FI90231C - Method for oligomerization of 1-butene - Google Patents

Method for oligomerization of 1-butene Download PDF

Info

Publication number
FI90231C
FI90231C FI913690A FI913690A FI90231C FI 90231 C FI90231 C FI 90231C FI 913690 A FI913690 A FI 913690A FI 913690 A FI913690 A FI 913690A FI 90231 C FI90231 C FI 90231C
Authority
FI
Finland
Prior art keywords
butene
oligomerization
mol
cocatalyst
reaction
Prior art date
Application number
FI913690A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI90231B (en
FI913690A (en
FI913690A0 (en
Inventor
Erkki Halme
Salme Koskimies
Mika Kapanen
Mikko Aalto
Original Assignee
Neste Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neste Oy filed Critical Neste Oy
Priority to FI913690A priority Critical patent/FI90231C/en
Publication of FI913690A0 publication Critical patent/FI913690A0/en
Priority to EP92912983A priority patent/EP0641298A1/en
Priority to PCT/FI1992/000199 priority patent/WO1993002993A1/en
Publication of FI913690A publication Critical patent/FI913690A/en
Publication of FI90231B publication Critical patent/FI90231B/en
Application granted granted Critical
Publication of FI90231C publication Critical patent/FI90231C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/14Catalytic processes with inorganic acids; with salts or anhydrides of acids
    • C07C2/20Acids of halogen; Salts thereof ; Complexes thereof with organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/06Halogens; Compounds thereof
    • C07C2527/08Halides
    • C07C2527/12Fluorides
    • C07C2527/1213Boron fluoride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

9023190231

Menetelmå 1-buteenin oligomeroimiseksi Forfarande for oligomerisering av 1-buten 5 * Tåmå keksinto koskee menetelmåå 1-buteenin oligomeroimiseksi.The present invention relates to a process for the oligomerization of 1-butene. The present invention relates to a process for the oligomerization of 1-butene.

TUNNETTU TEKNIIKKAPRIOR ART

10 Perinteisesti on buteenin oligomeereja valmistettaessa buteenina kåytetty iso- eli tert-buteenia, jota on oligomeroitu sopivan moolimassan omaavaksi oligomeeriksi. Nåitå iso-buteenin oligomeroinnissa syntyviå oligo- ja polymeerejå kutsutaan yhteisellå nimellå poly-i-buteeneiksi tai polybutyleeneiksi riippuen låhtoaineen koostumuksesta.Traditionally, iso- or tert-butene has been used as butene in the preparation of butene oligomers, which has been oligomerized to an oligomer of suitable molecular weight. These oligo- and polymers formed in the oligomerization of iso-butene are collectively referred to as poly-i-butenes or polybutylenes, depending on the composition of the starting material.

i-Buteenin låhteenå on pååasiassa ollut ns. raffinaatti I virta. Tåsså raffinaatti I 15 virrassa on iso-buteenin lisaksi 1- ja 2-buteeneja sekå butaaneja. Vaihtoehtoisesti låhtoaineena on kåytetty puhdistettua iso-buteenia.The source of i-Butene has mainly been the so-called raffinate I stream. In this stream, raffinate I 15 contains, in addition to iso-butene, 1- and 2-butenes as well as butanes. Alternatively, purified iso-butene has been used as a starting material.

Tårkeimpiå mekanismeja olefiinien polymeroimiseksi ovat kationinen mekanismi ja koordinaatiopolymerointi. Nåistå koordinaatiopolymerointia kaytetåån låhinnå poly-1-20 buteenimuovien valmistukseen, jossa halutaan ennalta mååråtå hyvin tarkkaan syntyvån tuotteen rakenne. Kationinen mekanismi tuottaa 1-buteenin polymeroinnissa vain oligomeereja tai viskooseja nesteitå, ns. nestepolymeerejå.The most important mechanisms for polymerizing olefins are the cationic mechanism and coordination polymerization. These coordination polymerizations are mainly used for the production of poly-1-20 butene plastics, where it is desired to determine very precisely the structure of the resulting product. In the polymerization of 1-butene, the cationic mechanism produces only oligomers or viscous liquids, the so-called nestepolymeerejå.

Kationisessa mekanismissa katalyytteinå on kåytetty Lewis-happoja kuten BF3, A1C13, 25 AlBr3, TiCl4, SnCl4 etc. On tunnettua, ettei Lewis-happokatalyytit voi yksinåån aloittaa polymerointireaktiota, vaan tarvitsevat protonin luovuttajan eli kokatalyytin. Tållaisia kokatalyyttejå ovat mm. vesi, alkoholit, karboksyylihapot, epåorgaaniset hapot, tietyt alkyylihalidit tai halogeenit. Oligomerointi voidaan suorittaa bulkissa, eli ilman apuliuo-tinta, tai inertin liuottimen låsnåollessa. Tållaisia inerttejå liuottimia ovat mm. alkaanit, 30 kuten heksaani ja heptaani, ja sykloalkaanit, kuten sykloheksaani ja syklohcptaani.Lewis acids such as BF3, AlCl3, AlBr3, TiCl4, SnCl4, etc. have been used as catalysts in the cationic mechanism. It is known that Lewis acid catalysts alone cannot initiate the polymerization reaction, but require a proton donor, i.e. a cocatalyst. Such cocatalysts include e.g. water, alcohols, carboxylic acids, inorganic acids, certain alkyl halides or halogens. The oligomerization can be carried out in bulk, i.e. without a co-solvent, or in the presence of an inert solvent. Such inert solvents include e.g. alkanes such as hexane and heptane, and cycloalkanes such as cyclohexane and cycloheptane.

2 902312 90231

Erilaisiin kayttokohteisiin soveltuvia oligomeereja on perinteisesti valmistettu siis iso-buteenin tai raffinaatti I virran oligomeroinnilla. Katalyyttinå on kåytetty mm. BF3:a ja AlCI3:a. Kokatalyyttinå on yleenså mainittu vesi, lyhytketjuiset aikoholit ja orgaaniset hapot. BF3:n kanssa on yleisesti kåytetty 1-butanoli kokatalyyttiå, kun tavoitteena on S ollut tuottaa voiteluaineiksi ja niiden lisåaineiksi sopivia fraktioita. Nåitå fraktioita on tuotettu pååasiassa kopolymeroinnilla. Larkin et al. (US 4 417 082, 4 395 578 ja 4 434 309) kåyttivåt kopolymeroinnissa lyhytketjuisena olefiinina 1-buteenia ja pitkåket-juisena olefiinina C6...C18-alkeenia. Katalyyttisysteemi koostui BF3:sta ja 1-butanolista sekå mahdollisesta siirtymåmetallikationista. Nipe et al. (US 4 225 739) kayttivåt myos 10 BF3- 1-butanoli -katalyyttiå kopolymerointiin, mutta lyhytketjuinen olefiini oli 1-buteenin sijasta propeeni. Watts et al. (US 4 413 156) kayttivåt låhtoaineena C3-C4-olefiinien seosta, josta disproportionaatioreaktion avulla valmistettiin C9...C24- sisåisiå olefiineja. Tåtå fraktiota edelleen oligomeroimalla BF3- 1-butanoli -katalyytillå tuotteeksi saatiin voiteluaineiden lisåaineiden valmistukseen soveltuvia fraktioita. Edellå-15 mainituissa patenteissa kuvatut prosessit ovat joko kaksivaiheisia tai kopolymerointeja.Thus, oligomers suitable for a variety of applications have traditionally been prepared by oligomerization of an iso-butene or raffinate I stream. The catalyst used is e.g. BF3 and AlCl3. The cocatalyst is usually said water, lower alcohols and organic acids. A 1-butanol cocatalyst has been commonly used with BF3 for the purpose of producing fractions suitable as lubricants and additives. These fractions have been produced mainly by copolymerization. Larkin et al. (US 4,417,082, 4,395,578 and 4,434,309) use 1-butene as a short-chain olefin and a C6-C18-alkene as a long-chain olefin in the copolymerization. The catalyst system consisted of BF3 and 1-butanol as well as a possible transition metal cation. Nipe et al. (US 4,225,739) also used 10 BF3-1-butanol catalysts for the copolymerization, but the short-chain olefin was propylene instead of 1-butene. Watts et al. (US 4,413,156) used a mixture of C3-C4 olefins as a starting material, from which C9 to C24 olefins were prepared by a disproportionation reaction. Further oligomerization of this fraction with a BF3-1-butanol catalyst gave fractions suitable for the preparation of lubricant additives. The processes described in the aforementioned patents are either two-step or copolymerizations.

Raffinaatti I virran oligomerointiin kåytetyt katalyytit riippuvat osittain halutusta tuotejakautumasta. Torck et al. (GB 1 312 950) kåyttivåt di- ja trimerointikatalyyttinå mm. BF3-HF -kompleksia tetrametyleenisulfoniliuoksessa. Chen et al. (US 4 849 572) 20 kayttivåt kokatalyyttinå vettåja/tai metanolia, jolloin tuotteen Mn= 520...1500 g/mol. Raffinaatti II virran, joka sisåltåå pååkomponentteina 1-ja 2-buteeneja, oligomerointiin Halaska et al. (EP 337 737) kåyttivåt BF3:a tai alkyylialumiiniklorideja joilla on yleinen kaava R2A1C1 tai RA1C12, joissa R on Cj.g -alkyyli. Kokatalyytteinå he kåyttivåt HF:a, HCl:a tai yhdisteitå joissa on reaktiivinen kloori- tai fluoriatomi sidottuna tertiaariseen, 25 bentsyyliseen tai allyyliseen hiiliatomiin. Nåmå katalyyttisysteemit ovat samat kuin Loveless et al. (US 4 041 098) C3...Ci4-olefiinien, mieluummin C8...C10-olefiinien, oligomerointiin kåyttåmåt katalyytit.The catalysts used to oligomerize the raffinate I stream depend in part on the desired product distribution. Torck et al. (GB 1 312 950) used as di- and trimerization catalysts e.g. BF3-HF complex in tetramethylenesulfonic solution. Chen et al. (US 4,849,572) used anhydrous and / or methanol as cocatalyst, the product being Mn = 520 to 1500 g / mol. For the oligomerization of a raffinate II stream containing 1- and 2-butenes as main components, Halaska et al. (EP 337 737) use BF3 or alkylaluminum chlorides of the general formula R2A1Cl or RA1C12, where R is C1-6 alkyl. As cocatalysts, they use HF, HCl or compounds having a reactive chlorine or fluorine atom attached to a tertiary, benzylic or allylic carbon atom. These catalyst systems are the same as those described by Loveless et al. (US 4,041,098) Catalysts used for the oligomerization of C3 to C14 olefins, preferably C8 to C10 olefins.

Karboksyylihappokokatalyyttejå tunnetaan våhån lyhytketjuisten olefiinien oligomeroin-30 nissa. Sheng et al. (US 4 263 465) kåyttivåt kokatalyyttinå karboksyylihappoa, jossa on enintåån viisi hiiliatomia. Heidån prosessinsa oli kaksivaiheinen. Ensimmåinen 3 90231 vaihe kasitti 1-buteenin oligomeroinnin jakeeksi, jonka lukukeskimaarainen hiiliketjun pituus on 8... 18, mieluummin 10...16 hiiliatomia. Toisessa vaiheessa ko-oligomeroidaan ensimmaisen vaiheen tuotefraktio C8...C18- alfaolefiinin kanssa. Karboksyylihappoja, • mm. viisi hiiliatomia sisaltaviå, on kåytetty pitempiketjuisten olefiinien oligomeroin- 5 tiin. Esimerkiksi patenttijulkaisun GB 1 378 449 mukaan on kaytetty n- ja i-valeri-aanahappoa, metyylibutaanihappoa tai niiden seoksia katalysoimaan C6...Ci2-olefiinien oligomerointia yhdessa BF3:n kanssa.Carboxylic acid cocatalysts are little known in the oligomerization of short chain olefins. Sheng et al. (US 4,263,465) use a carboxylic acid having up to five carbon atoms as cocatalyst. Their process was two-step. The first 3,90231 step involved the oligomerization of 1-butene into a fraction having a number average carbon chain length of 8 to 18, preferably 10 to 16 carbon atoms. In the second step, the product fraction of the first step is co-oligomerized with a C8 to C18 alpha-olefin. Carboxylic acids, • e.g. containing five carbon atoms has been used for the oligomerization of longer chain olefins. For example, according to GB 1 378 449, n- and i-Valeric acid, methylbutanoic acid or mixtures thereof have been used to catalyze the oligomerization of C6 to C12 olefins together with BF3.

Viimeisen kymmenen vuoden aikana voimakkaasti kasvanut ja edelleen kasvava MTBE:n 10 eli metyyli-tert-butyylieetterin tuotanto rajoittaa iso-buteenin saatavuutta (nostaen samalla tuotantokustannuksia). Taman keksinnon tarkoitus on osoittaa, etta 1-buteenia oligome-roimalla poly-n-buteeniksi on mahdollista tuottaa iso-buteenin keveita oligomeereja (Mn= ΙΙΟ.,.η. 650 g/mol tai jopa 850 g/mol) korvaavia fraktioita. Poly-i-buteenia ja polybutyleenia on tuotettu jo usean vuoden ajan teollisessakin mittakaavassa, mutta poly-15 n-buteenin tuottamista 1-buteenin oligomeroinnilla ei tunneta.The production of MTBE 10, i.e. methyl tert-butyl ether, which has grown strongly and continues to grow over the last ten years, limits the availability of iso-butene (while raising production costs). The object of the present invention is to show that by oligomerizing 1-butene to poly-n-butene, it is possible to produce fractions replacing light oligomers of iso-butene (Mn = ΙΙΟ.,. Η. 650 g / mol or even 850 g / mol). Poly-i-butene and polybutylene have been produced for several years even on an industrial scale, but the production of poly-15 n-butene by oligomerization of 1-butene is not known.

Tåssa keksinnossa 1-buteenin oligomerointi suoritetaan yksivaiheisella prosessilla kayttaen katalyyttina booritrifluoridi-kokatalyytti-kompleksia, jossa kokatalyytti on C2 - C10-monoalkoholi tai C2 - C8-monokarboksyylihappo, edullisesti valeriaanahappo. 20 Lisåksi tassa keksinnossa osoitetaan, etta i-buteenia on mahdollista oligomeroida raskaiksi hiilivetyjakeiksi ilman komonomeereja ja yksivaiheisella prosessilla.In the present invention, the oligomerization of 1-butene is carried out in a one-step process using a boron trifluoride-cocatalyst complex in which the cocatalyst is a C2-C10 monoalcohol or a C2-C8 monocarboxylic acid, preferably valeric acid. In addition, the present invention demonstrates that i-butene can be oligomerized to heavy hydrocarbon fractions without comonomers and by a one-step process.

Taman keksinnon mukaisella menetelmållå voidaan korvata poly-i-buteenien ja polybutyleenien keveita jakeita, joiden lukukeskimaarainen moolimassa on 110...n. 650 25 tai jopa 850 g/mol.The process according to the present invention can replace light fractions of poly-i-butenes and polybutylenes having a number average molecular weight of 110 ... n. 650 25 or even 850 g / mol.

Taman keksinnon kohde on 1-buteenin oligomerointimenetelma, jolla voidaan tuottaa poly-n-buteeneja, joiden lukukeskimaarainen moolimassa on edellamainitulla alueella.The present invention relates to a process for the oligomerization of 1-butene which can produce poly-n-butenes having a number average molecular weight in the above-mentioned range.

30 4 90231 ΚλΥΤΓό30 4 90231 ΚλΥΤΓό

Lyhytketjuisten olefiinien oligomeerit ovat teknisesti tarkeita vålituotteita, joita voidaan kayttaa hyvinkin erilaisten lopputuotteiden valmistamiseen. Lyhytketjuisista olefiineista 5 tarkeimmat ovat propeeni seka buteenin ja penteenin eri isomeerit. Buteenin oligomeereja, joiden Mn= 110...2500 g/mol, kåytetaan mm. liuottimina, polttoaineina, kemi-kaalien valmistuksessa seka voiteluaineiden ja niiden lisaaineiden valmistuksessa.Oligomers of short-chain olefins are technically important intermediates that can be used to prepare a wide variety of end products. Of the short chain olefins, the most important are propylene and the various isomers of butene and pentene. Butylene oligomers with Mn = 110 ... 2500 g / mol are used e.g. as solvents, fuels, in the manufacture of chemical cabbages and in the manufacture of lubricants and their additives.

Tåmån keksinnon mukaisesti valmistetut 1-buteenin oligomeerit, jotka tunnetaan myos 10 nimellå poly-n-buteenit, sisaltåvåt polymeeriketjussa olefiinisen kaksoissidoksen, jonka reaktiivisuus on kasvanut. Niiden moolimassojen polydispersiteetti on Mw/Mn = 1,02...1,5. Oligomeerien ominaisuuksista voidaan mainita mm. keståvyys lammonvai-kutuksesta tapahtuvaa hapettumista vastaan, alhainen jahmepiste, alhainen haihtuvuus, hyvå låmpotila-viskositeetti -riippuvuus. Edellåmainitut ominaisuudet ovat tarkeita 15 etenkin, jos oligomeereja kåytetaan voiteluaineiden ja niiden lisaaineiden tuotantoon. Reaktiivisen kaksoissidoksen johdosta oligomeereja voidaan kayttaa valituotteina erilaisten kemiallisten yhdisteiden tuotannossa. Kemikaalien valmistuksessa 1-buteenin oligomeereja kåytetaan mm. alkyylibentseenien, alkyylifenolien ja alkyylimeripihka-happoanhydridin valmistukseen. Alkyylibentseeneista ja -fenoleista valmistetaan 20 sulfonoimalla pinta-aktiivisia aineita. Voiteluaineiden lisåaineissa 1-buteenin oligomeereja voidaan kayttaa mm. sulfonaatteja, fenaatteja, tiofosfonaatteja ja tuhkattomia disper-gointiaineita, alkenyylisukkinimidejå, valmistettaessa. Nåissa yhdisteisså hiilivetyosan moolimassa on n. 350...1200 g/mol, alkenyylisukkinimidissa jopa 2500 g/mol. Muita kåyttokohteita ovat mm. voiteluaineena kaksitahtisissa kipinasytytysmoottoreissa, 25 metallurgisten materiaalien tyosto-oljynå valssauksessa ja vetamisessa, nahka- ja kumiteollisuudessa ja erilaisten pintojen hydrofobiseksi tekemisessa. Oligomeereja hydraamalla voidaan saada korkealaatuisia muuntajaoljyjå, såhkoeristys- ja kaapelioljy-jå sekå myrkyttomiå kosmeettisia oljyjå ja valkooljyjå.The 1-butene oligomers prepared in accordance with this invention, also known as poly-n-butenes, contain an olefinic double bond in the polymer chain with increased reactivity. Their molecular weights have a polydispersity Mw / Mn = 1.02 ... 1.5. Among the properties of oligomers, e.g. resistance to oxidation by lammona, low pour point, low volatility, good temperature-viscosity dependence. The above properties are important 15 especially if oligomers are used in the production of lubricants and their additives. Due to the reactive double bond, oligomers can be used as selected products in the production of various chemical compounds. In the manufacture of chemicals, oligomers of 1-butene are used e.g. for the preparation of alkylbenzenes, alkylphenols and alkylsuccinic anhydride. Alkylbenzenes and phenols are prepared by sulfonating surfactants. In lubricant additives, oligomers of 1-butene can be used e.g. sulfonates, phenates, thiophosphonates and ashless dispersants, alkenyl succinimides. In these compounds the molecular weight of the hydrocarbon moiety is about 350 to 1200 g / mol, in alkenyl succinimide up to 2500 g / mol. Other applications include e.g. as a lubricant in two-stroke spark ignition engines, as a working oil for metallurgical materials in rolling and drawing, in the leather and rubber industries and in rendering various surfaces hydrophobic. Hydrogenation of oligomers can produce high quality transformer oils, electrical insulation and cable oils, as well as non-toxic cosmetic oils and white oils.

30 5 9023130 5 90231

ESIMERKITEXAMPLES

Tåmån keksinnon mukaisen 1-buteenin oligomeroimisen yksityiskohtaiseksi kuvaami-, seksi on esitetty seuraavat esimerkit, jotka eivåt kuitenkaan rajoita keksinnon aluetta 5 millåån tavoin.In order to illustrate in detail the oligomerization of 1-butene according to the present invention, the following examples are given, which, however, do not limit the scope of the invention in any way.

1-buteenin oligomerointireaktiot suoritettiin, ellei muuta mainita, seuraavasti: Teråksista reaktoria, jonka tilavuus oli 300 ml, jååhdytettiin sisaisesti jåahdytyskieru-kalla ja låmmitettiin tarvittaessa ulkoisesti sahkohauteella. Reaktori oli varustettu sekoittimella. 1-Buteeni ja katalyytti annosteltiin reaktoriin ventdilin kautta nestefaasiin. 10 Reaktioseoksen låmpotilaa seurattiin termoparilla. Reaktioseoksen lampotila pyrittiin pitåmåån ± 1 °C:n tarkkuudella asetusarvosta. Reaktoriin ladattiin typpiatmosfåarisså 100 ml n-heptaania liuottimeksi ja kokatalyyttiå, jonka måårå on mainittu esimerkissa. Liuotin oli kuivattu molekyyliseuloilla. Tåmån jålkeen reaktoriin syotettiin nestemåistå 1-buteenia 60...70g. Monomeerin lisåyksen jålkeen reaktori paineistettiin BF3-kaasulla, 15 jolloin katalyyttikompleksi muodostui in situ ja reaktio kåynnistyi vålittomåsti. Reaktorin paine pidettiin vakiona BF3-kaasun avulla. Reaktioparametreinå kåytettiin seuraavasti: paine 2,5...10 bar ylipaineena ilmoitettuna, reaktiolåmpotila 10...70 °C ja reaktioaika 1...121 minuuttia tai 1...6 tuntia. Reaktio lopetettiin lisååmållå reaktoriin ylimåårin joko NaOH-liuosta tai vettå. Tuotefraktio pestiin NaOH-liuoksella ja tåmån 20 jålkeen vedellå, kunnes fraktion pH oli neutraalilla alueella. Tuotejakautuma selvitettiin GC-menetelmållå.The oligomerization reactions of 1-butene were carried out, unless otherwise stated, as follows: A steel reactor having a volume of 300 ml was cooled internally with a cooling coil and, if necessary, heated externally with an electric bath. The reactor was equipped with a stirrer. 1-Butene and catalyst were fed to the reactor via a valve to the liquid phase. The temperature of the reaction mixture was monitored with a thermocouple. The temperature of the reaction mixture was kept within ± 1 ° C of the set point. The reactor was charged under a nitrogen atmosphere with 100 ml of n-heptane as solvent and the amount of cocatalyst mentioned in the example. The solvent was dried through molecular sieves. Thereafter, 60-70 g of liquid 1-butene was fed to the reactor. After the addition of the monomer, the reactor was pressurized with BF 3 gas to form the catalyst complex in situ and the reaction started immediately. The reactor pressure was kept constant by BF3 gas. The reaction parameters used were as follows: pressure 2.5 to 10 bar expressed as overpressure, reaction temperature 10 to 70 ° C and reaction time 1 to 121 minutes or 1 to 6 hours. The reaction was quenched by the addition of excess either NaOH solution or water to the reactor. The product fraction was washed with NaOH solution and then with water until the pH of the fraction was in the neutral range. The product distribution was determined by the GC method.

Esimerkit 1 ja 2.Examples 1 and 2.

25 Kokatalyyttinå kåytettiin n-valeriaanahappoa 14,2 mmol yhtå moolia 1-buteenia kohden. Reaktorin paine oli 4,0 baria ja låmpotila 20 °C. Esimerkissa 1 reaktioaikana oli 9 minuuttia ja esimerkisså 2 49 minuuttia. Mainittujen reaktioaikojen jålkeen reaktiot pysåytettiin NaOH-liuoksen avulla. Hiilivetyfaasit analysoitiin, jolloin tulokset olivat seuraavat: 30 6 90231As cocatalyst, 14.2 mmol of n-valeric acid per mole of 1-butene were used. The reactor pressure was 4.0 bar and the temperature was 20 ° C. In Example 1 the reaction time was 9 minutes and in Example 2 49 minutes. After said reaction times, the reactions were quenched with NaOH solution. The hydrocarbon phases were analyzed to give the following results: 30 6 90231

Selektiivisyydet C4-konver. Cg C12 C16 C20 C24 C28 C32 +Selectivities C4 conver. Cg C12 C16 C20 C24 C28 C32 +

Esim. 1 77,4 % - 10,5 51,5 28,2 8,0 1,8Example 1 77.4% - 10.5 51.5 28.2 8.0 1.8

Esim. 2 91,0 % 0,3 5,0 15,8 15,3 22,8 18,5 22,3 5Eg 2 91.0% 0.3 5.0 15.8 15.3 22.8 18.5 22.3 5

Esimerkkien mukaisten tuotejakautumien lukukeskimååråiset moolimassat olivat 237 g/mol ja 310 g/mol. Esimerkin 2 tuotteesta erotettiin kevyet jakeet (C16_) vakuumitis-lauksella, jolloin Mn= 360 g/mol.The number average molecular weights of the product distributions according to the examples were 237 g / mol and 310 g / mol. The light fractions (C16) were separated from the product of Example 2 by vacuum distillation at Mn = 360 g / mol.

10 Esimerkit 3 ja 4,10 Examples 3 and 4,

Kokatalyyttinå kåytettiin n-valeriaanahappoa 5,1 mmol yhtå moolia 1-buteenia kohden. Reaktorin paine oli 4,0 baria ja låmpotila 20 °C. Esimerkissa 3 reaktioaikana oli 9 minuuttia ja esimerkissa 4 49 minuuttia. Mainittujen reaktioaikojen jålkeen reaktiot 15 pysåytettiin NaOH-liuoksen avulla. Hiilivetyfaasit analysoitiin, jolloin tulokset olivat seuraavat:As cocatalyst, 5.1 mmol of n-valeric acid per mole of 1-butene were used. The reactor pressure was 4.0 bar and the temperature was 20 ° C. In Example 3, the reaction time was 9 minutes and in Example 4, 49 minutes. After said reaction times, the reactions were stopped with NaOH solution. The hydrocarbon phases were analyzed with the following results:

Selektiivisyydet C4-konver. C8 C,2 C16 C20 C24 C28 C32+ 20 Esim. 3 84,6 % - 7,7 23,2 36,2 24,0 8,9Selectivities C4 conver. C8 C, 2 C16 C20 C24 C28 C32 + 20 Eg 3 84.6% - 7.7 23.2 36.2 24.0 8.9

Esim. 4 92,7 % 0,4 1,2 4,1 12,8 18,9 14,8 47,0Eg 4 92.7% 0.4 1.2 4.1 12.8 18.9 14.8 47.0

Esimerkkien mukaisten tuotejakautumien lukukeskimååråiset moolimassat olivat 268 g/mol ja 383 g/mol. Esimerkin 4 tuotteesta erotettiin kevyet jakeet (C16_) vakuumitis-25 lauksella, jolloin Mn= 407 g/mol. Tålle hydraamattomalle tuotteelle mååritettiin viskositeetti-indeksiksi 81 kinemaattisen viskositeetin ollessa 4,3 cSt mitattuna 100 °C:ssa.The number average molecular weights of the product distributions according to the examples were 268 g / mol and 383 g / mol. From the product of Example 4, light fractions (C16) were separated by vacuum distillation, where Mn = 407 g / mol. For this non-hydrogenated product, a viscosity index of 81 was determined with a kinematic viscosity of 4.3 cSt measured at 100 ° C.

3030

Esimerkit 5 ia 6.Examples 5 and 6.

7 902317 90231

Kokatalyyttinå kaytettiin n-valeriaanahappoa 37,8 mmol yhta moolia 1-buteenia kohden. . Reaktorin paine oli 4,0 baria ja lampotila 20 °C. Esimerkissa 5 reaktioaikana oli 9 5 minuuttia ja esimerkissa 6 49 minuuttia. Mainittujen reaktioaikojen jålkeen reaktiot pysaytettiin NaOH-liuoksen avulla. Hiilivetyfaasit analysoitiin, jolloin tulokset olivat seuraavat:37.8 mmol of n-valeric acid per one mole of 1-butene were used as cocatalyst. . The reactor pressure was 4.0 bar and the temperature was 20 ° C. In Example 5, the reaction time was 9 5 minutes and in Example 6 49 minutes. After said reaction times, the reactions were stopped with NaOH solution. The hydrocarbon phases were analyzed with the following results:

Selektiivisyydet 10 C4-konver. C8 C12 C16 C20 C24 C28 C32+Selectivities 10 C4 conver. C8 C12 C16 C20 C24 C28 C32 +

Esim. 5 72,5 % 0,5 34,3 32,4 10,4 16,9 5,5Eg 5 72.5% 0.5 34.3 32.4 10.4 16.9 5.5

Esim. 6 97,0 % 0,7 9,2 11,2 14,8 25,5 23,0 15,6Eg 6 97.0% 0.7 9.2 11.2 14.8 25.5 23.0 15.6

Esimerkkien mukaisten tuotejakautumien lukukeskimååraiset moolimassat olivat 220 15 g/mol ja 302 g/mol. Esimerkin 6 tuotteesta erotettiin kevyet jakeet (C16_) vakuumitis-lauksella, jolloin Mn= 357 g/mol.The number average molecular weights of the product distributions according to the examples were 220 g / mol and 302 g / mol. The light fractions (C16) of the product of Example 6 were separated by vacuum distillation, where Mn = 357 g / mol.

Esimerkki 7.Example 7.

20 Kokatalyyttinå kaytettiin n-valeriaanahappoa 13,4 mmol yhta moolia 1-buteenia kohden. Reaktorin paine oli 2,5 baria ja lampotila 20 °C. Esimerkissa 7 reaktioaikana oli 49 minuuttia. Mainitun reaktioajan jålkeen reaktio pysåytettiin NaOH-liuoksen avulla. Hiilivetyfaasi analysoitiin, jolloin tulos oli seuraava: 25 Selektiivisyydet C4-konver. C8 C12 C16 C20 C24 C28 C32+20.4 mmol of n-valeric acid per one mole of 1-butene were used as cocatalyst. The reactor pressure was 2.5 bar and the temperature was 20 ° C. In Example 7, the reaction time was 49 minutes. After said reaction time, the reaction was quenched with NaOH solution. The hydrocarbon phase was analyzed to give the following result: Selectivities C4 conver. C8 C12 C16 C20 C24 C28 C32 +

Esim. 7 81,8% 0,6 43,3 40,7 10,5 3,9 1,0Eg 7 81.8% 0.6 43.3 40.7 10.5 3.9 1.0

Esimerkin mukaisen tuotejakautuman lukukeskimååråinen mooli massa oli 202 g/mol. 30The number average molar mass of the product distribution according to the example was 202 g / mol. 30

Bsimerkki 8.Symbol 8.

8 902318 90231

Kokatalyyttinå kåytettiin n-valeriaanahappoa 13,0 mmol yhta moolia 1-buteenia kohden. Reaktorin paine oli 4,0 baria ja låmpotila 20 °C. Reaktioaika oli 6 tuntia. Mainitun 5 reaktioaijan jålkeen reaktio pysåytettiin NaOH-liuoksen avulla. Hiilivetyfaasi analysoi-tiin, jolloin tulos oli seuraava:13.0 mmol of n-valeric acid per one mole of 1-butene were used as cocatalyst. The reactor pressure was 4.0 bar and the temperature was 20 ° C. The reaction time was 6 hours. After said reaction time, the reaction was quenched with NaOH solution. The hydrocarbon phase was analyzed to give the following result:

Selektiivisyydet C4-konver. Cg C12 C]6 C20 C24 C2g C32+ 10 Esim. 8 n.99 % 0,9 4,2 9,0 8,0 7,5 8,4 58,4Selectivities C4 conver. Cg C12 C] 6 C20 C24 C2g C32 + 10 Eg 8 n.99% 0.9 4.2 9.0 8.0 7.5 8.4 58.4

Esimerkin mukaisen tuotejakautuman lukukeskimååråinen moolimassa oli 386 g/mol. Esimerkin 8 tuotteesta erotettiin kevyet jakeet (C16_) vakuumitislauksella, jolloin Mn= 467 g/mol.The number average molecular weight of the product distribution according to the example was 386 g / mol. The light fractions (C16) of the product of Example 8 were separated by vacuum distillation at Mn = 467 g / mol.

1515

Esimerkit 9 ia 10.Examples 9 and 10.

Kokatalyyttinå kaytettiin n-valeriaanahappoa 4,8 mmol yhtå moolia 1-buteenia kohden. Reaktorin paine oli 10 baria ja låmpotila 10 °C. Esimerkisså 9 reaktioaikana oli 9 20 minuuttia ja esimerkisså 10 121 minuuttia. Mainittujen reaktioaikojen jålkeen reaktiot pysåytettiin NaOH-liuoksen avulla. Hiilivetyfaasit analysoitiin, jolloin tulokset olivat seuraavat:4.8 mmol of n-valeric acid per mole of 1-butene were used as cocatalyst. The reactor pressure was 10 bar and the temperature 10 ° C. In Example 9, the reaction time was 9 to 20 minutes and in Example 10 to 121 minutes. After said reaction times, the reactions were quenched with NaOH solution. The hydrocarbon phases were analyzed with the following results:

Selektiivisyydet 25 C4-konver. Cg C12 C16 C20 C24 C2g C32+Selectivities 25 C4 conver. Cg C12 C16 C20 C24 C2g C32 +

Esim. 9 53,5 % 0,3 7,6 43,3 36,8 7,1 5,0Eg 9 53.5% 0.3 7.6 43.3 36.8 7.1 5.0

Esim. 10 n.99 % 0,1 1,2 4,7 23,5 21,0 18,2 31,3Eg 10 n.99% 0.1 1.2 4.7 23.5 21.0 18.2 31.3

Esimerkkien mukaisten tuotejakautumien lukukeskimååråiset moolimassat olivat 247 30 g/mol ja 349 g/mol. Esimerkin 10 tuotteesta erotettiin kevyet jakeet (C16_) vakuumitislauksella, jolloin Mn= 365 g/mol.The number average molecular weights of the product distributions according to the examples were 247 g / mol and 349 g / mol. The light fractions (C16) of the product of Example 10 were separated by vacuum distillation, where Mn = 365 g / mol.

Esimerkit 11 ja 12.Examples 11 and 12.

9 902319 90231

Kokatalyyttinå kåytettiin n-valeriaanahappoa 4,9 mmol yhtå moolia 1-buteenia kohden. Reaktorin paine oli 10 baria ja låmpotila 40 °C. Esimerkisså 11 reaktioaikana oli 4 5 minuuttia ja esimerkisså 12 121 minuuttia. Mainittujen reaktioaikojen jålkeen reaktiot pysaytettiin NaOH-liuoksen avulla. Hiilivetyfaasit analysoitiin, jolloin tulokset olivat seuraavat:4.9 mmol of n-valeric acid per mole of 1-butene were used as cocatalyst. The reactor pressure was 10 bar and the temperature 40 ° C. In Example 11, the reaction time was 4 to 5 minutes and in Example 12 to 121 minutes. After said reaction times, the reactions were stopped with NaOH solution. The hydrocarbon phases were analyzed with the following results:

Selektiivisyydet 10 C4-konver. Cg C12 C16 C20 C24 C28 C32 +Selectivities 10 C4 conver. Cg C12 C16 C20 C24 C28 C32 +

Esim.ll 60,6% - 6,1 21,6 36,2 23,9 12,2Example 11 60.6% - 6.1 21.6 36.2 23.9 12.2

Esim.12 n.99 % - 5,7 7,3 9,3 13,3 13,1 51,4Example 12 n.99% - 5.7 7.3 9.3 13.3 13.1 51.4

Esimerkkien mukaisten tuotejakautumien lukukeskimååråiset moolimassat olivat 275 15 g/mol ja 371 g/mol. Esimerkin 12 tuotteesta erotettiin kevyetjakeet (C16.) vakuumitis-lauksella, jolloin Mn= 429 g/mol. Tålle hydraamattomalle tuotteelle mååritettiin viskositeetti-indeksiksi 82 kinemaattisen viskositeetin ollessa 7,0 cSt mitattuna 100 °C:ssa.The number average molecular weights of the product distributions according to the examples were 275 g / mol and 371 g / mol. The light fractions (C16) were separated from the product of Example 12 by vacuum distillation at Mn = 429 g / mol. For this non-hydrogenated product, a viscosity index of 82 was determined with a kinematic viscosity of 7.0 cSt measured at 100 ° C.

20 Esimerkit 13 ja 14.20 Examples 13 and 14.

Kokatalyyttinå kåytettiin n-valeriaanahappoa 5,0 mmol yhta moolia 1-buteenia kohden. Reaktorin paine oli 10 baria ja låmpotila 70 °C. Esimerkisså 13 reaktioaikana oli 9 minuuttia ja esimerkisså 14 121 minuuttia. Mainittujen reaktioaikojen jålkeen reaktiot 25 pysaytettiin NaOH-liuoksen avulla. Hiilivetyfaasit analysoitiin, jolloin tulokset olivat seuraavat: Λ - ·As cocatalyst, 5.0 mmol of n-valeric acid per one mole of 1-butene were used. The reactor pressure was 10 bar and the temperature 70 ° C. In Example 13 the reaction time was 9 minutes and in Example 14 121 minutes. After said reaction times, the reactions were stopped with NaOH solution. The hydrocarbon phases were analyzed to give the following results: Λ - ·

Selektiivisyydet C4-k°nver. C8 Cj2 C16 C20 C24 C28 C32+ 30 Esim.13 63,2 % 0,9 27,1 40,3 24,4 7,3Selectivities C4-k ° Nver. C8 Cj2 C16 C20 C24 C28 C32 + 30 Ex.13 63.2% 0.9 27.1 40.3 24.4 7.3

Esim. 14 n.98 % - 8,8 19,7 19,0 29,5 13,4 9,6 10 90231Eg 14 n.98% - 8.8 19.7 19.0 29.5 13.4 9.6 10 90231

Esimerkkien mukaisten tuotejakautumien lukukeskimååråiset moolimassat olivat 219 g/mol ja 286 g/mol. Esimerkin 14 tuotteesta erotettiin kevyet jakeet (C16_) vakuumitis-lauksella, jolloin Mn= 341 g/mol.The number average molecular weights of the product distributions according to the examples were 219 g / mol and 286 g / mol. From the product of Example 14, light fractions (C16) were separated by vacuum distillation, where Mn = 341 g / mol.

55

Esimerkit 15...21.Examples 15 ... 21.

1-Buteeni on oligomeroitavissa myos muilla orgaanisilla happokokatalyyteillå kuin n-valeriaanahapolla, sekå alkoholeilla ja vedellå kuten esimerkit 15...21 osoittavat. Reak-10 torin paineena kåytettiin 4,0 baria ja låmpotilana 20 °C reaktioajan ollessa 36 minuut-tia. Kokatalyytteinå kaytettiin etikkahappoa (esim. 15), n-oktaanihappoa (esim. 16), etanolia (17), 1-pentanolia (18), 1-oktanolia (19) ja vetta (20). Vertailuesimerkkina on n-valeriaanahapolla samoissa olosuhteissa suoritettu reaktio. Kokatalyyttiå kaytettiin 14,5... 15,9 mmol kokatalyyttiå yhta 1-buteeni moolia kohden.1-Butene is also oligomerizable with organic acid cocatalysts other than n-valeric acid, as well as alcohols and water, as shown in Examples 15-21. The reactor pressure was 4.0 bar and the temperature was 20 ° C with a reaction time of 36 minutes. Acetic acid (e.g. 15), n-octanoic acid (e.g. 16), ethanol (17), 1-pentanol (18), 1-octanol (19) and water (20) were used as cocatalysts. A comparative example is the reaction with n-valeric acid under the same conditions. The cocatalyst was used in an amount of 14.5 to 15.9 mmol of cocatalyst per mole of 1-butene.

15 kokatal. ^kk C2g. ·. C2 j ^ C2Q...C28 ^32+ C^-konversio C2-happo 15,1 57,0 43,0 - 77,0 % C8-happo 14,8 17,4 59,4 23,2 83,9 % etanoli 14,5 5,4 75,4 19,2 80,4 % 20 pentanoli 15,9 10,0 69,9 20,1 74,8 % oktanoli 14,5 22,7 61,1 16,2 79,2 % vesi 15,0 12,7 87,3 - 61,2 % n-valer.h. 15,0 18,3 59,7 22,0 86,7 % 2515 cocatal. ^ kk C2g. ·. C2- ^ C2Q ... C28 ^ 32 + C ^ conversion C2 acid 15.1 57.0 43.0 - 77.0% C8 acid 14.8 17.4 59.4 23.2 83.9 % ethanol 14.5 5.4 75.4 19.2 80.4% 20 pentanol 15.9 10.0 69.9 20.1 74.8% octanol 14.5 22.7 61.1 16.2 79 , 2% water 15.0 12.7 87.3 - 61.2% n-valer.h. 15.0 18.3 59.7 22.0 86.7% 25

Claims (7)

11 9023111 90231 1. Menetelmå 1-buteenin oligomeroimiseksi, tunnettu siita, ettå i-buteeni oligomeroidaan yhdessa vaiheessa BF3:n ja C2 - C10-monoalkoholin taiA process for the oligomerization of 1-butene, characterized in that the i-butene is oligomerized in one step between BF3 and a C2-C10 monoalcohol or 2. Vaatimuksen 1 mukainen menetelmå, tunnettu siita, etta mainittu monokar-10 boksyylihappo on n-valeriaanahappo, i-valeriaanahappo, metyylibutaanihappo tai niiden seos.Process according to claim 1, characterized in that said monocarboxylic acid is n-valeric acid, i-valeric acid, methylbutanoic acid or a mixture thereof. 3. Vaatimuksen 1 tai 2 mukainen menetelmå, tunnettu siita, ettå låmpotila oligomerointireaktiossa on 0 - 90°C 15Process according to Claim 1 or 2, characterized in that the temperature in the oligomerization reaction is 0 to 90 ° C. 4. Vaatimuksen 1, 2 tai 3 mukainen menetelmå, tunnettu siita, ettå oligomeroin-tireaktion kokonaispaine on 1 - 15 bar.Process according to Claim 1, 2 or 3, characterized in that the total pressure of the oligomerization reaction is 1 to 15 bar. 5. Jonkin vaatimuksen 1 - 4 mukainen menetelmå, tunnettu siita, etta oligome-20 rointireaktion reaktioaika on 0,5 - 10 tuntia.Process according to one of Claims 1 to 4, characterized in that the reaction time of the oligomerization reaction is 0.5 to 10 hours. 5 C2 - Cg-monokarboksyylihapon muodostaman kompleksin avulla 12-48 hiiliatomia sisåltåvåksi hiilivedyksi siten, etta BF3-kompleksi on tehty in situ BF3-vakiopaineessa lataamalla inertti liuotin, kokatalyytti ja i-buteeni ensin reaktoriin.5 with a complex of C2-C8 monocarboxylic acid to a hydrocarbon containing 12 to 48 carbon atoms, such that the BF3 complex is formed in situ at constant BF3 pressure by first loading an inert solvent, a cocatalyst and i-butene into the reactor. 6. Jonkin vaatimuksen 1-5 mukainen menetelmå, tunnettu siita, ettå inertti liuotin on alkaani tai sykloalkaani, edullisesti n-heptaani.Process according to one of Claims 1 to 5, characterized in that the inert solvent is an alkane or a cycloalkane, preferably n-heptane. 7. Jonkin vaatimuksen 1 - 6 mukaisella menetelmållå valmistetun 1-buteenin oligomo- meerin kaytto liuottimena tai vålituotteena voiteluaineita tai niiden lisaaineita valmistet- • ... taessa. 12 90231Use of a 1-butene oligomomer prepared by a process according to any one of claims 1 to 6 as a solvent or intermediate in the preparation of lubricants or their additives. 12 90231
FI913690A 1991-08-02 1991-08-02 Method for oligomerization of 1-butene FI90231C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FI913690A FI90231C (en) 1991-08-02 1991-08-02 Method for oligomerization of 1-butene
EP92912983A EP0641298A1 (en) 1991-08-02 1992-06-26 Method of oligomerization of 1-butene
PCT/FI1992/000199 WO1993002993A1 (en) 1991-08-02 1992-06-26 Method of oligomerization of 1-butene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI913690A FI90231C (en) 1991-08-02 1991-08-02 Method for oligomerization of 1-butene
FI913690 1991-08-02

Publications (4)

Publication Number Publication Date
FI913690A0 FI913690A0 (en) 1991-08-02
FI913690A FI913690A (en) 1993-02-03
FI90231B FI90231B (en) 1993-09-30
FI90231C true FI90231C (en) 1994-01-10

Family

ID=8532953

Family Applications (1)

Application Number Title Priority Date Filing Date
FI913690A FI90231C (en) 1991-08-02 1991-08-02 Method for oligomerization of 1-butene

Country Status (3)

Country Link
EP (1) EP0641298A1 (en)
FI (1) FI90231C (en)
WO (1) WO1993002993A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI93828C (en) * 1992-12-31 1995-06-12 Neste Oy Method for oligomerization of olefin mixtures, oligomer prepared by the method and its use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263465A (en) * 1979-09-10 1981-04-21 Atlantic Richfield Company Synthetic lubricant

Also Published As

Publication number Publication date
FI90231B (en) 1993-09-30
FI913690A (en) 1993-02-03
FI913690A0 (en) 1991-08-02
EP0641298A1 (en) 1995-03-08
WO1993002993A1 (en) 1993-02-18

Similar Documents

Publication Publication Date Title
CA1236125A (en) Cationic polymerisation of 1-olefins
EP0613873A2 (en) Oligomerisation process
US20110287927A1 (en) Process for oligomerization of olefins that uses a catalytic composition that comprises an organometallic complex that contains an alkoxy ligand that is functionalized by a heteroatom
JP3119452B2 (en) BF for isobutylene polymerization 3rd tertiary etherate complex
JP2913506B2 (en) Olefinic oligomers having lubricity and process for producing the oligomers
WO2019157002A1 (en) Highly branched, low molecular weight polyolefins and methods for their production
US4469910A (en) Method for the oligomerization of alpha-olefins
Kissin et al. Post‐oligomerization of α‐olefin oligomers: A route to single‐component and multicomponent synthetic lubricating oils
FI90231C (en) Method for oligomerization of 1-butene
US4395578A (en) Oligomerization of olefins over boron trifluoride in the presence of a transition metal cation-containing promoter
US5053568A (en) Lubricant compositions comprising copolymers of 1-vinyladamantane and 1-alkenes and methods of preparing the same
JPH06316538A (en) Oligomerization
US4642410A (en) Catalytic poly alpha-olefin process
US4594469A (en) Method for the oligomerization of alpha-olefins
US5516958A (en) Preparation of α, ω-diene oligomers and derivatives thereof
CS209406B2 (en) Method of making the high quality lubricating oils
FI93369C (en) Process for the oligomerization of C4 olefins with linear alpha-olefins
CS272398B1 (en) Method of poly-n-butene oils production
US11370987B2 (en) Method of controlling kinematic viscosity of polyalphaolefin
EP0677033A1 (en) Method for oligomerization of olefins and olefin mixtures
WO1996026913A1 (en) Process for preparation of poly-n-butenes having high viscosity
RU2666725C1 (en) Method of producing polyalphaolefins with kinematic viscosity of 10-25 cst
US5233116A (en) Process for preparing oligomers having low unsaturation
EP0552527A1 (en) Dimerization of long-chain olefins using a fluorocarbonsulfonic acid polymer on an inert support
FI95239C (en) Process for oligomerization of aromatic and alicyclic hydrocarbons containing olefinic group with boron trifluoride catalyst

Legal Events

Date Code Title Description
FG Patent granted

Owner name: NESTE OY

BB Publication of examined application
MM Patent lapsed