FI90632C - Process for the preparation of a catalyst for the hydrogenation of aromatics - Google Patents

Process for the preparation of a catalyst for the hydrogenation of aromatics Download PDF

Info

Publication number
FI90632C
FI90632C FI923169A FI923169A FI90632C FI 90632 C FI90632 C FI 90632C FI 923169 A FI923169 A FI 923169A FI 923169 A FI923169 A FI 923169A FI 90632 C FI90632 C FI 90632C
Authority
FI
Finland
Prior art keywords
nickel
catalyst
catalysts
process according
temperature
Prior art date
Application number
FI923169A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI90632B (en
FI923169A0 (en
Inventor
Lars Peter Lindfors
Marina Lindblad
Ulla Lehtovirta
Original Assignee
Neste Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neste Oy filed Critical Neste Oy
Priority to FI923169A priority Critical patent/FI90632C/en
Publication of FI923169A0 publication Critical patent/FI923169A0/en
Priority to EP93914766A priority patent/EP0649344A1/en
Priority to PCT/FI1993/000294 priority patent/WO1994001216A1/en
Publication of FI90632B publication Critical patent/FI90632B/en
Application granted granted Critical
Publication of FI90632C publication Critical patent/FI90632C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

9063290632

Menetelmå aromaattien hydrausta vårten tarkoitetun katalyytin valmistamiseksiA process for the preparation of a catalyst for the hydrogenation of aromatics

Esillå oleva keksinto koskee patenttivaatimuksen 1 johdannon mukaista menetelmåå 5 sellaisen aromaattien hydrausta vårten tarkoitetun heterogeenisen katalyytin valmistusta vårten, joka sisåltåå nikkeliå kiinnitettynå huokoiseen epåorgaaniseen kantajaan, kuten aluminaan.The present invention relates to a process for preparing a heterogeneous catalyst for the hydrogenation of aromatics according to the preamble of claim 1, which contains nickel attached to a porous inorganic support such as aluminum.

Monessa oljynjalostukseen liittyvåsså prosessissa, kuten hydrauksessa, vetykrakkauk-10 sessa ja metanoinnissa kåytetåån katalyyttejå, jotka koostuvat kantoaineesta ja nikke- listå. Myos synteesipuolella kåytetaan nikkelikatalyyttejå. Esimerkiksi sykloheksaania, jota tarvitaan mm. polyamidin valmistukseen, saadaan usein hydraamalla bentseeniå.Many oil refining processes, such as hydrogenation, hydrocracking and methanation, use catalysts consisting of a support and nickel. Nickel catalysts are also used on the synthesis side. For example, cyclohexane, which is needed e.g. polyamide, is often obtained by hydrogenation of benzene.

Perinteiset heterogeeniset hydrauskatalyytit sisåltåvåt katalyyttisesti aktiivisen kom-15 ponentin lisåttynå kantoaineen pinnalle. Tavallisimpia menetelmiå aktiivisten kom ponentten kiinnittåmiseksi kantajan pintaan ovat imeytys, saostus ja ioninvaihto. Låh-toaineet ovat tålloin aktiivisen komponentin yhdisteitå, esimerkiksi suoloja, jotka ovat liukoisia sopivaan liuottimeen, kuten veteen, alkoholiin tai hiilivetyyn. Katalyyttien perinteiset valmistusmenetelmåt ovat pakosta monivaiheisia. Tarvittavia vaiheita ovat 20 mm. liuoksen valmistus katalyyttikomponentista tai sen prekursorista, kantaja-aineen kåsittely liuoksella, reagoimattoman liuoksen poistaminen ja talteenotto, pesu, kuivatus ja kalsinointi sekå enlliset kåsittelyt katalyytin aktivoimiseksi.Conventional heterogeneous hydrogenation catalysts contain a catalytically active component added to the surface of the support. The most common methods for attaching active components to the surface of a carrier are absorption, precipitation, and ion exchange. The starting materials are then compounds of the active component, for example salts which are soluble in a suitable solvent such as water, alcohol or hydrocarbon. Traditional methods of preparing catalysts are necessarily multi-step. The required steps are 20 mm. preparation of a solution from the catalyst component or its precursor, treatment of the support with the solution, removal and recovery of the unreacted solution, washing, drying and calcination, and previous treatments to activate the catalyst.

Tunnettuun tekniikkaan liittyy useita ongeimia, jotka johtuvat mm. valmistusvaiheiden '25 suuresta lukumååråstå ja vaikeuksista valmistaa katalyyttejå kontrolloidusti. Luonnolli- sesti myos liuottimien kåytto on haitaksi mm. johtuen niiden vuorovaikutuksesta kantajan kanssa sekå niiden sisåltåmistå epåpuhtauksista.The prior art involves several problems due to e.g. due to the large number of preparation steps in '25 and the difficulty of producing catalysts in a controlled manner. Naturally, the use of solvents is also a disadvantage, e.g. due to their interaction with the applicant and the impurities they contain.

Enneståån tunnetaan myos muita menetelmiå Ni-pitoisten hydrauskatalyyttien valmis-30 tamiseksi. Uemura et al. [Sekiyo Gakkaishi £2 (1989) 15-20 ja J. Chem. Eng. Jpn 22 (1989), 48-54] ovat valmistaneet kaasufaasista Ni/ΑΙ,Ο,katalyytin kåyttåen låhtoaineena NiCl2:ta, joka on hoyrystetty 1073 K:ssa (= 800 °C) ja jonka on annettu reagoida aluminan kanssa 1013 - 1073 K:ssa (= 740 - 800 °C). Reaktion yhteydesså NiCl2 kon- 2 90632 densoidaan aluminan pinnalle, kloridi poistetaan vedyn avulla ja nikkeli pelkistetåån. Ni-pitoisuus on riippuvainen kaytetysta reaktioajasla.Other methods for preparing Ni-containing hydrogenation catalysts are also known in the art. Uemura et al. [Sekiyo Gakkaishi £ 2 (1989) 15-20 and J. Chem. Eng. Jpn 22 (1989), 48-54] have prepared a Ni / ΑΙ, Ο gas phase catalyst using NiCl2 as a starting material, which has been vaporized at 1073 K (= 800 ° C) and reacted with alumina at 1013 to 1073 K (= 740-800 ° C). During the reaction, NiCl 2 is condensed on the surface of the alumina, the chloride is removed with hydrogen and the nickel is reduced. The Ni content depends on the reaction time used.

Edellå mainitun Uemura et al menetelmån avulla valmistetussa katalyytisså nikkeli on 5 huonosti dispergoitunut kantajan pinnalle muodostaen 500 - 600 nm:n kokoisia kluste- reita. Nåin suurten klusterien muodostus våhentåa huomattavasti kaasufaasin kanssa vuorovaikutuksessa olevan nikkelin aktiivista pinta-alaa suhteessa bulk-pitoisuuteen.In the catalyst prepared by the above-mentioned method of Uemura et al., Nickel is poorly dispersed on the surface of the support, forming clusters of 500 to 600 nm in size. The formation of such large clusters significantly reduces the active surface area of nickel interacting with the gas phase relative to the bulk concentration.

Esillå olevan keksinnon tarkoituksena on poistaa tunnettuun tekniikkaan liittyvåt epå-10 kohdat ja saada aikaan uusi nikkelikatalyytti hydrausreaktioita vårten.The object of the present invention is to eliminate the disadvantages associated with the prior art and to provide a new nickel catalyst for hydrogenation reactions.

Keksinto perustuu siihen ajatukseen, ettå nikkeli lisåtaån kantoaineen pinnalle hoyryfaa-sista riittavån korkean hoyrynpaineen omaavan yhdisteen muodossa. Tållaisena yhdis-teenå kåytetåån organonikkeliyhdistettå. Nikkeliyhdisteen ja kantajan vålisesså reaktios-15 sa noudatetaan sellaisia olosuhteita, joissa nikkeliyhdiste kemisorboituu kantajan pin- tasidospaikkoihin. Kantaja-aine låmmitetåån låmpotilaan, joka on korkeampi kuin kaytetyn nikkeliyhdisteen kondensoitumislåmpotila mutta alhaisempi kuin sanotun yhdisteen hajoamislåmpotila. Suhteessa pinnan sidospaikkoihin hoyrystettyå nikkeliyh-distetta on ylimåårin, jolloin sitoutumiseen vaikuttavat ainoastaan pintasidospaikkojen ja :20: reagenssin kvalitatiiviset ominaisuudet kåytetyisså olosuhteissa. Edellå esitetyllå tavalla kyllåstetaan pinnalla olevat suotuisat sidospaikat nikkelillå.The invention is based on the idea that nickel is added to the surface of the support from the vapor phase in the form of a compound having a sufficiently high vapor pressure. As such a compound, an organonickel compound is used. The reaction between the nickel compound and the support follows conditions in which the nickel compound is chemisorbed at the surface bond sites of the support. The support is heated to a temperature higher than the condensation temperature of the nickel compound used but lower than the decomposition temperature of said compound. There is an excess of nickel compound vaporized relative to the surface binding sites, with binding being affected only by the qualitative properties of the surface binding sites and the reagent under the conditions used. As described above, the favorable bonding sites on the surface are impregnated with nickel.

Tåsmållisemmin sanottuna keksinnolle on påaasiallisesti tunnusomaista se. mika on esitetty patenttivaatimuksen 1 tunnusmerkkiosassa.More precisely, the invention is mainly characterized by it. which is set out in the characterizing part of claim 1.

'25'"25"

Esillå olevan keksinnon mukaisen menetelmån avulla aikaansaadaan hyvå nikkelin ja-kauma pinnalla. On voitu todeta, etta Ni-partikkelit ovat hyvin pieniå jopa peråkkåisten reaktiokierrosten jålkeen. Tållaiseen hyvåån metallidispersioon pååståån kåyttamållå ” yllå kuvattuja kyllåstyviå pintareaktioita, joita on tarkemmin selostettu FI-patenttijul- ‘30 kaisussa 84562 ja FI-patenttihakemuksessa 913438. Kyllåstyvisså pintareaktioissa :: · kiinnitettåvåå metalliyhdistettå tuodaan kantajapinnalle niin korkeassa låmpotilassa, etta vain kemisorptioreaktiot metalliyhdisteen ja kantajan vålillå ovat mahdollisia. Kantajan 3 90632 sidospaikat såådetåån tålloin esim. kuumennuksella halutulle tasolle ennen varsinaista reaktiota. Reagenssin annetaan olla vuorovaikutuksessa kantajan kanssa niin kauan, ettå oleellisesti kaikki sidoksen muodostukseen kykenevåt paikat ovat reagoineet. Tåmån jålkeen reaktioajan pidentåminen tai ylimååråisen reagenssin tuominen pinnalle eivåt 5 enåå kasvata metallipitoisuutta. Tåsså suhteessa menetelmå siis selvåsti eroaa Uemuran tyotovereineen julkaisemasta ratkaisusta, jossa metailipitoisuus on ajan ja reagenssin måårån funktio.The method according to the present invention provides a good nickel distribution on the surface. It has been found that the Ni particles are very small even after successive cycles of reaction. Tållaiseen hyvåån metallidispersioon pååståån kåyttamållå "weari described kyllåstyviå surface reactions, which are further described in GB Patent '30 Application Publication 84 562 and FI Patent Application 913438. Kyllåstyvisså surface reactions :: · kiinnitettåvåå metalliyhdistettå brought to the carrier surface as a high outside temperature is, that only the chemisorption of the metal compound and the support of the electoral law are possible. The binding sites of the carrier 3 90632 are then adjusted, e.g. by heating, to the desired level before the actual reaction. The reagent is allowed to interact with the carrier until substantially all of the sites capable of bond formation have reacted. Thereafter, prolonging the reaction time or applying an excess of reagent to the surface no longer increases the metal content. In this respect, the method thus clearly differs from the solution published by Uemura and colleagues, in which the metal content is a function of time and the amount of reagent.

Hyvå dispersio edellyttåå myos molekyylikooltaan melko suuren nikkeliyhdisteen 10 kåyttoå. Niinpå kåyttåmållå nikkeliyhdistettå, jossa on orgaanisia ligandeja, saadaan metalli jaettua pinnalle tasaisesti, koska reaktiolåmpotila ei salli fysisorptiota ja tåten ko. metalliyhdistemolekyylin kiinnittymistå toisen samanlaisen molekyylin påålle. On voitu todeta, ettå esillå olevalla menetelmållå hoyryfaasista organometallisesta yhdis-teestå kantajalle tuotu nikkeli muodostaa enemmån nukleaatiopisteitå aluminalle kuin 15 tunnetun tekniikan mukaiset menetelmåt. Nukleaatiopisteillå tarkoitetaan toisistaan erillåån olevia nikkeliatomeita, joiden ympårille klustereita alkaa muodostua nikkeli-pitoisuuden kasvaessa. Mitå enemmån nukleaatiopisteitå on, sitå parempi on dispersio ja aktiivisen komponentin pinta-ala. Nikkelipitoisuuden ollessa 10 p-%, esillå olevan menetelmån avulla valmistettujen katalyyttien klustereiden koko on vain puolet tunnet-'20 tujen katalyyttien klusterien koosta.A good dispersion also requires the use of a nickel compound of rather large molecular size. Thus, by using a nickel compound with organic ligands, the metal can be distributed evenly on the surface because the reaction temperature does not allow physical sorption and thus the attachment of a metal compound molecule on top of another similar molecule. It has been found that in the present process, the nickel introduced from the vapor phase organometallic compound onto the support forms more nucleation points on the aluminum than the prior art methods. Nucleation points refer to distinct nickel atoms around which clusters begin to form as the nickel content increases. The more nucleation points, the better the dispersion and the surface area of the active component. With a nickel content of 10% by weight, the size of the catalyst clusters prepared by the present process is only half the size of the known catalyst clusters.

Esillå olevassa hakemuksessa kåytetåån esimerkkiyhdisteenå Ni-asetyyliasetonaattia [seuraavassa myos lyhennettynå Ni(acac)2], Tåmån molekyylin koko on pinnan sidos-paikkojen tiheyteen nåhden suuri. On kuitenkin selvåå, ettå keksinnosså voidaan kåyt-25 tåå muitakin orgaanisia nikkeliyhdisteitå, joissa orgaaniset osat kykenevåt eståmåån • kahden nikkelinatomin joutumisen niin låhekkåin, ettå ne muodostavat suurikokoisia klustereita pintaan sitoutuessaan. Esimerkkinå mainittakoon nikkeloseeni (disyklopenta-dienyyli-nikkeli(II).In the present application, Ni-acetylacetonate [hereinafter also abbreviated as Ni (acac) 2] is used as an exemplary compound. The size of this molecule is large with respect to the density of surface binding sites. However, it is clear that other organic nickel compounds can be used in the invention, in which the organic parts are able to prevent the two nickel atoms from becoming so close together that they form large clusters when bound to the surface. An example is nickelocene (dicyclopentadienyl nickel (II)).

30 Kantajat, joille nikkeliyhdistettå keksinnon mukaan lisåtåån, ovat epåorgaanisia huokoi- sia kantajia, edulllisesti alumiini- tai piioksideja tai nåiden seoksia. Voidaan myos kåyttåå magnesium- ja titaanioksideja tai nåiden seoksia tai kogeeleja, jotka on muo- 4 90632 dostettu edellå mainittujen epåorgaanisten kantajien kanssa.The carriers to which the nickel compound is added according to the invention are inorganic porous carriers, preferably aluminum or silicon oxides or mixtures thereof. Magnesium and titanium oxides or mixtures thereof or cogels formed with the aforementioned inorganic carriers can also be used.

Valmistusolosuhteet valitaan sellaisiksi, ettei Ni-yhdiste kondensoidu pintaan, vaan muodostaa joko kemiallisen sidoksen alumiinioksidin kanssa tai hoyrystyy pois pinnasta S ja hakeutuu seuraaviin vapaina oleviin pinnan sidospaikkoihin. Ni(acac)2:n kohdalla toimitaan edullisesti 190...220 °C:n, esim. ~ 200 °C:n låmpotilassa. Nikkeloseeniå kåytetåån edullisesti noin 121 ... 250 °C:n låmpotilassa. Reagenssia tuodaan kosketuk-siin kantajan kanssa ylimåårin sidospaikkoihin nåhden. Reagoimatta jåånyt Ni-reagenssi huuhdellaan pois reaktiotilasta inertin kantokaasun avulla kåytetyssa reaktiolåmpoti- 10 Iassa. Kantajaan kiinnittyneestå reagenssista jåå osa ligandista vielå kiinni nikkeliin. Li- gandin poisto voidaan tehdå esim. vesihoyryllå tai kuivalla tai kostealla ilmalla reak-tiolåmpotilaa korkeammassa låmpotilassa. Edullisesti ligandit poistetaan noin 200...600 °C:n, erityisen edullisesti noin 300...500 °C:n låmpotilassa.The manufacturing conditions are chosen so that the Ni compound does not condense on the surface, but either forms a chemical bond with the alumina or vaporizes away from the surface S and retrieves the following free surface bonding sites. In the case of Ni (acac) 2, it is preferably carried out at a temperature of 190 to 220 ° C, e.g. .200 ° C. Nickelocene is preferably used at a temperature of about 121-250 ° C. The reagent is brought into contact with the carrier relative to the additional binding sites. The unreacted Ni reagent is flushed out of the reaction space with an inert carrier gas at the reaction temperature used. Some of the ligand remains attached to the nickel from the reagent attached to the support. The removal of the ligand can be carried out, for example, with steam or with dry or moist air at a temperature higher than the reaction temperature. Preferably, the ligands are removed at a temperature of about 200 to 600 ° C, particularly preferably about 300 to 500 ° C.

15 Ni-pitoisuutta katalyytisså voidaan nostaa portaittain lisåamållå Ni-reagenssi + ilma reaktiokierroksia. Oheisessa kuviossa on esitetty, miten nikkelipitoisuus kasvaa Ni(acac)2:n kohdalla noin arvosta 4 paino-% yhden syklin jålkeen yli 20 paino-%:in 10 syklin jålkeen. Reaktiokierrosten lisååminen saadaan aikaan helposti tuomalla vuorotel-len reaktiotilaan Ni-yhdistettå, typpeå ja ilmaa.The Ni content in the catalyst can be increased stepwise by adding Ni reagent + air reaction cycles. The figure below shows how the nickel content for Ni (acac) 2 increases from about 4% by weight after one cycle to more than 20% by weight after 10 cycles. The addition of reaction cycles is easily accomplished by alternately introducing Ni compound, nitrogen and air into the reaction space.

'20:'20:

Ligandien poistamisen jålkeen katalyytti aktivoidaan tunnetun tekniikan mukaisesti pelkiståmållå aluminan pinnassa oleva nikkeli vetykaasun avulla korotetussa låmpoti-*’ Iassa, edullisesti noin 300...600 °C:n låmpotilassa.After removal of the ligands, the catalyst is activated according to the prior art by reducing the nickel on the surface of the alumina with hydrogen gas at an elevated temperature, preferably at a temperature of about 300 to 600 ° C.

25 Kaikki reaktiovaiheet voidaan tehdå reaktioastian kaasuventtiilejå avaamalla ja sulke- . . malla, jolloin itse kantaja voidaan koko ajan pitåa samassa reaktiotilassa. Tåmå tekee valmistuksen yksinkertaiseksi, koska mitaan liuottimia ei tarvita eika kantajaa tarvitse siirtåå reaktiotilasta kalsinointiuuniin tms.All reaction steps can be performed by opening and closing the gas valves in the reaction vessel. . the carrier itself can be kept in the same reaction space at all times. This simplifies the preparation because no solvents are needed and the support does not have to be transferred from the reaction space to the calcination furnace or the like.

30 Keksinnon edullisen sovellutusmuodon mukaan tuotetaan aromaatteja sisåltavån rikitto- mån hiilivetysyoton hydrausreaktioon sopiva nikkeli/alumina-katalyytti, jossa nikkelin pitoisuus on noin 4 - 20 paino-%. Olemme todenneet, etta vaikka tietyillå nikkelipi- 5 90632 toisuusvåleillå nikkelipitoisuuden kaksinkertaistaminen jopa nelinkertaistaa katalyytin aktiivisuuden (nåin on kasvatettaessa nikkelipitoisuutta 5 paino-%:sta 10 paino-%:in), mi stå syystå keksinnon erityisen edulliseksi nikkelipitoisuusvåliksi katsotaan 8-12 paino-%. Tållaisen katalyytin aikaansaamiseen riittåå neljå - viisi reaktiosykliå.According to a preferred embodiment of the invention, a nickel / alumina catalyst suitable for the hydrogenation reaction of an aromatized sulfur-free hydrocarbon feed having a nickel content of about 4 to 20% by weight is produced. We have found that although at certain nickel content intervals, doubling the nickel content even quadruples the activity of the catalyst (this is the case when increasing the nickel content from 5% to 10% by weight), which is why 8-12% by weight of the invention is considered to be particularly preferred. . Four to five reaction cycles are sufficient to provide such a catalyst.

55

Tyypillisenå esimerkkinå keksinnon mukaan aikaansaatavan katalyytin kåyttokohteesta mainittakoon bentseenin ja tolueenin hydrausreaktiot.As a typical example of the use of the catalyst to be obtained according to the invention, mention may be made of the hydrogenation reactions of benzene and toluene.

Keksinnon avulla saavutetaan huomattavia etuja. Keksinnon mukainen katalyytti sovel-10 tuu erityisen hyvin aromaattien hydraukseen seka neste- ettå kaasufaasi- olosuhteissa rikittomåsså syotosså. Rikki on tunnettu Ni-katalyyttien katalyyttimyrkky, joka on syytå poistaa ennen hydrausta. Uusien katalyyttien aktiivisuus tolueenin konversiossa metyy-lisykloheksaaniksi on ollut ylivoimainen verrattuna seka vertailukokeita vårten imp-regnoimalla valmistettuihin katalyytteihin etta kolmeen kaupalliseen katalyyttiin. Kokei-15 ta on suoritettu seka differentiaali- etta integraaliolosuhteissa, neste- ja kaasufaasissa.The invention provides considerable advantages. The catalyst according to the invention is particularly well suited for the hydrogenation of aromatics under both liquid and gas phase conditions in a sulfur-free feed. Sulfur is a known catalyst poison for Ni catalysts that should be removed before hydrogenation. The activity of the new catalysts in the conversion of toluene to methylcyclohexane has been superior to both the catalysts prepared by impregnation of the comparative experiments and the three commercial catalysts. Experiments have been performed under both differential and integral conditions, in the liquid and gas phases.

Keksinnon mukaisesti hoyryfaasista valmistettujen katalyyttien aktiivisuus ja stabiilisuus ovat olleet kaikissa kokeissa våhintaån samalla ja monessa tapauksessa selvåsti kor-keammalla tasolla kuin tunnetun tekniikan mukaisten ja kaupallisten Ni/Al203-katalyyt-tien vastaavat ominaisuudet. Kineettisessa vertailussa kaupallisen katalyytin kanssa ;20 todettiin, etta tolueenin hydrauksessa hoyryfaasista valmistetun keksinnon mukaisen katalyytin pinnalla vuorovaikutus nikkelin ja reaktanttien vålillå (tolueeni ja vety) on suotuisampi kuin kaupallisella katalyytillå, jolla esim. tolueeni sitoutuu hyvin voimak-. \ kaasti aktiivisten osaslajien pintaan. Nåin olien omalla hoyryfaasista valmistetulla katalyytillå saavutetaan parempia reaktionopeuksia ja korkeampia konversioita.The activity and stability of the catalysts prepared from the vapor phase according to the invention have been at least at the same level and in many cases at a clearly higher level in all experiments than the corresponding properties of the prior art and commercial Ni / Al 2 O 3 catalysts. In a kinetic comparison with a commercial catalyst, it was found that in the hydrogenation of toluene on the surface of the catalyst according to the invention prepared from the vapor phase, the interaction between nickel and reactants (toluene and hydrogen) is more favorable than with a commercial catalyst with strong toluene binding. \ Paste the surface of the active species. Thus, with its own catalyst prepared from the vapor phase, better reaction rates and higher conversions are achieved.

25 . . Eri analyysimenetelmien avulla (mm. XRF, XRD, ESCA, SEM/EDS ja LEIS) todettiin myos nikkelimåårån olevan kåyttokelpoisella tasolla sekå nikkelin dispergoituneen våhintaån yhtå hyvin ja monessa tapauksessa paremmin kuin kaupallisilla ja impregnoi-malla valmistetuilla katalyyteillå.25. . Using various analytical methods (including XRF, XRD, ESCA, SEM / EDS and LEIS), the amount of nickel was also found to be at a usable level and the dispersed minimum of nickel was as good and in many cases better than that of commercial and impregnated catalysts.

Keksinnon mukaisilla katalyyteillå on myos korkeampi aktiivisuus kuin enneståån tunnetuilla kaasufaasista valmistetuilla katalyyteilla, mikå ilmeisesti johtuu hyvåstå 30 6 9(1632 dispergoitumisesta.The catalysts according to the invention also have a higher activity than the previously known gas phase catalysts, which is apparently due to the good dispersion.

Katalyyttien valmistus on tunnettuja menetelmiå yksinkertaisempi siten, ettå reaktiovai-heita on våhemmån kuin tunnetuissa menetelmisså ja eri valmistusvaiheet tehdåån ilman 5 liuottimia peråkkåin samassa reaktiotilassa. Katalyytin aktiivisten osaslajien pitoisuus on kantajan pinnan ja kåytettyjen reaktioyhdisteiden steeristen ominaisuuksien, eikå kåytettåvån annostuksen, sååtelemå. Keksinnon avulla voidaan myos entistå paremmin sååtåå valmistettavan katalyytin nikkelipitoisuutta halutulle tasolle esikåsittelyiden ja reaktiosyklien toistamisen avulla.The preparation of the catalysts is simpler than the known methods in that the reaction steps are fewer than in the known methods and the various preparation steps are carried out without solvents in succession in the same reaction space. The concentration of active species in the catalyst is regulated by the surface of the support and the steric properties of the reaction compounds used, not the dosage used. The invention also makes it possible to better control the nickel content of the catalyst to be prepared to the desired level by means of pretreatments and repetition of reaction cycles.

1010

Keksintoå ryhdytåån seuraavassa låhemmin tarkastelemaan muutaman sovellutus-esi-merkin avulla.The invention will now be examined in more detail with the aid of a few application examples.

Oheisen piirustuksen kuviossa on esitetty valmistettavan katalyytin Ni-pitoisuus paino-15 %:na Ni(acac)2-syklien lukumåårån funktiona. Kuviota selostettiin låhemmin yllå.The figure in the accompanying drawing shows the Ni content of the catalyst to be prepared as 15% by weight as a function of the number of Ni (acac) 2 cycles. The pattern was described in more detail above.

Esimerkki 1Example 1

Keksinnon mukaisten katalyyttien valmistus 2Q·. Katalyytin kantaja-aineena kåytettiin alumiinioksidia, jota toimittaa AKZO tuotenimellå . Alumina 000-1,5. Tuote murskattiin ja seulottiin raekokoon 0,15...0,3 mm. Kantajaa kåytettiin 5...10 g yhtå katalyyttiå kohden. Al203:n pinta-ala oli 800 °C:n esikåsittelyn jålkeen 152 m2/g. Pinta-ala mååritettiin typellå BET-monipistemenetelmållå.Preparation of catalysts according to the invention. Aluminum oxide supplied by AKZO under the brand name was used as the catalyst support. Alumina 000-1.5. The product was crushed and screened to a grain size of 0.15 ... 0.3 mm. 5 to 10 g of support were used per catalyst. The surface area of Al 2 O 3 after pretreatment at 800 ° C was 152 m 2 / g. The area was determined by the nitrogen BET multipoint method.

:25: Reagenssina toimi Ni(acac)2, joka on kaupallisesti saatava aine. Sen hoyrystymislåm- potila oli 190...210 °C.: 25: The reagent was Ni (acac) 2, a commercially available substance. Its evaporation temperature was 190-210 ° C.

Reagenssia tuotiin kaasufaasissa kantajalle ylimåårin suhteessa kantajan pinnan hydrok-syyliryhmiin (pintasidospaikkoihin). Hydroksyyliryhmien mååråå aluminassa ovat :3f0: teoreettisesti selvittåneet mm. Knozinger, H., Ratnasamy, P., Catal. Rev. Sci. Eng. 17 (1978) 31. Tekemiemme kokeiden perusteella aluminan pinnan tåydelliseen saturaati-oon, eli noin 4 paino-%:n nikkelipitoisuuteen, tarvitaan 1,5 mmoolia reagenssia 7 90632The reagent was introduced into the support in the gas phase in excess relative to the hydroxyl groups (surface bonding sites) on the surface of the support. The number of hydroxyl groups in alumina are: 3f0: theoretically determined e.g. Knozinger, H., Ratnasamy, P., Catal. Rev. Sci. Eng. 17 (1978) 31. Based on the experiments we performed, 1.5 mmol of reagent 7 90632 is required for the complete saturation of the aluminum surface, i.e. a nickel content of about 4% by weight.

Ni(acac)2. Katalyytit vaJmistettiin jåijeståmållå kantaja staattiseen patsaaseen, jonka låpi reagenssihoyryt johdettiin ylhååltå alaspåin. Kåyttåmållå 2-...3-kertaista ylimååråå (noin 3...4,5 mmoolia) varmistettiin, ettå nikkelipitoisuus oli yhtå suuri patsaan ylå-pååsså kuin sen alapååsså, mikå osoittaa kantajan pinnan saturoituneen.Ni (acac) 2. The catalysts were prepared by arranging the support in a static column through which the reagent vapors were passed from top to bottom. Using a 2 to 3-fold excess (about 3 to 4.5 mmol) ensured that the nickel content was as high at the top of the statue as at the bottom, indicating that the surface of the support was saturated.

55

Taulukossa 1 esitetyt katalyytit on valmistettu alipaineessa, 5...30 mbar, ja kantaja-kaasuna on toiminut typpi. Valmistuksessa kåytetyn laitteen periaatteellinen rakenne on kuvattu FI-patenttijulkaisussa 84562. Katalyytin valmistuksessa oli viisi vaihetta. En-simmåisesså vaiheessa kantaja-aine låmpokåsiteltiin uunissa ilma-atmosfaårisså (vaihe 10 A). Tålloin saatiin pois fysisorboitunut vesi ja osa pinnan OH-ryhmistå. Sen jålkeen kantajasta poistettiin mahdollinen kantajan såilytyksen aikana fysisorboitunut vesi reak-tiotilassa alipaineessa typpiatmosfåårisså (vaihe B). Seuraavassa vaiheessa Al203-kanta-jaa kasiteltiin Ni(acac)2:lla, jolloin nikkeli kemisorboitui alumiinioksidin pinnalle (vaihe C).The catalysts shown in Table 1 have been prepared under reduced pressure, 5 to 30 mbar, and the carrier gas has been nitrogen. The basic structure of the device used in the preparation is described in FI patent publication 84562. There were five steps in the preparation of the catalyst. In the first step, the carrier was heat treated in an oven in an air atmosphere (step 10 A). Physically sorbed water and part of the surface OH groups were then removed. Thereafter, any water physically sorbed during storage of the support in the reaction space under reduced pressure under a nitrogen atmosphere was removed from the support (step B). In the next step, the Al 2 O 3 support was treated with Ni (acac) 2, whereby nickel was chemisorbed on the alumina surface (step C).

15 Jålkikasittelynå oli ilmahuuhtelu, jolla poistettiin Ni:sså vielå kiinni olleet acac-ligandit (vaihe D). Ilmahuuhtelussa kåytettiin kosteaa ilmaa. Loppukåsittelynå katalyyttia huuh-deltiin typellå (vaihe E).The post-treatment was followed by air purging to remove any acac ligands still attached to Ni (step D). Moist air was used for air rinsing. After work-up, the catalyst was purged with nitrogen (step E).

20. Taulukossa 1 on esimerkin omaisesti esitetty kuusi Ni/Al203-katalyyttiå, edellå mai- nittujen valmistusvaiheiden låmpotilat ja ajat, sekå lukumåårå, kuinka monta kertaa edelliset vaiheet on katalyytin valmistuksessa toistettu. Taulukon viimeisessa sarakkees-sa on valmiin katalyytin nikkelipitoisuus ilmoitettuna painoprosentteina. Nikkelipitoisuus on mååritetty rontgenfluoresenssilla ja hiilipitoisuus polttamalla (hiilidioksidin -25 mååritys). Kaikkien taulukossa 1 esitettyjen katalyyttien hiilipitoisuudet olivat alle mååritysrajan eli < 0,1 p-%.20. Table 1 shows, by way of example, six Ni / Al 2 O 3 catalysts, the temperatures and times of the aforementioned preparation steps, and the number of times the previous steps have been repeated in the preparation of the catalyst. The last column of the table shows the nickel content of the finished catalyst, expressed as a percentage by weight. The nickel content is determined by X-ray fluorescence and the carbon content by combustion (-25 carbon dioxide determination). The carbon contents of all the catalysts shown in Table 1 were below the limit of quantification, i.e. <0.1 wt%.

g 90632g 90632

Taulukko 1. Keksinnon mukaisten katalyyttien valmistus.Table 1. Preparation of catalysts according to the invention.

Kata- vaihe vaihe vaihe vaihe vaihe lyytti A B C D E N Ni __(°C/h) (°C/h) (°C/h) (°C/h) (°C/h) (kpl) (p-%) 1. 800/6 190/3 190/2 200/2 400/1 4 10,1 ____+200/2 +400/3____ 5 2. 800/16 450/3 200/4 200/1 400/1 4 9,4 _____+400/3____ 3. 800/16 450/3 190/2 200/2 400/1 4 10,8 ____+200/2 +400/3____ 4. 800/16 190/3 190/1 200/2 400/1 10 20,7 ____+200/3 +400/3____ 5 . 800/16 190/3 190/1 200/2 400/1 6 14,1 ____+200/3 +400/3____ 6. 800/16 450/3 190/2 200/2 400/1 2 5,9 +200/2 +400/3 10Kata- phase phase phase phase phase lyt ABCDEN Ni __ (° C / h) (° C / h) (° C / h) (° C / h) (° C / h) (pcs) (wt%) 1 800/6 190/3 190/2 200/2 400/1 4 10,1 ____ + 200/2 +400/3 ____ 5 2. 800/16 450/3 200/4 200/1 400/1 4 9 4 _____ + 400/3 ____ 3. 800/16 450/3 190/2 200/2 400/1 4 10.8 ____ + 200/2 +400/3 ____ 4. 800/16 190/3 190/1 200/2 400/1 10 20.7 ____ + 200/3 +400/3 ____ 5. 800/16 190/3 190/1 200/2 400/1 6 14.1 ____ + 200/3 +400/3 ____ 6. 800/16 450/3 190/2 200/2 400/1 2 5.9 + 200/2 +400/3 10

Alla esitettåviå aktiivisuuskokeita vårten valmistettiin useita katalyyttejå kiinnittåmållå 15 nikkeli edellå esitetyllå tavalla alumiinioksidin pintaan. Valmiiden katalyyttien Ni-pitoi- suudet olivat 2 ja 21 paino-% vålillå. Katalyytti 7 valmistettiin kuten katalyytti 2 sillå .: erolla, ettå syklien lukumåårå oli 2 ja ligandit poistettiin vesihoyrykåsittelyllå. Katalyy- tin 7 nikkelipitoisuus oli 4,6 paino-%.For the activity experiments presented below, several catalysts were prepared by attaching 15 nickel to the alumina surface as described above. The Ni contents of the finished catalysts were between 2 and 21% by weight. Catalyst 7 was prepared as Catalyst 2 with the difference that the number of cycles was 2 and the ligands were removed by steam treatment. The nickel content of the catalyst 7 was 4.6% by weight.

20-:20:

Esimerkki 2a (vertailu)Example 2a (comparison)

Katalyyttien valmistus imeytysmenetelmållåPreparation of catalysts by impregnation process

Valmistettiin vertailukatalyyttejå tavanomaisella imeytysmenetelmållå seuraavasti: 25 Ensin liuotettiin nikkelinitraattia veteen nikkelinitraatti/vesiliuoksen muodostamiseksi.Reference catalysts were prepared by a conventional impregnation method as follows: First, nickel nitrate was dissolved in water to form a nickel nitrate / aqueous solution.

Suoritettiin kuivaimpregnointi siten, ettå liuos imeytyi kantajan huokosiin kokonaisuu-dessaan. Nikkelinitraattia kåytettiin n. 0,12g Ni / kantoaine g. Kantajaa ravisteltiin : imeytyksen aikana. Tåmån jålkeen katalyytit kuivattiin 120 °C:ssa 12 tuntiaja låmpd- 9 90632 kåsiteltiin 300 °C:ssa hapettavassa atmosfåårisså. Valmistussyklien måårån ollessa 1-3 Ni-pitoisuus oli 5,4, 11,3 ja 17,7 p-%.Dry impregnation was performed so that the solution was completely absorbed into the pores of the carrier. Nickel nitrate was used at about 0.12 g Ni / g carrier. The carrier was shaken: during absorption. The catalysts were then dried at 120 ° C for 12 hours and heated to 300 ° C in an oxidizing atmosphere. With a number of manufacturing cycles of 1 to 3, the Ni content was 5.4, 11.3 and 17.7% by weight.

Esimerkki 2b (vertailu) 5Example 2b (comparison) 5

Valmistettiin vertailukatalyyttejå imeytysmenetelmållå. Ensin liuotettiin Ni(acac)2 tetrahydrofuraniin (THF) liuoksen muodostamiseksi (4,2g Ni(acac)2 per 10ml THF). Suoritettiin kuivaimpregnointi siten, ettå liuos imeytyi kantajan huokosiin kokonaisuu-dessaan. Liuosta kåytettiin 0,5ml / kantoaine g. Imeytyksen aikana kantajaa ravisteltiin. 10 Tåmån jålkeen katalyytti kuivattiin 12 tuntia 120°C:een låmmosså, jonka jålkeen acac ligandit poistettiin kåsittelemållå katalyytit 300°C:ssa 4 tuntia hapettavassa atmosfååris-så. Valmistussyklien mååråstå riippuen (imeytys, kuivaus ja uunitus) valmistettiin eri Ni-pitoisuuksia omaavia katalyyttejå.Reference catalysts were prepared by the impregnation method. First, Ni (acac) 2 was dissolved in tetrahydrofuran (THF) to form a solution (4.2 g Ni (acac) 2 per 10 ml THF). Dry impregnation was performed so that the solution was completely absorbed into the pores of the carrier. The solution was used 0.5 ml / vehicle g. During absorption, the carrier was shaken. The catalyst was then dried for 12 hours at 120 ° C at a temperature, after which the acac ligands were removed by treating the catalysts at 300 ° C for 4 hours in an oxidizing atmosphere. Depending on the number of production cycles (impregnation, drying and oven), catalysts with different Ni contents were prepared.

15 Esimerkiksi syklien måårån ollessa 1-3, nikkelipitoisuus katalyyteisså oli 3,8, 7,5 ja 10,9 p-%. Hiilimåårå (mahdolliset ligandijåånnokset) oli kaikissa katalyyteisså alle mååritysrajan ja nikkeli oli erittåin hyvin dispergoitunut kaikissa katalyyteisså, koska Ni-yhdisteiden suhteen katalyytit olivat XRD-amorfisia (Ni-yhdisteiden partikkelikoko alle 20 Å). Yllå mainitut analyysitulokset osoittavat, etta impregnointi oli onnistunut 2ft . erittåin hyvin. Nåin olien oli valmistettu katalyyttejå samasta Ni-yhdisteestå (NKacac^) samaa aluminaa kåyttåen kuivaimpregnoinnilla ja keksintoå koskevalla menetelmållå hoyryfaasista.For example, with the number of cycles 1-3, the nickel content of the catalysts was 3.8, 7.5 and 10.9 wt%. The amount of carbon (possible ligand residues) was below the limit of quantification in all catalysts and nickel was very well dispersed in all catalysts because the catalysts were XRD-amorphous for Ni compounds (particle size of Ni compounds less than 20 Å). The analysis results mentioned above show that the impregnation was successful 2ft. very well. Thus, the catalysts had been prepared from the same Ni compound (NKacac®) using the same aluminum by dry impregnation and the vapor phase by the process of the invention.

Suoritettiin katalyyttien aktiivisuuksien vertailu tolueenin hydrauksessa kaasufaasissa 25 : 175°C:ssa moolisuhteella H2 / tolueeni - 3,1 sekå WHSV:lIå ~ 90. Verrattiin kata- lyyttiå ff 1 (katso taulukko 1) joka on valmistettu tuomalla Ni(acac)2 aluminalle hoyryfaasista keksinnon mukaisella menetelmållå ja jonka Ni-pitoisuus on 10,1 p-% katalyyt-tiin joka oli valmistettu impregnoimalla yllå mainitulla tavalla Ni(acac)2 li uokses ta samalle aluminalle jota kåytettiin katalyytti ff 1 valmistuksessa. Tåmån impregnoimalla :30: valmistetun katalyytin (IMP / acac) Ni-pitoisuus oli 10,9 paino-%.Comparison of the activities of the catalysts in the hydrogenation of toluene in the gas phase at 25: 175 ° C with a molar ratio of H 2 / toluene to 3.1 and WHSV 9090 was compared. The catalyst ff 1 (see Table 1) prepared by introducing Ni (acac) 2 into aluminum from the vapor phase by the process of the invention and having a Ni content of 10.1% by weight to a catalyst prepared by impregnating, as mentioned above, a solution of Ni (acac) 2 in the same alumina used in the preparation of catalyst ff 1. The Ni content of the catalyst (IMP / acac) prepared by impregnation: 30 was 10.9% by weight.

" Aktiivisuusvertailun tulokset olivat seuraavat: 10 90632"The results of the activity comparison were as follows: 10 90632

Katalyytti: Saanto (g tuotetta (Metyylisykloheksaanij/gN/h # 1 235 IMP / acac 140 5 Nåin olien voidaan todeta, ettå keksinnon mukaisella tavalla valmistetun katalyytin paremmuus johtuu nimenomaan valmistusmenetelmåstå.Catalyst: Yield (g of product (Methylcyclohexane / gN / h # 1 235 IMP / acac 140 5) It can thus be seen that the superiority of the catalyst prepared according to the invention is due precisely to the preparation process.

Esimerkki 3)Example 3)

Katalyyttien aktiivisuuksien vertailu kaasufaasissa 10Comparison of catalyst activities in the gas phase

Aktiivisuusvertailua vårten kaytettiin esimerkeissa 1 ja 2 valmistettuja katalyyttejå. Vertailuissa testattiin myos kolme kaupallista katalyyttiå. Katalyytit vertailtiin sekå kaasufaasissa (atmosfååripaineessa ja 115...230 °C:n låmpotiloissa) ettå nestefaasissa (10 barin paineessa ja 120...220 °C:n låmpotiloissa) tolueenin hydrauksessa minireak-15 torissa. Reaktioita seurattiin kaasukromatografin avulla.For the activity comparison, the catalysts prepared in Examples 1 and 2 were used. Three commercial catalysts were also tested in the comparisons. The catalysts were compared both in the gas phase (atmospheric pressure and 115-230 ° C) and in the liquid phase (10 bar and 120-220 ° C) for the hydrogenation of toluene in a minireactor. The reactions were monitored by gas chromatography.

Katalyytit aktivoitiin reaktorin låpi virtaavan vedyn avulla samalla kun reaktorin låm-potila nostettiin optimaaliselle tasolle. Kaupallisten katalyyttien aktivointi suoritettiin valmistajien ohjeiden mukaisesti. Impregnoimalla tehdyt katalyytit sekå hoyryfaasista 20. valmistetut katalyytit aktivoitiin niille optimaalisissa olosuhteissa. Kun katalyytit olivat aktivoituneet, syotettiin tolueeni reaktoriin ja testireaktio alkoi.The catalysts were activated by hydrogen flowing through the reactor while raising the reactor temperature to the optimum level. Activation of commercial catalysts was performed according to the manufacturer's instructions. The impregnated catalysts as well as the catalysts prepared from the vapor phase 20. were activated under optimal conditions. After the catalysts were activated, toluene was charged to the reactor and the test reaction began.

Ensimmåisesså kokeessa verratiin kahden hoyryfaasista valmistetun katalyytin (1 ja 4) . . konversio kaupalliseen samalla suuruusluokalla nikkeliå omaavaan katalyyttiin. Vertailu 25- tehtiin kaasufaasissa, 175 °C:n låmpotilassa, moolisuhteella H2/tolueeni ~ 3,1 sekå WHSV:llå ~ 90.The first experiment compared two catalysts prepared from the vapor phase (1 and 4). . conversion to a commercial catalyst of the same order of magnitude as nickel. Comparison 25- was performed in the gas phase, at 175 ° C, with a molar ratio of H 2 / toluene of 33.1 and WHSV of 9090.

Taulukossa 2 konversiolla tarkoitetaan painoprosenteissa syotetystå tolueenista se måårå, joka reaktiossa muuttuu tuotteiksi. Jokaisessa testiajoissa kaytettiin 0,2 g kata-30 lyyttiå. Kolmannessa sarakkeessa on mååritelty halutun tuotteen, metyylisykloheksaanin (MECH), saanto. Sarakkeen luvut vastaavat tunnissa saatua MECH:a grammamåårånå nikkeliå kohti. Kaikissa testiajoissa selektiivisyys haluttuun tuotteeseen oli > 99 %.In Table 2, conversion refers to the amount by weight of toluene fed which is converted to products in the reaction. 0.2 g of kata-30 lys was used in each test run. The third column defines the yield of the desired product, methylcyclohexane (MECH). The figures in the column correspond to the MECH obtained per hour per gram of nickel. In all test times, the selectivity for the desired product was> 99%.

li 90632li 90632

Taulukko 2. Katalyyttien kaasufaasista måaritellyt aktiivisuudetTable 2. Catalyst activities determined from the gas phase

Katalyytti Konversio (paino-%) g MECH / gNi / h_ 5 _J__28^0__249,5_ _4__30^5__132^6_Catalyst Conversion (% by weight) g MECH / gNi / h_ 5 _J__28 ^ 0__249.5_ _4__30 ^ 5__132 ^ 6_

Kaupallinen 19,6 105,6 10 Esimerkki 4Commercial 19.6 105.6 10 Example 4

Katalyyttien aktiivisuuksien vertailu kaasufaasissaComparison of catalyst activities in the gas phase

Toisessa kokeessa (katso taulukko 3) verrattiin yksi uudella hoyryfaasimenetelmållå valmistettu katalyytti (7) kaupalliseen ja esimerkin 2a mukaisesti impregnoimalla val-15 mistettuun katalyyttiin (IMP), joka sisalsi 11,3 p-% Ni. Kaikki kolme katalyyttiå vertailtiin kaasufaasiolosuhteissa atmosfaaripaineessa ja låmpotiloissa 120...210 °C.In another experiment (see Table 3), one catalyst (7) prepared by the new vapor phase method was compared to a commercial catalyst (IMP) prepared by impregnation according to Example 2a, which contained 11.3 wt% Ni. All three catalysts were compared under gas phase conditions at atmospheric pressure and temperatures of 120-210 ° C.

Kaupallista katalyyttiå kåytettiin 0,03 g, A- ja IMP-katalyyttejå 0,30 grammaa. Moo-lisuhde syotetyn vetykaasun ja tolueenin vålillå oli ~ 7. Taulukossa 3 vertaillaan konversiotasoa seka saantoa mååriteltynå samalla tavalla kuin edellisessa esimerkissa.0.03 g of commercial catalyst and 0.30 g of A and IMP catalysts were used. The molar ratio between the introduced hydrogen gas and toluene was 7.7. Table 3 compares the conversion level and the yield determined in the same manner as in the previous example.

20 12 9 Π 6 3 220 12 9 Π 6 3 2

Taulukko 3. Katalyyttien kaasufaasista måaritetyt aktiivisuudetTable 3. Catalyst activities determined from the gas phase

Katalyytti Lampotila (°C) Konversio (paino-%) g MECH / gNi / h _7__140__107__747_ 5 _7__172__337__2447_ _7__206__207__14M_ IMP__140__47__127_ IMP__172__187__547_ IMP__206__127__367_ 10 Kaupallinen #2 140 4 7 667Catalyst Lamp state (° C) Conversion (% by weight) g MECH / gNi / h _7__140__107__747_ 5 _7__172__337__2447_ _7__206__207__14M_ IMP__140__47__127_ IMP__172__187__547_ IMP__206__127__

Kaupallinen #2 172 14,9 244,0Commercial # 2 172 14.9 244.0

Kaupallinen tt2 206 9,1 148,4 15 Esimerkki 5Commercial tt2 206 9.1 148.4 15 Example 5

Katalyyttien aktiivisuuksien vertailu nestefaasissaComparison of catalyst activities in the liquid phase

Kaupallinen katalyytti (0,008 g) vertailtiin katalyyttiin A (0,038 g) nestefaasiolosuh-teissa (paine = 10 bar, lampotila 120..730 °C, nH2/nT - 7). Taulukossa 4 on esitetty 20. vertailun tulokset ilmenevåt (mååritelmåt samat kuten edellisissa taulukoissa).The commercial catalyst (0.008 g) was compared to catalyst A (0.038 g) under liquid phase conditions (pressure = 10 bar, temperature 120-730 ° C, nH 2 / nT-7). Table 4 shows the results of the 20th comparison (definitions are the same as in the previous tables).

Taulukko 4. Katalyyttien nestefaasista måaritetyt aktiivisuudet 251 Katalyytti Lampotila (°C) Konversio (paino-%) g MECH / gNi / h 7__153__37__221,4_ _7__^83__107__601,8_ _7__2311__£7__2440_Table 4. Liquid phase activities of catalysts 251 Catalyst Temperature (° C) Conversion (% by weight) g MECH / gNi / h 7__153__37__221.4_ _7 __ ^ 83__107__601.8_ _7__2311__ £ 7__2440_

Kaupallinen #1 153 2,2 164,0_ 39· Kaupallinen £1 183 8,4 631,7_Commercial # 1,153 2.2 164.0_ 39 · Commercial £ 1,183 8.4 631.7_

Kaupallinen #1 231 34,3 2565 13 90632Commercial # 1,231 34.3 2565 13 90632

Esimerkki 6Example 6

Katalyyteilla saavutettavien reaktionopeuksien vertailu kaasufaasissaComparison of reaction rates achieved with catalysts in the gas phase

Neljånnessa esimerkissa verrataan kaupallisella (Kaupallinen #3) ja omalla hoyryfaasis-5 ta valmistetulla katalyytillå (2) saavutetut reaktionopeudet differentiaaliolosuhteissa kaasufaasissa, eri låmpotiloissa. Taulukosta 5 ilmenee reaktionopeudet eri lampotiloissa muodostettuna måaranå metyylisykloheksaania (MECH) per tunti ja gramma katalyyt-ti/nikkeli. Osapainesuhde pH?/p1rh,rTTli oli - 2,2.The fourth example compares the reaction rates achieved with a commercial (Commercial # 3) and a proprietary catalyst (2) prepared by vapor phase-5 under differential conditions in the gas phase, at different temperatures. Table 5 shows the reaction rates at different temperatures in terms of methylcyclohexane (MECH) per hour and grams of catalyst / nickel. The partial pressure ratio pH? / P1rh, rTTli was -2.2.

10 Taulukko 5. Tolueenin hydrauksen reaktionopeus eri katalyyteilla10 Table 5. Reaction rate of toluene hydrogenation with different catalysts

BasBBSssasssassss=ssssa^ssssaBBs:s^^BSSS^Bass^saBsss^=aB=i:^B8SBSsBasBBSssasssassss = ssssa ssssaBBs ^: ^ p ^^ BSSs Bass saBsss ^ ^ = aB = i ^ B8SBSs

Katalyytti Lampotila (°C) r = [gMECH / gkll / h] r = [g^» / gNi / h] 2 151 3,86 38,3 2 171 6,82 67,5 2 184 6,63 65,7 15 Kaupallinen #3 151 4,43 7,4Catalyst Lamp state (° C) r = [gMECH / gkll / h] r = [g ^ »/ gNi / h] 2,151 3.86 38.3 2,171 6.82 67.5 2,184 6.63 65.7 15 Commercial # 3,151 4.43 7.4

Kaupallinen #2 170 4,61 7,7Commercial # 2,170 4.61 7.7

Kaupallinen #3 191 2,74 4,6 :20. Kuten tuloksista voidaan nåhdå, saavutetaan keksinnon mukaisilla katalyyteilla monesti ylivoimainen aktiivisuus kolmen kaupallisen ja oman impregnoimalla valmistetun vertailukatalyytin suhteen.Commercial # 3,191 2.74 4.6: 20. As can be seen from the results, the catalysts according to the invention often achieve superior activity over three commercial and in-house impregnated reference catalysts.

14 9063214 90632

Esimerkki 7Example 7

Katalyyttien valmistus nikkeloseenistaManufacture of nickelocene catalysts

Katalyytin kantaja-aineena kaytettiin samaa alumiinioksidia kuin esimerkisså 1. Kantaja 5 oli esikåsitelty 800 °C:ssa.The same alumina as in Example 1 was used as the catalyst support. The support 5 had been pretreated at 800 ° C.

Al203-kantajasta poistettiin mahdollinen kantajan sailytyksen aikana fysisorboitunut vesi. Lampokåsittely tehtiin 200 °C:ssa reaktiotilassa, jossa oli alipaine ja typpiatmos-faåri. Lampokåsittely kesti 3 tuntia.Any water physically sorbed during storage of the Al 2 O 3 support was removed. The lamp treatment was performed at 200 ° C in a reaction space under reduced pressure and a nitrogen atmosphere. The lamp treatment lasted 3 hours.

1010

Reagenssina toimi kaupallisesti saatava nikkeloseeni, Ni(C5H5)2. Nikkeloseenin hoyrys-tymislåmpotila oli tåmån esimerkin katalyyteisså 150 °C ja reaktiolåmpotila, jossa nikkeli kemisorboitui Al203-kantajan pinnalle oli 200 °C. Reaktioaika oli 4 tuntia. Nikkeloseenin hiilivety-ligandit poistettiin kostealla ilmalla. Ilmakasittely tehtiin 200 15 °C:ssa 2 tuntia ja 400 °C:ssa 4 tuntia. Lopuksi katalyyttiå huuhdeltiin typellå 400 °C:ssa tunnin ajan.The reagent was a commercially available nickelocene, Ni (C5H5) 2. The evaporation temperature of nickelocene in the catalysts of this example was 150 ° C and the reaction temperature in which nickel was chemisorbed on the surface of the Al 2 O 3 support was 200 ° C. The reaction time was 4 hours. Nickelocene hydrocarbon ligands were removed with moist air. Air treatment was performed at 200 at 15 ° C for 2 hours and at 400 ° C for 4 hours. Finally, the catalyst was purged with nitrogen at 400 ° C for one hour.

Taulukossa 6 on esitetty 3 katalyyttiå, jotka valmistettiin edellå mainitulla tavalla. Taulukon sarakkeessa "kierrokset'' oleva luku kertoo kuinka monta kertaa edellå maini-20 tut nikkeloseeni+ilma vaiheet on toistettu. Katalyyttien 8, 9 ja 10 hiilipitoisuudet olivat alle mååritysrajan eli < 0,1 p-%.Table 6 shows 3 catalysts prepared as mentioned above. The figure in the "revolutions" column of the table shows how many times the nickelocene + air steps mentioned above have been repeated.The catalyst concentrations of catalysts 8, 9 and 10 were below the limit of determination, i.e. <0.1 wt%.

Taulukko 6. Esimerkin 7 mukaan valmistetut katalyytit.Table 6. Catalysts prepared according to Example 7.

25 katalyytti Ni-pitoisuus kierrokset (p-%) (kpl) 8. 5,0 1 9. 10.9 2 10. 22,1 4 15 90 63225 catalyst Ni content revolutions (wt%) (pcs.) 8. 5.0 1 9. 10.9 2 10. 22.1 4 15 90 632

Esimerkki 8Example 8

Nikkeloseenista valmistettujen katalyyttien aktiivisuudet 5 Esimerkin 7 mukaan valmistettujena katalyyttien aktiivisuutta verrattiin katalyytteihin 1 ja 4 sekå kaupalliseen katalyyttiin #1. Vertailu suoritettiin differentiaaliolosuhteissa, tolueenin hydrauksessa ~4 %:n konversiotasolla atmosfååripaineessa ja låmpotilassa 175 °C. H2/T moolisuhde syotosså oli ~2,5, joka vastaa termodynaamista tasapaino-konversiota tasolla ~45 %. Taulukossa 7 tolueenin hydrauksen reaktionopeus 4 tunnin 10 ajon jalkeen (stabiloitunut tila) on esitetty maårånå tuotettua metyylisykloheksaania per gramma katalyytti ja aika sekå per gramma nikkeliå ja aika. Neljånnesså sarakkeessa katalyytit on asetettu paremmuusjarjestykseen sekå katalyytin etta nikkelimåårån perus-teella.Activities of Catalysts Prepared from Nickelocene The activity of the catalysts prepared according to Example 7 was compared to Catalysts 1 and 4 as well as Commercial Catalyst # 1. The comparison was performed under differential conditions, hydrogenation of toluene at a conversion level of 44% at atmospheric pressure and 175 ° C. The molar ratio of H2 / T in the feed was 2,52.5, which corresponds to a thermodynamic equilibrium conversion at tasolla45%. Table 7 shows the reaction rate of toluene hydrogenation after 4 hours 10 runs (stabilized state) in terms of methylcyclohexane produced per gram of catalyst and time as well as per gram of nickel and time. In the fourth column, the catalysts are ranked on the basis of both the amount of catalyst and the amount of nickel.

15 Taulukko 7. Tolueenin hydrauksen reaktionopeus eri katalyyteilla15 Table 7. Reaction rate of toluene hydrogenation with different catalysts

Kat. r= r= Toimivuus: [gMECH^Scat^h] [SmECH^8νϊ^] f(r cat),f(r Ni) 1 14 140 78, 76 4 17 80 94,43 ‘ :29 8 9 195 50, 105 9 14 135 78,73 10 19 85 106,46Kat. r = r = Functionality: [gMECH ^ Scat ^ h] [SmECH ^ 8νϊ ^] f (r cat), f (r Ni) 1 14 140 78, 76 4 17 80 94,43 ': 29 8 9 195 50, 105 9 14 135 78.73 10 19 85 106.46

Kaupallinen #1 14 85 78,46 -.25 Kuten taulukosta 7 ilmenee, esimerkissa 7 esitetyt katalyytit ovat toimivuudeltaan erinomaisia. Nåin olien nikkelisyklopentadienyyli soveltuu mainiosti lahtoaineeksi hydrauskatalyytin valmistuksessa.Commercial # 1 14 85 78.46 -.25 As shown in Table 7, the catalysts shown in Example 7 are excellent in performance. Thus, nickel cyclopentadienyl is an excellent starting material for the preparation of a hydrogenation catalyst.

Claims (13)

1. Forfarande for framstållning av en heterogen katalysator avsedd for hydrering av aromatiska foreningar, vilken innehåller nickel som år bunden till en oorganisk poros 5 bårare, varvid forfarandet omfattar forångning av ett nickelhaltigt utgångsåmne och ledandet av denna i gasfas till en reaktionskammare, dår sagda åmne bringas i kontakt med båraren, kånnetecknat avatt a) såsom nickelhaltigt utgångsåmne anvånds en organisk nickelforening, vårs ångtryck hålles så hogt och vårs våxelverkan med båraren får vara så långe 10 att det finns ett overskott av reagensen i forhållande till bårarens bindnings- platser, b) icke-omsatt nickelforening avlågsnas från reaktionskammaren vid reaktionstemperaturen, c) den produkt som uppstår genom våxelverkan mellan nickelforeningen och 15 båraren behandlas vid en temperatur av 200 till 600 °C for avlågsnandet av nickelforeningens organiska delar och dårpå d) behandlas produkten med våte vid en temperatur av 300 till 600 °C for aktivering av katalysatom.A process for producing a heterogeneous catalyst for hydration of aromatic compounds containing nickel bound to an inorganic porous support, the process comprising evaporation of a nickel-containing starting substance and its conduction in a gas phase to a reaction chamber, the said substance. be contacted with the carrier, characterized by a) as a nickel-containing starting agent, an organic nickel compound is used, the spring vapor pressure is maintained so high and the spring interaction with the carrier may be so long that there is an excess of the reagents in relation to the carrier's binding sites; b) non-reacted nickel compound is removed from the reaction chamber at the reaction temperature; c) the product resulting from interaction between the nickel compound and the support is treated at a temperature of 200 to 600 ° C for the removal of the organic parts of the nickel compound and then d) the product is treated with wet at a temperature. of 300 to 600 ° C to activate the catalyst. 2. Forfarande enligt krav 1, kånnetecknat av att såsom nickelforening anvånds nickelacetylacetonat.Process according to claim 1, characterized in that nickel acetylacetonate is used as the nickel compound. 3. Forfarande enligt krav 2, kånnetecknat av att nickelforeningen omsåtts med båraren vid en temperatur av 190 till 220 °C. 253. A process according to claim 2, characterized in that the nickel compound is reacted with the support at a temperature of 190 to 220 ° C. 25 4. Forfarande enligt krav 1, kånnetecknat av att såsom nickelforening anvånds nickelocen (dicyklopentadienyl-nickel(II)].4. A process according to claim 1, characterized in that nickelocene (dicyclopentadienyl-nickel (II)) is used as the nickel compound. 5. Forfarande enligt krav 1, kånnetecknat av att såsom bårare anvånds 30 aluminiumoxid.Process according to claim 1, characterized in that alumina is used as a carrier. 6. Forfarande enligt något av de foregående kraven, kånnetecknat av alt 19 90632 reaktionen utfors i kvåveatmosfår vid ett reducerat tryck av ca 20 till 50 mbar.A process according to any one of the preceding claims, characterized by the reaction being carried out in a nitrogen atmosphere at a reduced pressure of about 20 to 50 mbar. 7. Forfarande enligt något av de foregående kraven, k å η n e t e c k n a t av att de organiska delama av nickelforeningen avlågsnas medelst en vattenångebehandling som 5 utfors vid en temperatur av 300 till 500 °C.A process according to any one of the preceding claims, characterized in that the organic parts of the nickel compound are removed by a water vapor treatment carried out at a temperature of 300 to 500 ° C. 8. Forfarande enligt något av kraven 1-6, k å η n e t e c k n a t av att de organiska delama av nickelforeningen avlågsnas med hjalp av en behandling som utfors med torr eller fuktig luft, en blandning av syre och kvåve eller med vattenånga. 10A process according to any one of claims 1-6, characterized in that the organic parts of the nickel compound are removed with the aid of a treatment carried out with dry or moist air, a mixture of oxygen and nitrogen or with steam. 10 9. Forfarande enligt krav 2, kånnetecknat av att forfarandestegen a till d upprepas 2 till 10 gånger.Method according to claim 2, characterized in that the process steps a to d are repeated 2 to 10 times. 10. Forfarande enligt krav 5, kånnetecknat av att den aluminiumoxid som 15 anvånds såsom bårare forbehandlas vid en temperatur av 600 till 800 °C under 4 till 20 timmar, foretrådesvis 6 h vid 800 °C fore reaktionen.Process according to claim 5, characterized in that the alumina used as carrier is pretreated at a temperature of 600 to 800 ° C for 4 to 20 hours, preferably 6 hours at 800 ° C prior to the reaction. 11. Katalysator, kånnetecknad av att den år framstålld medelst ett forfarande enligt något av kraven 1 till 10. 2011. Catalyst, characterized in that it is produced by a process according to any one of claims 1 to 10. 20 12. Anvåndningen av en katalysator enligt krav 11 for hydrering av en våsentligen svavelfri kolvåteprodukt.The use of a catalyst according to claim 11 for hydration of a substantially sulfur-free hydrocarbon product. 13. Anvåndningen enligt krav 12, kånnetecknad av att katalysatom anvånds .. 25 vid hydrering av bensen och toluen.The use according to claim 12, characterized in that the catalyst is used in the hydrogenation of benzene and toluene.
FI923169A 1992-07-09 1992-07-09 Process for the preparation of a catalyst for the hydrogenation of aromatics FI90632C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FI923169A FI90632C (en) 1992-07-09 1992-07-09 Process for the preparation of a catalyst for the hydrogenation of aromatics
EP93914766A EP0649344A1 (en) 1992-07-09 1993-07-09 Method for manufacturing a catalyst suited for hydrogenation of aromatics
PCT/FI1993/000294 WO1994001216A1 (en) 1992-07-09 1993-07-09 Method for manufacturing a catalyst suited for hydrogenation of aromatics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI923169 1992-07-09
FI923169A FI90632C (en) 1992-07-09 1992-07-09 Process for the preparation of a catalyst for the hydrogenation of aromatics

Publications (3)

Publication Number Publication Date
FI923169A0 FI923169A0 (en) 1992-07-09
FI90632B FI90632B (en) 1993-11-30
FI90632C true FI90632C (en) 1994-03-10

Family

ID=8535596

Family Applications (1)

Application Number Title Priority Date Filing Date
FI923169A FI90632C (en) 1992-07-09 1992-07-09 Process for the preparation of a catalyst for the hydrogenation of aromatics

Country Status (3)

Country Link
EP (1) EP0649344A1 (en)
FI (1) FI90632C (en)
WO (1) WO1994001216A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101641678B1 (en) * 2009-02-26 2016-07-21 사솔 테크놀로지(프로프라이어터리) 리미티드 Process for the preparation of fischer-tropsch catalysts and their use
WO2019245792A1 (en) * 2018-06-22 2019-12-26 The Curators Of The University Of Missouri Novel method of manufacture of metal nanoparticles and metal single-atom materials on various substrates and novel compositions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552855A (en) * 1982-12-30 1985-11-12 Ozin Geoffrey A Metal zeolite catalyst preparation
US4569924A (en) * 1982-12-30 1986-02-11 Ozin Geoffrey A Metal carbon catalyst preparation
US4548920A (en) * 1984-03-26 1985-10-22 Shell Oil Company Hydrodenitrification catalyst
NL8401301A (en) * 1984-04-19 1985-11-18 Unilever Nv NICKELBORIDE CATALYST AND ITS USE.
JPH02245239A (en) * 1989-03-20 1990-10-01 Ube Ind Ltd High-active nickel catalyser and its production
FI84562C (en) * 1990-01-16 1991-12-27 Neste Oy FARING EQUIPMENT FOR THE FRAME STATION OF HETEROGENE CATALYSTATORS.
JPH0813330B2 (en) * 1990-03-30 1996-02-14 株式会社コスモ総合研究所 Process for producing hydrodesulfurization catalyst composition of hydrocarbon oil

Also Published As

Publication number Publication date
WO1994001216A1 (en) 1994-01-20
FI90632B (en) 1993-11-30
EP0649344A1 (en) 1995-04-26
FI923169A0 (en) 1992-07-09

Similar Documents

Publication Publication Date Title
Lindblad et al. Preparation of Ni/Al 2 O 3 catalysts from vapor phase by atomic layer epitaxy
JP6636162B2 (en) Palladium-based hydrogenation catalyst, method for producing the same, and use thereof
Curtis Molybdenum/cobalt/sulfur clusters: Models and precursors for hydrodesulfurization (HDS) catalysts
US5573991A (en) Preparation of metal carbide catalyst supported on carbon
Guenin et al. Resistance to sulfur poisoning of metal catalysts: Dehydrogenation of cyclohexane on PtAl2O3 catalysts
Gerstberger et al. The Danishefsky Hetero Diels–Alder Reaction Mediated by Organolanthanide‐Modified Mesoporous Silicate MCM‐41
US4431574A (en) Supported group VIII noble metal catalyst and process for making it
WO1991010510A1 (en) Process and apparatus for preparing heterogeneous catalysts
Rimoldi et al. Site isolated complexes of late transition metals grafted on silica: challenges and chances for synthesis and catalysis
EA015323B1 (en) Process for the preparation of fischer-tropsch catalyst precursor and use thereof in fischer-tropsch processes
Palazov et al. Infrared spectra of adsorbed CO and catalytic conversion of cyclohexane on PtAl2O3 and Pt PbAl2O3 catalysts
WO1998057742A1 (en) Hydrogenation catalyst with high sulphur tolerance
EP0594716A1 (en) Process for preparing a polymerization catalyst by vapourizing chromium acetylacetonate
Maugé et al. Preparation, characterization, and activity of sulfided catalysts promoted by Co (CO) 3NO thermodecomposition
US5026673A (en) Stable zeolite-supported transition metal catalysts, methods for making them, and uses thereof
FI90632C (en) Process for the preparation of a catalyst for the hydrogenation of aromatics
Kirlin et al. Mononuclear, trinuclear, and metallic rhenium catalysts supported on magnesia: effects of structure on catalyst performance
WO1998046353A1 (en) Synthesis and application of vapor grafted porous materials
Zhou et al. Design of a stable, selective catalyst for CO hydrogenation: Osmium in basic Y Zeolite
JP3897830B2 (en) Process for producing cycloolefin
FI84438C (en) KATALYSATOR FOER METATESREAKTIONER HOS KOLVAETEN.
Wootsch et al. Specific Behavior of Tailor-Made Pt–Ge/Al2O3 Catalysts in Transformation of Hydrocarbons
Huang et al. Catalytic studies of aminated MCM-41-tethered rhodium complexes for 1-hexene hydroformylation
DE69205234T2 (en) Catalyst for metathesis of olefins.
KR100586163B1 (en) Preparation of cobalt-molybdenum sulfide catalyst supported on alumina for deep hydrodesulfurization

Legal Events

Date Code Title Description
FG Patent granted

Owner name: NESTE OY

BB Publication of examined application