FI20225978A1 - Arrangement and method for controlling magnesium sulphate feed - Google Patents
Arrangement and method for controlling magnesium sulphate feed Download PDFInfo
- Publication number
- FI20225978A1 FI20225978A1 FI20225978A FI20225978A FI20225978A1 FI 20225978 A1 FI20225978 A1 FI 20225978A1 FI 20225978 A FI20225978 A FI 20225978A FI 20225978 A FI20225978 A FI 20225978A FI 20225978 A1 FI20225978 A1 FI 20225978A1
- Authority
- FI
- Finland
- Prior art keywords
- magnesium sulphate
- detector
- process flow
- feed
- spectroscopy
- Prior art date
Links
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 title claims abstract description 176
- 238000000034 method Methods 0.000 title claims abstract description 102
- 229910052943 magnesium sulfate Inorganic materials 0.000 title claims abstract description 88
- 235000019341 magnesium sulphate Nutrition 0.000 title claims abstract description 88
- 238000005259 measurement Methods 0.000 claims abstract description 30
- 239000000126 substance Substances 0.000 claims abstract description 26
- 238000004090 dissolution Methods 0.000 claims abstract description 20
- 238000004611 spectroscopical analysis Methods 0.000 claims abstract description 19
- 238000004537 pulping Methods 0.000 claims description 11
- 238000004061 bleaching Methods 0.000 claims description 9
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 claims description 6
- 229920002678 cellulose Polymers 0.000 claims description 6
- 239000001913 cellulose Substances 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 229910019440 Mg(OH) Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
- D21C9/1005—Pretreatment of the pulp, e.g. degassing the pulp
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
- D21C9/16—Bleaching ; Apparatus therefor with per compounds
- D21C9/163—Bleaching ; Apparatus therefor with per compounds with peroxides
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C7/00—Digesters
- D21C7/12—Devices for regulating or controlling
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/001—Modification of pulp properties
- D21C9/002—Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
- D21C9/004—Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives inorganic compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/10—Bleaching ; Apparatus therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
- G01J3/108—Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3577—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Paper (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
An arrangement (1) for controlling magnesium sulphate feed comprises a detector (2) arranged inside process flow after magnesium sulphate dissolution process and configured to measure a characteristic of the process flow by means of spectroscopy. The arrangement (1) further comprises a controller (3) connected to the detector (2) to receive measurement data from the detector (2) and configured to determine an amount of a substance in the process flow based on the measurement data and to control the feed of magnesium sulphate based on the determined amount of the one substance.
Description
ARRANGEMENT AND METHOD FOR CONTROLLING MAGNESIUM SULPHATE
FEED
The present disclosure relates to controlling magnesium sulphate feed in wood processing industry, and more particularly to an arrangement and method for controlling magnesium sulphate feed.
In oxygen delignification, the degradation of cellulose leads to yield losses and deterioration in the quality of the pulp. The degradation of cellulose is reflected in a decrease in the viscosity of the pulp. Cellulose degradation reactions are catalyzed by heavy metal residues in the pulp. Heavy metals are derived from wood and process water.
Learning to control the metal profile of the pulp has been key to the development of oxygen delignification. However, the detrimental effect of heavy metals can be reduced by adding magnesium sulphate to the pulp, thus maintaining a higher yield and quality of the pulp.
In known solutions, preparation of magnesium sulphate water solution is typically fed at a predetermined ratio with respect to the dry cellulose, or samples are taken for laboratory analysis. The first option may be too uncertain for optimal results, especially due to wear of the equipment, whereas the latter is time consuming and the feedback loop is slow.
An object of the present disclosure is to provide a new arrangement and method in white liquor oxidation.
The object of the disclosure is achieved by a method and an arrangement which are characterized by what is stated in the independent claims. Some embodiments of the disclosure are disclosed in the dependent claims.
N The disclosure is based on the idea of determining an amount of a substance in the
N 25 process flow after magnesium sulphate dissolution process by means of spectroscopy and = use it in pulping process. In other words, the measurement is made using spectroscopy
N and online from the process flow without a need for taking samples and taking samples to
E a laboratory for detailed analysis. 0 An advantage of the disclosure is that the measurements can be accurate and real time.
S 30 The feedback time may be reduced considerably, and the process control improved.
N
In the following the disclosure will be described in greater detail by means of preferred embodiments with reference to the accompanying drawings, in which
Figure 1 illustrates schematically some features related to a magnesium sulphate dissolution process according to an example;
Figure 2 illustrates an arrangement for controlling magnesium sulphate feed; and
Figure 3 illustrates a method for controlling magnesium sulphate feed.
The disclosure relates to an arrangement and method for controlling magnesium sulphate feed.
Figure 1 illustrates schematically some features related to a magnesium sulphate dissolution process 100 according to an example. As mentioned in the background section, magnesium sulphate is used in many parts of pulping processes, especially in connection with delignification and bleaching processes.
Magnesium sulphate, such as hydrous magnesium sulphate or anhydrous magnesium sulphate, is typically delivered to a plant as a powder and dissolved in water, as shown in
Figure 1. Generally, the magnesium sulphate solution is added to a brown stock immediately after washing device or stage. The dosage amount may typically be in the range of 0.1 to 0.8 % by weight of magnesium sulphate per dry pulp, and the dosage consistency is about 25 - 150 g/ I.
However, many factors affect optimal dosing process, and it might be beneficial to control the feed of magnesium sulphate, more particularly to control the feed of magnesium sulphate solution to the pulping process(es) and/or magnesium sulphate powder to the magnesium sulphate dissolution process. In this description, magnesium sulphate solution refers to a magnesium sulphate water solution, in other words magnesium sulphate
N dissolved in water. Firstly, in some embodiments it might be beneficial to adjust and/or
N control the dosage itself. For instance, it may be beneficial to optimize the dosage
DN 25 according to the local conditions of the process, such as the pulping process. By optimizing
N the dosage to the local conditions, a sufficient time can be ensured for the chemical to
S penetrate the pulp fibres before the pH is adjusted and the pulp is transported to an oxygen
E reactor. Under alkaline conditions, the magnesium component precipitates as active © magnesium hydroxide (Mg(OH).), which can remove heavy metals by precipitation. In
S 30 addition to or instead of these purposes, magnesium can also act as a radical scavenger.
N The magnesium component may also be able to protect the fibres through complex
N formation. As a result of such complex formation, cellulose fibres may be significantly less degraded. Thus, the use of magnesium sulphate may also maintain the viscosity of the pulp at a higher level than would be possible without the use of magnesium.
Secondly, some factors may affect optimal feed parameters in the magnesium dissolution process and should be taken into consideration as well. For instance, the magnesium sulphate powder may be fed, for instance via a feed silo 10, to a dissolution receptacle 11, such as a dissolution container, by a feed screw 12. Wear of such a feed screw might affect the actual amount of magnesium sulphate fed at a given feed rate. Thereby, according to an embodiment, feed of magnesium sulphate might be controlled by adjusting feed rate of magnesium sulphate and/or water to the dissolution receptacle, and/or by adjusting the dosing of the magnesium sulphate solution to the pulping process(es).
Figure 2 illustrates an arrangement 1 for controlling magnesium sulphate feed.
An arrangement 1 for controlling magnesium sulphate feed, such as the arrangement of
Figure 2, comprises a detector 2 arranged inside process flow after magnesium sulphate dissolution process. This enables providing an inline measurement, in other words a measurement directly from the process flow by a detector 2 provided in the process flow, which is a real time measurement, as compared to samples taken to a laboratory for measurements. The detector 2 is configured to measure a characteristic of the process flow by means of spectroscopy.
The arrangement 1 for controlling magnesium sulphate feed, later called the arrangement 1, also comprises a controller 3. The controller 3 is connected to the detector 2 to receive measurement data from the detector 2. The controller 3 is configured to determine an amount of a substance in the process flow based on the measurement data, namely the measurement data received from the detector 2, and to control the feed of magnesium sulphate based on the determined amount of the substance.
According to an embodiment, the detector 2 may comprise an infrared spectrometer. More
N particularly, infrared spectrometer may be used to measure the concentration of
N 25 compounds, for instance in one or more measurement points of the process, using infrared
DN spectroscopy. According to an embodiment, the detector 2 more particularly may comprise
Tr a Fourier Transform Infrared (FTIR) Spectroscopy spectrometer. Fourier-transform
S infrared spectroscopy (FTIR) is a technigue used to obtain an infrared spectrum of
E absorption or emission of a solid, liguid or gas. An advantage of such embodiments is that co 30 an FTIR spectrometer can simultaneously collect high-resolution spectral data over a wide
S spectral range. FTIR spectrometers are known as such and are, thus, not explained here
N in more detail. s Detectors 2 based on spectroscopy typically have a wavelength range, within which the detector 2 can be used and/or is configured to be used. In arrangements 1 and methods disclosed in this description, the detector 2 may be configured to use the whole wavelength range of the detector 2, when making the measurements disclosed in this description and accompanying claims and figures.
According to an embodiment, the detector 2 may be a spectrometer configured to use mid- infrared wavelength range in the measurement. According to an embodiment, the detector 2 may be a spectrometer configured to use a wavelength range of 400-4000 cm".
According to an embodiment, the detector 2 may be a spectrometer configured to use a wavelength range of 648 — 4000 cm”. According to an embodiment, the detector 2 may be a spectrometer configured to use a wavelength range of 800 — 1220 cm, and according to a further embodiment, the detector 2 may be a spectrometer configured to use a wavelength range of 1000 — 1168 cm™. In some embodiments, it may be beneficial to use a wider range of wavelengths. This may be true for instance in embodiments, in which multiple characteristics of the process flow, for instance amount, such as concentrations, of multiple substances a measured. In some other embodiments, especially in embodiments, in which only one substance or only a few substances are measured, it may be beneficial to select a narrower range, within which the strongest correlation between the infrared spectroscopy measurements and amounts, such as the concentrations, of the substances of interest are found. For instance, in the embodiments of this disclosure, the strongest correlations for sulphate may be found within the wavelength range of 1000 — 1168 cm, for example, whereby it may be beneficial to use this range or a range including this range.
According to an embodiment, the detector 2 may be arranged inside process flow after magnesium sulphate dissolution process by mounting the detector 2 to a line or a receptacle of the process flow by means of a mounting flange, directly to the line or
N 25 receptacle and/or in another manner suitable for the type of the detector 2 in guestion. < According to an embodiment, the detector 2 may be arranged in a line between a = magnesium sulphate dissolution receptacle and a magnesium sulphate filtering
N receptacle. Such embodiments may be beneficial in applications, in which concentration 7 of the magnesium sulphate to be fed to the pulping process is important and/or a quick
E 30 feedback control is important. According to another embodiment, the detector 2 may be
S arranged in a line after the magnesium sulphate filtering receptacle and before dosing the
O magnesium sulphate to the pulping process, such as a delignification and/or bleaching
S process.
According to an embodiment, the detector 2 may be arranged inside process flow between magnesium sulphate dissolution process and dosing points of magnesium sulphate solution to pulping process. According to an embodiment, a dosing point may comprise a point at which magnesium sulphate is fed to at least one of a delignification process and a bleaching process. According to an embodiment, the bleaching process may comprise an oxygen based, hydrogen peroxide based, or chlorine dioxide based bleaching processes. 5 According to an embodiment, the amount of a substance in the process flow may comprise an amount of magnesium sulphate in the process flow material measured by means of spectroscopy.
According to an embodiment, the control of the feed of magnesium sulphate based on the determined amount of a substance may comprise adjusting, for instance controlled by the controller 3, the feeding rate of the feed screw 12 on the basis of magnesium sulphate solution concentration determined on the basis of measurement(s) made by means of spectroscopy. In other words, the feeding rate of the feed screw 12 may be adjusted based on a measured concentration of the magnesium sulphate solution. According to an embodiment, adjusting the feeding rate of the feed screw 12 may comprise adjusting, by the controller 3, rotational speed of the feed screw. The rotational speed of the feed screw 12 may be adjusted for instance by adjusting the speed of a motor driving the feed screw.
According to an embodiment, the control of the feed of magnesium sulphate based on the determined amount of a substance may comprise adjusting dosing of magnesium sulphate solution to pulping process at dosing points before at least one of a delignification process and a bleaching process on the basis of magnesium sulphate solution concentration determined on the basis of measurement(s) made by means of spectroscopy.
Figure 3 illustrates a method for controlling magnesium sulphate feed.
According to an embodiment a method for controlling magnesium sulphate feed, such as
N the method of Figure 3, may comprise the steps of measuring 31 by a detector 2 arranged
S 25 inside process flow after magnesium sulphate dissolution process a characteristic of the = process flow by means of spectroscopy; receiving 33 in a controller 3 connected to the
N detector 2 measurement data from the detector; determining 35 by the controller 3 an 7 amount of a substance in the process flow based on the measurement data received from & the detector; and controlling 37 the feed of magnesium sulphate based on the determined x 30 amount of a substance.
E According to an embodiment, the controlling of the feed of magnesium sulphate based on
S the determined amount of a substance may comprise controlling feed rate of magnesium sulphate solution to cellulose pulp flow prior to at least one of a bleaching process and a delignification process on the basis of magnesium sulphate solution concentration determined on the basis of measurement(s) made by means of spectroscopy.
According to an embodiment, the method for controlling magnesium sulphate feed may be implemented by an arrangement 1 according to an embodiment or a combination of embodiments disclosed in this description, accompanying claims and/or figures, or a part of such an arrangement 1. According to an embodiment, the arrangement 1 may be configured to implement one or more steps of the method for controlling magnesium sulphate feed.
N
N
O
N
N
O
I
Za o 00
NM oO
LO
N
N
O
N
Claims (24)
1. An arrangement for controlling magnesium sulphate feed, characterized in that the arrangement comprises: a detector arranged inside process flow after magnesium sulphate dissolution process, and configured to measure a characteristic of the process flow by means of spectroscopy; and a controller connected to the detector to receive measurement data from the detector and configured to determine an amount of a substance in the process flow based on the measurement data and to control the feed of magnesium sulphate based on the determined amount of the one substance.
2. An arrangement according to claim 1, wherein the detector comprises an infrared spectrometer.
3. An arrangement according to claim 2, wherein the detector comprises a Fourier Transform Infrared Spectroscopy spectrometer.
4. An arrangement according to claim 2 or 3, wherein the detector is a spectrometer configured to use mid-infrared wavelength range in the measurement.
5. An arrangement according to claim 4, wherein the detector is a spectrometer configured to use a wavelength range of 400-4000 cm™
6. An arrangement according to claim 5, wherein the detector is a spectrometer configured to use a wavelength range of 648 — 4000 cm”.
N
7. An arrangement according to claim 6, wherein the detector is a spectrometer N S configured to use a wavelength range of 800 — 1220 cm”.
N
8. An arrangement according to claim 7, wherein the detector is a spectrometer N © configured to use a wavelength range of 1000 — 1168 cm".
E
9. Anarrangement according to anyone of claims 1 — 8, wherein the detector is arranged
00 . : . 5 inside process flow after magnesium sulphate dissolution process by mounting the N detector to a line or a receptacle of the process flow by means of a mounting flange S or directly to the line or receptacle.
10. An arrangement according to claim 9, wherein the detector is arranged in a line between a magnesium sulphate dissolution receptacle and a magnesium sulphate filtering receptacle.
11. An arrangement according to anyone of claims 1 — 10, wherein the detector is arranged inside process flow between magnesium sulphate dissolution process and dosing points of magnesium sulphate solution to pulping process.
12. An arrangement according to anyone of claims 1 — 11, wherein the amount of a substance in the process flow comprises an amount of magnesium sulphate in the process flow material measured by means of spectroscopy.
13. An arrangement according to claim 1 — 12, wherein the control of the feed of magnesium sulphate based on the determined amount of a substance comprises adjusting the feeding rate of the feed screw on the basis of magnesium sulphate solution concentration determined on the basis of measurement(s) made by means of spectroscopy.
14. An arrangement according to claim 1 — 13, wherein the control of the feed of magnesium sulphate based on the determined amount of a substance comprises adjusting dosing of magnesium sulphate solution to pulping process at dosing points before at least one of delignification process and a bleaching process on the basis of magnesium sulphate solution concentration determined on the basis of measurement(s) made by means of spectroscopy.
15. A method for controlling magnesium sulphate feed, characterized in that the method comprises the steps of: N measuring by a detector arranged inside process flow after magnesium sulphate < dissolution process a characteristic of the process flow by means of spectroscopy; T 25 receiving in a controller connected to the detector measurement data from the S detector; E determining by the controller an amount of a substance in the process flow based on © the measurement data received from the detector; and S controlling the feed of magnesium sulphate based on the determined amount of a N 30 substance. N
16. A method according to claim 15, wherein the detector is a spectrometer configured to use mid-infrared wavelength range in the measurement.
17. A method according to claim 16, wherein the detector is a spectrometer configured to use a wavelength range of 400-4000 cm.
18. A method according to claim 17, wherein the detector is a spectrometer configured to use a wavelength range of 640 — 4000 cm".
19. A method according to claim 18, wherein the detector is a spectrometer configured to use a wavelength range of 800 — 1220 cm".
20. A method according to claim 19, wherein the detector is a spectrometer configured to use a wavelength range of 1000 — 1168 cm™.
21. A method according to anyone of claims 15 — 20, wherein the detector is arranged inside process flow after magnesium sulphate dissolution process by mounting the detector to a line or a receptacle of the process flow.
22. A method according to anyone of claims 15 — 21, wherein the amount of a substance in the process flow comprises an amount of magnesium sulphate in the process flow material measured by means of spectroscopy.
23. A method according to anyone of claims 15 - 22, wherein the controlling of the feed of magnesium sulphate based on the determined amount of a substance comprises controlling feed rate of magnesium sulphate solution to cellulose pulp flow prior to at least one of a bleaching process and a delignification process on the basis of magnesium sulphate solution concentration determined on the basis of measurement(s) made by means of spectroscopy. N
24. A method according to anyone of claims 15 - 23, wherein the controlling of the feed of O magnesium sulphate based on the determined amount of a substance comprises —- adjusting the feeding rate of the feed screw on the basis of magnesium sulphate W solution concentration determined on the basis of measurement(s) made by means of © 25 spectroscopy. E o 00 NM (e LO N N O N
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20225978A FI20225978A1 (en) | 2022-11-02 | 2022-11-02 | Arrangement and method for controlling magnesium sulphate feed |
PCT/FI2023/050603 WO2024094925A1 (en) | 2022-11-02 | 2023-10-27 | Arrangement and method for controlling magnesium sulphate feed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20225978A FI20225978A1 (en) | 2022-11-02 | 2022-11-02 | Arrangement and method for controlling magnesium sulphate feed |
Publications (1)
Publication Number | Publication Date |
---|---|
FI20225978A1 true FI20225978A1 (en) | 2024-05-03 |
Family
ID=88695724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FI20225978A FI20225978A1 (en) | 2022-11-02 | 2022-11-02 | Arrangement and method for controlling magnesium sulphate feed |
Country Status (2)
Country | Link |
---|---|
FI (1) | FI20225978A1 (en) |
WO (1) | WO2024094925A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1277110C (en) * | 1986-05-07 | 1990-12-04 | Rudolf Patt | Method for cooking control of lignocelluloses by ftir spectroscopy |
US5282931A (en) * | 1992-07-08 | 1994-02-01 | Pulp And Paper Research Institute Of Canada | Determination and control of effective alkali in kraft liquors by IR spectroscopy |
SE500353C2 (en) * | 1992-10-26 | 1994-06-06 | Sca Wifsta Oestrand Ab | Peroxide bleaching of sulfate pulp with the addition of magnesium before bleaching |
DE19814385C1 (en) * | 1998-03-31 | 1999-10-07 | Siemens Ag | Process and device for process control and process optimization of chemical recovery in the manufacture of pulp |
US20020053640A1 (en) * | 1998-11-12 | 2002-05-09 | Michael Kester | Determination of ionic species concentration by near infrared spectroscopy |
CA2392292C (en) * | 1999-12-23 | 2005-09-27 | Pulp And Paper Research Institute Of Canada | Determination of kappa number in chemical pulps by raman spectrometry |
-
2022
- 2022-11-02 FI FI20225978A patent/FI20225978A1/en unknown
-
2023
- 2023-10-27 WO PCT/FI2023/050603 patent/WO2024094925A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024094925A1 (en) | 2024-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6774992B1 (en) | Determination of the property of a solution or solid using raman ratios | |
US7148490B2 (en) | Method for determining the concentration of hydrogen peroxide in a process stream and a spectrophotometric system for the same | |
US20030102094A1 (en) | Method in the bleaching of pulp and a device for the bleaching of pulp | |
EP0786082B1 (en) | A method of determining the organic content in pulp and paper mill effluents | |
CA2599033C (en) | Method for determining chemical pulp kappa number with visible-near infrared spectrometry | |
JP4054854B2 (en) | Analysis of liquid samples using near infrared spectroscopy | |
US6551451B2 (en) | Method for determining liquid content in chemical pulps using ramen spectrometry | |
EP1240511B1 (en) | Determination of kappa number in chemical pulps by raman spectrometry | |
FI20225978A1 (en) | Arrangement and method for controlling magnesium sulphate feed | |
EP1254363A1 (en) | Determination of the properties of a solution or solid using raman ratios | |
Trung et al. | Pulp mill and chemical recovery control with advanced analysers-from trees to final product | |
US6339222B1 (en) | Determination of ionic species concentration by near infrared spectroscopy | |
FI20225979A1 (en) | Arrangement and method for treatment of bleaching chemical residues | |
WO2024094924A1 (en) | Arrangement and method in white liquor oxidation | |
WO2007006150A1 (en) | Method for quantitative determination of individual polysulphide species in oxidized white liquors by means of raman spectroscopy | |
WO2002088860A2 (en) | Device for controlling chemical synthesis processes | |
WO2000068664A1 (en) | Determination of ionic species concentration by near infrared spectroscopy | |
CN107108759B (en) | Method and apparatus for controlling catalytic oxidation of cellulose | |
Trung et al. | Closed Loop Control of ClO2 Generator Using FT-NIR Analyzer | |
Henriksen et al. | Prediction of important sulphite pulp properties from near infrared spectra: a feasibility study and comparison of methods | |
FI118430B (en) | Peroxide bleaching of pulp, for the production of paper and fibrous products, involves measuring the oxygen concentration, temperature and/or carbon monoxide concentration in reaction area, based on which process is monitored | |
Weinstock | 16/\jDetector/Analyzer | |
EP1396723A1 (en) | Method for the measurement of dithionite concentration | |
Yusov et al. | Neptunium (IV) Hydrolysis. A Detailed Study of the First Stage |