FI113061B - copper alloy - Google Patents

copper alloy Download PDF

Info

Publication number
FI113061B
FI113061B FI20010473A FI20010473A FI113061B FI 113061 B FI113061 B FI 113061B FI 20010473 A FI20010473 A FI 20010473A FI 20010473 A FI20010473 A FI 20010473A FI 113061 B FI113061 B FI 113061B
Authority
FI
Finland
Prior art keywords
copper alloy
copper
ppm
welding
oxygen
Prior art date
Application number
FI20010473A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI20010473A0 (en
FI20010473A (en
Inventor
Antti Kilpinen
Timo Salonen
Original Assignee
Outokumpu Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outokumpu Oy filed Critical Outokumpu Oy
Publication of FI20010473A0 publication Critical patent/FI20010473A0/en
Priority to FI20010473A priority Critical patent/FI113061B/en
Priority to JP2002571950A priority patent/JP2004538362A/en
Priority to EP02703649A priority patent/EP1373588A1/en
Priority to BR0207879-1A priority patent/BR0207879A/en
Priority to PCT/FI2002/000184 priority patent/WO2002072901A1/en
Priority to SK1151-2003A priority patent/SK11512003A3/en
Priority to CZ20032372A priority patent/CZ20032372A3/en
Priority to HU0303470A priority patent/HUP0303470A3/en
Priority to CNA028062434A priority patent/CN1496416A/en
Priority to US10/471,191 priority patent/US20040096353A1/en
Priority to PL02363969A priority patent/PL363969A1/en
Publication of FI20010473A publication Critical patent/FI20010473A/en
Application granted granted Critical
Publication of FI113061B publication Critical patent/FI113061B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Arc Welding In General (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

113061113061

KUPARISEOSCOPPER ALLOY

Tämä keksintö kohdistuu patenttivaatimuksen 1 johdanto-osan mukaiseen ku-pariseokseen. Keksintä kohdistuu myös kupariseoksen käyttöön erityisesti hit-5 sattavissa sovellutuksissa.This invention relates to a copper alloy according to the preamble of claim 1. The invention also relates to the use of copper alloy, particularly in hit-5 applications.

Kuparin hyvä hitsattavuus on tärkeä ominaisuus, erityisesti putkien ja putkimaisten kaapelien johdinten valmistuksen yhteydessä. Putkien ja putkimaisten kaapelien, kuten koaksiaalikaapeleiden ja niiden kaltaisten ίο johtimina käytetään usein ohutta kuparinauhaa, joka valmistuksen yhteydessä taivutetaan putkimaiseksi ja nauhan vapaat reunat tyypillisesti hitsataan yhteen. Monissa tapauksissa näin valmistettua putkea muokataan vielä vetämällä tai aaltomaiseksi korrugoimalla hitsauksen jälkeen. Kyseisiä kaapeleita käytetään mm. telekommunikaatiosovellusten käyttöön tarkoitettujen kaapeleiden is yhteydessä tai esimerkiksi vedenalaisissa kaapeleissa. Tunnetuissa ratkaisuissa, joissa vaatimuksena on erittäin hyvä sähkönjohtavuus, on käytetty tyypillisesti ns. hapetonta kuparia (esimerkiksi Cu-OF/ Cu-OFE). Hapettoman kuparin hyvää hitsattavuutta ja muokattavuutta on tullut tarve edelleen kehittää.Good weldability of copper is an important feature, especially in the manufacture of pipes and tubular cable conductors. Thin copper wire is often used as a conductor for tubes and tubular cables, such as coaxial cables and the like, which are bent to a tubular shape during manufacture and are typically welded to the free edges of the tape. In many cases, the tube so produced is further modified by drawing or corrugating after welding. These cables are used e.g. with cables for use in telecommunications applications or, for example, underwater cables. In the known solutions, where the requirement of very good electrical conductivity is required, the so-called. oxygen-free copper (e.g., Cu-OF / Cu-OFE). There is a need to further develop the good weldability and workability of non-oxygenated copper.

20 Tämän keksinnön tarkoituksena on aikaansaada kupariseos, jonka sähkönjohtavuus on erinomainen ja jonka hitsattavuus ja hitsauksen jälkeinen muokatta-vuus ovat erittäin hyviä.It is an object of the present invention to provide a copper alloy with excellent electrical conductivity and excellent weldability and post-weldability.

• · « * ·• · «* ·

Keksinnölle on tunnusomaista se, mitä on mainittu patenttivaatimuksissa.The invention is characterized by what is stated in the claims.

2525

Keksinnön mukaisella seoksella on lukuisia merkittäviä etuja. Käytettäessä hapettomassa kuparissa pieniä määriä seosaineita, erityisesti tinaa ja/tai man- . gaania on saavutettu erittäin hyviä tuloksia hitsattavuudessa ja muokattavuu- * > » « · * · ... dessa. Mikroseostamalla hapettomaan kupariin pieniä määriä tinaa ja/tai man- 30 gaania on pystytty vaikuttamaan liittämisessä sulatettavan materiaalin sulan • * · : .* ominaisuuksien parantamiseen erityisesti viskositeettiin ja pintajännitykseen.The composition according to the invention has numerous significant advantages. When using small amounts of alloying elements, in particular tin and / or mann, in non-oxygenated copper. gane has achieved very good results in weldability and adaptability. By micro-doping small amounts of tin and / or manganese in the oxygen-free copper, it has been possible to influence the molten properties of the molten material, in particular viscosity and surface tension.

Näillä molemmilla ominaisuuksilla on merkittävä vaikutus kupariseoksen hitsat- 2 113061 tavuuteen. Keksinnön mukaisella seoksella aikaansaadaan sekä helpommin hallittava hitsausprosessi että mekaanisesti vahvempi liitos. Saavutettu seos soveltuu erittäin hyvin käytettäväksi kuparinauhoista hitsaamalla valmistettujen tuotteiden, kuten putkien, profiiliputkien, aaltoputkien, putkimaisten kaapelien 5 johdinten yhteydessä ja niiden muokkauksen, kuten vedon, taivutuksen korru-goinnin, profiloinnin jne., yhteydessä.Both of these properties have a significant effect on the weldability of the copper alloy. The alloy of the invention provides both a more manageable welding process and a mechanically stronger joint. The resulting alloy is very well suited for use in welding products made of copper strip by welding, such as pipes, profile tubes, waveguides, tubular cables 5, and their modification, such as tensile, bending, corrosion, profiling, etc.

Seuraavassa keksintöä kuvataan yksityiskohtaisemmin esimerkkien avulla, viittaamalla oheiseen kuvioon, jossa on esitetty erään keksintöä kuvaavan esimer-10 kin tulokset graafisessa muodossa.In the following, the invention will be described in more detail by way of example with reference to the accompanying figure, in which the results of one of the examples illustrating the invention are shown in graphical form.

Esimerkki 1Example 1

Taulukko 1. Kupariseokset, niiden sähkönjohtavuus, hitsattavuus sekä hitsauk-15 sen jälkeinen muokattavuus.Table 1. Copper alloys, their electrical conductivity, weldability and post-weldability.

Näyte Cu+Ag Sn (ppm) Mn 02 (ppm) IACS (%) _____(PPm)___Sample Cu + Ag Sn (ppm) Mn 02 (ppm) IACS (%) _____ (PPm) ___

Cu-OF >99,95 <10 101,75Cu-OF> 99.95 <10 101.75

Cu-OF+Sn >99,95 25 “<iÖ 101,67Cu-OF + Sn> 99.95 25 "<101.67

Cu-OF+Mn >99,95 8F9 <1Ö 101,63Cu-OF + Mn> 99.95 8F9 <10 61.63

Hitsattiin putkimaiseksi taivutettua taulukossa 1 esitettyjä materiaalinäytteitä.The tubular bent material samples shown in Table 1 were welded.

• j. 20 Materiaaleina käytettiin tinalla mikroseostettua hapetonta kuparia (Cu-OF+Sn) » · ja mangaanilla mikroseostettua hapetonta kuparia (Cu-OF+Mn) ja vertailumate-naaleina hapetonta kuparia (Cu-OF, hakijan laatu OF-OK). Mikroseostetut näyt-’ ·. teet olivat seuraavat:• j. The materials used were tin microalloyed oxygen-free copper (Cu-OF + Sn) »and manganese microalloyed oxygenated copper (Cu-OF + Mn) and reference materials were oxygen-free copper (Cu-OF, applicant-quality OF-OK). Micro-doped samples-. you did the following:

Cu-OF+Sn seostus: 25 ppm Sn 25 Cu-OF+Mn seostus: 8-9 ppm M n • ·. Kokeissa käytetiin referensseinä hapetonta kuparia (Cu-OF).Cu-OF + Sn doping: 25 ppm Sn 25 Cu-OF + Mn doping: 8-9 ppm M n • ·. Oxygen-free copper (Cu-OF) was used as a reference in the experiments.

* - »·* - »·

Hitsattava nauha oli paksuudeltaan 0.26 mm.The strip to be welded was 0.26 mm thick.

» 3 113061»3 113061

Hitsauskokeet suoritettiin taivuttamalla materiaalinauhaa putkimaiseksi ja hitsaamalla nauhan reunat yhteen TIG-hitsauksella. Laitteistona käytettiin tyypillistä putken hitsaukseen käytettävää laitteistoa, jossa materiaalinauhaa johdetaan aluksi taivutusrullien kautta hitsausasemaan, jossa putkimaiseksi taivutetun 5 nauhan vastakkaiset reunat hitsataan hitsausasemassa yhteen. Hitsausvai-heen jälkeen hitsattu putki ohjataan kiepille tai kelataan. Hitsausmenetelmänä käytettiin kupariputkien hitsauksessa tyypillisesti käytettävää TIG-hitsausta. Suojakaasuna käytettiin Argonia . Hitsausnopeutena käytettiin 20 m/min. Hit-sausvirtaa muutettiin välillä 100-250 A ja hitsausjännite oli noin 9-12 V.The welding tests were performed by bending the material strip to a tubular shape and welding the strip edges together by TIG welding. The apparatus used was a typical tube welding apparatus in which the strip of material is initially fed through bending rollers to a welding station where the opposite edges of the tubular bent 5 strips are welded together at the welding station. After the welding step, the welded tube is either wound or wound. The welding method used was TIG welding typically used in copper tube welding. Argon was used as the shielding gas. The welding speed was 20 m / min. The hit dry current was changed between 100-250 A and the welding voltage was about 9-12 V.

1010

Hitsauskokeet onnistuivat hyvin. Hitsausarvojen asettelussa tinalla mikroseos-tetulla laadulla saavutettiin helpoimmin oikeat asetusarvot sekä hitsattavaa materiaalinauhaa taivuttavalle muovausrullastolle että hitsausarvoille. Sn-seoksen sulan käyttäytyminen oli erittäin hyvin hallittavissa laajalla parametrialueella.The welding tests were successful. In the setting of welding values, tin micro-alloyed quality was most easily achieved with the correct setting values for both the forming roll bending the material to be welded and the welding values. The melt behavior of the Sn alloy was very well controlled over a wide range of parameters.

15 Μη-seostettu materiaali oli myös parempi hitsattavuudeltaan kuin tavallinen hapeton kupari.The 15 Μη alloyed material also had better weldability than regular anoxic copper.

Suoritetuissa kokeissa havaittiin, että hapeton kupari, johon oli mikroseostettu tinaa, (tinaa 25 ppm), hitsattavuus parani merkittävästi ollen erinomainen. Myös 20 käyttämällä hapettoman kuparin mikroseosaineena pieniä määriä mangaania (mangaania 8-9 ppm), pystyttiin parantamaan hitsattavuutta. Mangaanilla seostetun hapettoman kuparin hitsattavuus arvioitiin suoritetuissa kokeissa heikom-. maksi kuin tinalla mikroseostetun hapettoman kuparin hitsattavuus. Alan am- mattihenkilölle on selvää, että vastaavalla tavalla voidaan mikroseostaa myös 25 muita hapettomia kuparilaatuja (esimerkiksi Cu-OFE, Cu-OFXLP ja C10910 (CDA:n koodi)).In the experiments performed, it was found that the oxygen-free copper to which the alloyed tin (25 ppm tin) was welded significantly improved its weldability. Also, using small amounts of manganese (8-9 ppm manganese) as an oxygen-free copper alloy, improved weldability. The weldability of the manganese-doped anhydrous copper was judged to be lower in the tests performed. max than the weldability of tin-doped deoxygenated copper. It will be apparent to one skilled in the art that similarly other non-oxygenated copper grades (e.g., Cu-OFE, Cu-OFXLP, and C10910 (CDA code)) can be microalloyed in a similar manner.

Hitsatuille putkille suoritettiin pyörrevirtatarkastus. Arvostelu suoritettiin tarkaste- * lemalla pyörrevirtamittarin antamaa tulostusta. Arviot on koottu taulukkoon 2 ja 30 kuvioon 1. Pyörrevirtamittaus tehtiin osalle hitsatuista putkista. Arvostelu tehtiin .· tarkastelemalla pyörrevirtamittarin antamaa tulostusta. Arvosanaan vaikutti hit- * * * ,.: sin aiheuttaman pohjakohinan korkeus ja arvosanaa alensivat mahdolliset piikit 113061 4 signaalissa. Pyörrevirran analyysissä käytettiin 30 m matkalla tapahtunutta mittausta.The welded tubes were subjected to eddy current inspection. The rating was made by checking the * output of the eddy current meter. Estimates are summarized in Tables 2 and 30 in Figure 1. Eddy current measurement was performed on a part of the welded tubes. · Reviewing the output from the eddy current meter. The score was influenced by the height of the bottom noise caused by the hit * * *,., And was downgraded by possible peaks in the 113061 4 signal. For the analysis of the eddy current, a 30 m distance measurement was used.

Taulukko 2 Hitsausparametrit ja hitsien arvostelu Näyte Seos Virta Jännite Nopeus Kaasu Arvosana [A] [V] [m/min] Pyörrevirta 79 SN 156 9,4 20 AR 6 80 SN 146 9,3 20 AR 6 81 SN 136 9,5 20 AR 6 82 SN 126 9,6 20 AR 5,5 83 SN 116 9,6 20 AR 5 84 SN 105 9,7 20 AR 5 85 SN 166 9,5 20 AR 5 86 SN 176 9,5 20 AR 5 87 SN 196 9,5 20 AR 4,5 88 SN 210 9,5 20 AR 4,5 89 SN 220 9,5 20 AR 2 90 SN 156 10,2 20 AR 5 91 SN 176 10,2 20 AR 5 92 SN 166 10,1 20 AR 5 93 SN 196 10,1 20 AR 6 94 SN 210 10,2 20 AR 1 95 SN 200 11,3 20 AR 2 96 OF 200 10,1 20 AR 2 97 OF 200 10,1 20 AR 2 98 OF 176 10 20 AR 1 99 OF 176 8,9 20 AR 4 100 OF 166 8,9 20 AR 3 101 OF 166 9,3 20 AR 5 ;; 102 OF 176 9,5 20 AR 5 103 OF 176 10,4 20 AR 5 ··: 104 OF 176 11 20 AR 3 105 OF 196 11 20 AR 5 60 OF 196 11,1 20 AR 4 61 OF 210 11,2 20 AR 5 62 OF 220 11,3 20 AR 4 106 MN 166 10,1 20 AR 3 107 MN 176 10 20 AR 3 108 MN 186 10,1 20 AR 4 *. 109 MN 196 10,1 20 AR 5 > » 5 5 113061Table 2 Welding Parameters and Weld Rating Sample Alloy Current Voltage Speed Gas Rating [A] [V] [m / min] Eddy Current 79 SN 156 9.4 20 AR 6 80 SN 146 9.3 20 AR 6 81 SN 136 9.5 20 AR 6 82 SN 126 9.6 20 AR 5.5 83 SN 116 9.6 20 AR 5 84 SN 105 9.7 20 AR 5 85 SN 166 9.5 20 AR 5 86 SN 176 9.5 20 AR 5 87 SN 196 9.5 20 AR 4.5 88 SN 210 9.5 20 AR 4.5 89 SN 220 9.5 20 AR 2 90 SN 156 10.2 20 AR 5 91 SN 176 10.2 20 AR 5 92 SN 166 10.1 20 AR 5 93 SN 196 10.1 20 AR 6 94 SN 210 10.2 20 AR 1 95 SN 200 11.3 20 AR 2 96 OF 200 10.1 20 AR 2 97 OF 200 10.1 20 AR 2 98 OF 176 10 20 AR 1 99 OF 176 8.9 20 AR 4 100 OF 166 8.9 20 AR 3 101 OF 166 9.3 20 AR 5 ;; 102 OF 176 9.5 20 AR 5 103 OF 176 10.4 20 AR 5 ··: 104 OF 176 11 20 AR 3 105 OF 196 11 20 AR 5 60 OF 196 11.1 20 AR 4 61 OF 210 11.2 20 AR 5 62 OF 220 11.3 20 AR 4 106 MN 166 10.1 20 AR 3 107 MN 176 10 20 AR 3 108 MN 186 10.1 20 AR 4 *. 109 MN 196 10.1 20 AR 5> »5 5 113061

Taulukossa seoksen merkintä SN tarkoittaa tinalla seostettua hapetonta kuparia (Cu-OF+Sn), seoksen merkintä MN tarkoittaa mangaanilla seostettua hape-5 tonta kuparia (Cu-OF+Mn) ja OF tavallista hapetonta kuparia (Cu-OF).In the table, the alloy SN denotes tin-doped oxygen-free copper (Cu-OF + Sn), the alloy MN denotes manganese-doped oxygen-5 ton copper (Cu-OF + Mn) and OF the common oxygen-free copper (Cu-OF).

Kuviossa 1 neliöllä on merkitty tinalla mikroseostettu hapeton kupari (Cu-OF+Sn). Ympyrällä on merkitty mangaanilla mikroseostettu hapeton kupari (Cu-OF+Mn). Vertailumateriaalina käytetty hapeton kupari (Cu-OF) on merkitty kulo viossa kolmiolla.In Fig. 1, a square denotes tin-doped oxygen-free copper (Cu-OF + Sn). The circle is marked with manganese micronized oxygen-free copper (Cu-OF + Mn). The reference material, oxygen-free copper (Cu-OF), is represented by a triangle in the flow path.

Kuvan 1 ja taulukon 2 perusteella havaitaan, että tinalla mikroseostettu hapeton kupari (Cu-OF+Sn) oli ehdottomasti paras laadultaan ja mahdollisti laajimman hitsausvirta-alueen käyttämisen. Hitsien arvosanat olivat hyviä laajalla virta-15 alueella 105-190 A. Myös mangaanilla mikroseostettu hapeton kupari (Cu-OF+Mn) antoi laadultaan parempia hitsejä laajemmalla hitsausvirta-alueella kuin vertailumateriaalina käytetty tavallinen hapeton kupari (Cu-OF). Tulosten hajonnan ja eri materiaalien virta-alueen (virtaikkunan) perusteella voidaan sanoa, että tinalla ja/tai mangaanilla mikroseostetun hapettoman kuparin hitsatta-20 vuus on selvästi parempi. Erityisesti havaittiin, että tinalla mikroseostettu hapeton kupari oli vertailluista materiaaleista hitsattavuudeltaan paras.Based on Figure 1 and Table 2, it is found that tin-micron-doped oxygen-free copper (Cu-OF + Sn) was by far the best in quality and allowed the widest welding current range to be used. The weld ratings were good over a wide current range of 105-190 A. Also, manganese-micronized oxygen-free copper (Cu-OF + Mn) gave better quality welds over a wider welding current range than standard oxygen-free copper (Cu-OF). Based on the dispersion of the results and the flow range of the various materials (flow window), it can be stated that the weldability of the oxygen-free copper alloyed with tin and / or manganese is significantly better. Specifically, it was found that tin-micron-doped deoxygenated copper had the best weldability of the materials compared.

Keksinnön mukainen kupariseos käsittää hapetonta kuparia, (esimerkiksi Cu-··· OF/ Cu-OFE) ja siihen mikroseostettuna noin 1-250 ppm, tyypillisesti 1-120 25 ppm, edullisimmin 10 - 30 ppm, tinaa (Sn) ja/tai noin 1-150 ppm, tyypillisesti 1-··; 70 ppm, edullisimmin 5 - 20 ppm, mangaania (Mn). Kupariseoksen sähkönjoh tavuus on yli 100 % IACS , tyypillisesti yli 101 % IACS edullisimmin yli 101, 5 % IACS.The copper alloy according to the invention comprises oxygen-free copper (e.g., Cu ··· OF / Cu-OFE) and micro-doped therewith from about 1 to 250 ppm, typically from 1 to 120 ppm, most preferably from 10 to 30 ppm, tin (Sn) and / or 1-150 ppm, typically 1- ··; 70 ppm, most preferably 5-20 ppm, manganese (Mn). The copper alloy has an electrical conductivity of more than 100% IACS, typically greater than 101% IACS, most preferably greater than 101.5% IACS.

"*. 30 * 6 113061"*. 30 * 6 113061

Keksintö kohdistuu myös kupariseoksen käyttöön:The invention also relates to the use of copper alloy:

Johdinnauhana; 5 Kupariseoksen käyttöön johdinkaapelin, kuten koaksiaalikaapelin, putkimaisena johtimena;Johdinnauhana; 5 For use as a tubular conductor in a copper alloy conductor cable, such as a coaxial cable;

Kupariseoksen käyttöön hitsattavissa johdinrakenteissa;For use in copper alloy weldable conductor structures;

Kupariseoksen käyttöön hitsattavissa ja muokattavissa johdinrakenteissa; Kupariseoksen käyttöön vedenalaisen kaapelin putkimaisena johtimena; ja 10 Kupariseoksen käyttöön aaltoputkena.Use of copper alloy in weldable and malleable conductor structures; For use in copper alloy as a tubular cable for underwater cable; and 10 for use in a copper alloy as a waveguide.

Claims (10)

1. Hapeton kupariseos, tunnettu siitä, että seos käsittää hapetonta kuparia ja siihen mikroseostettuna noin 1 - 250 ppm tinaa (Sn) ja noin 5-20 ppm man- 5 gaania (Mn).An oxygen-free copper alloy, characterized in that the alloy comprises oxygen-free copper and micro-doped with about 1 to 250 ppm of tin (Sn) and about 5 to 20 ppm of manganese (Mn). 2. Patenttivaatimuksen 1 mukainen kupariseos, tunnettu siitä, että kupariseos käsittää tinaa (Sn) 1-120 ppm, edullisimmin 10-30 ppm. ίοCopper alloy according to claim 1, characterized in that the copper alloy comprises tin (Sn) 1-120 ppm, most preferably 10-30 ppm. ίο 3. Jonkin patenttivaatimuksista 1 tai 2 mukainen kupariseos, tunnettu siitä, että seoksen sähkönjohtavuus on yli 100 % IACS.Copper alloy according to one of claims 1 or 2, characterized in that the alloy has an electrical conductivity of more than 100% IACS. 4. Jonkin patenttivaatimuksista 1 - 3 mukainen kupariseos, tunnettu siitä, että seoksen sähkönjohtavuus on yli 101 % IACS. 15Copper alloy according to one of Claims 1 to 3, characterized in that the alloy has an electrical conductivity of more than 101% IACS. 15 5. Jonkin patenttivaatimuksista 1 - 4 mukaisen kupariseoksen käyttö johdin-nauhana.Use of a copper alloy according to any one of claims 1 to 4 as a conductive strip. 6. Jonkin patenttivaatimuksista 1-4 mukaisen kupariseoksen käyttö johdinkaa-20 pelin, kuten koaksiaalikaapelin, putkimaisena johtimena. • · .·’ 7. Jonkin patenttivaatimuksista 1-4 mukaisen kupariseoksen käyttö hitsatta- : vissa johdinrakenteissa.Use of a copper alloy according to any one of claims 1 to 4 as a tubular conductor for a conductor game such as a coaxial cable. Use of a copper alloy according to any one of claims 1 to 4 in weldable conductor structures. 7 1130617 113061 8. Jonkin patenttivaatimuksista 1-4 mukaisen kupariseoksen käyttö hitsatta- ;' vissa ja muokattavissa johdinrakenteissa. » φUse of a copper alloy according to any one of claims 1 to 4 for welding; and customizable wire structures. »Φ 9. Jonkin patenttivaatimuksista 1 - 4 mukaisen kupariseoksen käyttö vedenalai-sen kaapelin putkimaisena johtimena. : ,! 30Use of a copper alloy according to any one of claims 1 to 4 as a tubular cable for an underwater cable. :,! 30 ;·*: 10. Jonkin patenttivaatimuksista 1 - 4 mukaisen kupariseoksen käyttö aaltoput- kena. 8 113061· *: Use of a copper alloy according to any one of claims 1 to 4 as a waveguide. 8 113061
FI20010473A 2001-03-09 2001-03-09 copper alloy FI113061B (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
FI20010473A FI113061B (en) 2001-03-09 2001-03-09 copper alloy
CZ20032372A CZ20032372A3 (en) 2001-03-09 2002-03-08 Micro-alloyed oxygen-free copper alloys and their use
EP02703649A EP1373588A1 (en) 2001-03-09 2002-03-08 Micro-alloyed oxygen-free copper alloy and its use
BR0207879-1A BR0207879A (en) 2001-03-09 2002-03-08 Oxygen-free, micro-alloyed copper alloy and its use
PCT/FI2002/000184 WO2002072901A1 (en) 2001-03-09 2002-03-08 Micro-alloyed oxygen-free copper alloy and its use
SK1151-2003A SK11512003A3 (en) 2001-03-09 2002-03-08 Micro-alloyed oxygen-free copper alloy and its use
JP2002571950A JP2004538362A (en) 2001-03-09 2002-03-08 Microalloyed oxygen-free copper alloy and its use
HU0303470A HUP0303470A3 (en) 2001-03-09 2002-03-08 Oxygen-free copper alloy and its use
CNA028062434A CN1496416A (en) 2001-03-09 2002-03-08 Micro-alloyed oxygen-free copper alloy and its use
US10/471,191 US20040096353A1 (en) 2001-03-09 2002-03-08 Micro-alloyed oxygen-free copper alloy and its use
PL02363969A PL363969A1 (en) 2001-03-09 2002-03-08 Micro-alloyed oxygen-free copper alloy and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20010473A FI113061B (en) 2001-03-09 2001-03-09 copper alloy
FI20010473 2001-03-09

Publications (3)

Publication Number Publication Date
FI20010473A0 FI20010473A0 (en) 2001-03-09
FI20010473A FI20010473A (en) 2002-09-10
FI113061B true FI113061B (en) 2004-02-27

Family

ID=8560689

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20010473A FI113061B (en) 2001-03-09 2001-03-09 copper alloy

Country Status (11)

Country Link
US (1) US20040096353A1 (en)
EP (1) EP1373588A1 (en)
JP (1) JP2004538362A (en)
CN (1) CN1496416A (en)
BR (1) BR0207879A (en)
CZ (1) CZ20032372A3 (en)
FI (1) FI113061B (en)
HU (1) HUP0303470A3 (en)
PL (1) PL363969A1 (en)
SK (1) SK11512003A3 (en)
WO (1) WO2002072901A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024132A2 (en) * 2007-08-21 2009-02-26 Prymetall Gmbh & Co. Kg Cable having a coaxial design for transmitting high-frequency signals and method for producing such a cable
ITUA20163211A1 (en) * 2016-05-06 2017-11-06 De Angeli Prod S R L ELECTRIC CONDUCTOR FOR ELECTRIC WINDINGS, ESPECIALLY FOR CONTINUOUS TRAVEL CABLE
EP3622094B1 (en) 2017-05-10 2021-07-28 Haldor Topsøe A/S A process for reducing the content of oxygen in metallic copper
CN111549254A (en) * 2020-04-29 2020-08-18 铜陵有色金属集团股份有限公司金威铜业分公司 Oxygen-free copper-based microalloy and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI40237B (en) * 1966-05-04 1968-07-31 Outokumpu Oy
US4059437A (en) * 1975-07-02 1977-11-22 Phelps Dodge Industries, Inc. Oxygen-free copper product and process
US4233067A (en) * 1978-01-19 1980-11-11 Sumitomo Electric Industries, Ltd. Soft copper alloy conductors
US4311522A (en) * 1980-04-09 1982-01-19 Amax Inc. Copper alloys with small amounts of manganese and selenium
JP2726939B2 (en) * 1989-03-06 1998-03-11 日鉱金属 株式会社 Highly conductive copper alloy with excellent workability and heat resistance

Also Published As

Publication number Publication date
CZ20032372A3 (en) 2003-12-17
CN1496416A (en) 2004-05-12
PL363969A1 (en) 2004-11-29
WO2002072901A1 (en) 2002-09-19
FI20010473A0 (en) 2001-03-09
JP2004538362A (en) 2004-12-24
HUP0303470A2 (en) 2004-01-28
EP1373588A1 (en) 2004-01-02
SK11512003A3 (en) 2004-04-06
US20040096353A1 (en) 2004-05-20
FI20010473A (en) 2002-09-10
HUP0303470A3 (en) 2005-10-28
BR0207879A (en) 2004-03-02

Similar Documents

Publication Publication Date Title
EP2793312B1 (en) Terminal, method for manufacturing terminal, and wire-terminal connection structure
AU691440B2 (en) Metal-core weld wire for welding galvanized steels
TW434080B (en) Lead-free solder and soldered article
RU2638483C2 (en) Wire with flux core
GB2040201A (en) Mild steel fluxcored electrode for arc welding
JP5137468B2 (en) Solid wire for carbon dioxide shielded arc welding
US4320277A (en) Thick welded steel pipe of large diameter and production thereof
NO317716B1 (en) Procedure for conductive interconnection of two electrical conductors
KR100621387B1 (en) Nonleaded solder alloy and electronic parts using it
FI113061B (en) copper alloy
FR2535996A1 (en) NEW WELDING ELECTRODE FOR CHROME STEELS
KR100359481B1 (en) Solid wire
JPH04230905A (en) Copper-clad aluminum composite wire and manufacture thereof
CN1522184A (en) Shielding gas mixture for mig brazing
CN101143396A (en) Aluminium wire covered with copper enamel-covered wire and copper wire welding method
KR20160029848A (en) High fracture toughness welds in thick workpieces
EP3350812B1 (en) Conductor for a power transmission cable and a process for the production of the conductor
JPS6047344B2 (en) Hot-dipped ultrafine copper alloy conductor
JP4657186B2 (en) Solid wire for gas shielded arc welding
US4469395A (en) Electrical termination comprising a soft aluminum lead and a terminal of hard aluminum alloy butt-welded thereto
JPH07100687A (en) Wire for arc welding
KR20240133339A (en) Filler material for joining dissimilar metals
EP4088857A1 (en) Welded conductors for power transmission cables
JPH11191323A (en) Tin-plated wire for electronic equipment
EP2839920A1 (en) Solder alloy

Legal Events

Date Code Title Description
MA Patent expired