Captador solar plano con tubo de peróxido de silicona Objeto de la invención 5 La presente invención tiene por objeto un captador solar plano con tubos de peróxido de silicona huecos con un gas en su interior, colocados en el interior de su absorbedor que permite mejorar el funcionamiento de los captadores solares térmicos planos cuando tienen riesgo de congelación evitando su rotura y manteniendo el rendimiento energético. Tiene su aplicación en el área de la ingeniería mecánica. 10 Estado de la técnica El absorbedor de un captador solar plano es el elemento por el que circula el fluido caloportador del mismo. Este fluido es con frecuencia agua en estado líquido. Cuando el captador solar se somete a muy bajas temperaturas por heladas ambientales el 15 fluido caloportador se congela, aumenta su volumen y presión y se rompe el absorbedor. El principal método utilizado en la protección contra heladas de un captador solar es la adición de propilenglicol al agua que circula dentro del absorbedor del colector solar (1). Sin embargo, las principales desventajas de este método son la degradación del 20 anticongelante con el tiempo, no permite ser utilizado en sistemas directos y su alto coste. Otros métodos utilizados para la protección son: • La recirculación de agua en el circuito colector [2,3], la cual requiere de una circulación forzada. Este método puede conducir a una alta pérdida de energía y, en algunos casos, puede causar problemas de fiablilidad si no se dispone de energía 25 eléctrica para activar las bombas de recirculación en el tiempo requerido. • Recirculación en flujo inverso [4]. Este método puede conducir a una alta pérdida de energía en periodos nocturnos. • La instalación de una resistencia eléctrica a lo largo de los tubos que contienen el agua en el captador, pero esto puede conducir a un alto consumo de electricidad. DESCRIPCIÓN
• Sistemas de drenaje con recuperación [5]. Una de las principales desventajas del calentamiento del agua solar mediante los sistemas de drenaje con recuperación es la significativa pérdida de calor cuando la bomba no está funcionando, tanto como durante la exposición nocturna. 5 • El drenaje al exterior de la instalación [6]. Estos sistemas requieren de un control especial y el agua drenada no puede ser recuperada. • Hay otros casos en los que la acumulación de agua y el captador solar están en el mismo dispositivo para mantenerse siempre por encima de la temperatura de congelación. Por ejemplo, este es el caso del sistema llamado Integrated 10 Collector/Storage Solar Water Heaters, ICSSWH, basado en un dispositivo patentado en 1891 [7]. Este método puede conducir a una alta pérdida de energía nocturna. • Otros métodos de protección con un sistema de calentamiento solar en dos fases utilizando acetona o metanol como fluido de trabajo [8,9], pero la capacidad térmica del fluido caloportador se reduce significativamente. 15 Referencias [1] H. Imura, Y Koito, M. Mochizuki, H. Fujiura. Start-up from the frozen state of two-phase thermosyphons. Applied Thermal Engineering 25 (17-18) (2005) 2730-2739. [2] KA Laing, J.N. Laing. Freeze protection for hot water systems. US Patent US6622930 B2, 2003. 20 [3] K. Hudon, T. Merrigan, J. Burchand, J. Maguire. Low-cost solar water heating research and development roadmap. Technical Report NRELITP-5500-54793, 2012. [4] R. Tang, Z. Sun , Z. Li, Y. Yu, H. Zhong, C. Xia. Experimental investigation on thermal performance of flat plate collectors at night. Energy Conversion and Management 49 (10) (2008) 2642-2646. 25 [5] R. Botpaev, Y. Louvet, B. Perers, S. Furbo, K. Vajen. Drainback solar thermal systems: a review." Solar Energy 128 (2016) 41-60. [6] J. Burch, J. Salasovich. Water consumption from freeze protection valves for solar water heating systems. ISES Solar World Congress Orlando, Florida August 6-12, 2005. NREL/CP-550-37696. 30 [7] M. Smyth, P.C. Eames, B. Norton. Techno-economic appraisal of an integrated collector/storage solar water heater. Renewable Energy 29 (9) (2004) 1503-1514.
[8] A. Ordaz-Flores, O. García-Valladares, V. H. GÓmez. Findings to improve the performance of a two-phase flat plate solar system, using acetone and methanol as working fluids. Solar Energy 86 (4) (2012) 1089-1098. [9] E. Mathioulakis, V. Belessiotis. A new heat-pipe type solar domestic hot water 5 system. Solar Energy 72 (1) (2002) 13-20. 10 15 Descripción de las figuras Figura 1.-Muestra de un captador solar térmico donde se indican: 1. Captador solar térmico. 2. Conexión de entrada 3. Conexión de salida 4. Absorbedor 5. Fluido caloportador 6. Tubo de peróxido de silicona 7. Gas Figura 2.-Muestra una sección del tubo absorbedor antes del proceso de congelación del fluido caloportador (figura 2.A) y después del proceso de congelación del fluido caloportador (figura 2.B). Figura 3.-Muestra de un detalle del sellado del tubo de peróxido de silicona tanto en la 20 entrada como en la salida del captador donde se indican: 2. Conexiones de entrada del captador 3. Conexión de salida del captador 4. Absorbedor 5. Fluido caloportador 25 6. Tubo de peróxido de silicona. 30 7. Gas 8. Sellado lateral del tubo de peróxido de silicona Descripción de la invención El absorbedor de un captador solar plano es el elemento por el que circula el fluido caloportador. Este fluido es con frecuencia agua en estado líquido. Cuando el captador se somete a muy bajas temperaturas el fluido se congela, aumenta su volumen y se rompe el absorbedor. Por otro lado, el fluido caloportador también está expuesto a 35 temperaturas muy variables y en muchas ocasiones superan los 120°C y además dependiendo de la configuración del captador solar en la instalación solar del edificio el
fluido caloportador es el agua de consumo humano del edificio que vuelve caliente al ser humano por lo que no deben alterarse sus propiedades de forma nociva para el ser humano. La presente invención se refiere a un captador solar plano con tubo de peróxido de 5 silicona hueco relleno de un gas, principalmente aire, que se coloca dentro del absorbedor de un captador solar. Este material permite absorber las variaciones de volumen que se producen en el fluido calo portador que ocurren por el hecho de pasar de estado líquido a estado sólido al congelarse. Este material soporta todas las condiciones de operación de temperatura y presión de un captador solar de forma 10 fiable y duradera, es barato e inocuo para el ser humano y el medioambiente. La invención que nos ocupa se refiere a un captador solar plano con uno o varios tubos concéntricos de peróxido de silicona hueco, o de otra configuración geométrica, en la que en su interior pueda contener un gas, preferiblemente aire, colocados estos en el interior del absorbedor de un captador solar plano. 15 El captador solar plano con tubo de peróxido de silicona hueco con gas en su interior colocado dentro del absorbedor absorbe las dilataciones, que se producen en el fluido caloportador del interior del absorbedor al congelarse éste sin afectar al absorbedor. El proceso es totalmente pasivo y no consume energía. Además soporta temperaturas superiores a 130°C sin degradarse. Por otro lado, el tubo de peróxido de silicona es 20 compatible con todos los materiales en los que está en contacto como el fluido caloportador, normalmente agua, el gas interior, normalmente aire y con los materiales propios del absorbedor normalmente cobre o aluminio. Además el tubo de peróxido de silicona tiene una muy baja rugosidad por lo que no afecta significativamente a las propiedades energéticas del captador solar, 25 básicamente su rendimiento energético y la caída de presión. Desde el punto de vista sanitario y ambiental, el captador solar plano con tubo de peróxido de silicona hueco con gas en su interior es inocuo para el ser humano, es decir, no es tóxico ni reaccionante con el agua para que pueda utilizarse en instalaciones solares directas que es lo que ocurre cuando el fluido caloportador 30 caliente que pasa por el absorbedor es el que recibe el ser humano. Desde el punto de vista económico, el captador solar plano con tubo de peróxido de silicona hueco es competitivo con otras soluciones de prevención del riesgo de heladas
Modo de realización de la invención A continuación se describe un modo de realización de la invención basado en las figuras. Al absorbedor (4), preferiblemente en forma de serpentín, se le conectan las 5 conexiones soldadas de entrada (2) y salida (3) requeridas para el captador solar y se le sueldan las superficies selectivas. Todo el proceso de soldadura del absorbedor debe ser anterior a la incorporación del tubo de silicona. Se introduce el tubo de peróxido de silicona (6) en el interior del absorbedor. Se sella y cierra la entrada y salida del tubo de peróxido de silicona (8) por fusión u otro 10 procedimiento. El volumen del tubo de peróxido de silicona debe poder absorber la variación de volumen del fluido caloportador al congelarse, según proceso 2.A y 2.8 de la figura 2. Por ejemplo, en la realización preferente el fluido caloportador es agua, por lo que en este caso, el diámetro interior del tubo del absorbedor debe ser igualo inferior a 3,5 15 veces el diámetro interior del tubo de peróxido de silicona cuando el agua está a 25°C y 1 bar. Una vez realizado el absorbedor con las superficies selectivas incorporadas al mismo y el tubo de peróxido de silicona en su interior se continúa con la fabricación del captador en su proceso normal, que en una realización preferente es incorporar 20 aislante posterior y lateral al absorbedor, protección posterior y lateral del aislante, cubierta frontal de vidrio y marco con juntas de estanqueidad. 25 La presente invención también puede ser aplicada a captadores solares planos sin cubierta.
Flat solar collector with silicone peroxide tube Object of the invention 5 The present invention aims at a flat solar collector with hollow silicone peroxide tubes with a gas inside, placed inside its absorber that allows to improve the operation of flat solar thermal collectors when they are at risk of freezing, avoiding breakage and maintaining energy efficiency. It has its application in the area of mechanical engineering. 10 State of the art The absorber of a flat solar collector is the element through which the heat transfer fluid circulates. This fluid is often water in a liquid state. When the solar collector is subjected to very low temperatures due to environmental frosts, the heat transfer fluid freezes, increases its volume and pressure and breaks the absorber. The main method used in frost protection of a solar collector is the addition of propylene glycol to the water circulating inside the absorber of the solar collector (1). However, the main disadvantages of this method are the degradation of antifreeze over time, it cannot be used in direct systems and its high cost. Other methods used for protection are: • Water recirculation in the collector circuit [2,3], which requires forced circulation. This method can lead to high energy loss and, in some cases, can cause reliability problems if no electrical power is available to activate the recirculation pumps in the required time. • Recirculation in reverse flow [4]. This method can lead to a high loss of energy during night periods. • The installation of an electrical resistor along the pipes that contain the water in the collector, but this can lead to a high consumption of electricity. DESCRIPTION
• Drainage systems with recovery [5]. One of the main disadvantages of solar water heating through drainage systems with recovery is the significant loss of heat when the pump is not running, as well as during nighttime exposure. 5 • Drainage to the outside of the installation [6]. These systems require special control and the drained water cannot be recovered. • There are other cases in which the accumulation of water and the solar collector are in the same device to always stay above the freezing temperature. For example, this is the case of the system called Integrated 10 Collector / Storage Solar Water Heaters, ICSSWH, based on a device patented in 1891 [7]. This method can lead to a high loss of night energy. • Other methods of protection with a two-phase solar heating system using acetone or methanol as a working fluid [8,9], but the thermal capacity of the heat transfer fluid is significantly reduced. 15 References [1] H. Imura, and Koito, M. Mochizuki, H. Fujiura. Start-up from the frozen state of two-phase thermosyphons. Applied Thermal Engineering 25 (17-18) (2005) 2730-2739. [2] KA Laing, J.N. Laing Freeze protection for hot water systems. US Patent US6622930 B2, 2003. 20 [3] K. Hudon, T. Merrigan, J. Burchand, J. Maguire. Low-cost solar water heating research and development roadmap. Technical Report NRELITP-5500-54793, 2012. [4] R. Tang, Z. Sun, Z. Li, Y. Yu, H. Zhong, C. Xia. Experimental investigation on thermal performance of flat plate collectors at night. Energy Conversion and Management 49 (10) (2008) 2642-2646. 25 [5] R. Botpaev, Y. Louvet, B. Perers, S. Furbo, K. Vajen. Drainback solar thermal systems: a review. "Solar Energy 128 (2016) 41-60. [6] J. Burch, J. Salasovich. Water consumption from freeze protection valves for solar water heating systems. ISES Solar World Congress Orlando, Florida August 6-12, 2005. NREL / CP-550-37696.30 [7] M. Smyth, PC Eames, B. Norton. Techno-economic appraisal of an integrated collector / storage solar water heater. Renewable Energy 29 (9) ( 2004) 1503-1514.
[8] A. Ordaz-Flores, O. García-Valladares, V. H. GÓmez. Findings to improve the performance of a two-phase flat plate solar system, using acetone and methanol as working fluids. Solar Energy 86 (4) (2012) 1089-1098. [9] E. Mathioulakis, V. Belessiotis. A new heat-pipe type solar domestic hot water 5 system. Solar Energy 72 (1) (2002) 13-20. 10 15 Description of the figures Figure 1.-Sample of a solar thermal collector where: 1. Solar thermal collector. 2. Inlet connection 3. Outlet connection 4. Absorber 5. Heat transfer fluid 6. Silicone peroxide tube 7. Gas Figure 2.- Shows a section of the absorber tube before the heat transfer fluid freezing process (figure 2.A ) and after the freezing process of the heat transfer fluid (Figure 2.B). Figure 3.- Sample of a detail of the sealing of the silicone peroxide tube both at the entrance and at the exit of the sensor where they are indicated: 2. Connections of input of the sensor 3. Connection of output of the sensor 4. Absorber 5. Heat transfer fluid 25 6. Silicone peroxide tube. 30 7. Gas 8. Side sealing of the silicone peroxide tube Description of the invention The absorber of a flat solar collector is the element through which the heat transfer fluid circulates. This fluid is often water in a liquid state. When the collector is subjected to very low temperatures the fluid freezes, increases its volume and the absorber breaks. On the other hand, the heat transfer fluid is also exposed to 35 very variable temperatures and often exceeds 120 ° C and also depending on the configuration of the solar collector in the building's solar installation.
Heat transfer fluid is the water of human consumption of the building that makes the human being warm, so its properties should not be altered in a way that is harmful to the human being. The present invention relates to a flat solar collector with a hollow silicone peroxide tube filled with a gas, mainly air, which is placed inside the absorber of a solar collector. This material makes it possible to absorb the variations in volume that occur in the carrier fluid that occur due to the transition from a liquid to a solid state when frozen. This material withstands all the operating conditions of temperature and pressure of a solar collector in a reliable and durable way, it is cheap and safe for the human being and the environment. The invention that concerns us refers to a flat solar collector with one or several concentric tubes of hollow silicone peroxide, or another geometric configuration, in which inside it can contain a gas, preferably air, placed inside the interior of the absorber of a flat solar collector. 15 The flat solar collector with hollow silicone peroxide tube with gas inside it placed inside the absorber absorbs the expansions, which occur in the heat transfer fluid inside the absorber when it freezes without affecting the absorber. The process is totally passive and does not consume energy. It also withstands temperatures above 130 ° C without degrading. On the other hand, the silicone peroxide tube is compatible with all the materials in which it is in contact such as the heat transfer fluid, normally water, the internal gas, normally air and with the materials of the absorber normally copper or aluminum. In addition, the silicone peroxide tube has a very low roughness and therefore does not significantly affect the energy properties of the solar collector, basically its energy efficiency and the pressure drop. From a sanitary and environmental point of view, the flat solar collector with hollow silicone peroxide tube with gas inside it is harmless to humans, that is, it is not toxic or reactive with water so that it can be used in solar installations This is what happens when the hot heat transfer fluid 30 that passes through the absorber is what the human being receives. From the economic point of view, the flat solar collector with hollow silicone peroxide tube is competitive with other solutions of prevention of the risk of frost
Embodiment of the invention An embodiment of the invention based on the figures is described below. The absorber (4), preferably in the form of a coil, is connected to the 5 welded inlet (2) and outlet (3) connections required for the solar collector and the selective surfaces are welded. The entire absorber welding process must be prior to the incorporation of the silicone tube. The silicone peroxide tube (6) is inserted into the absorber. The inlet and outlet of the silicone peroxide tube (8) is sealed and sealed by fusion or other procedure. The volume of the silicone peroxide tube must be able to absorb the volume variation of the heat transfer fluid upon freezing, according to process 2.A and 2.8 of Figure 2. For example, in the preferred embodiment the heat transfer fluid is water, so that in In this case, the inside diameter of the absorber tube must be equal to or less than 3.5 15 times the inside diameter of the silicone peroxide tube when the water is at 25 ° C and 1 bar. Once the absorber has been made with the selective surfaces incorporated therein and the silicone peroxide tube inside it, the sensor continues to be manufactured in its normal process, which in a preferred embodiment is to incorporate back and side insulator to the absorber, protection rear and side insulation, glass front cover and frame with gaskets. The present invention can also be applied to flat solar collectors without cover.