ES2628581T3 - Reactor component - Google Patents

Reactor component Download PDF

Info

Publication number
ES2628581T3
ES2628581T3 ES11716087.9T ES11716087T ES2628581T3 ES 2628581 T3 ES2628581 T3 ES 2628581T3 ES 11716087 T ES11716087 T ES 11716087T ES 2628581 T3 ES2628581 T3 ES 2628581T3
Authority
ES
Spain
Prior art keywords
layer
reactor
core
component
reactor component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES11716087.9T
Other languages
Spanish (es)
Inventor
Lars Hallstadius
Karin Backman
Björn REBENSDORFF
Hans Widegren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Electric Sweden AB
Original Assignee
Westinghouse Electric Sweden AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Sweden AB filed Critical Westinghouse Electric Sweden AB
Application granted granted Critical
Publication of ES2628581T3 publication Critical patent/ES2628581T3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/10Construction of control elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

Componente de reactor (1) adaptado para ser utilizado en reactores de fisión, que comprende un núcleo (2) que consiste en un primer material y una capa (3) que consiste en un segundo material, en el que la capa (3) encierra al menos parcialmente el núcleo (2), en el que el componente de reactor (1) comprende una capa intermedia (4) entre el núcleo (2) y la capa (3), caracterizado porque la capa (3) está constituida por al menos una sustancia seleccionada del grupo consistente en Ti, Zr, Al, Fe, Cr, Ni, SiC, SiN, ZrO2, Al2O3, y la mezcla de los mismos, y un resto posible, y porque la capa intermedia (4) está dispuesta para proporcionar una transición gradual de las propiedades del primer material al segundo material y tiene un gradiente de material que comprende una disminución de la concentración del primer material desde el núcleo (2) hasta la capa (3) y un aumento de la concentración del segundo material desde el núcleo (2) hasta la capa (3).Reactor component (1) adapted to be used in fission reactors, comprising a core (2) consisting of a first material and a layer (3) consisting of a second material, in which the layer (3) encloses at least partially the core (2), in which the reactor component (1) comprises an intermediate layer (4) between the core (2) and the layer (3), characterized in that the layer (3) is constituted by the less a substance selected from the group consisting of Ti, Zr, Al, Fe, Cr, Ni, SiC, SiN, ZrO2, Al2O3, and the mixture thereof, and a possible residue, and because the intermediate layer (4) is arranged to provide a gradual transition from the properties of the first material to the second material and has a gradient of material comprising a decrease in the concentration of the first material from the core (2) to the layer (3) and an increase in the concentration of the second material from the core (2) to the layer (3).

Description

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

DESCRIPCIONDESCRIPTION

Componente de reactor Campo tecnico de la invencionReactor component Technical field of the invention

La presente invencion se refiere a un componente de reactor de acuerdo con el preambulo de la reivindicacion 1, vease el documento US-3.249.509.The present invention relates to a reactor component according to the preamble of claim 1, see US-3,249,509.

Tecnica anteriorPrior art

Los componentes de reactor para reactores de fision son componentes que se encuentran situados en un ambiente que esta influenciado por el proceso de fision o en las proximidades del proceso de fision. Tales componentes de reactor pueden tener diversas funciones tales como material estructurales en elementos de combustible nuclear, componentes para controlar el proceso de fision, componentes para la medicion de diferentes parametros en el reactor, etc. Los componentes de reactor a menudo estan en contacto con un entorno exterior, tal como el entorno reactivo en un reactor de fision. El entorno exterior puede comprender sustancias qmmicamente agresivas a altas temperaturas y presion. El entorno exterior alrededor de los componentes de reactor puede consistir, por ejemplo, en un moderador y un medio de enfriamiento, que comprende agua ligera en reactores de agua a presion y de agua en ebullicion.The reactor components for fission reactors are components that are located in an environment that is influenced by the fission process or in the vicinity of the fission process. Such reactor components may have various functions such as structural material in nuclear fuel elements, components for controlling the fission process, components for measuring different parameters in the reactor, etc. The reactor components are often in contact with an outside environment, such as the reactive environment in a fission reactor. The outside environment can comprise chemically aggressive substances at high temperatures and pressure. The outside environment around the reactor components may consist, for example, of a moderator and a cooling medium, which comprises light water in pressurized water and boiling water reactors.

Las sustancias agresivas en el ambiente exterior pueden reaccionar con los componentes de reactor, por ejemplo por diferentes tipos de influencia de corrosion, y por lo tanto la funcion de los componentes se puede deteriorar o cesar por completo. Un ejemplo de la influencia de la corrosion es la llamada corrosion de sombra, que puede dar lugar a una corrosion local aumentada en los componentes de reactor que estan situados en la proximidad de un proceso de fision. La corrosion de sombra puede dar lugar a un grosor de oxido localmente alto sobre los componentes de reactor, lo que puede dar lugar a que la funcion del componente de reactor se deteriore o se detenga por completo. Los componentes de reactor tambien pueden ser influenciados por diferentes formas de procesos de abrasion o de desgaste en combinacion con corrosion u otra interaccion. Tambien se pueden producir en los componentes de reactor diferentes formas de procesos de eliminacion de material, tales como la abrasion que elimina material, el desgaste y la corrosion por erosion. La abrasion se puede producir, por ejemplo, por el contacto entre los componentes cercanos o debido al contacto entre el componente de reactor y una corriente de material del entorno exterior, tal como el medio de refrigeracion que fluye a traves del reactor. En el ultimo caso, el material puede ser retirado del componente de reactor cuando el medio del entorno exterior con alta velocidad choque contra el componente de reactor y elimine material de la superficie del componente. Cuando uno o mas componentes de reactor han sido afectados por abrasion, corrosion u otra influencia, puede ser necesario detener el reactor para retirar los componentes de reactor que fallan. Una parada operativa da lugar a grandes costes en forma de perdida de produccion y costes para la reparacion o el intercambio de los componentes de reactor que fallan.Aggressive substances in the outside environment may react with the reactor components, for example by different types of corrosion influence, and therefore the function of the components may be impaired or ceased completely. An example of the influence of corrosion is the so-called shadow corrosion, which can lead to increased local corrosion in the reactor components that are located in the vicinity of a fission process. Shadow corrosion may result in a locally high oxide thickness on the reactor components, which may result in the function of the reactor component deteriorating or being completely stopped. The reactor components can also be influenced by different forms of abrasion or wear processes in combination with corrosion or other interaction. Different forms of material removal processes, such as abrasion that removes material, wear and erosion corrosion, can also be produced in the reactor components. Abrasion can occur, for example, by contact between nearby components or due to contact between the reactor component and a stream of material from the outside environment, such as the cooling medium flowing through the reactor. In the latter case, the material can be removed from the reactor component when the medium of the outside environment with high velocity collides with the reactor component and removes material from the surface of the component. When one or more reactor components have been affected by abrasion, corrosion or other influence, it may be necessary to stop the reactor to remove the failed reactor components. An operational shutdown results in large costs in the form of lost production and costs for the repair or exchange of the failed reactor components.

Los componentes de reactor por su operacion en el reactor pueden ser activados y convertirse en radiactivos. El entorno exterior en el reactor alrededor de los componentes de reactor puede ser contaminado por los componentes de reactor y por el entorno exterior, reaccionando unos con los otros o por medio de diversas formas de procesos de eliminacion del material. Una contaminacion del exterior con material procedente de los componentes de reactor da como resultado una dispersion de sustancias radiactivas en el reactor. La retirada de material de los componentes de reactor tambien puede dar lugar a que se desgasten piezas de los componentes de reactor. Estas piezas se pueden desplazar en el sistema de refrigeracion y producir abrasion sobre otros componentes de reactor, por ejemplo los tubos de revestimiento en un elemento de combustible, lo que puede dar lugar a que la funcion de los componentes de reactor se deteriore o cese. En el ejemplo con abrasion sobre las barras de combustible en un elemento de combustible, esto puede dar lugar a los llamados fallos de combustible, en los que el material fisionable entra en contacto con el exterior y contamina el entorno exterior. Una contaminacion del entorno exterior da lugar a que el personal de mantenimiento en el reactor este expuesto a dosis de radiacion incrementadas en los trabajos de man- tenimiento. Tambien puede ser requerido que el reactor se pare y que se intercambien los componentes de reactor que fallan.The reactor components by their operation in the reactor can be activated and become radioactive. The outside environment in the reactor around the reactor components can be contaminated by the reactor components and by the outside environment, reacting with each other or through various forms of material removal processes. A contamination of the exterior with material from the reactor components results in a dispersion of radioactive substances in the reactor. Removal of material from the reactor components may also result in wear of parts of the reactor components. These parts can move in the refrigeration system and cause abrasion on other reactor components, for example the casing tubes in a fuel element, which can cause the function of the reactor components to deteriorate or cease. In the example with abrasion on the fuel rods in a fuel element, this can lead to so-called fuel failures, in which the fissile material comes into contact with the outside and contaminates the outside environment. Contamination of the outside environment results in maintenance personnel in the reactor being exposed to increased radiation doses in maintenance work. It may also be required that the reactor be stopped and that the failed reactor components be exchanged.

El grosor del material de los componentes de reactor esta dimensionado con ciertos margenes de seguridad contra la aparicion de diferentes tipos de interaccion, por ejemplo, por corrosion y abrasion. Es deseable reducir el grosor del material de los componentes de reactor por medio de diferentes tipos de mejoras. Una razon para disminuir el grosor del material de un componente es que los componentes de reactor usados debido a su reactividad necesitan un tratamiento especial de almacenamiento hasta que su reactividad ha disminuido a ciertos niveles. Este tipo de tratamiento o almacenamiento es costoso, por lo que es deseable una reduccion de la cantidad de material de los componentes de reactor. La funcion de ciertos componentes de reactor se mejora cuando el grosor sus materiales disminuye. Un ejemplo de un componente de reactor cuya funcion es mejorada por un grosor de material reducido son los llamados separadores que funcionan para separar las barras de combustible en un elemento de combustible y para crear turbulencias en el flujo del medio de enfriamiento para transferir calor desde las barras de combustible al medio refrigerante. Al reducir el grosor del material de los separadores, se reduce la perdida de presion en elThe material thickness of the reactor components is sized with certain safety margins against the appearance of different types of interaction, for example, by corrosion and abrasion. It is desirable to reduce the thickness of the material of the reactor components by means of different types of improvements. One reason to decrease the thickness of the material of a component is that the reactor components used due to their reactivity need a special storage treatment until their reactivity has decreased to certain levels. This type of treatment or storage is expensive, so a reduction in the amount of material of the reactor components is desirable. The function of certain reactor components is improved when the thickness of their materials decreases. An example of a reactor component whose function is enhanced by a reduced material thickness are the so-called separators that work to separate the fuel rods into a fuel element and to create turbulence in the flow of the cooling medium to transfer heat from the fuel rods to the cooling medium. By reducing the thickness of the material of the separators, the loss of pressure in the

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

elemento de combustible producida por los separadores. De este modo, por ejemplo, se puede aumentar el numero de separadores en un elemento de combustible con una capacidad mejorada de transferencia de calor al medio de enfriamiento y, al mismo tiempo, se mantiene la perdida de presion total sobre el elemento de combustible.fuel element produced by the separators. Thus, for example, the number of separators in a fuel element with an improved heat transfer capacity to the cooling medium can be increased and, at the same time, the loss of total pressure on the fuel element is maintained.

Una tecnica para tratar combustible nuclear quemado para su almacenamiento posterior se describe en el documen- to EP - 1249844. En el documento, el combustible nuclear quemado es tratado con un polvo de aluminio y boro que se presiona por medio de Prensado Isostatico en Fno (CIP) y a continuacion se sinterizan juntos por medio de sinte- rizacion por plasma.A technique for treating burnt nuclear fuel for later storage is described in document EP-1249844. In the document, the burned nuclear fuel is treated with an aluminum and boron powder that is pressed by means of Isostatic Pressing in Fno ( CIP) and then sintered together by means of plasma sintering.

El documento WO 97/50091 revela un separador de un material ceramico para un elemento de combustible. El se- parador ceramico se fabrica por medio del procedimiento de sinterizacion tradicional. Un problema cuando se utilizan materiales ceramicos como materiales estructurales es asegurar las propiedades mecanicas del material, tales como resistencia, resistencia a la fatiga, etc. En la fabricacion tradicional de componentes ceramicos se introducen diferen- tes tipos de defectos en el material, lo que tiene una implicacion negativa sobre las propiedades mecanicas. El documento no revela ningun gradiente de material entre dos materiales diferentes.WO 97/50091 discloses a separator of a ceramic material for a fuel element. The ceramic separator is manufactured by means of the traditional sintering process. A problem when using ceramic materials as structural materials is to ensure the mechanical properties of the material, such as strength, fatigue resistance, etc. In the traditional manufacture of ceramic components different types of defects are introduced in the material, which has a negative implication on the mechanical properties. The document does not reveal any material gradient between two different materials.

El documento WO 94/14164 revela un revestimiento resistente a la abrasion sobre un elemento de combustible y una barra de control. El revestimiento comprende un material ceramico mezclado en una matriz de vidrio, en el que la matriz de vidrio forma la union al material metalizado situado debajo. El revestimiento es aplicado sobre el material metalizado por medio de un procedimiento de pulverizacion. El documento no revela ningun gradiente de material entre dos materiales diferentes.WO 94/14164 discloses an abrasion resistant coating on a fuel element and a control bar. The coating comprises a ceramic material mixed in a glass matrix, in which the glass matrix forms the junction to the metallized material located below. The coating is applied to the metallized material by means of a spraying process. The document does not reveal any material gradient between two different materials.

Sumario de la invencionSummary of the invention

El objeto de la presente invencion es proporcionar un componente de reactor con propiedades mejoradas.The object of the present invention is to provide a reactor component with improved properties.

Este objeto se logra con el componente que se ha definido inicialmente que comprende las caractensticas que estan definidas en la porcion caracterizadora de la reivindicacion 1.This object is achieved with the component that has been initially defined that comprises the features that are defined in the characterizing portion of claim 1.

El componente de reactor alcanza el objeto que se ha mencionado mas arriba por medio de la capa intermedia entre el nucleo y la capa. La capa intermedia comprende o consiste en una mezcla del primer material y del segundo material.The reactor component reaches the object mentioned above by means of the intermediate layer between the core and the layer. The intermediate layer comprises or consists of a mixture of the first material and the second material.

El componente de reactor se refiere a un componente que esta adaptado para ser utilizado en reactores de fision. El componente de reactor comprende un nucleo y una capa que encierra al menos parcialmente el nucleo. El nucleo del componente consiste en el primer material y la capa del componente consiste en el segundo material.The reactor component refers to a component that is adapted to be used in fission reactors. The reactor component comprises a core and a layer that at least partially encloses the core. The core of the component consists of the first material and the layer of the component consists of the second material.

De acuerdo con la invencion, la capa del componente de reactor consta de al menos una sustancia seleccionada del grupo compuesto por Ti, Zr, Al, Fe, Cr, Ni, SiC, SiN, ZrO2, A^O3, mezcla de los mismos y el resto posible. Las sus- tancias de este grupo poseen propiedades que son adecuadas para la capa del componente de reactor.In accordance with the invention, the reactor component layer consists of at least one substance selected from the group consisting of Ti, Zr, Al, Fe, Cr, Ni, SiC, SiN, ZrO2, A ^ O3, mixture thereof and The rest possible. The substances in this group have properties that are suitable for the layer of the reactor component.

La capa intermedia es una capa entre el nucleo y la capa que proporciona una transicion de las propiedades desde el primer material al segundo material. La capa intermedia comprende una transicion escalonada o gradual de la concentracion del primer y del segundo material. La capa intermedia tiene un gradiente de material, lo que significa que la concentracion del primer material y del segundo material en la capa intermedia son mayores que cero. El gradiente de material comprende un cambio de concentracion en comparacion con el nucleo y en comparacion con la capa. El gradiente de material puede comprender una mezcla homogenea del primer material y del segundo material. El gradiente de material puede comprender tambien un cambio dentro de la capa intermedia de la proporcion entre la concentracion del primer y el segundo material. De este modo, el gradiente de material se puede ajustar en funcion de las propiedades del material, por ejemplo con respecto a la dilatacion por la temperatura, del primer y del segundo material con el fin de obtener buenas propiedades de material del componente de reactor. Por medio del gradiente de material se forma una transicion entre el primer material en el nucleo y el segundo material en la capa, lo cual proporciona una fuerte adhesion entre la capa y el nucleo. El gradiente de material en la capa intermedia da lugar a una reduccion de las tensiones interiores en el componente producidas por las diferencias termicas y elasti- cas entre el primer material y el segundo material. De este modo, surge una adhesion mejorada de la capa al nucleo, que proporciona una funcionalidad mejorada al componente.The intermediate layer is a layer between the core and the layer that provides a transition of the properties from the first material to the second material. The intermediate layer comprises a stepped or gradual transition of the concentration of the first and second material. The intermediate layer has a material gradient, which means that the concentration of the first material and the second material in the intermediate layer are greater than zero. The material gradient comprises a change in concentration compared to the core and compared to the layer. The material gradient may comprise a homogeneous mixture of the first material and the second material. The material gradient may also comprise a change within the intermediate layer of the ratio between the concentration of the first and the second material. In this way, the material gradient can be adjusted according to the properties of the material, for example with respect to temperature expansion, of the first and second material in order to obtain good material properties of the reactor component. Through the material gradient a transition is formed between the first material in the core and the second material in the layer, which provides a strong bond between the layer and the core. The gradient of material in the intermediate layer results in a reduction of the internal stresses in the component produced by thermal and elastic differences between the first material and the second material. Thus, an improved adhesion of the layer to the nucleus arises, which provides improved functionality to the component.

De acuerdo con una realizacion de la invencion, el gradiente de material comprende una disminucion sucesiva de la concentracion del primer material desde el nucleo hasta la capa y un aumento sucesivo de la concentracion del segundo material desde el nucleo hasta la capa. De este modo, el gradiente de material esta dispuesto para proporcionar una transicion gradual de las propiedades del primer material al segundo material, y viceversa.According to an embodiment of the invention, the material gradient comprises a successive decrease in the concentration of the first material from the core to the layer and a successive increase in the concentration of the second material from the core to the layer. Thus, the material gradient is arranged to provide a gradual transition of the properties of the first material to the second material, and vice versa.

De acuerdo con una realizacion de la invencion, el componente de reactor se fabrica por medio de sinterizacion, que proporciona al componente una buena sinterizacion del primer material junto con el segundo material. El procedimiento de sinterizacion puede comprender o estar combinado con una presion y / o una temperatura elevada aplica- das. El procedimiento de sinterizacion asegura que varias propiedades del material, tales como el tamano del granoAccording to an embodiment of the invention, the reactor component is manufactured by means of sintering, which provides the component with a good sintering of the first material together with the second material. The sintering process may comprise or be combined with a pressure and / or a high temperature applied. The sintering process ensures that several material properties, such as grain size

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

y la porosidad, del componente sinterizado se pueden controlar dentro de un intervalo amplio. El procedimiento de sinterizacion puede comprender las etapas de: alimentar el primer material y el segundo material a un espacio de una herramienta de tal manera que el segundo material encierre al menos parcialmente al primer material y sinteri- zar juntos el primer material y el segundo material con el componente de absorcion de neutrones de manera que se forme la capa intermedia entre el nucleo y la capa. En la alimentacion del primer material y del segundo material se forma una zona intermedia entre una parte interior del espacio y una parte exterior del espacio. La zona intermedia comprende una disminucion de la concentracion del primer material desde la parte interior del espacio hasta la parte exterior de un espacio y el aumento de la concentracion del segundo material desde la parte interior de un espacio hasta la parte exterior de un espacio . Ademas, el espacio se puede hacer vibrar de tal manera que el primer material y el segundo material se llevan juntos y forman la zona intermedia. El primer material que se alimenta puede ser en forma de polvo. Tambien el segundo material que se alimenta puede ser en forma de polvo.and the porosity of the sintered component can be controlled within a wide range. The sintering process may comprise the steps of: feeding the first material and the second material to a space of a tool such that the second material encloses at least partially the first material and sinters together the first material and the second material with the neutron absorption component so that the intermediate layer is formed between the core and the layer. In the feeding of the first material and the second material an intermediate zone is formed between an inner part of the space and an outer part of the space. The intermediate zone comprises a decrease in the concentration of the first material from the inside of the space to the outside of a space and the increase in the concentration of the second material from the inside of a space to the outside of a space. In addition, the space can be vibrated in such a way that the first material and the second material are carried together and form the intermediate zone. The first material that is fed can be in powder form. Also the second material that is fed can be in powder form.

Ademas, el espacio puede estar dividido por un miembro de separacion interior, que comprende la parte interior y un elemento de separacion exterior que comprende la parte exterior, en la que se forma una parte intermedia entre el elemento de separacion exterior y el miembro de separacion interior. Los elementos de separacion se pueden confi- gurar, por ejemplo, como tubos dependiendo de la forma de los componentes que se van a fabricar. La parte intermedia se alimenta con una mezcla del primer material y del segundo material para formar la zona intermedia. La parte intermedia tambien se puede dividir en divisiones de al menos un miembro intermedio, en el que las divisiones son alimentadas con una mezcla de diferentes proporciones entre la concentracion del primer material y el segundo material.In addition, the space may be divided by an inner separation member, which comprises the inner part and an outer separation element comprising the outer part, in which an intermediate part is formed between the outer separation element and the separation member inside. The separation elements can be configured, for example, as tubes depending on the shape of the components to be manufactured. The intermediate part is fed with a mixture of the first material and the second material to form the intermediate zone. The intermediate part can also be divided into divisions of at least one intermediate member, in which the divisions are fed with a mixture of different proportions between the concentration of the first material and the second material.

De acuerdo con una realizacion de la invencion, la capa esta dispuesta para proteger el nucleo, por ejemplo de un entorno exterior. De esta manera, el nucleo del componente de reactor esta protegido contra la interaccion, tal como la producida por diferentes tipos de corrosion y abrasion. La interaccion puede comprender una reaccion entre el componente de reactor y un entorno exterior, tal como la corrosion del componente de reactor o la eliminacion del material sobre el componente de reactor. La interaccion tambien puede comprender la abrasion entre componentes de reactor adyacentes. Por medio de la proteccion proporcionada por la capa al nucleo del componente de reactor, se puede asegurar la funcionalidad del componente de reactor, en el que se mejora la fiabilidad de funcionamiento de un componente de reactor. De la misma manera, la capa protege a los componentes circundantes de ser afecta- dos por el componente de reactor, tal como la interaccion por la corrosion de sombra. De este modo, se puede evitar la parada operativa de reactor debido a componentes de reactor que fallan. Gracias a la funcion protectora de la capa al nucleo del componente de reactor, tambien se evita la abrasion de piezas del nucleo del componente de reactor. Estas piezas pueden crear danos en otros componentes de reactor, por ejemplo, en forma de fallos de combustible en los elementos de combustible. Puesto que el componente de reactor esta protegido por la capa, se evita tambien la eliminacion del material del componente de reactor que comprende sustancias radioactivas. De este modo, se puede evitar la dispersion de sustancias radioactivas en el entorno exterior. Al evitar que el entorno exterior se contamine, se reduce la exposicion del personal de mantenimiento a las dosis de radiacion en los trabajos de mantenimiento en el reactor. La funcion protectora de una capa tambien se puede usar para reducir el grosor del material del componente de reactor. De esta manera, se pueden reducir los costes de tratamiento de residuos de los componentes de reactor usados. Para ciertos componentes de reactor, tales como separadores en elementos de combustible, una reduccion del grosor del material de los componentes de reactor proporciona un rendimiento mejo- rado. Este rendimiento mejorado se puede utilizar, por ejemplo, con el fin de incrementar la eficiencia de reactor.According to an embodiment of the invention, the layer is arranged to protect the core, for example from an outside environment. In this way, the core of the reactor component is protected against interaction, such as that produced by different types of corrosion and abrasion. The interaction may comprise a reaction between the reactor component and an external environment, such as corrosion of the reactor component or removal of the material on the reactor component. The interaction may also comprise abrasion between adjacent reactor components. By means of the protection provided by the core layer of the reactor component, the functionality of the reactor component can be ensured, in which the operational reliability of a reactor component is improved. In the same way, the layer protects the surrounding components from being affected by the reactor component, such as the interaction by shadow corrosion. In this way, the operational shutdown of the reactor can be avoided due to failed reactor components. Thanks to the protective function of the core layer of the reactor component, the abrasion of core parts of the reactor component is also prevented. These parts can create damage to other reactor components, for example, in the form of fuel failures in the fuel elements. Since the reactor component is protected by the layer, the removal of the material from the reactor component comprising radioactive substances is also avoided. In this way, the dispersion of radioactive substances in the external environment can be avoided. By preventing the outside environment from becoming contaminated, the exposure of maintenance personnel to radiation doses in maintenance work in the reactor is reduced. The protective function of a layer can also be used to reduce the thickness of the reactor component material. In this way, waste treatment costs of the reactor components used can be reduced. For certain reactor components, such as separators in fuel elements, a reduction in the thickness of the material of the reactor components provides improved performance. This improved performance can be used, for example, in order to increase reactor efficiency.

El entorno exterior esta compuesto por el entorno alrededor de los componentes de reactor, que comprende princi- palmente un medio de moderacion y un medio de enfriamiento. En la operacion de reactor, el entorno exterior forma un entorno reactivo que en contacto puede reaccionar con el componente de reactor.The external environment is composed of the environment around the reactor components, which mainly comprises a moderation medium and a cooling medium. In the reactor operation, the outer environment forms a reactive environment that in contact can react with the reactor component.

De acuerdo con una realizacion de la invencion, la capa es esencialmente resistente a la corrosion en un entorno de un reactor de fision. Esencialmente resistente a la corrosion significa que la capa es qmmicamente inerte o esencialmente qmmicamente inerte y que por lo tanto su efecto protector se mantiene cuando se expone al ambiente exterior en un reactor de fision. Debido a la resistencia a la corrosion de la capa, el nucleo del componente de reactor esta protegido de la interaccion con el entorno exterior. De este modo, se garantiza la integridad y la funcion del componente de reactor.According to an embodiment of the invention, the layer is essentially resistant to corrosion in an environment of a fission reactor. Essentially resistant to corrosion means that the layer is chemically inert or essentially chemically inert and therefore its protective effect is maintained when exposed to the outside environment in a fission reactor. Due to the corrosion resistance of the layer, the core of the reactor component is protected from interaction with the outside environment. In this way, the integrity and function of the reactor component is guaranteed.

De acuerdo con una realizacion de la invencion, la capa esta dispuesta para aislar electricamente al menos parcial- mente el nucleo con respecto a un entorno exterior. El aislamiento electrico significa que la capa resiste la conduc- cion de una corriente electrica. Puesto que la capa afsla al menos parcialmente electricamente al nucleo, se evitan diversos tipos de influencia de la corrosion, tales como la corrosion de sombra, sobre los componentes de reactor o la influencia de la corrosion entre diferentes componentes de reactor.According to an embodiment of the invention, the layer is arranged to electrically isolate the core at least partially from an outside environment. Electrical insulation means that the layer resists the conduction of an electric current. Since the layer at least partially electrically insulates the core, various types of corrosion influence, such as shadow corrosion, on the reactor components or the influence of corrosion between different reactor components are avoided.

De acuerdo con una realizacion de la invencion, la capa tiene una mayor resistencia a la abrasion que el nucleo del componente de reactor. De este modo, la capa protege el nucleo del componente de reactor de diferentes formas de abrasion, tales como abrasion mecanica entre componentes de reactor adyacentes, corrosion por erosion, etc. De este modo, se garantiza la integridad y la funcion del componente de reactor.According to an embodiment of the invention, the layer has a higher abrasion resistance than the core of the reactor component. In this way, the layer protects the core of the reactor component from different forms of abrasion, such as mechanical abrasion between adjacent reactor components, erosion corrosion, etc. In this way, the integrity and function of the reactor component is guaranteed.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

De acuerdo con una realizacion de la invencion, la capa de un componente de reactor comprende al menos un material metalico y un material ceramico. Ciertos materiales de estos grupos poseen propiedades que son especialmen- te adecuadas en los entornos de un reactor. Por ejemplo, cierto material ceramico, tal como el SiC, tiene una alta resistencia a la corrosion, una alta dureza y es resistente al calor. Por ejemplo, ciertos materiales metalicos, tales como el Zr, tienen una alta resistencia a la corrosion y buenas propiedades mecanicas.According to an embodiment of the invention, the layer of a reactor component comprises at least one metallic material and a ceramic material. Certain materials in these groups have properties that are especially suitable in a reactor environment. For example, certain ceramic material, such as SiC, has high corrosion resistance, high hardness and is heat resistant. For example, certain metallic materials, such as Zr, have high corrosion resistance and good mechanical properties.

De acuerdo con una realizacion de la invencion, la capa encierra completamente al nucleo. De este modo, el nucleo esta completamente protegido y separado del entorno exterior.According to an embodiment of the invention, the layer completely encloses the core. In this way, the core is completely protected and separated from the outside environment.

De acuerdo con una realizacion de la invencion, el componente de reactor comprende al menos una parte de un separador para un elemento de combustible. De este modo, el separador se puede montar a partir de uno o mas componentes de reactor en diferentes configuraciones. Por lo tanto, el separador esta adaptado para su uso en diferentes tipos de reactores. Debido a la capa, el separador esta protegido contra diferentes formas de interaccion, tales como la corrosion de sombra, abrasion, friccion, corrosion por erosion, etc.According to an embodiment of the invention, the reactor component comprises at least a part of a separator for a fuel element. In this way, the separator can be mounted from one or more reactor components in different configurations. Therefore, the separator is adapted for use in different types of reactors. Due to the layer, the separator is protected against different forms of interaction, such as shadow corrosion, abrasion, friction, erosion corrosion, etc.

La funcion de un separador es separar las barras de combustible en un elemento de combustible y crear turbulen- cias en el flujo del medio refrigerante para transferir calor desde las barras de combustible al medio refrigerante. El separador comprende una rejilla de celdas separadoras, que estan adaptadas para recibir barras de combustible. La red o el separador pueden estar construidos, por ejemplo, por paredes separadoras longitudinales y transversales de manguitos unidos o por otros disenos. El componente de reactor puede comprender, por ejemplo, una pared sepa- radora que, junto con una pluralidad de paredes separadoras, se montan en un separador. De la misma manera, el componente de reactor puede comprender un manguito separador que, junto con una pluralidad de manguitos sepa- radores, esta montado en un elemento separador. Tambien se pueden combinar otras disposiciones del componente de reactor de manera que individualmente o conjuntamente formen un separador.The function of a separator is to separate the fuel rods into a fuel element and create turbulence in the flow of the cooling medium to transfer heat from the fuel rods to the cooling medium. The separator comprises a grid of separator cells, which are adapted to receive fuel rods. The net or the separator may be constructed, for example, by longitudinal and transverse separating walls of joined sleeves or by other designs. The reactor component may comprise, for example, a separating wall which, together with a plurality of separating walls, are mounted in a separator. In the same way, the reactor component may comprise a separator sleeve which, together with a plurality of separator sleeves, is mounted on a separator element. Other arrangements of the reactor component can also be combined so that individually or together they form a separator.

De acuerdo con una realizacion de la invencion, el separador esta dispuesto para ser utilizado en un reactor de fision de agua ligera de un reactor de tipo de agua en ebullicion.According to an embodiment of the invention, the separator is arranged to be used in a light water fission reactor of a boiling water type reactor.

De acuerdo con una realizacion de la invencion, el componente de reactor constituye al menos una parte de una punta de una barra de control adaptada para ser insertada en o adyacente a un elemento de combustible. Por medio de la capa, la punta de la barra de control esta protegida contra diferentes formas de interaccion, tales como corrosion de sombra, abrasion, desgaste, corrosion por erosion, etc.According to an embodiment of the invention, the reactor component constitutes at least a part of a tip of a control rod adapted to be inserted into or adjacent to a fuel element. Through the layer, the tip of the control bar is protected against different forms of interaction, such as shadow corrosion, abrasion, wear, erosion corrosion, etc.

La funcion de una barra de control es controlar la reactividad en un reactor de fision. La barra de control puede en- trar en contacto con o ser influenciada por componentes adyacentes, tales como el tubo de gma en un elemento de combustible para un reactor de agua a presion o el canal de combustible en un elemento de combustible para un reactor de agua en ebullicion.The function of a control bar is to control the reactivity in a fission reactor. The control rod may come into contact with or be influenced by adjacent components, such as the gma tube in a fuel element for a pressurized water reactor or the fuel channel in a fuel element for a reactor. boiling water.

De acuerdo con una realizacion de la invencion, la punta de la barra de control esta dispuesta para ser utilizada en un reactor de fision de agua ligera de un tipo de reactor de agua a presion.According to an embodiment of the invention, the tip of the control rod is arranged to be used in a light water fission reactor of a type of pressurized water reactor.

Breve descripcion de los dibujosBrief description of the drawings

La invencion se explicara a continuacion con detalle haciendo referencia a diferentes realizaciones de la invencion y con referencia a los dibujos adjuntos.The invention will be explained in detail below with reference to different embodiments of the invention and with reference to the attached drawings.

La figura 1 desvela una seccion transversal de un componente de reactor de acuerdo con una realizacion de la invencion en una vista desde el lado.Figure 1 discloses a cross section of a reactor component according to an embodiment of the invention in a view from the side.

Las figuras 2 a 5 desvelan diagramas con diferentes ejemplos de la concentracion de material de una sec- cion transversal de los componentes de reactor.Figures 2 to 5 disclose diagrams with different examples of the material concentration of a cross section of the reactor components.

La figura 6a desvela una vista en perspectiva de un ejemplo de la invencion en forma de un separador para un elemento de combustible.Figure 6a discloses a perspective view of an example of the invention in the form of a separator for a fuel element.

La figura 6b desvela una seccion transversal de una pared separadora en un separador.Figure 6b discloses a cross section of a separator wall in a separator.

La figura 7a desvela una vista en perspectiva de un ejemplo de la invencion en forma de una punta de una barra de control para un reactor de agua a presion.Figure 7a discloses a perspective view of an example of the invention in the form of a tip of a control rod for a pressurized water reactor.

La figura 7b desvela una seccion transversal de una punta de una barra de control para un reactor de agua a presion.Figure 7b discloses a cross section of a tip of a control rod for a pressurized water reactor.

Descripcion detallada de las realizaciones preferidas de la invencionDetailed description of the preferred embodiments of the invention

La figura 1 desvela un ejemplo de un componente 1 de reactor, en lo que sigue denominado como el componente, de acuerdo con una realizacion de la invencion en una vista en seccion transversal vista desde el lado. El compo-Figure 1 discloses an example of a reactor component 1, in what follows referred to as the component, according to an embodiment of the invention in a cross-sectional view seen from the side. The compo-

55

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

nente 1 de la figura 1 es un cuerpo con un centro en 0 y una superficie en R, a lo largo de un eje x. El componente puede tener una forma arbitraria dada por su funcion en el reactor. Por ejemplo, la forma del componente 1 puede ser plana, rectangular, cuadrada, esferica, cilmdrica, etc.Figure 1 of Figure 1 is a body with a center at 0 and a surface at R, along an x axis. The component may have an arbitrary shape given by its function in the reactor. For example, the shape of component 1 can be flat, rectangular, square, spherical, cylindrical, etc.

El componente 1 esta adaptado para ser utilizado en reactores de fision y comprende un nucleo 2 que consta de un primer material y una capa 3 que consiste en un segundo material. La capa 3 de un componente, en el ejemplo que se muestra en la figura 1, encierra completamente el nucleo 2 y protege el nucleo 2 de un entorno exterior por medio de sus propiedades protectoras, tales como resistencia a la corrosion y aislamiento electrico.Component 1 is adapted to be used in fission reactors and comprises a core 2 consisting of a first material and a layer 3 consisting of a second material. The layer 3 of a component, in the example shown in Figure 1, completely encloses core 2 and protects core 2 from an outside environment by means of its protective properties, such as corrosion resistance and electrical insulation.

El componente 1 se fabrica por sinterizacion utilizando un procedimiento de sinterizacion adecuado. Ejemplos de procedimientos de sinterizacion adecuados que se pueden usar para la invencion son la tecnica de sinterizacion clasica, sinterizacion a presion atmosferica y temperatura elevada, prensado isostatico en fno, prensado isostatico en caliente, sinterizacion con chispas de plasma, etc.Component 1 is manufactured by sintering using a suitable sintering procedure. Examples of suitable sintering procedures that can be used for the invention are the technique of classical sintering, high temperature atmospheric pressure sintering, fno isostatic pressing, hot isostatic pressing, plasma sparking sintering, etc.

La sinterizacion se realiza de tal manera que se forma una capa intermedia 4 entre el nucleo 2 y la capa 3. La capa intermedia 4 comprende tanto el primer material como el segundo material. La capa intermedia 4 tiene un gradiente de material que comprende una disminucion de la concentracion del primer material desde el nucleo 2 a la capa 3 y un aumento de la concentracion del segundo material desde el nucleo 2 a la capa 3. La capa intermedia 4 forma una transicion entre el nucleo 2 y la capa 3, de manera que las propiedades de material del primer material se transfieren a las propiedades del segundo material y viceversa. De este modo se crea una buena adhesion entre el nucleo 2 y la capa 3.Sintering is carried out in such a way that an intermediate layer 4 is formed between core 2 and layer 3. The intermediate layer 4 comprises both the first material and the second material. The intermediate layer 4 has a gradient of material comprising a decrease in the concentration of the first material from the core 2 to the layer 3 and an increase in the concentration of the second material from the core 2 to the layer 3. The intermediate layer 4 forms a transition between core 2 and layer 3, so that the material properties of the first material are transferred to the properties of the second material and vice versa. This creates a good bond between core 2 and layer 3.

Las figuras 2 a 5 desvelan ejemplos de la concentracion de material de una seccion transversal de un componente de reactor. El eje x de las figuras es un eje dimensional, en el que 0 indica el centro del componente y R representa la periferia exterior del componente. El eje y de las figuras denota la concentracion de material para el componente en porcentaje para el primer material, denominado aqrn A y marcado con una lmea de trazos, y el segundo material, denominado aqrn B y marcado con una lmea continua. En las figuras, el nucleo 2, la capa intermedia 4 y la capa 3 estan designados a lo largo del eje x de la figura.Figures 2 to 5 disclose examples of the concentration of material from a cross section of a reactor component. The x-axis of the figures is a dimensional axis, in which 0 indicates the center of the component and R represents the outer periphery of the component. The y-axis of the figures denotes the concentration of material for the component in percentage for the first material, called aqrn A and marked with a dashed line, and the second material, called aqrn B and marked with a continuous line. In the figures, core 2, intermediate layer 4 and layer 3 are designated along the x-axis of the figure.

La figura 2 desvela un ejemplo de una variacion de la concentracion de material dentro de un componente de reactor, en el que la capa intermedia 4 entre el nucleo 2 y la capa 3 tiene un gradiente de material que comprende una disminucion gradual de la concentracion de un primer material desde el nucleo 2 a la capa 3 y un incremento esca- lonado de la concentracion de un segundo material desde el nucleo 2 a la capa 3. En el ejemplo de la figura 2, una disminucion de la concentracion del primer material desde el nucleo 2 a la capa intermedia 4 se produce de manera escalonada, en el que la concentracion del primer material disminuye desde esencialmente el 100% en el nucleo 2 hasta esencialmente el 50% en la capa intermedia 4. La concentracion del primer material es constante dentro de la capa intermedia 4. Ademas, se produce una disminucion de la concentracion del primer material desde la capa intermedia 4 a la capa 3 escalonadamente desde esencialmente el 50% a esencialmente el 0%. Por el contrario, se produce un aumento de la concentracion del segundo material desde el nucleo 2 a la capa intermedia 4 escalonadamente, en el que la concentracion del segundo material aumenta desde esencialmente el 0% en el nucleo 2 hasta esencialmente el 50% en la capa intermedia 4. La concentracion del segundo material es constante dentro de la capa intermedia 4. Ademas, un incremento de la concentracion del segundo material desde la capa intermedia 4 a la capa 3 se produce escalonadamente desde esencialmente el 50% hasta esencialmente el 100%.Figure 2 discloses an example of a variation of the material concentration within a reactor component, in which the intermediate layer 4 between the core 2 and the layer 3 has a material gradient comprising a gradual decrease in the concentration of a first material from core 2 to layer 3 and a scaled increase in the concentration of a second material from core 2 to layer 3. In the example of Figure 2, a decrease in the concentration of the first material from the core 2 to the intermediate layer 4 is produced in a staggered manner, in which the concentration of the first material decreases from essentially 100% in the core 2 to essentially 50% in the intermediate layer 4. The concentration of the first material is constant within the intermediate layer 4. In addition, there is a decrease in the concentration of the first material from the intermediate layer 4 to the layer 3 staggered from essentially 50% to essentially 0%. On the contrary, there is an increase in the concentration of the second material from the core 2 to the intermediate layer 4 stepwise, in which the concentration of the second material increases from essentially 0% in the core 2 to essentially 50% in the intermediate layer 4. The concentration of the second material is constant within the intermediate layer 4. In addition, an increase in the concentration of the second material from the intermediate layer 4 to the layer 3 occurs stepwise from essentially 50% to essentially 100% .

La figura 3 desvela, de la misma manera que la figura 2, un ejemplo de una variacion escalonada de la concentracion del material dentro del componente de reactor, con la diferencia de que la capa intermedia comprende dos zonas de concentracion, una primera zona de concentracion 41 y una segunda zona de concentracion 42 con dife- rentes concentraciones del primer material y del segundo material. La concentracion del primer material y del segundo material es constante dentro de la primera zona de concentracion 41 y de la segunda zona de concentracion 42. En el ejemplo de la figura 3, una disminucion de la concentracion del primer material del nucleo 2 a la capa intermedia 4 se produce escalonadamente, en el que la concentracion del primer material disminuye desde esencialmente el 100% en el nucleo 2 hasta esencialmente el 70% en la primera zona de concentracion 41 de la capa intermedia 4. Dentro de la capa intermedia 4, se produce una disminucion escalonada de la concentracion del primer material desde la primera zona de concentracion 41 a la segunda zona de concentracion 42, desde esencialmente el 70% hasta esencialmente el 30%. Se produce una disminucion escalonada de la concentracion del primer material desde la segunda zona de concentracion 42 de la capa intermedia 4 a la capa 3, desde esencialmente el 30% hasta esencialmente el 0%. Por el contrario, se produce un aumento de la concentracion del segundo material desde el nucleo 2 hasta la capa intermedia 4.Figure 3 discloses, in the same way as Figure 2, an example of a stepwise variation of the concentration of the material within the reactor component, with the difference that the intermediate layer comprises two concentration zones, a first concentration zone 41 and a second concentration zone 42 with different concentrations of the first material and the second material. The concentration of the first material and the second material is constant within the first concentration zone 41 and the second concentration zone 42. In the example of Figure 3, a decrease in the concentration of the first material from core 2 to the layer intermediate 4 occurs stepwise, in which the concentration of the first material decreases from essentially 100% in core 2 to essentially 70% in the first concentration zone 41 of intermediate layer 4. Within intermediate layer 4, produces a stepwise decrease in the concentration of the first material from the first concentration zone 41 to the second concentration zone 42, from essentially 70% to essentially 30%. There is a stepwise decrease in the concentration of the first material from the second concentration zone 42 of the intermediate layer 4 to the layer 3, from essentially 30% to essentially 0%. On the contrary, there is an increase in the concentration of the second material from the core 2 to the intermediate layer 4.

La figura 4 desvela un ejemplo de una variacion de la concentracion del material dentro de un componente de reactor, en el que la capa intermedia 4 entre el nucleo 2 y la capa 3 tiene un gradiente de material que comprende una disminucion sucesiva de la concentracion del primer material desde el nucleo 2 hasta la capa 3, y un aumento suce- sivo de la concentracion del segundo material desde el nucleo 2 a la capa 3. Dentro de la capa intermedia 4, desde el nucleo 2 hasta la capa 3, se produce una disminucion proporcional constante de la concentracion de un primer material, desde esencialmente el 100% a esencialmente el 0%. Por el contrario, se produce un aumento de la con-Figure 4 discloses an example of a variation of the concentration of the material within a reactor component, in which the intermediate layer 4 between the core 2 and the layer 3 has a material gradient comprising a successive decrease in the concentration of the first material from nucleus 2 to layer 3, and a successive increase in the concentration of the second material from nucleus 2 to layer 3. Within the intermediate layer 4, from nucleus 2 to layer 3, there is a constant proportional decrease in the concentration of a first material, from essentially 100% to essentially 0%. On the contrary, there is an increase in con-

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

centracion del segundo material dentro de la capa intermedia 4, desde el nucleo 2 hasta la capa 3, desde esencial- mente el 0% hasta esencialmente el 100%.centering of the second material within the intermediate layer 4, from core 2 to layer 3, from essentially 0% to essentially 100%.

La figura 5 desvela un ejemplo de una variacion de la concentracion de material dentro de un componente de reactor, en el que la capa intermedia 4 entre el nucleo 2 y la capa 3 tiene un gradiente de material que comprende una disminucion sucesiva de la concentracion de un primer material desde el nucleo 2 hasta la capa 3, y un aumento sucesivo de la concentracion de un segundo material desde el nucleo 2 a la capa 3. En el ejemplo de la figura 5, se produce sucesivamente una disminucion de la concentracion del primer material desde el nucleo 2 hasta la capa intermedia 4. Dentro de la capa intermedia 4 se produce una disminucion gradual de la concentracion del primer material, desde esencialmente el 100% hasta esencialmente el 0%. La transicion entre el nucleo 2 y la capa 3 puede ocurrir, por ejemplo, de una manera no lineal. Por el contrario, se produce un aumento de la concentracion del segundo material desde el nucleo 2. En el ejemplo mostrado, la capa intermedia 4 constituye la parte principal del componente, mientras que el nucleo 2 y la capa 3 constituyen una parte menor del componente.Figure 5 discloses an example of a variation of the material concentration within a reactor component, in which the intermediate layer 4 between the core 2 and the layer 3 has a material gradient comprising a successive decrease of the concentration of a first material from core 2 to layer 3, and a successive increase in the concentration of a second material from core 2 to layer 3. In the example of Figure 5, a decrease in the concentration of the first occurs material from the core 2 to the intermediate layer 4. Within the intermediate layer 4 there is a gradual decrease in the concentration of the first material, from essentially 100% to essentially 0%. The transition between core 2 and layer 3 can occur, for example, in a non-linear manner. On the contrary, there is an increase in the concentration of the second material from the core 2. In the example shown, the intermediate layer 4 constitutes the main part of the component, while the core 2 and layer 3 constitute a minor part of the component .

La figura 6a desvela una vista en perspectiva de un ejemplo de un componente de reactor en forma de un separador 60 para un elemento de combustible. La funcion del separador 60 es separar las barras de combustible en un ele- mento de combustible no mostrado en la figura y crear turbulencias en el flujo del medio refrigerante para transferir calor desde las barras de combustible al medio refrigerante. El separador 60 comprende celdas separadoras 62 para recibir las barras de combustible. El separador 60 esta construido por una pluralidad de paredes separadoras 64. La red del separador 60 puede estar construida, por ejemplo, de paredes separadoras longitudinales y transversales 64 de manguitos unidos o por otras construcciones. Una pared separadora 64 puede por sf sola constituir el componente de reactor, que junto con una pluralidad de paredes separadoras 64 se monta para formar un separador 60. De la misma manera, el componente de reactor puede constituir un manguito separador que, junto con una pluralidad de manguitos separadores, esta montado formando un separador 60. Tambien pueden combinarse otras disposiciones del componente de reactor de manera que individualmente o conjuntamente constituyan un separador 60.Figure 6a discloses a perspective view of an example of a reactor component in the form of a separator 60 for a fuel element. The function of the separator 60 is to separate the fuel rods into a fuel element not shown in the figure and create turbulence in the flow of the cooling medium to transfer heat from the fuel rods to the cooling medium. The separator 60 comprises separator cells 62 to receive the fuel rods. The separator 60 is constructed of a plurality of separating walls 64. The network of the separator 60 may be constructed, for example, of longitudinal and transverse separating walls 64 of joined sleeves or other constructions. A separating wall 64 can alone constitute the reactor component, which together with a plurality of separating walls 64 is mounted to form a separator 60. In the same way, the reactor component can constitute a separating sleeve which, together with a plurality of separator sleeves, it is assembled forming a separator 60. Other arrangements of the reactor component can also be combined so that individually or together they constitute a separator 60.

La figura 6b desvela una seccion transversal de una pared separadora 64 en un separador 60. La pared separadora 64 comprende un nucleo 2 de un material metalico, tal como Inconel o Zircaloy, y una capa 3 de un material cerami- co, tal como dioxido de zirconio (ZrO2). Entre la capa 3 y el nucleo 2, se proporciona una capa intermedia 4, que forma una transicion gradual de las propiedades del material desde el nucleo 2 a la capa 3. La capa 3 tiene propie- dades protectoras que permiten reducir el grosor del material de la pared separadora en comparacion con un separador sin la capa 3, en la que se reduce la cafda de presion formada por el separador 60 en el elemento de combustible. Por medio de la capa 3, el separador 60 esta protegido contra diferentes formas de interaccion, tales como corrosion de sombra, abrasion, corrosion por friccion y erosion, etc. Por medio del efecto protector de la capa 3 tambien se protegen los componentes circundantes alrededor del componente de reactor contra diferentes formas de interaccion, tales como la corrosion de sombra, la abrasion, la corrosion por friccion y erosion, etc.Figure 6b discloses a cross section of a separating wall 64 in a separator 60. The separating wall 64 comprises a core 2 of a metal material, such as Inconel or Zircaloy, and a layer 3 of a ceramic material, such as dioxide Zirconium (ZrO2). Between the layer 3 and the core 2, an intermediate layer 4 is provided, which forms a gradual transition of the properties of the material from the core 2 to the layer 3. The layer 3 has protective properties that allow reducing the thickness of the material of the separating wall in comparison with a separator without the layer 3, in which the pressure coffee formed by the separator 60 in the fuel element is reduced. By means of layer 3, the separator 60 is protected against different forms of interaction, such as shadow corrosion, abrasion, friction and erosion corrosion, etc. By means of the protective effect of layer 3, the surrounding components around the reactor component are also protected against different forms of interaction, such as shadow corrosion, abrasion, friction and erosion corrosion, etc.

La figura 7a desvela una vista en perspectiva de un ejemplo de un componente de reactor en forma de una punta de barra de control 74 de una barra de control 70 para un reactor de agua a presion. Una pluralidad de barras de control 70 estan unidas a un elemento de barra de control, no descrito en la figura, que se ajusta de acuerdo con el diseno de combustible de interes. La funcion de la barra de control 70 es terminar el proceso de fision en un reactor de agua a presion. La barra de control comprende tubos de barra de control que estan llenos de un material absorbente de neutrones 72, tal como boro, hafnio, cadmio, etc. La barra de control 70 cae dentro de un tubo grna del elemento de combustible, no descrito en la figura, cuando el reactor debe ser parado.Figure 7a discloses a perspective view of an example of a reactor component in the form of a control bar tip 74 of a control bar 70 for a pressurized water reactor. A plurality of control rods 70 are attached to a control rod element, not described in the figure, which is adjusted according to the fuel design of interest. The function of the control bar 70 is to terminate the fission process in a pressurized water reactor. The control rod comprises control rod tubes that are filled with a neutron absorbing material 72, such as boron, hafnium, cadmium, etc. The control rod 70 falls into a large tube of the fuel element, not described in the figure, when the reactor must be stopped.

La figura 7b desvela una seccion transversal de una punta de barra de control 74. La punta de barra de control 74 comprende un nucleo 2 de un material absorbente de neutrones y una capa 3 de un material ceramico, tal como carburo de silicio (SiC). Entre la capa 3 y el nucleo 2 hay una capa intermedia 4 que forma una transicion gradual de las propiedades del material desde el nucleo 2 a la capa 3. La capa 3 tiene propiedades protectoras que aseguran que la punta de barra de control 74 no se dana en contacto con el tubo de grna de un elemento de combustible. Debido al efecto protector de la capa 3, los componentes circundantes tales como tubos de grna, dispositivos de posicionamiento ("tarjeta de grna") para la barra de control, etc, tambien estan protegidos contra diferentes formas de interaccion, tales como abrasion, desgaste y corrosion por erosion, etc.Figure 7b discloses a cross section of a control bar tip 74. Control bar tip 74 comprises a core 2 of a neutron absorbing material and a layer 3 of a ceramic material, such as silicon carbide (SiC) . Between the layer 3 and the core 2 there is an intermediate layer 4 that forms a gradual transition of the properties of the material from the core 2 to the layer 3. The layer 3 has protective properties that ensure that the control bar tip 74 is not It damages the contact tube of a fuel element. Due to the protective effect of layer 3, the surrounding components such as crane tubes, positioning devices ("crane card") for the control bar, etc., are also protected against different forms of interaction, such as abrasion, wear and erosion corrosion, etc.

La invencion no esta limitada a las realizaciones descritas, sino que puede ser modificada y variada dentro del al- cance de las reivindicaciones que siguen.The invention is not limited to the described embodiments, but can be modified and varied within the scope of the following claims.

Claims (13)

55 1010 15fifteen 20twenty 2525 3030 3535 REIVINDICACIONES 1. Componente de reactor (1) adaptado para ser utilizado en reactores de fision, que comprende un nucleo (2) que consiste en un primer material y una capa (3) que consiste en un segundo material, en el que la capa (3) encie- rra al menos parcialmente el nucleo (2), en el que el componente de reactor (1) comprende una capa intermedia (4) entre el nucleo (2) y la capa (3), caracterizado porque la capa (3) esta constituida por al menos una sus- tancia seleccionada del grupo consistente en Ti, Zr, Al, Fe, Cr, Ni, SiC, SiN, ZrO2, AhO3, y la mezcla de los mis- mos, y un resto posible, y porque la capa intermedia (4) esta dispuesta para proporcionar una transicion gradual de las propiedades del primer material al segundo material y tiene un gradiente de material que comprende una disminucion de la concentracion del primer material desde el nucleo (2) hasta la capa (3) y un aumento de la concentracion del segundo material desde el nucleo (2) hasta la capa (3).1. Reactor component (1) adapted to be used in fission reactors, comprising a core (2) consisting of a first material and a layer (3) consisting of a second material, in which the layer (3 ) at least partially encloses the core (2), in which the reactor component (1) comprises an intermediate layer (4) between the core (2) and the layer (3), characterized in that the layer (3) it consists of at least one substance selected from the group consisting of Ti, Zr, Al, Fe, Cr, Ni, SiC, SiN, ZrO2, AhO3, and the mixture thereof, and a possible remainder, and because The intermediate layer (4) is arranged to provide a gradual transition of the properties of the first material to the second material and has a gradient of material comprising a decrease in the concentration of the first material from the core (2) to the layer (3) and an increase in the concentration of the second material from the core (2) to the layer (3). 2. Componente de reactor (1) de acuerdo con la reivindicacion 1, caracterizado porque el gradiente de material comprende una disminucion sucesiva de la concentracion del primer material desde el nucleo (2) hasta la capa (3) y un aumento sucesivo de la concentracion del segundo material desde el nucleo (2) hasta la capa (3).2. Reactor component (1) according to claim 1, characterized in that the material gradient comprises a successive decrease of the concentration of the first material from the core (2) to the layer (3) and a successive increase of the concentration of the second material from the core (2) to the layer (3). 3. Componente de reactor (1) de acuerdo con cualquiera de las reivindicaciones 1 y 2, caracterizado porque el componente de reactor (1) esta fabricado por medio de sinterizacion.3. Reactor component (1) according to any of claims 1 and 2, characterized in that the reactor component (1) is manufactured by means of sintering. 4. Componente de reactor (1) de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque la capa (3) es esencialmente resistente a la corrosion en un entorno de un reactor de fision.4. Reactor component (1) according to any of the preceding claims, characterized in that the layer (3) is essentially resistant to corrosion in an environment of a fission reactor. 5. Componente de reactor (1) de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque la capa (3) esta dispuesta para proteger el nucleo (2) de un entorno exterior.5. Reactor component (1) according to any of the preceding claims, characterized in that the layer (3) is arranged to protect the core (2) from an outside environment. 6. Componente de reactor (1) de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque la capa (3) esta dispuesta para aislar electricamente al menos parcialmente el nucleo (2) con respecto a un entorno exterior.6. Reactor component (1) according to any of the preceding claims, characterized in that the layer (3) is arranged to electrically isolate at least partially the core (2) with respect to an external environment. 7. Componente de reactor (1) de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado por- que la capa (3) tiene una mayor resistencia a la abrasion que el nucleo (2).7. Reactor component (1) according to any of the preceding claims, characterized in that the layer (3) has a higher abrasion resistance than the core (2). 8. Componente de reactor (1) de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque la capa (3) comprende al menos uno de entre un material metalico y un material ceramico.8. Reactor component (1) according to any of the preceding claims, characterized in that the layer (3) comprises at least one of a metal material and a ceramic material. 9. Componente de reactor (1) de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque la capa (3) encierra completamente el nucleo (2).9. Reactor component (1) according to any of the preceding claims, characterized in that the layer (3) completely encloses the core (2). 10. Componente de reactor (1) de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el componente (1) comprende al menos una parte de un separador (60) para un elemento de combustible.10. Reactor component (1) according to any of the preceding claims, characterized in that the component (1) comprises at least a part of a separator (60) for a fuel element. 11. Componente de reactor (1) de acuerdo con la reivindicacion 10, caracterizado porque el separador (60) esta dispuesto para ser utilizado en un reactor de fision de agua ligera del tipo reactor de agua en ebullicion.11. Reactor component (1) according to claim 10, characterized in that the separator (60) is arranged to be used in a light water fission reactor of the boiling water reactor type. 12. Componente de reactor (1) de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el componente (1) constituye al menos una parte de una punta de una barra de control (74) dispuesta para ser insertada dentro o en la proximidad de un elemento de combustible.12. Reactor component (1) according to any of the preceding claims, characterized in that the component (1) constitutes at least a part of a tip of a control rod (74) arranged to be inserted into or in the vicinity of A fuel element 13. Componente de reactor (1) de acuerdo con la reivindicacion 12, caracterizado porque la punta de la barra de control (74) esta configurada para ser utilizada en un reactor de fision de agua ligera de un reactor de tipo de agua a presion.13. Reactor component (1) according to claim 12, characterized in that the tip of the control rod (74) is configured to be used in a light water fission reactor of a pressurized water type reactor.
ES11716087.9T 2010-03-01 2011-02-23 Reactor component Active ES2628581T3 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1050188A SE536815C2 (en) 2010-03-01 2010-03-01 reactor Component
SE1050188 2010-03-01
PCT/SE2011/050203 WO2011108974A1 (en) 2010-03-01 2011-02-23 A reactor component

Publications (1)

Publication Number Publication Date
ES2628581T3 true ES2628581T3 (en) 2017-08-03

Family

ID=44242486

Family Applications (1)

Application Number Title Priority Date Filing Date
ES11716087.9T Active ES2628581T3 (en) 2010-03-01 2011-02-23 Reactor component

Country Status (7)

Country Link
US (1) US20130051513A1 (en)
EP (1) EP2543043B1 (en)
JP (2) JP2013521493A (en)
KR (1) KR20130012113A (en)
ES (1) ES2628581T3 (en)
SE (1) SE536815C2 (en)
WO (1) WO2011108974A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3045199B1 (en) * 2015-12-15 2018-01-26 Areva Np ABSORBENT CLUSTER AND ABSORBENT PENCIL FOR NUCLEAR REACTOR

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB928517A (en) * 1959-01-21 1963-06-12 Parsons C A & Co Ltd Improvements in and relating to fuel elements for nuclear reactors
US3255092A (en) * 1961-03-24 1966-06-07 Gen Dynamics Corp Control rods
US3249509A (en) * 1964-12-10 1966-05-03 Jr John M Blocher Nuclear fuel particles coated with mixture of pyrolytic carbon and silicon carbide
US3650896A (en) * 1969-10-09 1972-03-21 Atomic Energy Commission Nuclear fuel particles
US4267019A (en) * 1978-05-10 1981-05-12 General Atomic Company Nuclear fuel particles
SU735101A1 (en) * 1978-12-15 1981-12-15 Ордена Ленина физико-технический институт им.А.Ф.Иоффе Thermal neutron crystal monochromator
JPS5697897A (en) * 1980-01-07 1981-08-06 Hitachi Ltd Control rod
JPH0645862B2 (en) * 1986-12-29 1994-06-15 トヨタ自動車株式会社 Method for forming ceramic sprayed layer
JPH0727047B2 (en) * 1988-03-16 1995-03-29 原子燃料工業株式会社 Control rod for pressurized water reactor
JPH01312015A (en) * 1988-06-10 1989-12-15 Toshiba Corp Production of thermal expansion adjusting member
US5268235A (en) * 1988-09-26 1993-12-07 The United States Of America As Represented By The Secretary Of Commerce Predetermined concentration graded alloys
US5158653A (en) * 1988-09-26 1992-10-27 Lashmore David S Method for production of predetermined concentration graded alloys
US5434896A (en) 1990-09-04 1995-07-18 Combustion Engineering, Inc. Wear resistant coating for components of fuel assemblies and control assemblies, and method of enhancing wear resistance of fuel assembly and control assembly components using wear-resistant coating
JPH04177198A (en) * 1990-11-13 1992-06-24 Toshiba Corp Control rod for reactor and its fabrication method
JP3080983B2 (en) * 1990-11-21 2000-08-28 東芝タンガロイ株式会社 Hard sintered alloy having gradient composition structure and method for producing the same
JPH04299289A (en) * 1991-03-28 1992-10-22 Toshiba Corp Inclined function material and atomic reactor utilizing this function material
JPH04337011A (en) * 1991-05-15 1992-11-25 Toshiba Corp Production of compositionally gradient material
US5519748A (en) * 1993-04-23 1996-05-21 General Electric Company Zircaloy tubing having high resistance to crack propagation
JP3290000B2 (en) * 1993-07-07 2002-06-10 科学技術振興事業団 Functionally graded molding material and its sintered product
US5793830A (en) * 1995-07-03 1998-08-11 General Electric Company Metal alloy coating for mitigation of stress corrosion cracking of metal components in high-temperature water
JPH09131828A (en) * 1995-11-09 1997-05-20 Kanegafuchi Chem Ind Co Ltd Functionally gradient material and manufacture thereof
US5711826A (en) * 1996-04-12 1998-01-27 Crs Holdings, Inc. Functionally gradient cladding for nuclear fuel rods
SE9602541D0 (en) 1996-06-27 1996-06-27 Asea Atom Ab Fuel cartridge comprising a component for holding elongate elements together
DE59803436D1 (en) * 1997-05-28 2002-04-25 Siemens Ag METAL CERAMIC GRADIENT MATERIAL, PRODUCT THEREOF AND METHOD FOR PRODUCING A METAL CERAMIC GRADIENT MATERIAL
JPH1112758A (en) * 1997-06-25 1999-01-19 Asahi Glass Co Ltd Metallic parts coated with cermet sintered compact, and their production
WO1999006605A1 (en) * 1997-07-31 1999-02-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for manufacturing component parts made of composite materials and their use
JP3901338B2 (en) * 1998-04-17 2007-04-04 電気化学工業株式会社 BN-AlN laminate and use thereof
SE512804C2 (en) * 1998-09-11 2000-05-15 Abb Ab Device and method for preventing shadow corrosion
JP2000226898A (en) * 1999-02-08 2000-08-15 Kanegafuchi Chem Ind Co Ltd Buried structure to concrete slab base board
JP2001124891A (en) * 1999-07-09 2001-05-11 Hitachi Ltd Surface treatment method for nuclear power plant structure, and nuclear power plant
JP3207833B2 (en) 1999-10-15 2001-09-10 三菱重工業株式会社 Method for producing spent fuel storage member and mixed powder
AT6636U1 (en) * 2003-04-02 2004-01-26 Plansee Ag COMPOSITE COMPONENT FOR FUSION REACTOR
JP4604153B2 (en) * 2005-02-18 2010-12-22 国立大学法人東京海洋大学 Forming functional coatings with excellent anticorrosion properties
US20060227924A1 (en) * 2005-04-08 2006-10-12 Westinghouse Electric Company Llc High heat flux rate nuclear fuel cladding and other nuclear reactor components
US7700202B2 (en) * 2006-02-16 2010-04-20 Alliant Techsystems Inc. Precursor formulation of a silicon carbide material
JP2009210266A (en) * 2008-02-29 2009-09-17 Ibiden Co Ltd Tubular body

Also Published As

Publication number Publication date
SE1050188A1 (en) 2011-09-02
KR20130012113A (en) 2013-02-01
JP2013521493A (en) 2013-06-10
EP2543043B1 (en) 2017-04-05
WO2011108974A1 (en) 2011-09-09
JP2015148617A (en) 2015-08-20
SE536815C2 (en) 2014-09-16
EP2543043A1 (en) 2013-01-09
US20130051513A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
ES2879654T3 (en) A sintered nuclear fuel pellet, a fuel rod, a fuel assembly, and a method of manufacturing a sintered nuclear fuel pellet
ES2796367T3 (en) Method for the manufacture of fully ceramic micro-encapsulated nuclear fuel
ES2748151T3 (en) SiC Matrix Fuel Coating Tube with Spark Plaster Sintering Terminal Plugs
JP6082810B2 (en) Tubular body and method for producing tubular body
ES2835778T3 (en) Fully ceramic microencapsulated fuel made with burning poison as a sintering aid
ES2933969T3 (en) Corrosion and wear resistant coating on zirconium alloy coating process
KR100756391B1 (en) A annular nuclear fuel rod with a function of controlling heat flux to inner cladding tube and outer cladding tube
WO2016084146A1 (en) Nuclear reactor fuel rods and fuel assembly in which same are bundled
KR20130140752A (en) Fully ceramic nuclear fuel and related methods
JP6961719B2 (en) Nuclear fuel pellets, fuel rods, and fuel assemblies
TW529036B (en) Nuclear fuel assembly for a light-water cooled reactor comprising nuclear fuel in the form of particles
EP3239985A1 (en) Light-water-reactor fuel rod, and fuel assembly
ES2654153T3 (en) Fuel component and production method of a fuel component
ES2696992T3 (en) A neutron absorbing component and a method for producing a neutron absorbing component
KR20130102766A (en) Nuclear fuel using multi-coated particle
ES2628581T3 (en) Reactor component
JP6632931B2 (en) Structural member and manufacturing method thereof, fuel rod, fuel channel box, water rod, fuel assembly
Stempien et al. Initial Observations from AGR 5/6/7 Capsule 1
KR20240015686A (en) Fuel-moderator inversion for safer nuclear reactors
RU2202131C1 (en) Fast-reactor absorbing element
Woolstenhulme et al. Overpower testing of TCR fuel in TREAT
ES2667244T3 (en) Variable geometry component for a large structure and assembly procedure
ES2533013T3 (en) Nuclear fuel assembly with fuel rod that uses an internal separator element
JP6473602B2 (en) Graphite block
Saragi Modeling of temperature distribution in TRISO fuel-based on finite element method