ES2647373B2 - Complex solar collector - Google Patents
Complex solar collector Download PDFInfo
- Publication number
- ES2647373B2 ES2647373B2 ES201700397A ES201700397A ES2647373B2 ES 2647373 B2 ES2647373 B2 ES 2647373B2 ES 201700397 A ES201700397 A ES 201700397A ES 201700397 A ES201700397 A ES 201700397A ES 2647373 B2 ES2647373 B2 ES 2647373B2
- Authority
- ES
- Spain
- Prior art keywords
- collector
- solar
- paraboid
- mirror
- solar panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000012141 concentrate Substances 0.000 claims abstract description 6
- 230000005855 radiation Effects 0.000 claims description 12
- 230000005611 electricity Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000001228 spectrum Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000001429 visible spectrum Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/068—Devices for producing mechanical power from solar energy with solar energy concentrating means having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/062—Parabolic point or dish concentrators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/79—Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/40—Thermal components
- H02S40/44—Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/60—Thermal-PV hybrids
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Photovoltaic Devices (AREA)
- Optical Elements Other Than Lenses (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Colector solar complejo consistente en un colector que concentra los rayos del sol en otro espejo que selecciona las longitudes de onda más eficientes las refleja en un panel solar que es refrigerado por el agua circundante mediante un disipador y lleva acoplado un módulo de seebeck, mientras que las longitudes de onda no eficientes que se convierten en calor es aprovechado por unos generadores stirling.Complex solar collector consisting of a collector that concentrates the sun's rays in another mirror that selects the most efficient wavelengths, reflects them in a solar panel that is cooled by the surrounding water through a heatsink and has a seebeck module attached, while Non-efficient wavelengths that are converted to heat are used by stirling generators.
Description
55
1010
15fifteen
20twenty
2525
3030
3535
4040
45Four. Five
50fifty
DESCRIPCIÓNDESCRIPTION
Colector solar complejo.Complex solar collector.
Campo de la invenciónField of the Invention
La presente invención se refiere a un colector solar complejo en sistemas energéticos de alta eficiencia, parques solares acuáticos, etc. El colector solar ha sido concebido y realizado para obtener numerosas y notables ventajas respecto a otros medios existentes de análogas finalidades.The present invention relates to a complex solar collector in high efficiency energy systems, solar water parks, etc. The solar collector has been conceived and realized to obtain numerous and notable advantages over other existing means of analogous purposes.
El colector solar está previsto para lograr producir energía a partir de la luz del sol de una forma eficiente. Para ello, el colector solar cuenta con 8 partes bien diferenciadas que encajan entre sí formando un único objeto que es capaz de convertir la luz recibida del sol en energía eléctrica.The solar collector is planned to produce energy from sunlight in an efficient way. For this, the solar collector has 8 distinct parts that fit together forming a single object that is capable of converting the light received from the sun into electrical energy.
Estado de la técnica anteriorPrior art
Se conocen varios sistemas y dispositivos para dotar de energía eléctrica a boyas, e incluso colectores solares en tierra firme cuya finalidad es recoger energía lumínica y concentrarla en un panel solar.Several systems and devices are known to provide electric power to buoys, and even solar collectors on the mainland whose purpose is to collect light energy and concentrate it on a solar panel.
En tal sentido pueden citarse boyas que consisten en un panel solar orientado hacia la trayectoria del sol y en el ángulo tangencial medio anual de maximizar la radiación incidente en el mismo proveniente del sol, el cual está unido a otras baterías de ciclo continuo sin mantenimiento, herméticamente selladas y sin intercambio gaseoso que son las que realmente alimentan las necesidades eléctricas de la boya.In this sense, buoys can be mentioned, which consist of a solar panel oriented towards the sun's path and the annual mean tangential angle of maximizing the incident radiation from the sun, which is connected to other continuous cycle batteries without maintenance, Hermetically sealed and without gas exchange are the ones that really feed the electrical needs of the buoy.
Este sistema presenta diversos inconvenientes, tales como el alto precio que tienen los paneles solares unido a la ineficiencia de los mismos más si cabe en un ambiente marino el cual agita la boya en todas las direcciones reduciendo la incidencia de los rayos solares. También hemos de tener en cuenta la existencia de un mercado negro de paneles solares dado su alto precio, y la casi imposible opción de proteger dichos paneles en una boya en el mar, tanto de forma física como de forma legal. Y desde luego, el alto peso que conlleva el panel y la estructura para mantenerlo en el ángulo correcto no ayudan en nada a la flotabilidad o la estabilidad de la boya.This system has several drawbacks, such as the high price that solar panels have, together with their inefficiency, even more so if it fits in a marine environment which waves the buoy in all directions, reducing the incidence of solar rays. We must also take into account the existence of a black market for solar panels given its high price, and the almost impossible option to protect these panels in a buoy at sea, both physically and legally. And of course, the high weight of the panel and the structure to keep it at the right angle do not help buoyancy or stability of the buoy.
Igualmente, se conocen otros sistemas basados en colectores solares en tierra los cuales concentran la energía solar en panel solar mediante una serie de espejos que reflejan su radiación incidente en el panel solar aumentando de esta forma la radiación incidente en panel solar y con ello la cantidad de energía total producida.Likewise, other systems based on solar collectors on the ground are known which concentrate solar energy on solar panels by means of a series of mirrors that reflect their incident radiation on the solar panel thereby increasing the incident radiation on the solar panel and with it the amount of total energy produced.
Sin embargo la potencia de estos colectores solares está limitada por la capacidad de refrigeración puesto que al aumentar la temperatura del panel a causa de que el 85% de la energía incidente se transforma en calor, disminuye la eficiencia del panel. La refrigeración tradicional por aire circundante no permite ir más allá de 2000 w/m2 de energía incidente. Aumentando la refrigeración mediante agua circulante o incluso la evaporación se pueden superar los 100000 w/m2. Sin embargo, la cantidad de agua necesaria hace prácticamente imposible su uso en zonas donde la radiación incidente tenga bastante potencia. Éstas son principalmente tierras secas donde escasea el agua y también está limitado el uso de ríos puesto que el aumento de la temperatura del agua tras pasar por el colector solar supondría incremento significativo de la temperatura media del río, lo cual supondría un gran impacto ecológico haciendo inviables las grandes instalaciones.However, the power of these solar collectors is limited by the cooling capacity since increasing the temperature of the panel because 85% of the incident energy is transformed into heat decreases the efficiency of the panel. Traditional cooling by surrounding air does not allow to go beyond 2000 w / m2 of incident energy. Increasing cooling by circulating water or even evaporation can exceed 100,000 w / m2. However, the amount of water needed makes it virtually impossible to use in areas where the incident radiation has enough power. These are mainly dry lands where water is scarce and the use of rivers is also limited since the increase in water temperature after passing through the solar collector would mean a significant increase in the average temperature of the river, which would have a great ecological impact by unfeasible large facilities.
55
1010
15fifteen
20twenty
2525
3030
3535
4040
45Four. Five
50fifty
Explicación de la invenciónExplanation of the invention.
El colector solar complejo de la invención presenta una nueva estrategia a la hora de explotar la energía del sol en el mar: aprovechando la eficiencia de diferentes modelos energéticos que presentan los paneles solares a una temperatura ambiente, unido a la potencia que conlleva la refrigeración por inversión acuática, su complementariedad con los módulos seebeck dada la constante térmica del agua, para mantenerlo a esa temperatura y los generadores stirling.The complex solar collector of the invention presents a new strategy when it comes to exploiting the sun's energy at sea: taking advantage of the efficiency of different energy models presented by solar panels at an ambient temperature, together with the power of cooling by aquatic inversion, its complementarity with the seebeck modules given the thermal constant of the water, to keep it at that temperature and the stirling generators.
El colector solar está diseñado para concentrar los rayos del sol mediante un espejo paraboide que focaliza toda la radiación en un espejo dicroico que a su vez focaliza la radiación electromagnética del visible levemente ampliado en el infrarrojo y muy ampliado en el ultravioleta en la base del espejo paraboide donde se encuentra un panel solar. Haciendo pasar las energías de dicho espectro a través del panel solar hasta un módulo seebeck y a continuación por un disipador al agua.The solar collector is designed to concentrate the sun's rays through a paraboid mirror that focuses all the radiation on a dichroic mirror that in turn focuses the electromagnetic radiation of the visible slightly enlarged in the infrared and greatly expanded in the ultraviolet at the base of the mirror paraboid where a solar panel is located. By passing the energies of said spectrum through the solar panel to a seebeck module and then through a heatsink to the water.
Dada la casi infinita cantidad de agua a temperatura constante disponible alrededor del colector solar y la alta constante térmica del agua podemos asegurar una temperatura inferior a los 300°K en el disipador, pudiendo diseñar el espejo colector para que el panel solar no supere los 550°K.Given the almost infinite amount of water at constant temperature available around the solar collector and the high thermal constant of the water we can ensure a temperature below 300 ° K in the heatsink, being able to design the collector mirror so that the solar panel does not exceed 550 ° K.
También existe la posibilidad de incrementar un fondo del espejo dicroico complementario que absorba el ultravioleta profundo y la mayor parte del infrarrojo, el cual se conectará con la cámara caliente de generadores stirling a través de un conducto metálico.There is also the possibility of increasing a background of the complementary dichroic mirror that absorbs the deep ultraviolet and most of the infrared, which will be connected to the hot chamber of stirling generators through a metallic conduit.
Además, se ha previsto que el espejo colector cuente con una tapadera transparente de forma que cierre herméticamente con el espejo colector pudiéndose hacer el vacío en su interior aislando térmicamente el espejo dicroico, manteniendo estables la presión de la cámara creada entre la tapadera y el espejo paraboide que además favorece la flotabilidad del colector solar.In addition, it is envisaged that the collector mirror has a transparent cover so that it closes tightly with the collector mirror and the vacuum can be made inside by thermally isolating the dichroic mirror, keeping the pressure of the chamber created between the lid and the mirror stable. paraboid that also favors the buoyancy of the solar collector.
Breve descripción de las figurasBrief description of the figures
Para completar la descripción que seguidamente se va a realizar, y con el objeto de ayudar a una mejor comprensión de las características del invento, se acompaña la presente memoria descriptiva de un juego de planos, en base a cuyas figuras se comprenderán más fácilmente las innovaciones y ventajas del dispositivo objeto de la invención.In order to complete the description that will then be carried out, and in order to help a better understanding of the characteristics of the invention, the present descriptive memory of a set of drawings is attached, based on whose figures innovations will be more easily understood and advantages of the device object of the invention.
En dichos dibujos, la figura 1 representa el diagrama completo del colector solar complejo. Donde podemos distinguir las flechas que indican la refrigeración (1) al pasar por el disipador (9), las flechas que indican la ruta del calor (2) a través del colector solar que comienzan en el espejo dicroico (3), gracias a la radiación recibida del espejo colector paraboide (4) el cual se cierra mediante una tapadera transparente (5) dicho calor es exportado por los conductos metálicos (8) hasta los generadores stirling (10) y todo ello para que el panel solar (6) reciba la radiación del espectro visible concreta aumentando la eficacia del mismo e incluso aprovechando el resto de energía que se convierte en calor en el panel solar mediante un módulo de seebeck (7).In said drawings, Figure 1 represents the complete diagram of the complex solar collector. Where we can distinguish the arrows that indicate the cooling (1) when passing through the heat sink (9), the arrows that indicate the heat path (2) through the solar collector that start in the dichroic mirror (3), thanks to the radiation received from the paraboid collector mirror (4) which is closed by a transparent cover (5) said heat is exported through the metallic conduits (8) to the stirling generators (10) and all this so that the solar panel (6) receives the specific visible spectrum radiation increasing its efficiency and even taking advantage of the rest of the energy that is converted into heat in the solar panel by means of a seebeck module (7).
La figura 2 representa el diagrama básico del colector solar complejo donde podemos observar el espejo dicroico (3), el disipador (9), el espejo colector paraboide (4) y la tapadera transparente (5), los generadores stirling (10), el módulo de seebeck (7).Figure 2 represents the basic diagram of the complex solar collector where we can see the dichroic mirror (3), the heatsink (9), the paraboid collector mirror (4) and the transparent cover (5), the stirling generators (10), the seebeck module (7).
55
1010
15fifteen
20twenty
2525
3030
3535
4040
45Four. Five
50fifty
La figura 3 representa el diagrama esquemático del colector solar complejo donde podemos observar el espejo dicroico (3), el panel solar (6), el disipador (9), el espejo colector paraboide (4), la tapadera transparente (5), los generadores stirling (10), el módulo de seebeck (7) y los conductos metálicos (8).Figure 3 represents the schematic diagram of the complex solar collector where we can see the dichroic mirror (3), the solar panel (6), the heatsink (9), the paraboid collector mirror (4), the transparent cover (5), the stirling generators (10), the seebeck module (7) and the metal ducts (8).
La figura 4 muestra la gráfica del espectro visible a nivel de mar (14), y la eficiencia en la producción de electricidad de los paneles solares (6) en función de la longitud de onda de la radiación incidente (13), y la absorbancia del espejo dicroico (11) se convierte en calor y la energía infrarroja proveniente del sol captada por este sistema (12).Figure 4 shows the graph of the visible spectrum at sea level (14), and the efficiency in the production of electricity from solar panels (6) as a function of the wavelength of the incident radiation (13), and the absorbance of the dichroic mirror (11) is converted into heat and infrared energy from the sun captured by this system (12).
Exposición detallada de modos de realizaciónDetailed statement of embodiments
Colector solar complejo para parques solares acuáticos que comprender un espejo colector paraboide (4) que se cierra mediante una tapadera transparente (5) y que concentra la radiación solar sobre un espejo dicroico (3) situado bajo la tapadera transparente (5), el cual se encuentra sustentado sobre el espejo colector paraboide (4) mediante unos conductos metálicos (8) los cuales además le sirven para exportar calor, debido al espectro no eficiente en la producción de electricidad, del interior del conjunto colector-tapadera transparente a unos generadores stirling (10)situados fuera de dicho conjunto; el espejo dicroico (3) enfoca el espectro más útil para la producción de electricidad sobre un panel solar (6), situado en la base del colector paraboide (4) y por la cara interior de éste, que lo convierte en electricidad o lo disipa en forma de calor en el agua pasado a través de un módulo seebeck que se encuentra en el exterior del colector paraboide (4) y acoplado al panel solar (6) por la cara opuesta a la que el panel solar (6) recibir la radiación solar proveniente del espejo dicroico (3).Complex solar collector for solar water parks that comprise a paraboid collector mirror (4) that is closed by a transparent cover (5) and that concentrates solar radiation on a dichroic mirror (3) located under the transparent cover (5), which It is supported on the paraboid collector mirror (4) by means of metallic conduits (8) which also serve to export heat, due to the non-efficient spectrum in the production of electricity, from the inside of the transparent collector-cover assembly to stirling generators (10) located outside said assembly; The dichroic mirror (3) focuses the most useful spectrum for the production of electricity on a solar panel (6), located at the base of the paraboid collector (4) and on the inside of the paraboid collector, which converts it into electricity or dissipates it in the form of heat in the water passed through a seebeck module that is located outside the paraboid manifold (4) and coupled to the solar panel (6) on the opposite side to which the solar panel (6) receive radiation solar from the dichroic mirror (3).
En la actualidad existen muy diferentes materiales con los que realizar las diversas partes del colector solar, y múltiples técnicas que podríamos utilizar en la confección de los espejos. No obstante, por simple economía elegiremos materiales y técnicas generalizadas, que resistan los medios acuáticos especialmente el marino. Así pues, para el disipador, y los conductos metálicos elegiremos aluminio mecanizado, al igual que para el espejo colector paraboide. Mientras que el espejo dicroico será de plata depuesto mediante sputtering en múltiples ciclos para hacerlo permeable al infrarrojo sobre un fondo de aluminio teñido con grafito y el panel solar será de los disponibles comercialmente monocristalino, la tapadera transparente será de vidrio embebido en metacrilato. los generadores stirling serán de los disponibles comercialmente para aplicaciones de hasta 2500°K. mientras que el módulo de seebeck serán para 550°K.At present there are very different materials with which to make the various parts of the solar collector, and multiple techniques that we could use in the manufacture of mirrors. However, for simple economy we will choose generalized materials and techniques that resist aquatic environments, especially the marine. So, for the heatsink, and the metallic ducts, we will choose machined aluminum, as for the paraboid collector mirror. While the dichroic mirror will be silver deposited by sputtering in multiple cycles to make it permeable to infrared on a graphite-stained aluminum background and the solar panel will be commercially available monocrystalline, the transparent cover will be made of methacrylate glass. Stirling generators will be commercially available for applications up to 2500 ° K. while the seebeck module will be for 550 ° K.
En consecuencia, para conseguir una potencial de 50 kw hora en un colector solar complejo en las aguas templadas partiremos de una lámina de aluminio de 0,09 m2 que deformáremos mediante un molde a presión de forma paraboide, recortando los bordes y perforando el centro, acto seguido lo puliremos. La tapadera la crearemos en un molde a partir de metacrilato monomérico y catalizador. La unión entre la tapadera y el espejo paraboide serán mediante epoxi. Realizaremos el vacío mediante una manguera elástica conectada a una bomba de vacío, introduciremos el panel solar aplastando la manguera, y retiraremos la manguera. Fijaremos el panel solar mediante epoxi, recubriremos la cara externa del panel solar con masilla termo conductora cerámica y colocaremos el módulo de seebeck, el cual también cubriremos con la misma masilla. Colocaremos en la cara opuesta el disipador y lo fijaremos al resto mediante epoxi. El disipador provendrá de disipadores de rectificadores de alta tensión. El espejo dicroico será una placa de aluminio cóncava por deformación mediante presión hidráulica pulida, que teñiremos de negro aplicándole una capa de grafito por sputtering de inducción magnética, y a continuación la volveremos a recubrir mediante una deposición de plata también por sputtering aunque en este caso simple. Dicha placa estará unida mecánicamente con losConsequently, to achieve a potential of 50 kw hour in a complex solar collector in the temperate waters, we will start from an aluminum sheet of 0.09 m2 that we will deform using a paraboid-shaped die mold, cutting the edges and drilling the center, We will immediately polish it. The cover will be created in a mold from monomeric methacrylate and catalyst. The connection between the cover and the paraboid mirror will be by epoxy. We will perform the vacuum using an elastic hose connected to a vacuum pump, introduce the solar panel by crushing the hose, and remove the hose. We will fix the solar panel by epoxy, we will cover the outer face of the solar panel with ceramic thermal conductive putty and place the seebeck module, which we will also cover with the same putty. We will place the heatsink on the opposite side and fix it to the rest using epoxy. The heatsink will come from high voltage rectifier heatsinks. The dichroic mirror will be a concave aluminum plate by deformation by means of polished hydraulic pressure, which we will dye black by applying a layer of graphite by magnetic induction sputtering, and then we will re-coat it by means of a silver deposition also by sputtering although in this case simple . Said plate will be mechanically connected with the
conductos metálicos y estos, a su vez, entrarán en la cámara caliente de los generadores Stirling, los cuales además de estar unidos mecánicamente a los conductos metálicos también estarán unidos al espejo paraboide mediante epoxi.metallic conduits and these, in turn, will enter the hot chamber of the Stirling generators, which in addition to being mechanically connected to the metallic conduits will also be attached to the paraboid mirror by epoxy.
5 Serán independientes del objeto de la invención los materiales empleados en la fabricación de los componentes del colector solar, formas y dimensiones de los mismos, y todos los detalles accesorios que puedan presentarse, siempre y cuando no afecten a su esencialidad.5 The materials used in the manufacture of the solar collector components, shapes and dimensions thereof, and all the accessory details that may arise, will be independent of the object of the invention, provided they do not affect their essentiality.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201700397A ES2647373B2 (en) | 2017-03-28 | 2017-03-28 | Complex solar collector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201700397A ES2647373B2 (en) | 2017-03-28 | 2017-03-28 | Complex solar collector |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2647373A1 ES2647373A1 (en) | 2017-12-21 |
ES2647373B2 true ES2647373B2 (en) | 2018-07-11 |
Family
ID=60685575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES201700397A Active ES2647373B2 (en) | 2017-03-28 | 2017-03-28 | Complex solar collector |
Country Status (1)
Country | Link |
---|---|
ES (1) | ES2647373B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6818818B2 (en) * | 2002-08-13 | 2004-11-16 | Esmond T. Goei | Concentrating solar energy receiver |
CN101098112A (en) * | 2006-06-29 | 2008-01-02 | 中国科学技术大学 | Self-radiation solar energy accumulation type photovoltaic generator |
US20080314438A1 (en) * | 2007-06-20 | 2008-12-25 | Alan Anthuan Tran | Integrated concentrator photovoltaics and water heater |
US8975505B2 (en) * | 2009-09-28 | 2015-03-10 | Daniel Ray Ladner | Concentrated solar thermoelectric power system and numerical design model |
US20120216538A1 (en) * | 2009-11-02 | 2012-08-30 | Isaac Garaway | Stirling engine solar concentrator system |
TW201138170A (en) * | 2010-04-23 | 2011-11-01 | Inst Nuclear Energy Res Atomic Energy Council | Thermoelectric generating module |
-
2017
- 2017-03-28 ES ES201700397A patent/ES2647373B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
ES2647373A1 (en) | 2017-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Karthick et al. | Evaluation of solar thermal system configurations for thermoelectric generator applications: A critical review | |
ES2363701T3 (en) | COOLING CIRCUIT FOR A SOLAR RADIATION RECEIVER. | |
ES2354652T3 (en) | TURBINE AND SOLAR ENERGY RECEIVER. | |
ES2304109B1 (en) | SOLAR ENERGY CONVERSION METHOD AND SYSTEM IN MECHANICAL OR ELECTRICAL. | |
Maiti et al. | Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling | |
KR102026003B1 (en) | Combined Concentrator Photovoltaic Equipment | |
ES2734191T3 (en) | Double stage parabolic concentrator | |
US9279416B2 (en) | Solar power system | |
US9331258B2 (en) | Solar thermoelectric generator | |
US20080210291A1 (en) | Solar collector and photovoltaic converter | |
ES2647373B2 (en) | Complex solar collector | |
WO2012076847A1 (en) | Solar energy apparatus with a combined photovoltaic and thermal power generation system | |
PL232342B1 (en) | Photovoltaic module with cooling system | |
RU193323U1 (en) | Foldable thermal photovoltaic concentrator module with double-sided photocells | |
SI23059A (en) | Collector for collecting and converting solar energy | |
JP2004317117A (en) | Solar heat collector with solar power generation function | |
JP2014177895A (en) | Compound type photothermal power generator | |
Madessa et al. | Investigation of solar absorber for small scale solar concentrating parabolic dish | |
US20170040930A1 (en) | Finned passive pvt system with adjustable angle insulating reflectors | |
ES2303456B1 (en) | SOLAR PANEL HYBRID PHOTOVOLTAIC / THERMAL WITH INCREASE IN EFFICIENCY IN PHOTOVOLTAIC SYSTEM. | |
JP2010062519A (en) | Apparatus and method of generating solar power | |
RU2649724C2 (en) | Method of self-contained supply from solar energy | |
KR20170050982A (en) | Portable heat storage device and integrated electricity generating system using solar energy comprising the same | |
RU2431787C2 (en) | Solar power station | |
Tabet et al. | Performances Improvement of photovoltaic thermal air collector by planer reflector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG2A | Definitive protection |
Ref document number: 2647373 Country of ref document: ES Kind code of ref document: B2 Effective date: 20180711 |