ES2632348T3 - Déficit de receptores de la hormona del crecimiento como causa de una reducción significativa de la señalización pro-envejecimiento, del cáncer y de la diabetes - Google Patents

Déficit de receptores de la hormona del crecimiento como causa de una reducción significativa de la señalización pro-envejecimiento, del cáncer y de la diabetes Download PDF

Info

Publication number
ES2632348T3
ES2632348T3 ES11777722.7T ES11777722T ES2632348T3 ES 2632348 T3 ES2632348 T3 ES 2632348T3 ES 11777722 T ES11777722 T ES 11777722T ES 2632348 T3 ES2632348 T3 ES 2632348T3
Authority
ES
Spain
Prior art keywords
igf
growth hormone
cancer
ghrd
insulin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES11777722.7T
Other languages
English (en)
Inventor
Valter D. Longo
Jaime Guevara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Southern California USC
Original Assignee
University of Southern California USC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Southern California USC filed Critical University of Southern California USC
Application granted granted Critical
Publication of ES2632348T3 publication Critical patent/ES2632348T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/26Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against hormones ; against hormone releasing or inhibiting factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/27Growth hormone [GH] (Somatotropin)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies

Abstract

Una composición inhibidora del eje GH/IGF-1, para su uso en un método para aliviar un efecto secundario de quimioterapia en un sujeto, comprendiendo el método: identificar un sujeto sometido a quimioterapia; administrar al sujeto una cantidad terapéuticamente eficaz de una composición inhibidora del eje GH/IGF-1 y medir el nivel de IGF-1 en el sujeto; en la que la composición inhibidora del eje GH/IGF-1 comprende una variante de la hormona del crecimiento humano que incluye al menos una sustitución de aminoácido seleccionada del grupo que consiste en H18D, H21N, R167N, K168A, D171S, K172R, E174S, I179T y G120R o un análogo recombinante de 191 aminoácidos de la proteína GH que tiene grupos de polietilenglicol añadidos.

Description

imagen1
imagen2
imagen3
imagen4
imagen5
15
25
35
45
55
65
En otra realización más de la presente divulgación, se proporciona un método para reducir el daño oxidativo en diversas células eucariotas. El método comprende identificar una célula eucariota predispuesta a daño oxidativo y administrar a continuación una cantidad terapéuticamente eficaz de una composición inhibidora del eje GH/IGF-1 al sujeto.
En varias de las realizaciones expuestas anteriormente, los niveles de IGF-1 y/o GH se miden para controlar y ajustar la dosificación para el sujeto. Los niveles de IGF-1 y GH se miden por cualquiera de una serie de métodos conocidos en la técnica. Los ejemplos usados para medir el nivel de IGH-1 en un sujeto incluyen, pero no se limitan a, radioinmunoensayo (RIA), ELISA (por ejemplo, kits ELISA comercialmente disponibles de Diagnostic Systems Laboratory, Inc., Webster, TX), inmunoensayos quimioluminiscentes comercialmente disponible en el Nichols Institute Diagnostic, San Juan Capistrano, CA).
Como se ha expuesto anteriormente, la presente invención utiliza una composición inhibidora del eje GH/IGF-1 tal como se expone en las reivindicaciones. Las composiciones que inhiben el eje GH/IGF-1 son conocidas y directamente útiles en las realizaciones expuestas anteriormente. En una variación, la composición inhibidora del eje GH/IGF-1 comprende un antagonista del receptor de la hormona del crecimiento. Ejemplos de antagonistas del receptor de la hormona del crecimiento se exponen en las patentes US-5.849.535; US-6.004.931; US-6.057.292; US-6.136.563; US-7.470.779; US-7.470.779; US-7.524.813 y US-6.583.115. Las composiciones expuestas en estas patentes son generalmente variantes de la hormona del crecimiento, que incluyen varias sustituciones de aminoácidos. Más concretamente, la variante de la hormona del crecimiento humano incluye la siguiente sustitución de aminoácidos: G120R. Más concretamente aún, la variante de la hormona del crecimiento humano incluye al menos una sustitución de aminoácido seleccionada del grupo que consiste en H18D, H21N, R167N, K168A, D171S, K172R, E174S, I179T y G120R. Más concretamente incluso, la variante de la hormona del crecimiento humano incluye las siguientes sustituciones de aminoácidos: H18D, H21N, R167N, K168A, D171S, K172R, E174S, I179T y G120R. También debe señalarse que estas variantes de la hormona del crecimiento se estabilizan generalmente, por ejemplo, por pegilación. Un ejemplo específico particularmente útil de un antagonista del receptor de la hormona del crecimiento es Pegvisomant™ comercializado por Pfizer Inc. Pegvisomant™ es un análogo recombinante de 191 aminoácidos de la proteína GH que tiene grupos de polietilenglicol añadidos (es decir, pegilación).
En otra variación de la divulgación, la composición inhibidora del eje GH/IGF-1 comprende un antagonista del receptor IGF-1.
En otra variación de la divulgación, la composición inhibidora del eje GH/IGF-1 comprende un compuesto que inhibe la producción de hormona del crecimiento. Generalmente, estos compuestos actúan sobre la porción anterior de la hipófisis. Los compuestos comercialmente disponibles son variaciones sintéticas de la somatostatina natural. Ejemplos de estos sustitutos sintéticos incluyen octreotida (disponible como sandostatina de Novartis Pharmaceuticals) y lanreótido (disponible como somatulina de Ipsen).
En otra variación adicional de la divulgación, la composición inhibidora del eje GH/IGF-1 comprende un antagonista del receptor de la hormona liberadora de GH (GHRH). Un ejemplo de tal antagonista es MZ-5-156 (véase Effects of growth hormone-releasing hormone and its agonistic and antagonistic analogs in cancer and non-cancerous cell lines, N. Barabutis et al, International Journal of Oncology, 36: 1285-1289, 2010).
En otra variación de la divulgación, la composición inhibidora del eje GH/IGF-1 comprende un anticuerpo de hormona del crecimiento. Más concretamente, los anticuerpos anti-hormona del crecimiento incluyen anticuerpos monoclonales y policlonales que se dirigen a la GH (véase Fig. 13a, 13b, 14a, 14b), GHR (Figura 17) o al receptor de IGF-1 (IGF-1R). Más concretamente, los anticuerpos monoclonales incluyen inmunoglobulinas (por ejemplo, subtipos IgGI e IgG2). Ejemplos de fármacos que incorporan estas inmunoglobulinas incluyen IMC-A12, R1507, AMG-479 (véase la referencia a continuación), SCH-717454 y CP-751.871 como se expone en el artículo Early drug development of inhibitors of the insulin-like growth factor-I receptor pathway: Lessons from the first clinical trials, by J. Rodon et al, Mol Cancer Ther 2008;7(9). Septiembre de 2008, páginas 2575-2588. Más concretamente, los anticuerpos anti-hormona del crecimiento incluyen anticuerpos monoclonales y policlonales que se dirigen a la hormona del crecimiento. AMG 479, un anticuerpo monoclonal anti-receptor del factor de crecimiento insulínico tipo 1, completamente humano, que inhibe el crecimiento y la supervivencia de las células de carcinoma pancreático (Mol Cancer Ther May 2009 8:1095-1105.)
En otra variación más de la divulgación, la composición inhibidora del eje GH/IGF-1 comprende una combinación de dos o más de las selecciones posibles expuestas anteriormente.
La dosis de la composición inhibidora del eje GH/IGF-1 es tal que el nivel medido de IGF-1 en plasma es inferior al nivel basal del sujeto (valor antes del tratamiento). Deben evitarse valores muy bajos de IGF-1 ya que tales niveles bajos tienen efectos secundarios relacionados. En una variación, la dosis se ajusta de tal manera que el IGF-1 plasmático del sujeto es del 20 al 60 por ciento del nivel basal del sujeto. En otra variación, la dosis se ajusta de tal manera que el IGF-1 plasmático del sujeto es de 30 a 55 por ciento del nivel basal del sujeto. En otra variación más, la dosis se ajusta de tal manera que el IGF-1 plasmático de los sujetos es de 40 a 50 por ciento del nivel basal del sujeto. Los valores normales para la concentración de IGF-1 dependen en cierta medida de la edad y del sexo. Un
imagen6
15
25
35
45
55
65
desconocidas). En comparación con los individuos control, los sujetos con GHRD fallecieron mucho más frecuentemente por accidentes, causas relacionadas con el alcohol y trastornos convulsivos (Fig. 1 D).
El cáncer no fue una causa de muerte en sujetos con GHRD de cualquier grupo de edad (Fig. 1 E); sin embargo, representó aproximadamente el 20 % de las muertes y el 17 % de todas las enfermedades de los parientes (Fig.1D, F). Entre las muertes en cada grupo de edad, la proporción de cáncer fue menor en los sujetos con GHRD que en los parientes (basado en la distribución hipergeométrica exacta implementada en StatXact 7, CytelSoftware Corporation, p = 0,003). De todos los sujetos con GHRD seguidos desde 1988, solo uno fue diagnosticado de cáncer, un tumor epitelial seroso papilar del ovario en 2008. Después de la cirugía y el tratamiento, permanece libre de cáncer. El cáncer de estómago fue la causa predominante de mortalidad relacionada con cáncer en los parientes (Fig. 7), lo cual concuerda con la alta incidencia de este cáncer en Ecuador (48).
No se observó mortalidad ni morbilidad por diabetes tipo 2 en la cohorte GHRD, mientras que la diabetes es responsable del 5 % de las muertes y del 6 % de todas las enfermedades de los parientes (Fig. 1D, F), lo que concuerda con el 5 % de prevalencia de la diabetes en Ecuador (Fig. 1 G) (49). Estimamos la prevalencia de diabetes en la cohorte GHRD como 0/90 = 0 %, con un intervalo de confianza de Clopper-Pearson exacto del 95 %: 0 % -4 %. Para probar si la prevalencia de la diabetes en la cohorte GHRD era diferente de la prevalencia de la población general del 5 %, se realizó una prueba exacta de la hipótesis nula de que con p = 0,05, basado en la distribución binomial, con la tasa de error tipo I, α = 0,05. El valor P fue de 0,02, lo que indica que la prevalencia en la cohorte GHRD es inferior al 5 %. Este es un resultado especialmente sorprendente considerando la elevada prevalencia de obesidad entre estos individuos con GHRD (21 % en sujetos con GHRD frente al 13,4 % en la población general de Ecuador) (Fig. 1 G). Se ha descrito hipoglucemia en niños con déficits de GH y en sujetos jóvenes con GHRD (50-52). Por otra parte, se ha descrito que el déficit de GH en los adultos causa resistencia a la insulina y mayor mortalidad por enfermedad vascular (36, 53). Para investigar los mecanismos que podrían ser responsables de la ausencia de diabetes observada en la cohorte GHRD ecuatoriana, se midieron las concentraciones de glucosa en ayunas e insulina en 13 sujetos control y 16 sujetos con GHRD que consistían en sujetos masculinos y femeninos entre las edades de 20 y 50 años. No se observó ninguna diferencia significativa en las concentraciones de glucosa en ayunas entre ellos (Fig. 8). Sin embargo, la concentración media de insulina en el grupo con GHRD fue aproximadamente un tercio de la de los controles (Fig. 1H, p <0,05) y el índice en el modelo homeostático de evaluación de la resistencia a la insulina (HOMA-IR) (54) indicaba que los sujetos con GHRD (HOMA-IR = 0,34) eran mucho más sensibles a la insulina que los sujetos de control (HOMA-IR = 0,96) (Fig. 1I, p < 0,05) (55). Estos resultados concuerdan con el hallazgo de que los ratones con GHRD y otros modelos de ratón deficientes en GH tienen concentraciones de insulina séricas bajas y son sensibles a la insulina (31-34).
Aunque los sujetos con GHRD pueden presentar una elevada mortalidad por enfermedad cardiaca en comparación con parientes no afectados (Fig. 1 D), la mortalidad relativa por enfermedades vasculares (combinación de enfermedad cardíaca e ictus) parece ser similar a la de los parientes (33 % de muertes en parientes frente a 30 % de muertes en sujetos con GHRD) porque solo el 3 % de las muertes en sujetos con GHRD frente al 12 % en los parientes fueron debidas a ictus (Fig. 1 D). En consonancia con los estudios de una población humana con déficit aislado de hormona del crecimiento (IGHD) (56), nuestros datos sugieren que el GHRD no incrementa la mortalidad global de la enfermedad vascular, aunque puede aumentar la susceptibilidad a la enfermedad cardíaca y disminuir la susceptibilidad al ictus (Fig. 1 D).
La reducción de la señalización de IGF-1 protege contra el daño del ADN y favorece la apoptosis de las células dañadas.
El papel del IGF-1 en el desarrollo y progresión tumoral se ha atribuido a la promoción del crecimiento celular y la inhibición de la apoptosis en las células dañadas y precancerosas (29). Sin embargo, nuestros estudios en S. cerevisiae indican que los homólogos de los genes de la vía de señalización del crecimiento en mamíferos, incluyendo TOR, S6K, RAS y PKA promueven un aumento dependiente de la edad en las mutaciones del ADN por elevación de la producción de superóxido y promueven el daño del ADN independientemente del crecimiento celular (20). De hecho, el espectro de mutación en p53 de cánceres humanos es similar al de la levadura envejecida (19, 20, 28). Esto plantea la posibilidad de que la señalización de GH e IGF-1 puedan promover las mutaciones y cáncer no solo evitando la apoptosis de las células dañadas, sino también incrementando el daño en el ADN tanto en las células en división con en las células que no están en división. Para probar esta hipótesis, incubamos HMEC confluentes en medio suplementado con 15 % de suero de los controles o de los sujetos con GHRD (57, 58) durante 6 horas y a continuación se trataron con H2O2 durante 1 o 24 horas, seguido por el análisis cometa para detectar roturas de la cadena de ADN. Con el fin de prevenir la interferencia de factores de crecimiento o de la insulina, el medio no contenía suplementos de crecimiento durante el perıodo de incubación de 6 horas. Debido a que las células se incubaron a más de 90 % de confluencia, el crecimiento celular durante los períodos de pre-incubación y de tratamiento con H2O2 fueron mínimos. Se analizaron independientemente seis muestras de suero de cada grupo. El análisis cometa indicó que las células incubadas en suero de sujetos con GHRD tenían menos roturas de ADN después del tratamiento con 700 μM de H2O2 durante 1 hora (Fig. 2A, B) o 24 horas (Fig. 2A, C), lo que sugiere que el suero de sujetos con GHRD puede proteger frente al daño oxidativo del ADN independientemente de la división celular. También incubamos células epiteliales confluentes en medio suplementado con suero de control, suero de GHRD o suero de GHRD suplementado con 200 ng/ml de IGF-1 durante 6 horas (los niveles normales de IGF-1 en
imagen7
15
25
35
45
55
65
evidencia obvia de lesiones patológicas relacionadas con la edad, en comparación con solo aproximadamente el 10 % de sus hermanos de tipo silvestre, aunque los ratones con GHRD pueden vivir un 40 % más de tiempo (23) (14, 22, 23, 77). De acuerdo con los resultados presentados aquí, los ratones con GHRD muestran una menor incidencia (49 %) y la aparición tardía de neoplasias mortales en comparación con otros miembros de la camada de tipo silvestre, un aumento de la sensibilidad a la insulina y una reducción en el deterioro cognitivo dependiente de la edad (23, 24, 31). Se observan también fenotipos similares en ratones deficientes en GH (22, 32). Además, la reducción de la incidencia de cáncer en ratones con GHRD se asocia con una menor frecuencia de mutación en diversos tejidos (25).
A diferencia de los modelos en ratones, el GHRD no parece prolongar la vida humana, en gran parte porque el 70 % de las muertes en esta cohorte son causadas por causas no relacionadas con la edad, incluyendo trastornos convulsivos, toxicidad alcohólica, accidentes, cirrosis hepática y otras causas desconocidas frente a la distribución generalmente normal de las causas de muerte en la cohorte de parientes. La falta de mortalidad por cáncer pero la duración normal de la vida en sujetos con señalización de la hormona del crecimiento reducida en este estudio concuerdan con un estudio preliminar de Shevah y Laron en el que se describió la ausencia de cáncer en un grupo de 222 pacientes con déficits congénitos de IGF-1 (73) con el de Aguiar-Oliveira et al., que describieron una longevidad normal en 65 sujetos con déficit de GH (74). Al contrario que nuestro estudio, que se centra en los sujetos con GHRD con mutaciones específicas y los compara con parientes de la misma edad, en su estudio, Shevah y Laron compararon sujetos jóvenes en los que el déficit de IGF-1 se debía a muchas causas con controles mucho más mayores, lo que dificultó la interpretación de los datos. Sin embargo, en conjunto, estos dos estudios proporcionan una fuerte evidencia que sugiere una reducción de la incidencia de cáncer en sujetos con déficit de GHR e IGF-1 e indican que el IGF-1 podría servir como marcador para el cáncer dependiente de la edad, al menos en poblaciones específicas. Nuestros resultados también pueden proporcionar una explicación parcial de la sobrerrepresentación de mutaciones que provocan una pérdida parcial de la función en el gen del receptor de IGF-1 entre judíos Ashkenazi centenarios (75).
Los mecanismos que subyacen al papel pro-cáncer del IGF-1 pueden implicar no solo a su papel bien establecido en la promoción del crecimiento y la inhibición de la apoptosis (29, 76, 77), sino también a su efecto contraintuitivo sobre el aumento del daño del ADN independientemente del crecimiento, como sugieren nuestros estudios en levaduras. Tanto en levaduras como en mamíferos, la reducción de la señalización de TOR/S6K, RAS y AC/PKA hace que las células y el organismo sean resistentes a la mutagénesis dependiente del envejecimiento y del estrés oxidativo (2, 19, 20, 78-80). Este efecto parece depender, en parte, del aumento de la actividad de los factores de transcripción de resistencia al estrés y SOD2 (20, 65, 81). De hecho, los ratones que carecen de Cu/Zn SOD o MnSOD son susceptibles al aumento del daño del ADN y el cáncer (71). El efecto del suero de los sujetos con GHRD en la promoción de muchos de los cambios que promueven la longevidad en organismos modelo, incluyendo niveles reducidos de RAS, PKA y TOR y el aumento de la expresión de genes regulados por FOXO incluyendo SOD2, plantea la posibilidad de que los mecanismos anti-envejecimiento y anti-daño del ADN promovidos por la reducción de la señalización del crecimiento se conservan de la levadura a los seres humanos.
La ausencia de diabetes tipo 2 en la cohorte GHRD es particularmente interesante considerando que el fenotipo clínico de los sujetos con GHRD incluye la obesidad (82). La mayor sensibilidad a la insulina de los sujetos con GHRD, como se indica por las concentraciones reducidas de insulina y un índice HOMA-IR más bajo, podría explicar la ausencia de diabetes en esta cohorte. Aunque el aumento de la sensibilidad a la insulina se ha asociado con una mayor esperanza de vida en los modelos de ratón (83), algunos ratones de larga vida, incluyendo los ratones con el gen del receptor de insulina específico de grasa bloqueado (FIRKO), muestran una alteración de la señalización de insulina. Sin embargo, en este caso la pérdida de la señalización de la insulina está restringida al tejido adiposo y no está asociada con diabetes ni intolerancia a la glucosa (84). De forma similar, los ratones macho heterocigotos para el receptor IGF-1 muestran un aumento del 15 % en el período de vida aunque exhiben alteración de la tolerancia a la glucosa (6).
MATERIALES Y MÉTODOS
Reclutamiento de los sujetos: Los sujetos con GHRD y sus parientes fueron reclutados para el estudio siguiendo los protocolos aprobados por el Instituto de Endocrinología, Metabolismo y Reproducción (IEMYR) en Ecuador. Todos los participantes firmaron formularios de consentimiento informado antes de su participación en el estudio. Los datos sobre los sujetos con GHRD fallecidos se recogieron entrevistando a los miembros de la familia utilizando un cuestionario detallado (Fig.A - E). Al menos dos parientes debían estar presentes en el momento de la entrevista.
Genotipado: Las muestras de saliva se recogieron utilizando el kit de recogida de ADN Oragene OG-250 (DNA Genotek Inc., Ontario, Canadá) y se procesaron de acuerdo con el protocolo de los fabricantes. El genotipado de la mutación E180 se realizó utilizando los siguientes cebadores:
SEQ ID NO 3: 5'-CATTGCCCTCAACTGGACTT-3' Directo
SEQ ID NO 4: 5'-CATTTTCCATTTAGTTTCATTTACT-3' Inverso (WT)
SEQ ID NO 5: 5'-CATTTTCCATTTAGTTTCATTTAC-3' Inverso (mutante)
15
25
35
45
55
65
Análisis del suero: El IGF-1 y el IGF-2 séricos se midieron usando un ensayo basado en ELISA interno desarrollado en UCLA. Brevemente, las muestras de suero se extrajeron con ácido/etanol y se añadieron a placas de microvaloración de 96 pocillos (50 μl/pocillo) que se habían recubierto previamente con anticuerpos monoclonales anti-IGF-1 o anti-IGF-2 (sistemas R y D) a una concentración de 0,5 μg/pocillo. Después de 2 horas de incubación y posterior lavado, se añadieron 100 μl de conjugado estreptavidina-HRP a cada pocillo y se incubaron durante 20 minutos. Se añadieron 100 µl de sustrato OPD a cada pocillo y se incubaron adicionalmente durante 10 - 20 min. La reacción se detuvo mediante la adición de H2SO4 2N y se midió la absorbancia a 490 nm con un lector de placas (Molecular Design). Los valores se calcularon comparando con los patrones de IGF-1 e IGF-2 conocidos. Se midieron los niveles de glucosa en ayunas con un analizador de glucosa de YSI Life Sciences y se midieron los niveles de insulina en ayunas con un kit ELISA de insulina humana de Millipore. La resistencia a la insulina se evaluó mediante el índice del modelo homeostático de evaluación de la resistencia a la insulina (HOMA-IR) de los valores de glucosa en ayunas e insulina en ayunas y se calculó con la fórmula: glucosa en ayunas (mg/dl) x insulina en ayunas (μU/ml)/405 (54).
Cultivo de células: Las HMEC se adquirieron en ScienCell Research Laboratories. Las células se cultivaron en medio de células epiteliales (ScienCell) a 37 °C y CO2 5 % en placas de cultivo revestidas con poli-L-lisina (Sigma). El medio de células epiteliales consistió en medio basal y un suplemento de crecimiento patentado suministrado por el fabricante. Los fibroblastos embrionarios de ratón (MEF) primarios se adquirieron en ATCC (Manassas, VA) y se cultivaron en DMEM/F12 (Invitrogen), suplementado con FBS al 15 % a 37 °C y CO2 al 5 %. Las células R+ y R- se obtuvieron del Dr. R. Baserga y se cultivaron en DMEM/F12 suplementado con FBS al 10 % a 37 °C y CO2 al 5 %. Las células se sembraron a una densidad de 4 x 104 por pocillo para los ensayos Cometa y apoptosis, 8x104 por pocillo para los ensayos de LDH o 2x105 por pocillo para el análisis de microchips de ADN y transferencias Western en placas de 24, 96 y 6 pocillos respectivamente. Las células se cultivaron en medio basal de células epiteliales suplementado con un 15 % de suero control o suero de GHRD durante 6 horas seguido de tratamiento con H2O2 durante 1 hora (ensayos Cometa y de apoptosis) o 24 horas (ensayo Cometa y LDH). Para el análisis de microchips de ADN, las células se cultivaron en medio basal de células epiteliales (Sciencell) y suplementado con suero de control o de GHRD durante 6 horas y se procesó inmediatamente para la extracción de ARN con reactivo TRI de Ambion.
Ensayo Cometa: El ensayo Cometa se realizó de acuerdo con el método descrito por Olive et al (85) usando el kit de ensayo Cometa de Trevigen. El daño del ADN se cuantificó por célula con el software Comet Score™. Se analizaron 100 - 200 células por muestra.
Ensayo LDH: La actividad LDH se ensayó en medio de cultivo con el Ensayo de citotoxicidad no radiactiva CytoTox 96 de Promega de acuerdo con el protocolo del fabricante.
Ensayo de apoptosis: Las caspasas activadas se cuantificaron con un lector de placas de fluorescencia con el Fluorescein CaspaTag Pan-Caspase Assay Kit (Chemicon) de acuerdo con el protocolo del fabricante.
Actividad de FoxO: Se transfectaron 50.000 células/pocillo con 0,2 µg de plásmido indicador de luciferasa de FoxO con la secuencia de unión de FoxO consenso que dirige la expresión del gen luciferasa de la luciérnaga en placas de 24 pocillos. Como células de control interno se co-transfectaron con 0,02 µg de ADN plasmídico que codifica la luciferasa de Renilla bajo control del promotor CMV. Veinticuatro horas después de la transfección, se ensayó la actividad del promotor de FoxO usando el Dual-Luciferase Reporter Assay System de Promega de acuerdo con el protocolo del fabricante.
Análisis de transferencia Western: Las células se lisaron en tampón RIPA y se ensayó la proteína total con BCA de Thermo Scientific. Se cargaron 15 μg de proteína total en geles SDS-PAGE al 10 % desnaturalizantes. Los anticuerpos primarios contra Phospho-Akt y Akt total (Thr 308) así como Phospho-FoxO1 y FoxO1 total (Ser 256) se obtuvieron en Cell Signaling Technologies. La β-tubulina se obtuvo en Santa Cruz Biotechnology Inc. El anticuerpo de conejo secundario se obtuvo en Jackson Immunoresearch Laboratories, Inc.
Análisis de microchips de ADN: El ARN se extrajo utilizando el reactivo TRI (Ambion) de acuerdo con el protocolo y se hibridó con chips BD-103-0603 de Illumina Beadchips (San Diego, CA). Los datos brutos se sometieron a normalización Z como se describe (86) y están disponibles en el repositorio Gene Expression Omnibus (GEO), número de acceso GSE21980. El enriquecimiento del conjunto de genes se ensayó con el método PAGE como se describe (67).
Las figuras 11, 13 y 14 fueron seleccionadas basándose en los nombres y descripciones proporcionadas por Ingenuity Pathways Analysis (Ingenuity Pathways Analysis; Redwood City, CA) y/o Ariadne Pathway Studio 7 (Ariadne Genomics).
Levadura: La levadura tipo silvestre DBY746 (MATα,leu2-3,112,his3Δ1,trp1-289,ura3-52,GAL+) y su derivado ras2::LEU2tor1::HIS3sch9::URA3, originado por un reemplazo de genes de una etapa de acuerdo con Brachmann et al. (87), se hicieron crecer en SDC que contenía glucosa al 2 % y se suplementaron con aminoácidos como se ha descrito (88), así como un exceso de 4 veces de los suplementos de triptófano, leucina, uracilo e histidina. La vida
imagen8
15
25
35
45
55
65
8.
V. D. Longo, E. B. Gralla, J. S. Valentine, Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271, 12275-12280 (May 24, 1996).
9.
V. D. Longo, Thesis. University of California, Los Angeles, (1997).
10.
J. Z. Morris, H. A. Tissenbaum, G. Ruvkun, A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382, 536-539 (Aug 8, 1996).
11.
K. Lin, J. B. Dorman, A. Rodan, C. Kenyon, daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319-1322 (Nov 14, 1997).
12.
W. C. Orr, R. S. Sohal, Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128-1130 (Feb 25, 1994).
13.
K. Flurkey, J. Papaconstantinou, D. E. Harrison, The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev 123, 121-130 (Jan, 2002).
14.
H. M. Brown-Borg, K. E. Borg, C. J. Meliska, A. Bartke, Dwarf mice and the ageing process. Nature 384, 33 (Nov 7, 1996).
15.
E. Cohen et al., Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139, 1157-1169 (Dec 11, 2009).
16.
V. D. Longo, L. L. Liou, J. S. Valentine, E. B. Gralla, Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 365, 131-142 (May 1, 1999).
17.
C. Kenyon, A conserved regulatory system for aging. Cell 105, 165-168 (Apr 20, 2001).
18.
V. D. Longo, Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies, and mammalian neuronal cells. Neurobiol Aging 20, 479-486 (Sep-Oct, 1999).
19.
F. Madia et al., Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. J Cell Biol 180, 67-81 (Jan 14, 2008).
20.
F. Madia et al., Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polzeta-dependent mechanism. J Cell Biol 186, 509-523 (Aug 24, 2009).
21.
J. M. Pinkston, D. Garigan, M. Hansen, C. Kenyon, Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313, 971-975 (Aug 18, 2006).
22.
Y. Ikeno, R. T. Bronson, G. B. Hubbard, S. Lee, A. Bartke, Delayed occurrence of fatal neoplastic diseases in ames dwarf mice: correlation to extended longevity. J Gerontol A Biol Sci Med Sci 58, 291-296 (Apr, 2003).
23.
Y. Ikeno et al., Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 64, 522-529 (May, 2009).
24.
A. Bartke, Insulin resistance and cognitive aging in long-lived and short-lived mice. J Gerontol A Biol Sci Med Sci 60, 133-134 (Jan, 2005).
25.
A. M. Garcia et al., Effect of Ames dwarfism and caloric restriction on spontaneous DNA mutation frequency in different mouse tissues. Mech Ageing Dev 129, 528-533 (Sep, 2008).
26.
P. Rodriguez-Viciana et al., Cancer targets in the Ras pathway. Cold Spring Harb Symp Quant Biol 70, 461467 (2005).
27.
A. Toker, M. Yoeli-Lerner, Akt signaling and cancer: surviving but not moving on. Cancer Res 66, 3963-3966 (Apr 15, 2006).
28.
V. D. Longo, M. R. Lieber, J. Vijg, Turning anti-ageing genes against cancer. Nat Rev Mol Cell Biol 9, 903-910 (Nov, 2008).
29.
M. N. Pollak, E. S. Schernhammer, S. E. Hankinson, Insulin-like growth factors and neoplasia. Nat Rev Cancer 4, 505-518 (Jul, 2004).
30.
A. G. Renehan et al., Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363, 1346-1353 (Apr 24, 2004).
31.
F. P. Dominici, G. Arostegui Diaz, A. Bartke, J. J. Kopchick, D. Turyn, Compensatory alterations of insulin signal transduction in liver of growth hormone receptor knockout mice. J Endocrinol 166, 579-590 (Sep, 2000).
32.
F. P. Dominici, S. Hauck, D. P. Argentino, A. Bartke, D. Turyn, Increased insulin sensitivity and upregulation of insulin receptor, insulin receptor substrate (IRS)-1 and IRS-2 in liver of Ames dwarf mice. J Endocrinol 173, 8194 (Apr, 2002).
33.
M. M. Masternak, J. A. Panici, M. S. Bonkowski, L. F. Hughes, A. Bartke, Insulin sensitivity as a key mediator of growth hormone actions on longevity. J Gerontol A Biol Sci Med Sci 64, 516-521 (May, 2009).
34.
J. L. Liu et al., Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am J Physiol Endocrinol Metab 287, E405-413 (Sep, 2004).
35.
P. V. Carroll et al., Growth hormone deficiency in adulthood and the effects of growth hormone replacement: a review. Growth Hormone Research Society Scientific Committee. J Clin Endocrinol Metab 83, 382-395 (Feb, 1998).
36.
J. O. Johansson, J. Fowelin, K. Landin, I. Lager, B. A. Bengtsson, Growth hormone-deficient adults are insulin-resistant. Metabolism 44, 1126-1129 (Sep, 1995).
37.
M. Bramnert et al., Growth hormone replacement therapy induces insulin resistance by activating the glucosefatty acid cycle. J Clin Endocrinol Metab 88, 1455-1463 (Apr, 2003).
38.
U.S., (Census Bureau, 2010).
39.
J. Guevara-Aguirre, A. L. Rosenbloom, P. J. Fielder, F. B. Diamond, Jr., R. G. Rosenfeld, Growth hormone receptor deficiency in Ecuador: clinical and biochemical phenotype in two populations. J Clin Endocrinol Metab 76, 417-423 (Feb, 1993).
15
25
35
45
55
65
40.
A. L. Rosenbloom, J. Guevara Aguirre, R. G. Rosenfeld, P. J. Fielder, The little women of Loja--growth hormone-receptor deficiency in an inbred population of southern Ecuador. N Engl J Med 323, 1367-1374 (Nov 15, 1990).
41.
L. K. Bachrach et al., Bone mineral, histomorphometry, and body composition in adults with growth hormone receptor deficiency. J Bone Miner Res 13, 415-421 (Mar, 1998).
42.
M. A. Berg, J. Guevara-Aguirre, A. L. Rosenbloom, R. G. Rosenfeld, U. Francke, Mutation creating a new splice site in the growth hormone receptor genes of 37 Ecuadorean patients with Laron syndrome. Hum Mutat 1, 24-32 (1992).
43.
S. Amselem et al., Recurrent nonsense mutations in the growth hormone receptor from patients with Laron dwarfism. J Clin Invest 87, 1098-1102 (Mar, 1991).
44.
M. A. Berg et al., Receptor mutations and haplotypes in growth hormone receptor deficiency: a global survey and identification of the Ecuadorean E180splice mutation in an oriental Jewish patient. Acta Paediatr Suppl 399, 112-114 (Apr, 1994).
45.
A. L. Rosenbloom, J. Guevara-Aguirre, Growth hormone receptor deficiency in South America: colonial history, molecular biology, and growth and metabolic insights. J Pediatr Endocrinol Metab 21, 1107-1109 (Dec, 2008).
46.
M. A. Berg et al., Diverse growth hormone receptor gene mutations in Laron syndrome. Am J Hum Genet 52, 998-1005 (May, 1993).
47.
J. Guevara-Aguirre et al., Growth hormone receptor deficiency (Laron syndrome): clinical and genetic characteristics. Acta Paediatr Scand Suppl 377, 96-103 (1991).
48.
http://www.who.int/en/.
49.
J. E. Shaw, R. A. Sicree, P. Z. Zimmet, Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87, 4-14 (Jan).
50.
N. J. Hopwood, P. J. Forsman, F. M. Kenny, A. L. Drash, Hypoglycemia in hypopituitary children. Am J Dis Child 129, 918-926 (Aug, 1975).
51.
M. W. Haymond, I. Karl, V. V. Weldon, A. S. Pagliara, The role of growth hormone and cortisone on glucose and gluconeogenic substrate regulation in fasted hypopituitary children. J Clin Endocrinol Metab 42, 846-856 (May, 1976).
52.
Z. Laron, Y. Avitzur, B. Klinger, Carbohydrate metabolism in primary growth hormone resistance (Laron syndrome) before and during insulin-like growth factor-I treatment. Metabolism 44, 113-118 (Oct, 1995).
53.
T. Rosen, B. A. Bengtsson, Premature mortality due to cardiovascular disease in hypopituitarism. Lancet 336, 285-288 (Aug 4, 1990).
54.
D. R. Matthews et al., Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412-419 (Jul, 1985).
55.
Materials and methods are available as supporting material on Science Online.
56.
M. H. Aguiar-Oliveira et al., Longevity in untreated congenital growth hormone deficiency due to a homozygous mutation in the GHRH receptor gene. J Clin Endocrinol Metab 95, 714-721 (Feb, 2010 ).
57.
R. de Cabo et al., An in vitro model of caloric restriction. Exp Gerontol 38, 631-639 (Jun, 2003).
58.
T. H. Ngo, R. J. Barnard, P. S. Leung, P. Cohen, W. J. Aronson, Insulin-like growth factor I (IGF-I) and IGF binding protein-1 modulate prostate cancer cell growth and apoptosis: possible mediators for the effects of diet and exercise on cancer cell survival. Endocrinology 144, 2319-2324 (Jun, 2003).
59.
A. Csiszar et al., Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech Ageing Dev 130, 518-527 (Aug, 2009).
60.
C. Sell et al., Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor. Proc Natl Acad Sci U S A 90, 11217-11221 (Dec 1, 1993).
61.
G. Rena, S. Guo, S. C. Cichy, T. G. Unterman, P. Cohen, Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 274, 17179-17183 (Jun 11, 1999).
62.
A. Brunet et al., Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868 (Mar 19, 1999).
63.
D. R. Alessi et al., Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15, 6541-6551 (Dec 2, 1996).
64.
H. Huang et al., Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A 102, 1649-1654 (Feb 1, 2005).
65.
G. J. Kops et al., Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316-321 (Sep 19, 2002).
66.
P. F. Dijkers, R. H. Medema, J. W. Lammers, L. Koenderman, P. J. Coffer, Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 10, 1201-1204 (Oct 5, 2000).
67.
S. Y. Kim, D. J. Volsky, PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 6, 144 (2005).
68.
L. Fontana, L. Partridge, V. D. Longo, Extending healthy life span--from yeast to humans. Science 328, 321326 (Apr 16).
69.
L. Hlavata, T. Nystrom, Ras proteins control mitochondrial biogenesis and function in Saccharomyces cerevisiae. Folia Microbial (Praha) 48, 725-730 (2003).
70.
J. Urban et al., Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26, 663-674 (Jun 8, 2007).

Claims (1)

  1. imagen1
ES11777722.7T 2010-04-28 2011-01-21 Déficit de receptores de la hormona del crecimiento como causa de una reducción significativa de la señalización pro-envejecimiento, del cáncer y de la diabetes Active ES2632348T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US32881210P 2010-04-28 2010-04-28
US328812P 2010-04-28
PCT/US2011/022052 WO2011139391A1 (en) 2010-04-28 2011-01-21 Growth hormone receptor deficiency causes a major reduction in pro-aging signaling, cancer and diabetes in humans

Publications (1)

Publication Number Publication Date
ES2632348T3 true ES2632348T3 (es) 2017-09-12

Family

ID=44903945

Family Applications (1)

Application Number Title Priority Date Filing Date
ES11777722.7T Active ES2632348T3 (es) 2010-04-28 2011-01-21 Déficit de receptores de la hormona del crecimiento como causa de una reducción significativa de la señalización pro-envejecimiento, del cáncer y de la diabetes

Country Status (5)

Country Link
US (2) US20130045215A1 (es)
EP (1) EP2563398B1 (es)
CA (1) CA2798079A1 (es)
ES (1) ES2632348T3 (es)
WO (1) WO2011139391A1 (es)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2909802B1 (en) 2012-10-22 2020-08-12 University of Southern California Diet formulations promoting tissue/organ regeneration
AU2014284399B2 (en) 2013-07-01 2017-10-26 University Of Southern California Fasting condition as dietary treatment of diabetes
US10172839B2 (en) 2014-03-06 2019-01-08 University Of Southern California Use of short term starvation regimen in combination with kinase inhibitors to enhance traditional chemo-drug efficacy and feasibility and reverse side effects of kinases in normal cells and tissues
EP3125904A4 (en) 2014-04-02 2017-08-30 University of Southern California Autoimmunity and multiple sclerosis treatment
RU2724525C2 (ru) 2015-05-06 2020-06-23 Юниверсити Оф Саутерн Калифорния Способ лечения повышенных уровней инсулина или глюкозы с использованием гипокалорийного или бескалорийного рациона или рациона, имитирующего воздержание от пищи
JP2019505592A (ja) 2016-02-15 2019-02-28 ユニバーシティ オブ サザン カリフォルニア 糖尿病及び他の疾患を治療するための胚様再生を刺激するための薬剤の組み合わせ及び方法
BR112018073155A2 (pt) 2016-05-11 2019-03-12 University Of Southern California método para tratar doença autoimune e/ou inflamatória, e pacote de dieta
IT201700008499A1 (it) 2017-01-26 2018-07-26 Univ Degli Studi Genova Composizione dietetica per la prevenzione e/o il trattamento dell’iperplasia dell’endometrio
US11284640B2 (en) 2017-02-14 2022-03-29 University Of Southern California Fasting mimicking diet
MX2020009613A (es) 2018-03-15 2021-02-26 Univ Southern California Dieta que imita el ayuno (fmd) pero no ayuno solo con agua, promueve la reversion de la inflamacion y patologia de la enfermedad de intestino irritable (ibd).
CN113301807A (zh) 2018-11-09 2021-08-24 L·纽乐股份有限公司 间歇性禁食模仿的营养棒

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583115B1 (en) 1989-10-12 2003-06-24 Ohio University/Edison Biotechnology Institute Methods for treating acromegaly and giantism with growth hormone antagonists
ATE455171T1 (de) 1995-09-21 2010-01-15 Genentech Inc Varianten des menschlichen wachstumshormons
US7173005B2 (en) * 1998-09-02 2007-02-06 Antyra Inc. Insulin and IGF-1 receptor agonists and antagonists
MXPA04010566A (es) * 2002-04-26 2005-07-01 Pharmacia & Upjohn Co Llc Metodos y composiciones para tratar, prevenir o retardar la aparicion de un neoplasma.
US20040121407A1 (en) 2002-09-06 2004-06-24 Elixir Pharmaceuticals, Inc. Regulation of the growth hormone/IGF-1 axis
ZA200502320B (en) 2002-09-20 2006-10-25 Pharmacia Corp Process for decreasing aggregate levels of pegylated protein
US20070185031A1 (en) * 2003-07-14 2007-08-09 Northwestern University Reducing polyglutamine-based aggregation
US7524813B2 (en) 2003-10-10 2009-04-28 Novo Nordisk Health Care Ag Selectively conjugated peptides and methods of making the same
WO2005041901A2 (en) * 2003-11-03 2005-05-12 Elixir Pharmaceuticals, Inc. Therapeutics using somatostatin agonists
AU2005211362B2 (en) * 2004-02-02 2008-03-13 Ambrx, Inc. Modified human interferon polypeptides and their uses
ES2891733T3 (es) * 2007-03-28 2022-01-31 Univ Southern California Inducción de la resistencia diferencial al estrés y usos de la misma

Also Published As

Publication number Publication date
US20210246202A1 (en) 2021-08-12
WO2011139391A1 (en) 2011-11-10
EP2563398A1 (en) 2013-03-06
US20130045215A1 (en) 2013-02-21
EP2563398B1 (en) 2017-04-19
EP2563398A4 (en) 2014-01-29
CA2798079A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
ES2632348T3 (es) Déficit de receptores de la hormona del crecimiento como causa de una reducción significativa de la señalización pro-envejecimiento, del cáncer y de la diabetes
US20190285640A1 (en) Growth hormone receptor deficiency causes a major reduction in pro-aging signaling, cancer and diabetes in humans
Sourbier et al. Englerin A stimulates PKCθ to inhibit insulin signaling and to simultaneously activate HSF1: pharmacologically induced synthetic lethality
Burnett et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome
Wu et al. Novel mechanism of Foxo1 phosphorylation in glucagon signaling in control of glucose homeostasis
Zhang et al. Adipose mTORC1 suppresses prostaglandin signaling and beige adipogenesis via the CRTC2-COX-2 pathway
White et al. The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the ApcMin/+ mouse
Skurk et al. The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling
McCauley et al. Twenty‐five years of PTHrP progress: from cancer hormone to multifunctional cytokine
Valentino et al. A uroguanylin-GUCY2C endocrine axis regulates feeding in mice
Kelley et al. Inborn errors of sterol biosynthesis
Kashihara et al. YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload
Hsieh et al. Implications for the insulin signaling pathway in Snell dwarf mouse longevity: a similarity with the C. elegans longevity paradigm
Ding et al. Akt3 inhibits adipogenesis and protects from diet-induced obesity via WNK1/SGK1 signaling
US11752193B2 (en) Administering methylation-controlled J protein (MCJ) SIRNA to a kidney cell
Song et al. Somatostatin stimulates colonic MUC2 expression through SSTR5-Notch-Hes1 signaling pathway
Pellegata MENX
Culbert et al. Fibrodysplasia (myositis) ossificans progressiva
JP6959913B2 (ja) 肝分泌型代謝制御因子阻害作用による肥満関連疾患治療剤
Lee et al. Growth Hormones and Aging 26
US11137400B2 (en) Methods for predicting and determining responsiveness to activators of JNK kinase
손영훈 Role of transglutaminase 2 in acute colitis and skeletal muscle atrophy
Jesus et al. Figuereˆ do RG, Pessoa AFM, Rosa-Neto JC, Matos-Neto EM, Alcaˆ ntara PSM, Tokeshi F, Maximiano LF, Bin FC, Formiga FB, Otoch JP and Seelaender M (2021) Activation of the Adipose Tissue NLRP3 Inflammasome Pathway in Cancer Cachexia
Muñoz et al. Insulin signaling in the heart is directly and early impaired by growth hormone
Adeva-Andany et al. Body Fat Distribution Contributes to Defining the Relationship between Insulin Resistance and Obesity in Human Diseases