ES2633320T5 - Method and system for purifying exhaust gases from an internal combustion engine - Google Patents

Method and system for purifying exhaust gases from an internal combustion engine Download PDF

Info

Publication number
ES2633320T5
ES2633320T5 ES12716467T ES12716467T ES2633320T5 ES 2633320 T5 ES2633320 T5 ES 2633320T5 ES 12716467 T ES12716467 T ES 12716467T ES 12716467 T ES12716467 T ES 12716467T ES 2633320 T5 ES2633320 T5 ES 2633320T5
Authority
ES
Spain
Prior art keywords
catalyst
exhaust gases
filter
cleaning system
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES12716467T
Other languages
Spanish (es)
Other versions
ES2633320T3 (en
Inventor
Marin Manuel Moliner
Marti Cristina Franch
Gimeno Antonio Eduardo Palomares
Canos Avelino Corma
Peter N R Vennestrøm
Arkady Kustov
Joakim Reimer Thøgersen
Marie Grill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46001293&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2633320(T5) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Publication of ES2633320T3 publication Critical patent/ES2633320T3/en
Application granted granted Critical
Publication of ES2633320T5 publication Critical patent/ES2633320T5/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/001Gas flow channels or gas chambers being at least partly formed in the structural parts of the engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

DESCRIPCIÓNDESCRIPTION

Método y sistema para la purificación de gases de escape procedentes de un motor de combustión interna Descripción Method and system for purifying exhaust gases from an internal combustion engine Description

La presente invención se refiere al tratamiento de gases de escape procedentes de un motor de combustión interna en términos de eliminación o reducción de compuestos nocivos. Más particularmente, la invención se centra en la eliminación del material particulado y en la reducción de los óxidos de nitrógeno en los gases de escape del motor de motores de combustión interna de baja combustión y en particular de motores diesel.The present invention relates to the treatment of exhaust gases from an internal combustion engine in terms of elimination or reduction of harmful compounds. More particularly, the invention focuses on the removal of particulate matter and on the reduction of nitrogen oxides in the exhaust gases of the engine of low combustion internal combustion engines and in particular of diesel engines.

Los motores de baja combustión son conocidos por ser energéticamente eficientes, pero presentan la desventaja de formar material particulado y óxidos de nitrógeno que deben eliminarse o al menos reducirse en los gases de escape del motor.Low combustion engines are known to be energy efficient, but have the disadvantage of forming particulate matter and nitrogen oxides that must be removed or at least reduced in the engine exhaust gases.

Para impedir la contaminación medioambiental y cumplir varios requisitos gubernamentales, los motores diésel modernos están provistos de un sistema de limpieza de gases de escape que comprende de forma secuencial un catalizador de oxidación para la eliminación de compuestos orgánicos volátiles, un filtro de partículas para la eliminación de materia particulada y un catalizador activo en la reducción selectiva de óxido de nitrógeno (NOx). También es conocido por integrar el catalizador SCR en el filtro de partículas.To prevent environmental pollution and meet various government requirements, modern diesel engines are equipped with an exhaust gas cleaning system that sequentially comprises an oxidation catalyst for removal of volatile organic compounds, a particulate filter for removal of particulate matter and an active catalyst in the selective reduction of nitrogen oxide (NOx). It is also known for integrating the SCR catalyst into the particulate filter.

La reducción catalítica selectiva de NOx en los gases de escape se lleva a cabo habitualmente mediante una reacción con amoniaco introducido como tal o como precursor del mismo, que se inyecta en los gases de escape corriente arriba del catalizador SCR para la reducción selectiva de óxidos de nitrógeno, principalmente dióxido de nitrógeno y monóxido de nitrógeno (NOx), a nitrógeno.Selective catalytic reduction of NOx in the exhaust gases is usually carried out by reaction with ammonia introduced as such or as a precursor thereof, which is injected into the exhaust gases upstream of the SCR catalyst for selective reduction of oxides of nitrogen, mainly nitrogen dioxide and nitrogen monoxide (NOx), to nitrogen.

Para este propósito se describen numerosas composiciones catalizadoras en la bibliografía.For this purpose numerous catalyst compositions are described in the literature.

Últimamente se ha observado un gran interés por las zeolitas aceleradas con cobre o hierro, particularmente para su uso en aplicaciones en el sector automovilístico, p. ej., como se describe en WO 2008/132452 A. Los catalizadores de zeolita que contienen cobre para aplicaciones en sistemas de reacción de NH3-SCR han demostrado actividad alta a baja temperatura. Sin embargo, en determinadas aplicaciones, el catalizador puede estar expuesto a fluctuaciones de temperatura elevadas en los gases de escape. Además, los gases de escape contienen altas concentraciones de vapor de agua procedente del motor de combustión, lo que puede deteriorar el rendimiento del catalizador de zeolita. La estabilidad hidrotermal a menudo es un problema para los catalizadores de zeolita basados en Cu, ya que un posible mecanismo de desactivación del catalizador es la degradación del marco de zeolita debido a su inestabilidad frente a condiciones hidrotermales, que aumenta adicionalmente por la presencia de cobre.Lately there has been a great interest in copper or iron accelerated zeolites, particularly for use in applications in the automotive sector, eg. eg, as described in WO 2008/132452 A. Zeolite catalysts containing copper for applications in NH 3 -SCR reaction systems have shown high activity at low temperature. However, in certain applications, the catalyst can be exposed to high temperature fluctuations in the exhaust gases. In addition, the exhaust gases contain high concentrations of water vapor from the combustion engine, which can impair the performance of the zeolite catalyst. Hydrothermal stability is often a problem for Cu-based zeolite catalysts, as a possible catalyst deactivation mechanism is the degradation of the zeolite framework due to its instability against hydrothermal conditions, which is further increased by the presence of copper .

La desactivación de los catalizadores de zeolita que contienen cobre en aplicaciones NH3-SCR se produce de forma típica por la degradación del marco de zeolita debido a su inestabilidad frente a condiciones hidrotermales, que aumenta adicionalmente por la presencia de cobre. Sin embargo la estabilidad es especialmente importante en aplicaciones de automoción en las que el catalizador experimentará grandes variaciones de temperatura en un chorro de escape que contiene agua.Deactivation of copper-containing zeolite catalysts in NH 3 -SCR applications is typically caused by degradation of the zeolite framework due to its instability against hydrothermal conditions, which is further increased by the presence of copper. However stability is especially important in automotive applications where the catalyst will experience large temperature variations in an exhaust jet containing water.

La desactivación del catalizador es, particularmente, un problema en los sistemas de limpieza de gases de escape provistos de un filtro de partículas, que debe regenerarse periódicamente de forma activa para evitar la acumulación de presión sobre el filtro cargado de hollín.Deactivation of the catalyst is particularly a problem in exhaust gas cleaning systems fitted with a particulate filter, which must be periodically actively regenerated to avoid pressure build-up on the soot-laden filter.

La regeneración activa se lleva a cabo calcinando el hollín capturado. La regeneración puede iniciarse mediante la inyección de combustible en los gases de escape corriente arriba del catalizador de oxidación o mediante calentamiento eléctrico del filtro de partículas.Active regeneration is carried out by calcining the captured soot. Regeneration can be initiated by injecting fuel into the exhaust gases upstream of the oxidation catalyst or by electrically heating the particulate filter.

Durante la regeneración activa, la temperatura de los gases de escape en la salida del filtro puede alcanzar más de 850 0C y un contenido de vapor de agua de más del 15 % y hasta del 100 % durante períodos de tiempo entre 10 y 15 minutos dependiendo de la cantidad de hollín capturada en el filtro.During active regeneration, the exhaust gas temperature at the filter outlet can reach more than 850 0C and a water vapor content of more than 15% and up to 100% for periods of time between 10 and 15 minutes depending of the amount of soot captured in the filter.

Es el objeto general de la invención proporcionar un método para eliminar compuestos nocivos de motores de combustión interna de baja combustión, como material particulado, por medio de un filtro de partículas y óxidos de nitrógeno, mediante la reducción catalítica selectiva de óxidos de nitrógeno en contacto con el catalizador, que es hidrotérmicamente estable cuando se expone a altas temperaturas y a elevadas concentraciones de vapor de agua durante la regeneración activa del filtro de partículas.It is the general object of the invention to provide a method of removing harmful compounds from low-combustion internal combustion engines, such as particulate matter, by means of a particulate filter and nitrogen oxides, by selective catalytic reduction of nitrogen oxides in contact with the catalyst, which is hydrothermally stable when exposed to high temperatures and high concentrations of water vapor during active regeneration of the particulate filter.

Hemos descubierto que el objeto de la invención puede alcanzarse utilizando una zeolita o zeotipo que tenga un marco hidrotermalmente estable de tipo AEI, en la cual la estructura se conserve en condiciones de envejecimiento hidrotermal incluso cuando esté presente el cobre en la zeolita o zeotipo. We have found that the object of the invention can be achieved using a zeolite or zeotype having an AEI-type hydrothermally stable framework, in which the structure is preserved under hydrothermal aging conditions even when copper is present in the zeolite or zeotype.

Según el descubrimiento anterior esta invención proporciona un método para la purificación de gases de escape de un motor de combustión interna que comprendeIn accordance with the above discovery this invention provides a method for exhaust gas purification of an internal combustion engine comprising

reducir el contenido de hollín en los gases de escape haciendo pasar el gas a través de un filtro de partículas; posteriormente, reducir el contenido de óxidos de nitrógeno en presencia de amoniaco o de un precursor del mismo por contacto con un catalizador que es activo en NH3-SCR;reduce the soot content in the exhaust gases by passing the gas through a particulate filter; subsequently, reducing the content of nitrogen oxides in the presence of ammonia or a precursor thereof by contact with a catalyst that is active in NH3-SCR;

regenerar periódicamente el filtro calcinando el hollín capturado en el filtro y aumentando con ello la temperatura de los gases de escape hasta 850 °C y el contenido de vapor de agua hasta el 100 % en volumen; yperiodically regenerate the filter by calcining the soot captured in the filter and thereby increasing the temperature of the exhaust gases to 850 ° C and the content of water vapor to 100% by volume; and

hacer pasar los gases de escape desde el filtro a través del catalizador durante la regeneración del filtro, en donde el catalizador consiste en una zeolita microporosa hidrotérmicamente estable SSZ-39 promocionada con cobre.passing the exhaust gases from the filter through the catalyst during filter regeneration, where the catalyst consists of a hydrothermally stable microporous zeolite SSZ-39 promoted with copper.

“Hidrotérmicamente estable” significa que el catalizador de zeolita tiene la capacidad de retener al menos 80 a 90 % del área superficial inicial y el 80 a 90 % del volumen microporoso después de la exposición a temperaturas de al menos 600 °C y un contenido de vapor de agua hasta 100 % en volumen durante 13 horas, y al menos 30 a 40 % de área superficial inicial y del volumen de microporos tras la exposición a temperaturas de al menos 750 0C y a un contenido de vapor de agua hasta 100 % en volumen durante 13 horas."Hydrothermally stable" means that the zeolite catalyst has the ability to retain at least 80 to 90% of the initial surface area and 80 to 90% of the microporous volume after exposure to temperatures of at least 600 ° C and a content of water vapor up to 100% by volume for 13 hours, and at least 30 to 40% of initial surface area and volume of micropores after exposure to temperatures of at least 750 0C and a content of water vapor up to 100% by volume for 13 hours.

Preferiblemente, la zeolita hidrotérmicamente estable con un marco de tipo AEI tiene una relación atómica de silicio a aluminio entre 5 y 50 para la zeolita.Preferably, the hydrothermally stable zeolite with an AEI type frame has a silicon to aluminum atomic ratio of 5 to 50 for the zeolite.

Los catalizadores de zeolita más preferidos para su uso en la invención son la zeolita SSZ-39, teniendo estructuras marco “AEI” en las que el cobre se introduce por impregnación, intercambio iónico líquido o intercambio iónico sólido. Se prefiere que la relación atómica de cobre a aluminio esté entre aproximadamente 0,01 y aproximadamente 1 para la zeolita.The most preferred zeolite catalysts for use in the invention are zeolite SSZ-39, having "AEI" framework structures in which copper is introduced by impregnation, liquid ion exchange, or solid ion exchange. It is preferred that the atomic ratio of copper to aluminum is between about 0.01 and about 1 for the zeolite.

Por medio de los catalizadores mencionados anteriormente en la invención, el 80 % de la reducción inicial de NOx se mantiene a 250 °C y a 750 °C tras el envejecimiento en comparación con un 20 % para un catalizador Cu-CHA. Por lo tanto, en una realización de la invención, el 80 % de la reducción inicial de óxidos de nitrógeno a 250 0C se mantiene tras la exposición a una temperatura de 750 0C y un contenido de vapor de agua de 100 % en los gases de escape durante 13 horas.By means of the catalysts mentioned above in the invention, 80% of the initial NOx reduction is maintained at 250 ° C and 750 ° C after aging compared to 20% for a Cu-CHA catalyst. Therefore, in one embodiment of the invention, 80% of the initial reduction of nitrogen oxides to 250 0C is maintained after exposure to a temperature of 750 0C and a water vapor content of 100% in the gases of escape for 13 hours.

La invención proporciona además un sistema de limpieza de gases de escape, que comprende un filtro de partículas activo regenerable y un catalizador SCR que es una zeolita SSZ-39 microporosa hidrotérmicamente estable acelerada con cobre.The invention further provides an exhaust gas cleaning system, comprising a regenerable active particulate filter and an SCR catalyst which is a hydrotothermally stable microporous zeolite SSZ-39 accelerated with copper.

En una realización del sistema de limpieza de gases de escape según la invención, el catalizador SCR está integrado en el filtro de partículas.In one embodiment of the exhaust gas cleaning system according to the invention, the SCR catalyst is integrated in the particulate filter.

En otra realización, la relación atómica de cobre a aluminio está entre aproximadamente 0,01 y aproximadamente 1 para la zeolita.In another embodiment, the atomic ratio of copper to aluminum is between about 0.01 and about 1 for the zeolite.

En otra realización adicional, la relación atómica de silicio a aluminio en el catalizador SCR es entre 5 y 50 para la zeolita y entre 0,02 y 0,5 para el zeotipo.In yet another embodiment, the silicon to aluminum atomic ratio in the SCR catalyst is between 5 and 50 for the zeolite and between 0.02 and 0.5 for the zeotype.

En otra realización, el catalizador SCR retiene el 80 % de la reducción inicial de óxidos de nitrógeno a 250 0C después de que el catalizador se haya expuesto a una temperatura de 750 0C y a un contenido de vapor de agua de 100 % en los gases de escape durante 13 horas.In another embodiment, the SCR catalyst retains 80% of the initial reduction of nitrogen oxides at 250 0C after the catalyst has been exposed to a temperature of 750 0C and a water vapor content of 100% in the exhaust gases. escape for 13 hours.

En otra realización, el catalizador SCR retiene 80 a 90 % de la microporosidad inicial tras un envejecimiento a 600 0C, y 30 a 40 % de la microporosidad inicial tras un envejecimiento a 750 0C.In another embodiment, the SCR catalyst retains 80 to 90% of the initial microporosity after aging at 600 0C, and 30 to 40% of the initial microporosity after aging at 750 0C.

En las realizaciones anteriores, el catalizador SCR puede depositarse en una estructura de soporte monolítica. El sistema catalizador Cu-SSZ-39 ha mostrado un rendimiento mejorado en comparación con el típico Cu-SSZ-13 “del estado de la técnica” cuando se comparan relaciones de Si/Al similares.In the above embodiments, the SCR catalyst can be deposited on a monolithic support structure. The Cu-SSZ-39 catalyst system has shown improved performance compared to typical "prior art" Cu-SSZ-13 when comparing similar Si / Al ratios.

Ejemplo 1: Preparación del catalizador Cu-SSZ-39Example 1: Preparation of the Cu-SSZ-39 catalyst

La zeolita SSZ-39 con el código de tipo de marco AEI se sintetizó de modo similar al especificado en la patente US-5.958.370 que utiliza 1,1,3,5-tetrametilpiperidinio como plantilla orgánica. Un gel con la siguiente composición: 30 Si: 1,0 Al: 0,51 NaOH: 5,1 OSDA: 600 H2O se introdujo en autoclave a 135 0C durante 7 días, el producto se filtró, se lavó con agua, se secó y se calcinó en aire. La SSZ-39 final tenía una Si/AI = 9,1 medida por ICP-AES. Zeolite SSZ-39 with frame type code AEI was synthesized in a similar way to that specified in US-5,958,370 which uses 1,1,3,5-tetramethylpiperidinium as organic template. A gel with the following composition: 30 Si: 1.0 Al: 0.51 NaOH: 5.1 OSDA: 600 H2O was autoclaved at 135 0C for 7 days, the product was filtered, washed with water, dried and calcined in air. The final SSZ-39 had a Si / AI = 9.1 measured by ICP-AES.

Para obtener Cu-SSZ-39, la zeolita calcinada se intercambió iónicamente con Cu(CH3COO)2 para obtener el catalizador final con una Cu/Al = 0,52 tras la calcinación.To obtain Cu-SSZ-39, the calcined zeolite was ion-exchanged with Cu (CH3COO) 2 to obtain the final catalyst with Cu / Al = 0.52 after calcination.

El patrón de difracción de rayos X de polvo (PXRD) de Cu-SSZ-39 después de la calcinación se muestra en la Fig. 1.The Cu-SSZ-39 powder X-ray diffraction pattern (PXRD) after calcination is shown in Fig. 1.

Ejemplo 2: Ensayo catalíticoExample 2: Catalytic test

La actividad de las muestras para la reducción catalítica selectiva de NOx se ensayó en un reactor de lecho fijo para simular un chorro de escape de motor utilizando un caudal total de 300 ml/min consistente en 500 ppm NO, 533 ppm NH3, 7 % O2, 5 % H2O en N2 en el que se ensayaron 40 mg de catalizador.The activity of the samples for selective catalytic NOx reduction was tested in a fixed bed reactor to simulate an engine exhaust jet using a total flow rate of 300 ml / min consisting of 500 ppm NO, 533 ppm NH3, 7% O2 .5% H2O in N2 in which 40 mg of catalyst were tested.

El NOx presente en los gases de escape procedentes del reactor se analizaron de forma continua y la conversión se muestra en la Fig. 2.The NOx present in the exhaust gases from the reactor were continuously analyzed and the conversion is shown in Fig. 2.

Ejemplo 3: Prueba de durabilidad hidrotermalExample 3: Hydrothermal Durability Test

Para ensayar la estabilidad hidrotermal de las zeolitas, se hicieron tratamientos de vapor a las muestras. Se expusieron a una alimentación de agua (2,2 ml/min) a 600 o 750 0C durante 13 horas en un horno convencional y posteriormente se realizó la prueba de forma similar a la del Ejemplo 2.To test the hydrothermal stability of the zeolites, steam treatments were performed on the samples. They were exposed to a feed of water (2.2 ml / min) at 600 or 750 0C for 13 hours in a conventional oven and the test was subsequently carried out in a similar way to that of Example 2.

Los resultados catalíticos también pueden verse en la Fig. 2. Las muestras que se sometieron a un tratamiento hidrotérmico se habían marcado con 600 o 700 0C, dependiendo de la temperatura utilizada durante el tratamiento hidrotérmico.The catalytic results can also be seen in Fig. 2. The samples that underwent hydrothermal treatment had been labeled with 600 or 700 0C, depending on the temperature used during the hydrothermal treatment.

También se ha realizado una caracterización adicional para todas las muestras tratadas. Los patrones de PXRD tras los tratamientos hidrotermales se muestran en la Fig. 1, y las áreas de superficie BET, las áreas de microporos, y los volúmenes de microporos de las muestras tratadas se resumen en la Tabla 1 más abajo.Additional characterization has also been performed for all treated samples. The PXRD patterns after hydrothermal treatments are shown in Fig. 1, and the BET surface areas, the micropore areas, and the micropore volumes of the treated samples are summarized in Table 1 below.

Ejemplo 4: Ejemplo comparativo con Cu-CHA (Cu-SSZ-13)Example 4: Comparative example with Cu-CHA (Cu-SSZ-13)

Se preparó una zeolita Cu-CHA a partir de un gel con la composición molar: SiO2: 0,033 A^Oa: 0,50 OSDA: 0,50 HF: 3 H2O, donde el OSDA es hidróxido de N,N,N-trimetil-1-adamantamonio.A Cu-CHA zeolite was prepared from a gel with the molar composition: SiO2: 0.033 A ^ Oa: 0.50 OSDA: 0.50 HF: 3 H2O, where OSDA is N, N, N-trimethyl hydroxide -1-adamantamonium.

El gel se introdujo en autoclave a 150 0C durante 3 días con mezcla en tambor para dar un producto de zeolita final con una Si/Al = 12,7 después del lavado, secado y calcinación.The gel was autoclaved at 150 0C for 3 days with drum mixing to give a final zeolite product with Si / Al = 12.7 after washing, drying and calcination.

Para obtener Cu-CHA, la zeolita calcinada se intercambió iónicamente con Cu(CH3COO)2 para obtener el catalizador final con una Cu/AI = 0,54.To obtain Cu-CHA, the calcined zeolite was ion-exchanged with Cu (CH3COO) 2 to obtain the final catalyst with Cu / AI = 0.54.

El patrón de difracción de rayos X de polvo (PXRD) de Cu-CHA después de la calcinación se muestra en la Fig. 1. Este catalizador también se ensayó según el Ejemplo 2, y la durabilidad hidrotermal se evaluó de forma similar al Ejemplo 3. Los resultados catalíticos se resumen en la Fig. 2 de los dibujos. En la Fig. 1 se muestran patrones de PXRD de muestras tratadas de CHA, y las propiedades texturales (área de superficie BET, volumen de microporos, y área de microporos) se resumen en la Tabla 1.The Cu-CHA powder X-ray diffraction pattern (PXRD) after calcination is shown in Fig. 1. This catalyst was also tested according to Example 2, and the hydrothermal durability was evaluated similarly to Example 3 The catalytic results are summarized in Fig. 2 of the drawings. PXRD patterns of CHA treated samples are shown in Fig. 1, and the textural properties (BET surface area, micropore volume, and micropore area) are summarized in Table 1.

Tabla 1Table 1

Muestra Área de superficie BET Área de microporos Volumen de microporos (m2/g) (m2/g) (cm3/g)Sample BET surface area Micropore area Micropore volume (m2 / g) (m2 / g) (cm3 / g)

SS2-39_Calc 571 568 0,28SS2-39_Calc 571 568 0.28

SSZ-39_600 0C 554 551 0,28SSZ-39_600 0C 554 551 0.28

SSZ-39_750 0C 565 563 0,28SSZ-39_750 0C 565 563 0.28

Cu-SSZ-39_600 0C 465 463 0,24Cu-SSZ-39_600 0C 465 463 0.24

Cu-SSZ-39_750 0C 158 152 0,09 CHA_calc 675 637 0,32Cu-SSZ-39_750 0C 158 152 0.09 CHA_calc 675 637 0.32

CHA_600 0C 687 645 0,32CHA_600 0C 687 645 0.32

CHA_750 0C 674 623 0,31CHA_750 0C 674 623 0.31

Cu-CHA_600 0C 633 585 0,29Cu-CHA_600 0C 633 585 0.29

Cu-CHA_750 0C 50 35 0,02 Cu-CHA_750 0C 50 35 0.02

Ejemplo 5: Cu-SAPO-18 (Referencia)Example 5: Cu-SAPO-18 (Reference)

El silicoaluminofosfato SAPO-18 con el código de tipo de marco AEI se sintetizó según [J. Chen, J. M. Thomas, P. A. Wright, R. P. Townsend, Catal. Lett. 28 (1994) [241-248] y se impregnó con Cu al 2 % en peso. El catalizador final Cu-SAPO-18 se trató hidrotermalmente en 10 % H2O y 10 % O2 a 750 0C y se ensayó en las mismas condiciones que las dadas en el Ejemplo 2. Los resultados se muestran en la Fig. 2 de los dibujos. Silicoaluminophosphate SAPO-18 with frame type code AEI was synthesized according to [J. Chen, J. M. Thomas, P. A. Wright, R. P. Townsend, Catal. Lett. 28 (1994) [241-248] and impregnated with 2 wt% Cu. The final catalyst Cu-SAPO-18 was hydrothermally treated in 10% H2O and 10% O2 at 750 0C and tested under the same conditions as given in Example 2. The results are shown in Fig. 2 of the drawings.

Claims (10)

REIVINDICACIONES i. Método para la purificación de gases de escape de un motor de combustión interna, que comprende reducir el contenido de hollín en los gases de escape haciendo pasar el gas a través de un filtro; posteriormente, reducir el contenido de óxidos de nitrógeno en presencia de amoniaco o de un precursor del mismo en contacto con un catalizador que es activo en NH3-SCR;i. A method for purifying exhaust gases from an internal combustion engine, comprising reducing the soot content in the exhaust gases by passing the gas through a filter; subsequently, reducing the content of nitrogen oxides in the presence of ammonia or a precursor thereof in contact with a catalyst that is active in NH3-SCR; regenerar periódicamente el filtro calcinando el hollín capturado en el filtro y aumentando con ello la temperatura de los gases de escape hasta 850 °C y el contenido de vapor de agua hasta el 100 % en volumen; y hacer pasar los gases de escape desde el filtro a través del catalizador durante la regeneración del filtro, en donde el catalizador consiste en una zeolita microporosa hidrotérmicamente estable SSZ-39 promocionada con cobre.periodically regenerate the filter by calcining the soot captured in the filter and thereby increasing the temperature of the exhaust gases to 850 ° C and the content of water vapor to 100% by volume; and passing the exhaust gases from the filter through the catalyst during filter regeneration, where the catalyst consists of a hydrothermally stable microporous zeolite SSZ-39 promoted with copper. 2. El método de la reivindicación 1, en donde la relación atómica de cobre a aluminio está entre aproximadamente 0,01 y aproximadamente 1 para la zeolita SSZ-39.2. The method of claim 1, wherein the atomic ratio of copper to aluminum is between about 0.01 and about 1 for the SSZ-39 zeolite. 3. El método de la reivindicación 1 o 2, en donde el 80 % de la reducción inicial de óxidos de nitrógeno a 250 0C se mantiene después de que el catalizador haya sido expuesto a una temperatura de 750 0C y a un contenido de vapor de agua de 100 % en los gases de escape durante 13 horas.3. The method of claim 1 or 2, wherein 80% of the initial reduction of nitrogen oxides to 250 0C is maintained after the catalyst has been exposed to a temperature of 750 0C and a water vapor content 100% in the exhaust gases for 13 hours. 4. El método de una cualquiera de las reivindicaciones 1 a 3, en donde se mantiene al menos del 80 al 90 % de la microporosidad inicial tras el envejecimiento a 600 °C, y se mantiene al menos del 30 al 40 % tras el envejecimiento a 7500C.The method of any one of claims 1 to 3, wherein at least 80 to 90% of the initial microporosity is maintained after aging at 600 ° C, and is maintained at least 30 to 40% after aging at 7500C. 5. Un sistema de limpieza de gases de escape, que comprende un filtro de partículas activo regenerable y un catalizador SCR, caracterizado por que el catalizador SCR es una zeolita SSZ-39 microporosa hidrotérmicamente estable acelerada con cobre.5. An exhaust gas cleaning system, comprising a regenerable active particulate filter and an SCR catalyst, characterized in that the SCR catalyst is a hydrotherically stable microporous zeolite SSZ-39 accelerated with copper. 6. El sistema de limpieza de gases de escape de la reivindicación 5, en donde el catalizador SCR está integrado en el filtro de partículas.6. The exhaust gas cleaning system of claim 5, wherein the SCR catalyst is integrated into the particulate filter. 7. El sistema de limpieza de gases de escape de la reivindicación 5 o 6, en donde la relación atómica de cobre a aluminio está entre aproximadamente 0,01 y aproximadamente 1 para la zeolita SSZ-39.7. The exhaust gas cleaning system of claim 5 or 6, wherein the atomic ratio of copper to aluminum is between about 0.01 and about 1 for the SSZ-39 zeolite. 8. El sistema de limpieza de gases de escape de una cualquiera de las reivindicaciones 5 a 7, en donde el catalizador SCR retiene el 80 % de la reducción inicial de óxidos de nitrógeno a 250 °C después de que el catalizador se haya expuesto a una temperatura de 750 0C y un contenido de vapor de agua de 100 % en los gases de escape durante 13 horas.8. The exhaust gas cleaning system of any one of claims 5 to 7, wherein the SCR catalyst retains 80% of the initial reduction of nitrogen oxides at 250 ° C after the catalyst has been exposed to a temperature of 750 0C and a water vapor content of 100% in the exhaust gases for 13 hours. 9. El sistema de limpieza de gases de escape de una cualquiera de las reivindicaciones 5 a 8, en donde el catalizador SCR retiene al menos 80 a 90 % de la microporosidad inicial tras el envejecimiento a 600 0C, y al menos 30 a 40 % de la microporosidad inicial tras el envejecimiento a 750 0C.9. The exhaust gas cleaning system of any one of claims 5 to 8, wherein the SCR catalyst retains at least 80 to 90% of the initial microporosity after aging at 600 0C, and at least 30 to 40% of the initial microporosity after aging at 750 0C. 10. El sistema de limpieza de gases de escape de una cualquiera de las reivindicaciones 5 a 9, en donde el catalizador SCR se deposita en una estructura de soporte monolítica. 10. The exhaust gas cleaning system of any one of claims 5 to 9, wherein the SCR catalyst is deposited on a monolithic support structure.
ES12716467T 2012-04-27 2012-04-27 Method and system for purifying exhaust gases from an internal combustion engine Active ES2633320T5 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/057795 WO2013159825A1 (en) 2012-04-27 2012-04-27 Method and system for the purification of exhaust gas from an internal combustion engine

Publications (2)

Publication Number Publication Date
ES2633320T3 ES2633320T3 (en) 2017-09-20
ES2633320T5 true ES2633320T5 (en) 2020-05-20

Family

ID=46001293

Family Applications (3)

Application Number Title Priority Date Filing Date
ES12716467T Active ES2633320T5 (en) 2012-04-27 2012-04-27 Method and system for purifying exhaust gases from an internal combustion engine
ES18163099T Active ES2730559T3 (en) 2012-04-27 2012-04-27 System for purification of exhaust gases from an internal combustion engine
ES18185449T Active ES2744546T3 (en) 2012-04-27 2012-04-27 Method and system for purifying exhaust gases from an internal combustion engine

Family Applications After (2)

Application Number Title Priority Date Filing Date
ES18163099T Active ES2730559T3 (en) 2012-04-27 2012-04-27 System for purification of exhaust gases from an internal combustion engine
ES18185449T Active ES2744546T3 (en) 2012-04-27 2012-04-27 Method and system for purifying exhaust gases from an internal combustion engine

Country Status (13)

Country Link
US (2) US9561468B2 (en)
EP (6) EP3369897B1 (en)
JP (1) JP6290181B2 (en)
KR (1) KR101915552B1 (en)
CN (5) CN109268110B (en)
BR (1) BR112014026909B1 (en)
CA (1) CA2870745C (en)
DK (1) DK2850294T4 (en)
ES (3) ES2633320T5 (en)
PL (2) PL3369897T3 (en)
RU (1) RU2623356C2 (en)
WO (1) WO2013159825A1 (en)
ZA (1) ZA201406863B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101915552B1 (en) * 2012-04-27 2018-11-06 우미코레 아게 운트 코 카게 Method and system for the purification of exhaust gas from an internal combustion engine
KR102264058B1 (en) * 2013-03-15 2021-06-11 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Catalyst for treating exhaust gas
EP3878813A1 (en) 2013-10-31 2021-09-15 Johnson Matthey Public Limited Company Aei zeolite synthesis
DE102014117671A1 (en) * 2013-12-02 2015-06-03 Johnson Matthey Public Limited Company SYNTHESIS OF AN AEI ZEOLITE
EP3222583A4 (en) 2014-11-21 2018-04-11 Mitsubishi Chemical Corporation Aei type zeolite, method for prodcuing same, and uses thereof
ES2586775B1 (en) 2015-04-16 2017-08-14 Consejo Superior De Investigaciones Científicas (Csic) METHOD OF PREPARATION OF THE AEI ZEOLITHIC STRUCTURE IN ITS SILICOALUMINATE FORM WITH GREAT PERFORMANCES, AND ITS APPLICATION IN CATALYSIS
ES2586770B1 (en) 2015-04-16 2017-08-14 Consejo Superior De Investigaciones Científicas (Csic) DIRECT SYNTHESIS METHOD OF CU-SILICOALUMINATE MATERIAL WITH AEI ZEOLITHIC STRUCTURE, AND ITS CATALYTIC APPLICATIONS
ES2589059B1 (en) 2015-05-05 2017-08-17 Consejo Superior De Investigaciones Cientificas DIRECT SYNTHESIS OF Cu-CHA THROUGH THE COMBINATION OF A CU AND TETRAETHYLAMM COMPLEX, AND APPLICATIONS IN CATALYSIS
CN108349742A (en) 2015-11-27 2018-07-31 三菱化学株式会社 The manufacturing method of eight membered oxygen rings zeolites and AEI type zeolites
DK3411131T3 (en) * 2016-02-01 2020-06-02 Umicore Ag & Co Kg PROCEDURE FOR THE REMOVAL OF NITROGEN OXIDES FROM EXHAUST GAS BY SELECTIVE CATALYTIC REDUCTION IN THE PRESENCE OF A SCR CATALYSTER INCLUDING A FE-AEI ZEOLITE MATERIAL, ALSO AVAILABLE IN ALL VETS.
KR101846918B1 (en) 2016-11-16 2018-04-09 현대자동차 주식회사 Cu/LTA CATALYST AND EXHAUST GAS SYSTEM, AND MANUFACTURING METHOD OF Cu/LTA CATALYST
CN106925341A (en) * 2017-02-23 2017-07-07 华中科技大学 A kind of preparation method and applications of the catalyst of Cu SSZ 39 of auxiliary agent doping
CN110392607A (en) 2017-03-13 2019-10-29 三菱化学株式会社 Transition metal loaded zeolite and its manufacturing method and catalyst for cleaning up nitrogen oxides and its application method
JP2018159334A (en) * 2017-03-23 2018-10-11 日本碍子株式会社 Exhaust emission control device
CN107376989B (en) * 2017-07-21 2021-01-05 中触媒新材料股份有限公司 Cu-AEI molecular sieve catalyst synthesis and application
EP3873649A1 (en) 2018-11-02 2021-09-08 BASF Corporation Exhaust treatment system for a lean burn engine
KR20210087743A (en) * 2020-01-03 2021-07-13 현대자동차주식회사 Catalyst and manufacturing method thereof
KR20220060315A (en) * 2020-11-04 2022-05-11 현대자동차주식회사 Catalyst for selective catalytic reduction and method for preparing the same
CN114950576B (en) * 2022-06-20 2023-08-22 济南大学 Method for improving hydrothermal stability of metal-based small-pore molecular sieve, obtained product and application
DE102022130469A1 (en) 2022-11-17 2024-05-23 Umicore Ag & Co. Kg Method and device for producing a substrate for an exhaust gas aftertreatment device

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2075603C1 (en) * 1994-07-05 1997-03-20 Владимир Алексеевич Васин Exhaust gas regenerable soot filter
US5958370A (en) 1997-12-11 1999-09-28 Chevron U.S.A. Inc. Zeolite SSZ-39
US6818198B2 (en) 2002-09-23 2004-11-16 Kellogg Brown & Root, Inc. Hydrogen enrichment scheme for autothermal reforming
WO2004094045A1 (en) * 2003-04-17 2004-11-04 Johnson Matthey Public Limited Company Method of decomposing nitrogen dioxide
US7229597B2 (en) 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
BRPI0619944B8 (en) * 2005-12-14 2018-03-20 Basf Catalysts Llc method for preparing a metal-promoted zeolite catalyst, zeolite catalyst, and method for reducing nox in an exhaust gas or combustible gas stream
AR065501A1 (en) * 2007-02-27 2009-06-10 Basf Catalysts Llc ZEOLITA CHA COPPER CATALYSTS
EP3401010A1 (en) * 2007-03-26 2018-11-14 PQ Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
EP2517773B2 (en) * 2007-04-26 2019-08-07 Johnson Matthey Public Limited Company Copper/LEV-zeolite SCR catalyst
US7966812B2 (en) * 2007-08-29 2011-06-28 Ford Global Technologies, Llc Multi-stage regeneration of particulate filter
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
US8080209B2 (en) * 2008-02-25 2011-12-20 Jgc Catalysts And Chemicals Ltd. Exhaust gas treatment apparatus
JP2009255051A (en) * 2008-03-21 2009-11-05 Panasonic Corp Exhaust gas purification device
EP2112341B1 (en) * 2008-04-22 2018-07-11 Umicore AG & Co. KG Method for purification of an exhaust gas from a diesel engine
JP2010000499A (en) * 2008-05-20 2010-01-07 Ibiden Co Ltd Honeycomb structure
WO2009141898A1 (en) * 2008-05-20 2009-11-26 イビデン株式会社 Honeycomb structure
JP5404778B2 (en) * 2008-06-19 2014-02-05 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Oxidation catalyst for transportation vehicles with diesel engine
US8245500B2 (en) * 2008-07-07 2012-08-21 Delphi Technologies, Inc. Dual catalyst NOx reduction system for exhaust from lean burn internal combustion engines
JP4767296B2 (en) * 2008-07-31 2011-09-07 本田技研工業株式会社 NOx purification catalyst
JP5549839B2 (en) * 2008-08-19 2014-07-16 東ソー株式会社 High heat-resistant β-type zeolite and SCR catalyst using the same
DE102008049098A1 (en) * 2008-09-26 2009-06-25 Daimler Ag Exhaust-gas cleaning system operating method for e.g. diesel engine of motor vehicle, involves determining aging condition of exhaust gas cleaning component by correlation of hydrocarbon existed in exhaust gas upstream of component
EP2382031B2 (en) * 2008-12-24 2022-12-14 BASF Corporation Emissions treatment systems and methods with catalyzed scr filter and downstream scr catalyst
WO2010084930A1 (en) * 2009-01-22 2010-07-29 三菱化学株式会社 Catalyst for removing nitrogen oxides and method for producing same
US9662611B2 (en) * 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
CN102802791A (en) * 2009-04-17 2012-11-28 约翰逊马西有限公司 Small Pore Molecular Sieve Supported Copper Catalysts Durable Against Lean/rich Aging For The Reduction Of Nitrogen Oxides
JP6023395B2 (en) * 2009-10-06 2016-11-09 日本碍子株式会社 Catalyst support filter
JP2011098336A (en) * 2009-10-09 2011-05-19 Ibiden Co Ltd Honeycomb filter
RU2593989C2 (en) * 2010-03-11 2016-08-10 Джонсон Мэттей Паблик Лимитед Компани CARRIERS BASED ON UNORDERED MOLECULAR SIEVES FOR SELECTIVE CATALYTIC REDUCTION OF NOx
JP5573453B2 (en) * 2010-07-21 2014-08-20 三菱樹脂株式会社 Nitrogen oxide purification catalyst and method for producing the same
US20110165040A1 (en) * 2010-11-03 2011-07-07 Ford Global Technologies, Llc Device for remediating emissions and method of manufacture
US20140093442A1 (en) * 2011-05-31 2014-04-03 Johnson Matthey Public Limited Company Dual Function Catalytic Filter
CN102380412B (en) * 2011-09-06 2014-04-30 太原理工大学 Method for preparing MFI catalyst carrying transition elements and MFI catalyst application
KR101915552B1 (en) * 2012-04-27 2018-11-06 우미코레 아게 운트 코 카게 Method and system for the purification of exhaust gas from an internal combustion engine
KR102264058B1 (en) * 2013-03-15 2021-06-11 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Catalyst for treating exhaust gas
WO2016073329A1 (en) * 2014-11-03 2016-05-12 California Institute Of Technology Producing zeolite ssz-39 using isomeric mixtures of organic structure directing agents

Also Published As

Publication number Publication date
DK2850294T3 (en) 2017-08-28
EP3425181B1 (en) 2019-10-30
US9855528B2 (en) 2018-01-02
US20150118134A1 (en) 2015-04-30
EP3165733B1 (en) 2018-09-05
ES2633320T3 (en) 2017-09-20
US20160354724A1 (en) 2016-12-08
RU2623356C2 (en) 2017-06-23
CN109268109A (en) 2019-01-25
JP2015516882A (en) 2015-06-18
JP6290181B2 (en) 2018-03-07
CN104520548A (en) 2015-04-15
CA2870745C (en) 2019-07-09
CA2870745A1 (en) 2013-10-31
EP3369897A1 (en) 2018-09-05
CN104520548B (en) 2018-09-07
CN109268110A (en) 2019-01-25
KR20150003746A (en) 2015-01-09
CN109184860A (en) 2019-01-11
EP3165733A1 (en) 2017-05-10
ZA201406863B (en) 2018-05-30
CN109268109B (en) 2021-10-29
EP3425182B1 (en) 2019-06-19
DK2850294T4 (en) 2019-12-16
EP2850294B1 (en) 2017-06-07
BR112014026909A2 (en) 2017-06-27
ES2730559T3 (en) 2019-11-11
EP3425181A1 (en) 2019-01-09
RU2014147605A (en) 2016-06-20
CN109268108A (en) 2019-01-25
CN109184860B (en) 2020-12-22
WO2013159825A1 (en) 2013-10-31
EP3369897B1 (en) 2019-04-03
CN109268110B (en) 2021-05-07
EP2995790A1 (en) 2016-03-16
US9561468B2 (en) 2017-02-07
ES2744546T3 (en) 2020-02-25
EP2850294A1 (en) 2015-03-25
EP2850294B2 (en) 2019-09-11
PL3369897T3 (en) 2019-10-31
KR101915552B1 (en) 2018-11-06
EP3425182A1 (en) 2019-01-09
BR112014026909B1 (en) 2021-06-29
PL3425182T3 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
ES2633320T5 (en) Method and system for purifying exhaust gases from an internal combustion engine
US9126180B2 (en) Catalyst blends
US20150064088A1 (en) Zeolite blend catalysts for treating exhaust gas
CN107849962B (en) Catalyzed soot filter for passivated selective catalytic reduction and method of making same
JP2006289211A (en) Ammonia oxidation catalyst
JP2023539494A (en) particulate filter
BR112019020841A2 (en) catalytic article of monolithic wall flow filter, vehicles, exhaust gas treatment systems and methods for treating an exhaust stream
JP6325042B2 (en) Exhaust gas purification device for heat engine
JP2016217357A (en) Exhaust emission control device of heat engine
KR20140143968A (en) AMMONIA SCR CATALYST FOR REDUCING NITROGEN OXIDE USING MESOPORE α-MN_2 O_3 AND THE METHOD FOR DECOMPOSING NITROGEN OXIDE USING THE SAME