching for a route to the input and output paths. Said priority group of the tail is always selected first. If the priority switches are not found, other inputs and outputs are set to select.
35 Kuvan 3 toisessa vaiheessa S2 yhden aikavaiin ratkaisu haetaan laskimessa 30 siten, etta kulloinkin kytkemattOmista tavuista kasiteliaan ensin se lahtO eli ulostulo, jonka jaijelia ole-vissa aikavaieissa on vahiten valinnan varaa, eli jossa on β 90707 pienin maara eri tuloista tulevia kanavia. Valinta tapahtuu luonnollisesti tilakytkimen niiden lahtOjen joukosta, joita ei aikaisemmin kyseista aikavdlid ratkaistaessa ole valittu, eli jotka ovat vapaina. Valinnalle vapaat lahdOt tarkistetaan jo 5 alkuvaiheessa SI, kuten kuvasta 4 ilmenee, eli ensin tarkistetaan, mitka lahdOt ovat valittavissa ja sen jaikeen haetaan se lahtd, jolla on pienin maara eri tuloista tulevia kanavia. Kun lahtd on valittu, voidaan periaatteessa siirtya tulon va-lintaan.In the second step S2 of Fig. 3, a solution for one time slot is retrieved in the calculator 30 so that of the unconnected bytes, the output with the least choice in the time slots, i.e. with β 90707, has the smallest number of channels from different inputs. The selection naturally takes place from among the fields of the state switch which were not previously selected when solving the time in question, i.e. which are free. The bays available for selection are already checked 5 in the initial stage SI, as shown in Fig. 4, i.e. first it is checked which bays are selectable and the bay with the smallest number of channels from different inputs is retrieved. Once the output is selected, it is in principle possible to switch to input selection.
1010
Tulon eli sisaanmenon valinnassa kuvan 4 mukaisesti vaiheessa S9 valintakriteerina kaytetaan yhdesta tulo-aikakytkimesta yksittaiseen lahtO-aikakytkimeen reititettavien kytkentOjen lukumaaraa, eli valitaan se tulo-aikakytkin, jonka osalta jo 15 valitulle (S2) lahdOlle kytkettavien kanavien maara on suurin. Tassakaan tapauksessa jo ennestaan kasitellyt tulot eivat tule kyseeseen, ja tama varmistetaan kuvan 4 tarkistusvaiheessa SI heti valintaparin alussa, kuten lahdOn valinnassakin tehtiin vaiheessa SI.In selecting the input or input according to Fig. 4, in step S9, the number of connections to be routed from one input time switch to a single output time switch is used as the selection criterion, i.e. the input time switch for which the number of channels to be connected to the already selected (S2) output is largest is selected. In this case, too, the revenue already processed is not relevant, and this is ensured in the check step SI of Figure 4 at the very beginning of the selection pair, as was done in step SI in the selection of the output.
2020
Tarkistuslohko SI varmistaa siis ensin, etta lahtO on valittavissa ja sitten, etta tulo on valittavissa. Tarkistuksen jaikeen tehdåan valinnat. LahdOn valinnassa kaytetty kriteeri pe-rustuu siihen, etta edistetadn estottoman kytkennan lOytymista 25 aikavaiin viimeisille reititysvalinnoille. Tamå perustuu siihen, etta vahiten eri tuloja sisaitava lahtO on helpompi kyt-kea alussa kuin aikajakson viimeisen valinnan kohdalla. Tulon valinnan kriteeri perustuu taas siihen, etta valinnalla pyri-taan sailyttamaan ainakin yksi kanava tulossa jokaista lahtoa 30 kohden, niin kauan kuin se on mahdollista. Taiia yliapidetaan valinnan vapaus, ja seuraavien aikavdlien ratkaisut ovat hel-pommin lOydettavissa.Thus, the check block SI first checks that the output is selectable and then that the input is selectable. Selections are made for the review. The criterion used in the selection of the source is based on promoting the establishment of an unobstructed connection for the last 25 routing choices. This is based on the fact that it is easier to connect the output with the least different inputs at the beginning than with the last selection of the time period. The input selection criterion is again based on the fact that the selection aims to keep at least one channel coming for each cell 30 for as long as possible. Freedom of choice is maintained in Taiia, and solutions for the following time slots are easier to find.
Mikali sisaantulon valintatilanteessa vaiheessa S9 lOytyy 35 enenunan kuin yksi vaihtoehto vaiheessa SIO, jolla on sama kor-kea maara kytkentOja valituille ulostuloille, valitaan kuvan 4 mukaisesti vaiheessa S13 se sisaantulo, jolla on pienin maara eri ulostuloille menevia kanavia.If, in the input selection situation in step S9, there is more than one alternative in step S10 having the same high number of connections to the selected outputs, the input with the smallest number of channels going to different outputs is selected in step S13 according to Fig. 4.
1' 9 907071 '9 90707
Jos edelia kuvan 4 vaiheiden S2 ja S13 tuloksena tulo- ja lah-tdaikakytkimissa vaiheissa S3, S14 ldiytyy valintakriteerin mukaisesti samanarvoinen aikakytkin useammassa tulossa tai lahdttssa, valitaan ensinunainen kasilia oleva vaihtoehto vai-5 heessa S4 ja vastaavasti vaiheessa Sil. Ellei tama valittu vaihtoehto vaiheen S7 tarkistuksessa tuota estotonta kytken-taa, joudutaan suorittamaan ratkaisun rekursiivinen haku kasilia olevaa aikavaiia vårten. Haku tehdaan nyt siten, etta vaiheessa S12 poistetaan valinnat edelliseen vieia kokeilemat-10 tomaan samanarvoiseen vaihtoehtoon asti ja palataan joko vai-heeseen S4 tai Sll, jossa valitaan seuraava samanarvoinen vaihtoehto. Uudet valinnat tarkistetaan vaiheessa S7, ja el-leivat valinnat ole onnistuneet miliaan vaihtoehdoista, palataan seuraavaan valintatilanteeseen, jossa samanarvoiset vaih-15 toehdot ovat voimassa. Tarvittaessa tata toistetaan, kunnes aikavalin osalta on saatu ratkaisu. Nain sirs kaydaan pahim-millaan lapi kaikki samanarvoiset vaihtoehtojen kombinaatiot, jolloin ensin yritetaan siirtaa valintaa eri sisaantuloaika-kytkimille, kunnes kaikki tulojen vaihtoehdot on kayty lapi. 20 Ellei tamakaan tuota onnistunutta tulosta, valintaa aletaan siirtaa eri ulostuloille. Taten kaydaan lapi kaikki vaihtoehdot tulopuolella jokaista lahtdpuolen vaihtoehtoa kohti. Pa-himmassa tapauksessa aikavalin ratkaisun haku voi kasittaa maksimissaan (N*N)-1 rekursiivista hakua.If, as a result of steps S2 and S13 of Fig. 4 above, the input and output time switches in steps S3, S14 have an equivalent time switch at several inputs or outputs according to the selection criterion, the first quasi-option in step S4 and in step S1, respectively, is selected. If this selected option in the check of step S7 does not produce an unobstructed connection, a recursive search of the solution for the time period in the cat has to be performed. The search is now performed by deselecting in step S12 up to the previous unexperienced equivalent option and returning to either step S4 or S11, where the next equivalent option is selected. The new selections are checked in step S7, and the el-bread selections are not successful from the millions of options, returning to the next selection situation where the equivalent alternate-15 conditions are valid. If necessary, this is repeated until a solution is reached for the time selection. In this way, at worst, all equivalent combinations of alternatives are used, in which case an attempt is first made to move the selection to the different entry time switches until all input options have been used. 20 If this does not produce a successful result, the selection starts to be transferred to the different outputs. Tate goes through all of the options on the revenue side each lahtdpuolen per option. In the worst case, the search for a time-selective solution can handle a maximum of (N * N) -1 recursive search.
V; 25V; 25
Edelia selitettyyn menetelmaan sisaityy myOs kuvan 4 mukaisesti poikkeustilanteen kasittely vaiheessa S5, ennen siirtymista tulon valintaan vaiheessa S9. Poikkeustilanne voi esiintya silloin, kun valinta tehdaan tulon tai lahdOn liitannan pie-30 nemman prioriteetin ryhmasta, piittaamatta siita ettei kanavaa lOydy jokaisesta vastaavasta tulon tai lahdOn suuremman prioriteetin ryhmasta, jonka lahdOt tai tulot myOs on kytkettava kasilia olevassa aikavMlissa. Tailainen poikkeustilanne il-maistaan vaiheessa S5, jolloin siirrytaan vaiheeseen S6, jossa 35 valinta tehdaan tulon tai lahdOn suuremman prioriteetin ryhman mukaan, kun kyseessM on sille kytkettavaile tulolle tai lah-dOlle viimeinen mahdollisuus kytkeytya kasilia olevassa aika-vaiissa. Menetelman mukaan kaytetyssa kytkennan etsimisen jar- 10 50707 jestyksessa, ensin lahttt sitten tulo, poikkeustilanne esiintyy lahdOn valinnan jaikeen, mutta ennen tulon valintaa, kuten kuvassa 4 on esitetty. Edelia olevan mukaisesti perusteluna on se, etta prioriteettiryhmassa eri tuloja esiintyy enemman kuin 5 eri lahtdja. TailOin valinta voisi kohdistua eniten kanavia tarjoavalle tulolle, vaikka toisen tulon osalta yksinaisen kanavan ainoa kytkentamahdollisuus menisi hukkaan. Taman takia tavallinen tulon valintakriteeri, eli vaiheet S9 - Sll ohite-taan, ja mainittu yksinainen kanava valitaan vaiheessa S6. 10 Valinta tarkastetaan jalleen vaiheessa S7, jonka jaikeen toi-minta jatkuu aienunin selitetyn normaalin toiminnan puitteissa.According to Figure 4, the method described above also includes myOs in the handling of the emergency situation in step S5, before proceeding to the input selection in step S9. An exceptional situation may occur when a selection is made from a lower-priority group of an input or output connection, regardless of the fact that the channel is not found in each corresponding higher-priority input or output group whose outputs or inputs must also be connected in the time slot. Such an exceptional situation is indicated in step S5, which proceeds to step S6, where the selection is made according to the higher priority group of the input or output when it is the last chance to connect to the input or output to be connected in the time slots. According to the method used in the connection search sequence used, then the input is first output, an exceptional situation occurs in the output selection sequence, but before the input selection, as shown in Figure 4. In line with the above, the justification is that there are more than 5 different bays in the priority group. The TailOin selection could focus on the input that provides the most channels, even if for a single input, the only switching option for the Single channel would be lost. Therefore, the usual input selection criterion, i.e. steps S9 to S11, is skipped, and said single channel is selected in step S6. 10 The selection is checked again in step S7, the operation of which continues within the normal operation described above.
Edelia on kuvattu keksinnOn mukaisen menetelman periaatetoteu-tusta. Konfigurointilaskimen 32 (kuva 2) kayttamat yksityis-15 kohtaiset algoritmit ovat vapaasti valittavissa, esim. jonkin sinansa tunnetun menetelman mukaisesti, kunhan niilia voidaan toteuttaa keksinndn mukainen aikajaksoittainen laskentaperiaa-te.The principle implementation of the method according to the invention has been described above. The private-specific algorithms used by the configuration calculator 32 (Fig. 2) are freely selectable, e.g. according to a method known per se, as long as the nile can implement the time-periodic calculation principle according to the invention.
20 Keksintda voidaan soveltaa ristikytkimissa, joissa kaytetaan yksisuuntaista tai kaksisuuntaista liikenteen kytkentaa. Kak-sisuuntaisessa ristikytkimessa voidaan toisen suunnan kytken-takonfiguraatio muodostaa analogisella tavalla, esim. peiliku-vana. Keksinndllista menetelmaa toteuttavassa ristikytkimessa 25 ei kuitenkaan sellaisenaan voida toteuttaa jakelu-toimintoa (broadcasting), eli valitun signaalin kopioimista useampaan lahtOkanavaan. Tata vårten on ristikytkimeen jarjestettava lisakapasiteettia. Tama tehdaan siten, etta rajallisen jakelu-toiminnan kayttddn varataan tilakytkimessa yksi tulo- ja yksi 30 lahtdlinja. Lisaksi TST-ristikytkimen lahtttpuolen aikakytkimi-en jaikeen jarjestetaan valitsinlohkot SE (ei esitetty) ja aikakytkinlohkot TE (ei esitetty) jokaista lahtdlinjaa vårten. Jakeluun maaratty tulokanava johdetaan tilakytkimen kautta mainittuun varattuun lahtdlinjaan, jossa TST-iahtttaikakytkin 35 jarjestaa kanavat. Kanavien jarjestely sovitetaan tailGin si-ten, etta ristikytkennan valitut kulloisetkin lahtiJlinjat TE voivat valitsimien SE kautta vastaanottaa jakelukanavat. Lah-tGaikakytkin TE jarjestaa sitten sille kytketyt aikavaiit I; 11 90707 siirtoa vårten vaadittuun jarjestykseen. Vaihtoehtoisesti voi-daan taydellista jakelutoimintaa vårten jarjestaa tilakytki-melle kaksinkertainen kapasiteetti, jolloin tilakytkimen ka-pasiteetin ensimmainen puolisko kaytetaan keksinndn mukaisella 5 menetelmaiia kytkettyjen aikavaiien reititykseen, ja jolloin tilakytkimen kapasiteetin toinen puolisko kéytetaan jakelutoi-mintoa vårten. Jakelutoiminnassa voidaan tailttin kayttaa suo-raviivaista aikavaiin kopioimista toisen puoliskon haluttuihin aikavaieihin.The invention can be applied to cross-switches using one-way or two-way traffic switching. In a two-way cross-switch, the second-direction switch configuration can be formed in an analogous manner, e.g. a mirror image. However, in the cross switch 25 implementing the inventive method, as such, it is not possible to implement the broadcasting function, i.e. the copying of the selected signal to several output channels. Additional capacity must be provided for this crossover. This is done by reserving one input line and one output line 30 in the mode switch using the limited distribution function. In addition, the TST cross connect lahtttpuolen-en jaikeen time switch adapted to select the blocks SE (not shown) and time switch blocks TE (not shown) for each lahtdlinjaa closets. The input channel defined for distribution is routed through a state switch to said reserved source line, where the TST time switch 35 arranges the channels. The arrangement of the channels is adapted to the tailGin so that the respective selected bay lines TE of the cross-connection can receive the distribution channels via the selectors SE. The Lah time switch TE then arranges the time slots I connected to it; 11 90707 transfers to the required order. Alternatively, for full distribution operation, a double capacity can be arranged for the state switch, whereby the first half of the capacity of the state switch is used by the methods according to the invention for routing the switched time slots, and the second half of the capacity of the state switch is used. In the distribution operation, the tail can be used for direct-time copying of time slots to the desired time slots of the second half.
1010
Menetelman eraan edelleenkehitelman mukaisesti jarjestetaan reittivarmennuksen vaatima kytkenta siten, etta varmennettavan tulokanavan aikavaiin sisaitO kopioidaan kahteen lahtO-kanavaan, eli toisiaan varmentaville lahtiikanaville. Ensin 15 tutkitaan, onko tulo-aikakytkimessa vapaata aikavaiia varraen-tavalle kanavalle. Jos tailainen vapaa vaii lOytyy, kopioidaan varmennettavan aikavaiin sisaitO talle vapaalle kanavalle. Sen jaikeen kummatkin kanavat kytketaan tilakytkimen kautta eri lahtO-aikakytkimille ja ulos linjoille. Ellei tulo-aikakytki-20 messa lOydy vapaata aikavaiia, suoritetaan varmennuskytkenta tilakytkimessa siten, etta sen jossain tulossa olevan varmennettavan kanavan aikavaiin sisalto kopioidaan kahteen lahto-kanavaan, eli kahteen eri lahtd-aikakytkimeen ja ulos linjoille.According to a further development of the method, the connection required for route verification is arranged in such a way that the time interval of the input channel to be verified is copied to the two output channels, i.e. to the bay channels certifying each other. First, it is examined whether the input time switch has free time slots for the uplink channel. If such a free time is found, the time of the time period to be verified is copied to the free channel. Both of its channels are connected via a mode switch to different output time switches and out to lines. If no free time slots are found in the input time switch-20, the verification switching is performed in the state switch so that the contents of the time slot of one of the incoming channels to be verified are copied to the two output channels, i.e. two different output time switches and out to lines.
2525
Kun reittivarmennus tehdaan 1+1 periaatteella kahdentamalla varmennettava kaksisuuntainen signaali, on jokaisessa reitti-varmentavassa ristikytkimessa seka 1:N jakelutoiminne etta vastaavan paluusuuntaisen signaalin N:1 valintatoiminne N:sta 30 varmennettavasta signaalista. TailOin voidaan keksinndn mukai-sessa TST-ristikytkimessa monistaa varmennettavat signaalit paluusuunnan vastaavien varmennettavien signaalien paaile tilakytkimessa ja nain saavuttaa estoton toiminta.When route verification is performed on a 1 + 1 basis by duplicating the bidirectional signal to be verified, each route verification crossover has both a 1: N distribution function and a selection of the corresponding reverse signal N: 1 from the N 30 signals to be verified. Thus, in the TST cross switch according to the invention, the signals to be verified can be amplified in the mode switch of the corresponding verifiable signals in the reverse direction, and thus unobstructed operation can be achieved.
35 Kuvan 5 mukaisesti kytketaan ensin reittivarmistettujen 1:N/N:1 yhteyksien aikavaiit ja sen jaikeen muut. Jos kaikissa sisaantulo/ulostuloaikakytkimissa ei niita ole, kytketaan niissa prioriteettiryhmien aikavåleja normaalisti.35 As shown in Figure 5, the time slots of the route-confirmed 1: N / N: 1 connections and the others of its fraction are first connected. If not all input / output time switches have them, the time slots of the priority groups are switched on normally.
' " r.'' r.
ΐ2 90707ΐ2 90707
Kaksisuuntaisissa reittivarmennuksissa esiintyy aina N+l si-såSnmenoalkavålia, yksi varmennettava signaali, joka on siis monistettava N ulostuloon, ja N varmentavaa signaalia, joista yksi on valittava 1 ulostuloon. NSin olien siis myOs ulostulo-5 ja on N+l.In bidirectional route verifications, there are always N + 1 si-inputs, one signal to be verified, which must therefore be amplified to N outputs, and N verification signals, one of which must be selected for 1 output. NSin is thus myOs output-5 and is N + 1.
Kytkenta suoritetaan valitsemalla sisaantulojen aikakytkimessa kaikki N+l em. aikavaiia samalle aikajaksolle. Tilakytkin va-litsee yhden varmentavista aikavaieista valituksi ulostulo-10 kanavaksi ja monistaa sisaanmenon varmennettavan aikavålin kaikkiin N kappaleeseen varmentavia aikavaieja. Ulostulojen aikakytkimissa suoritetaan normaali aikakytkenta ulostuloille. Suoritettaessa nopea reittivarmennus ei kytkentakonfiguraa-tiota tarvitse laskea.The connection is performed by selecting all the N + 1 above-mentioned time periods for the same time period in the input time switch. The mode switch selects one of the authentication time slots as the selected output-10 channel and duplicates the input time slots of the input to be verified to all N chunks. The output time switches perform normal time switching for the outputs. When performing fast route verification, the switching configuration does not need to be calculated.
1515
KeksinnOn mukainen menetelma tarjoaa tehokkaan laskentatavan kytkentSkonfiguraatiolle. TailOin uusi konfiguraatio voidaan nopeasti laskea prosessorissa 30 (kuva 2). Tama mahdollistaa estottoman ja synkronisen ristikytkennan toteutuksen, jolla 20 voidaan jarjestaa virheetdn kytkentamatriisin vaihto, tarvit-sematta kahdentaa ristikytkennan aikakytkimia. KeksinnOn mu-kaista menetelmaa voidaan soveltaa myOs sellaisissa ristikyt-kimissa, joissa tilakytkimen lapi kytketaan tavun osia rinnan j arj estetysti.The method according to the invention provides an efficient calculation method for the connection configuration. The new TailOin configuration can be quickly computed in processor 30 (Figure 2). This makes it possible to implement an unobstructed and synchronous cross-connection, with which the exchange of the error-free switching matrix can be arranged without having to duplicate the cross-connection time switches. The method according to the invention can also be applied to such cross-switches in which the mode switch blade is connected in parts of the byte in parallel.
2525
KeksintOa on edelia selitetty lahtemaiia siita, etta ensin valitaan lahtO ja sitten tulo. Alan anunattilainen ymmartaa, etta menetelma voidaan toteuttaa kaanteisesti, laskemalla es-tottomat kytkennat aikajaksoittain, kun ensin valitaan tulo-30 linja ja sitten lahtOlinja. Edelia mainittiin aikajaksoksi 63 tai 64 aikavaiia, jolloin késiteltavia tavuja on kulloisessa-kin valitussa aikajaksossa 63 tai 64 kertaa tulo-aikakytkimien lukumaara. Kuitenkin on ajateltavissa, etta aikajaksoksi valitaan jokin muu sopiva maara tavuja.The invention has been further described by the fact that first the source and then the input are selected. The person skilled in the art understands that the method can be implemented in a capped way, by calculating the non-blocking connections periodically, first selecting the input-30 line and then the output line. The above was mentioned as a time period of 63 or 64 time slots, in which case the number of bytes to be delayed in each selected time period is 63 or 64 times the number of input time switches. However, it is conceivable that another suitable number of bytes be selected for the time period.
Claims (14)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI921834A FI90707C (en) | 1992-04-24 | 1992-04-24 | Method of forming the coupling routes in a cross coupler |
PCT/FI1993/000174 WO1993022859A1 (en) | 1992-04-24 | 1993-04-23 | Method and device for configuration of a time-space-time cross-connection at occasions when the need of cross-connexion changes and use thereof |
DE4391854T DE4391854T1 (en) | 1992-04-24 | 1993-04-23 | Method for configuring a time-space-time cross-connection and a device for cross-connection using this method |
GB9421173A GB2281173B (en) | 1992-04-24 | 1993-04-23 | Method and device for configuration of a time-space-time cross-connection at occasions when the need of cross-connection changes and use thereof |
AU39556/93A AU3955693A (en) | 1992-04-24 | 1993-04-23 | Method and device for configuration of a time-space-time cross-connection at occasions when the need of cross-connexion changes and use thereof |
DE4391854A DE4391854C2 (en) | 1992-04-24 | 1993-04-23 | Method for configuring a time-space-time cross-connection and a device for cross-connection using this method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI921834 | 1992-04-24 | ||
FI921834A FI90707C (en) | 1992-04-24 | 1992-04-24 | Method of forming the coupling routes in a cross coupler |
Publications (3)
Publication Number | Publication Date |
---|---|
FI921834A0 FI921834A0 (en) | 1992-04-24 |
FI90707B FI90707B (en) | 1993-11-30 |
FI90707C true FI90707C (en) | 1994-03-10 |
Family
ID=8535176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FI921834A FI90707C (en) | 1992-04-24 | 1992-04-24 | Method of forming the coupling routes in a cross coupler |
Country Status (5)
Country | Link |
---|---|
AU (1) | AU3955693A (en) |
DE (2) | DE4391854C2 (en) |
FI (1) | FI90707C (en) |
GB (1) | GB2281173B (en) |
WO (1) | WO1993022859A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI97600C (en) * | 1994-05-25 | 1997-01-10 | Nokia Telecommunications Oy | Connection of SDH signals in a TS'S'TS'S'T switching field |
FI97845C (en) * | 1994-05-25 | 1997-02-25 | Nokia Telecommunications Oy | Lock-free connection network |
FI96469C (en) * | 1994-05-26 | 1996-06-25 | Nokia Telecommunications Oy | Realization of protection switching in a digital cross switcher |
FI97842C (en) * | 1995-03-20 | 1997-02-25 | Nokia Telecommunications Oy | Configuring a digital cross connection |
FI97843C (en) * | 1995-03-20 | 1997-02-25 | Nokia Telecommunications Oy | Method for switching route confirmation signals in a digital crossover |
GB2300086B (en) * | 1995-04-18 | 1999-08-04 | Northern Telecom Ltd | Switching arrangement |
DE19608621C2 (en) * | 1996-03-06 | 1998-03-19 | Nokia Telecommunications Oy | Telecommunications network |
FI103699B (en) * | 1997-08-08 | 1999-08-13 | Nokia Telecommunications Oy | A method for modeling and implementing circuits in an SDH cross-coupling device |
FI103449B1 (en) * | 1997-08-26 | 1999-06-30 | Nokia Telecommunications Oy | Cross-Link Processor Command Architecture |
FI103452B1 (en) * | 1997-08-26 | 1999-06-30 | Nokia Telecommunications Oy | The cross-coupling device's bus line architecture |
DE19741577A1 (en) * | 1997-09-20 | 1999-03-25 | Cit Alcatel | Methods and devices for establishing point-to-multipoint connections and multipoint-to-point connections |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63171051A (en) * | 1987-01-09 | 1988-07-14 | Hitachi Ltd | Device diagnosing method |
JPH03207197A (en) * | 1990-01-09 | 1991-09-10 | Fujitsu Ltd | Digital cross-connecting device |
FI90706C (en) * | 1992-04-23 | 1994-03-10 | Nokia Telecommunications Oy | Method for error-free switching of a cross-connect matrix |
DE4228694A1 (en) * | 1992-08-28 | 1994-03-03 | Siemens Ag | Multiplex signal switching system - uses conversion of multiplex signals into pulse transmission frame with 15 rows and 64 columns |
-
1992
- 1992-04-24 FI FI921834A patent/FI90707C/en active
-
1993
- 1993-04-23 GB GB9421173A patent/GB2281173B/en not_active Expired - Lifetime
- 1993-04-23 WO PCT/FI1993/000174 patent/WO1993022859A1/en active Application Filing
- 1993-04-23 DE DE4391854A patent/DE4391854C2/en not_active Expired - Lifetime
- 1993-04-23 DE DE4391854T patent/DE4391854T1/en active Pending
- 1993-04-23 AU AU39556/93A patent/AU3955693A/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO1993022859A1 (en) | 1993-11-11 |
GB2281173A (en) | 1995-02-22 |
GB2281173B (en) | 1996-06-26 |
DE4391854T1 (en) | 1995-10-05 |
FI90707B (en) | 1993-11-30 |
FI921834A0 (en) | 1992-04-24 |
AU3955693A (en) | 1993-11-29 |
GB9421173D0 (en) | 1994-12-07 |
DE4391854C2 (en) | 1996-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cruz et al. | COD: alternative architectures for high speed packet switching | |
US7209454B2 (en) | Self-configuring distributed switch | |
US5293376A (en) | Upgraded telecommunication network | |
US6996108B1 (en) | Method and apparatus for switching and managing bandwidth for cross-connection | |
FI90707C (en) | Method of forming the coupling routes in a cross coupler | |
US20060209899A1 (en) | Switch for integrated telecommunication networks | |
US6430180B1 (en) | Method and apparatus for switching data between bitstreams of a time division multiplexed network | |
JPH0476280B2 (en) | ||
FI95854B (en) | Method and digital cross-connect architecture for cross-linking SDH signals | |
US5696761A (en) | Method and apparatus for interfacing low speed access links to a high speed time multiplexed switch fabric | |
US8018927B2 (en) | Network element with multistage lower order switching matrix | |
US7197031B2 (en) | Cross-connection of high bandwidth signal traffic across independent parallel shelves | |
KR100246627B1 (en) | A multichannel packet switch with traffic flow control and monitoring function | |
EP1642479B1 (en) | Switching network | |
JPH08262508A (en) | Photonic switching matrix | |
US4399534A (en) | Dual rail time and control unit for a duplex T-S-T-digital switching system | |
Wu et al. | A service restoration time study for distributed control SONET digital cross-connect system self-healing networks | |
US4402077A (en) | Dual rail time and control unit for a duplex T-S-T-digital switching system | |
US4399369A (en) | Dual rail time and control unit for a duplex T-S-T-digital switching system | |
JP3614236B2 (en) | Non-instantaneous expansion system for cross-connect equipment | |
FI90706C (en) | Method for error-free switching of a cross-connect matrix | |
US4406005A (en) | Dual rail time control unit for a T-S-T-digital switching system | |
KR20000062655A (en) | Switching system for telecommunications network | |
US7184662B2 (en) | Switching network | |
JP3310495B2 (en) | Instantaneous interruption virtual path switching system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HC | Name/ company changed in application |
Owner name: NOKIA TELECOMMUNICATIONS OY |
|
BB | Publication of examined application |