ES2616435T3 - Cinacalcet and neuroblastic tumors - Google Patents

Cinacalcet and neuroblastic tumors Download PDF

Info

Publication number
ES2616435T3
ES2616435T3 ES13769054.1T ES13769054T ES2616435T3 ES 2616435 T3 ES2616435 T3 ES 2616435T3 ES 13769054 T ES13769054 T ES 13769054T ES 2616435 T3 ES2616435 T3 ES 2616435T3
Authority
ES
Spain
Prior art keywords
cinacalcet
casr
treatment
tumors
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES13769054.1T
Other languages
Spanish (es)
Inventor
Carmen DE TORRES GÓMEZ-PALLETE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fundacio Cellex
Hospital Sant Joan de Deu
Original Assignee
Fundacio Cellex
Hospital Sant Joan de Deu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacio Cellex, Hospital Sant Joan de Deu filed Critical Fundacio Cellex
Application granted granted Critical
Publication of ES2616435T3 publication Critical patent/ES2616435T3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La presente invención pertenece al campo de la terapia de tumores pediátricos o del desarrollo. En concreto, se refiere al uso del activador alostérico del receptor sensor de calcio, cinacalcet, para la preparación de un medicamento para el tratamiento de tumores neuroblásticos, en particular para el tratamiento de neuroblastomas, ganglioneuroblastomas y ganglioneuromas.The present invention is in the field of pediatric or developmental tumor therapy. Specifically, it refers to the use of the allosteric activator of the calcium sensor receptor, cinacalcet, for the preparation of a medicament for the treatment of neuroblastic tumors, in particular for the treatment of neuroblastomas, ganglioneuroblastomas and ganglioneuromas.

Description

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

DESCRIPCIONDESCRIPTION

Cinacalcet y tumores neuroblasticos Campo de la invencionCinacalcet and neuroblastic tumors Field of the invention

La presente invencion pertenece al campo de los tumores pediatricos o del desarrollo infantil. En concreto, la invencion se refiere al activador alosterico del receptor sensor de calcio, cinacalcet, para su uso en el tratamiento de tumores neuroblasticos.The present invention belongs to the field of pediatric tumors or childhood development. Specifically, the invention relates to the allosteric activator of the calcium sensor receptor, cinacalcet, for use in the treatment of neuroblastic tumors.

Antecedentes de la invencionBackground of the invention

Se conocen como tumores del desarrollo infantil aquellos que se manifiestan principalmente durante la edad pediatrica o que unicamente se manifiestan en esta etapa. Por esta razon a veces se les denomina tambien tumores pediatricos. En el contexto de la presente invencion se usara indistintamente el termino tumor del desarrollo infantil o tumor pediatrico.Childhood tumors are known as those that manifest primarily during pediatric age or that only manifest at this stage. For this reason they are sometimes also called pediatric tumors. In the context of the present invention the term childhood development tumor or pediatric tumor will be used interchangeably.

Dentro del grupo de los tumores del desarrollo infantil estan los neuroblastomas (NB), ganglioneuroblastomas (GNB) y ganglioneuromas (GN), que conforman el grupo de los tumores neuroblasticos (TN). Los tumores neuroblasticos son los tumores solidos extracraneales mas frecuentes de la infancia y se desarrollan a partir de celulas de la cresta neural ya comprometidas en la formacion del sistema nervioso periferico, por lo que se localizan en la medula suprarrenal o en los ganglios nerviosos de la cadena simpatica paravertebral. La mayona de los NB, GNB y GN localizados presentan indices de supervivencia excelentes, pero los NB metastasicos, pese a ser sometidos a terapias intensivas multimodales, tienen aun hoy dfa indices de supervivencia que rondan el 40%.Within the group of childhood development tumors are neuroblastomas (NB), ganglioneuroblastomas (GNB) and ganglioneuromas (GN), which make up the group of neuroblastic tumors (TN). Neuroblastic tumors are the most frequent extracranial solid tumors of childhood and develop from cells of the neural crest already involved in the formation of the peripheral nervous system, so they are located in the adrenal medulla or in the nerve ganglia of the sympathetic paravertebral chain. The majority of localized NB, GNB and GN have excellent survival rates, but metastatic NBs, despite being subjected to multimodal intensive therapies, still have 40% survival rates.

Los tumores neuroblasticos son un grupo de tumores muy heterogeneo desde el punto de vista clmico, anatomopatologico, genetico y biologico. Las bases biologicas responsables de la diversidad clmica de los TN se conocen solo parcialmente, pero se hallan sin duda tras las diferentes formas de respuesta de los tumores a los protocolos de tratamiento. Entre ellas, destacan las alteraciones de la ploidfa, las translocaciones desequilibradas, las deleciones o adiciones de regiones cromosomicas recurrentes y la amplificacion del oncogen MYCN. Estas alteraciones genetico-moleculares, aunque cruciales para el comportamiento biologico de los TN, apenas pueden ser modificadas terapeuticamente. Antes de que se describieran con mas detalle, se sabfa que los TN mas diferenciados y con mayor proporcion de componente estromal tipo Schwann (NB en diferenciacion, GNB y GN) estaban asociadas a un mejor pronostico que los NB indiferenciados. Se han descubierto algunas de las vfas moleculares responsables de los procesos de diferenciacion celular en TN. Estas rutas son de gran importancia terapeutica ya que son modulables farmacologicamente. Asf, por ejemplo, el acido retinoico induce diferenciacion en lmeas celulares de NB y en los tumores de los pacientes, mejorando la supervivencia global de un subgrupo de ellos. Algunos NB son resistentes a la accion de este farmaco, pero la falta de un conocimiento detallado de los mecanismos moleculares responsables de la diferenciacion de los TN dificulta el diseno de nuevos agentes diferenciadores que puedan beneficiar a un mayor numero de pacientes.Neuroblastic tumors are a group of tumors that are very heterogeneous in terms of climate, pathology, genetics and biology. The biological bases responsible for the chemical diversity of TNs are only partially known, but they are undoubtedly behind the different forms of tumor response to treatment protocols. Among them, the alterations of the ploidfa, the unbalanced translocations, the deletions or additions of recurrent chromosomal regions and the amplification of the MYCN oncogene stand out. These genetic-molecular alterations, although crucial for the biological behavior of TN, can hardly be modified therapeutically. Before they were described in more detail, it was known that the more differentiated TNs and with a greater proportion of Schwann stromal component (NB in differentiation, GNB and GN) were associated with a better prognosis than undifferentiated NBs. Some of the molecular pathways responsible for the processes of cell differentiation in TN have been discovered. These routes are of great therapeutic importance since they are pharmacologically modulable. Thus, for example, retinoic acid induces differentiation in NB cell lines and in patients' tumors, improving the overall survival of a subset of them. Some NBs are resistant to the action of this drug, but the lack of detailed knowledge of the molecular mechanisms responsible for the differentiation of TNs makes it difficult to design new differentiating agents that can benefit a greater number of patients.

El gen del receptor sensor de calcio (CASR) se clono en 1993 a partir de celulas paratiroideas bovinas y forma parte de la familia C de la superfamilia de receptores acoplados a protemas G (GpCR), junto a ocho receptores del glutamato, dos receptores GABA-B, algunos receptores del gusto y el sensor de aminoacidos GPRC6A. Esta familia de receptores detecta senales de iones, aminoacidos y nutrientes, entre otros, y las transmiten al medio intracelular. Todos ellos comparten una estructura similar que se compone de un gran dominio extracelular amino-terminal, siete helices transmembrana y una cola intracelular carboxilo-terminal. En el caso de CASR, su principal funcion es detectar las fluctuaciones del Ca2+ extracelular y regular consecuentemente la secrecion de hormona paratiroidea (PTH) en las glandulas paratiroides y de calcitonina en las celulas C del tiroides, hormonas encargadas de normalizar la calcemia. En el contexto de las paratiroides, la activacion de CASR por el calcio se traduce en una disminucion de la regulacion y produccion de la hormona paratiroidea (PTH), lo que a su vez disminuira la concentracion plasmatica de calcio para mantenerla dentro de un estrecho margen (1,1-1,3 mM).The calcium sensor receptor (CASR) gene was cloned in 1993 from bovine parathyroid cells and is part of the C family of the G protein-coupled receptor superfamily (GpCR), together with eight glutamate receptors, two GABA receptors -B, some taste receptors and the GPRC6A amino acid sensor. This family of receptors detects signals of ions, amino acids and nutrients, among others, and transmits them to the intracellular environment. All of them share a similar structure that consists of a large amino-terminal extracellular domain, seven transmembrane helices and a carboxyl-terminal intracellular tail. In the case of CASR, its main function is to detect fluctuations of extracellular Ca2 + and consequently regulate the secretion of parathyroid hormone (PTH) in the parathyroid glands and calcitonin in the C cells of the thyroid, hormones responsible for normalizing calcemia. In the context of parathyroids, the activation of CASR by calcium results in a decrease in the regulation and production of parathyroid hormone (PTH), which in turn will decrease the plasma calcium concentration to keep it within a narrow range. (1.1-1.3 mM).

Se ha hallado expresion de CASR en distintas neoplasias con la particularidad de que se le atribuyen funciones muy distintas, incluso contrapuestas, en diferentes contextos tumorales. Asf, por ejemplo, se ha descrito que la activacion de CASR promueve proliferacion y metastasis en carcinoma de prostata, mientras que los datos parecen apoyar que participa en los procesos de diferenciacion en carcinoma de colon.CASR expression has been found in different neoplasms with the peculiarity that very different functions are attributed, even contrasted, in different tumor contexts. Thus, for example, it has been described that the activation of CASR promotes proliferation and metastasis in prostate carcinoma, while the data seems to support that it participates in the differentiation processes in colon carcinoma.

Existen agonistas directos de CASR (o agonistas de tipo 1) y activadores alostericos de CASR (o agonistas de tipo 2). Los primeros, como son Ca2+, Mg +, Gd3+, neomicina, L-aminoacidos, activan CASR mediante interaccion directa con el dominio extracelular del mismo. En cambio, los activadores alostericos no activan al receptor por sf mismos sino que alteran su estructura tridimensional, de manera que se torna mas sensible al estimulo del calcio. El cinacalcet es un activador alosterico del receptor sensor de calcio. En la patente US 5.688.938 se describen varios agonistas de CASR, como NPS R-467 y NPS R-568, siendo NPS R-568 (denominado tambien R-568) el mas activo. Asimismo, la patente US 6.296.833 describe el uso de agonistas o antagonistas del calcio para el tratamiento de cancer. En la presente solicitud se describe el uso de cinacalcet para la preparacion de un medicamento para elThere are direct CASR agonists (or type 1 agonists) and allosteric activators of CASR (or type 2 agonists). The former, such as Ca2 +, Mg +, Gd3 +, neomycin, L-amino acids, activate CASR by direct interaction with the extracellular domain thereof. On the other hand, allosteric activators do not activate the receptor by themselves but alter their three-dimensional structure, so that it becomes more sensitive to calcium stimulation. Cinacalcet is an allosteric activator of the calcium sensor receptor. Several CASR agonists are described in US Patent 5,688,938, such as NPS R-467 and NPS R-568, with NPS R-568 (also called R-568) being the most active. Also, US Patent 6,296,833 describes the use of calcium agonists or antagonists for the treatment of cancer. The present application describes the use of cinacalcet for the preparation of a medicine for

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

tratamiento de tumores neuroblasticos. Sorprendentemente el uso de cinacalcet resulta en importantes ventajas ya que es capaz de inducir apoptosis de celulas tumorales a menor concentracion que otros agonistas de CASR.treatment of neuroblastic tumors. Surprisingly, the use of cinacalcet results in important advantages since it is capable of inducing apoptosis of tumor cells at a lower concentration than other CASR agonists.

Objeto de la invencionObject of the invention

La presente invencion se refiere a cinacalcet para su uso en el tratamiento de tumores neuroblasticos, en particular para el tratamiento de neuroblastomas, ganglioneuroblastomas y ganglioneuromas.The present invention relates to cinacalcet for use in the treatment of neuroblastic tumors, in particular for the treatment of neuroblastomas, ganglioneuroblastomas and ganglioneuromas.

Breve descripcion de las figurasBrief description of the figures

La figura 1A muestra la morfologfa de celulas SK-N-LP con (paneles inferiores) o sin (paneles superiores) sobreexpresion de CASR tras 16 horas sometidas a deprivacion de suero y posterior exposicion a CaCl2 3 mM durante 24 y 48 horas. La figura 1B muestra un analisis de viabilidad celular en la lmea celular SK-N-LP, con sobreexpresion de CASR (barra negra) o sin sobreexpresion de CASR (barra vada), tras 16 horas de deprivacion de suero y exposicion posterior a CaCl2 0,5 mM, 1,4 mM o 3 mM durante 48 horas. La figura 1C muestra un analisis mediante inmunotransferencia Western de la activacion de caspasa 3 y clivaje de PARP en celulas SK-N-LP nativas (wild type, WT) y en celulas SK-N-LP con sobreexpresion de CASR (CASR) tras ser expuestas durante 24 h (dos primeros carriles) y 48 h (dos ultimos carriles) al modelo in vitro descrito en el apartado A.Figure 1A shows the morphology of SK-N-LP cells with (lower panels) or without (upper panels) CASR overexpression after 16 hours subjected to serum deprivation and subsequent exposure to 3 mM CaCl2 for 24 and 48 hours. Figure 1B shows an analysis of cell viability in the SK-N-LP cell line, with overexpression of CASR (black bar) or without overexpression of CASR (vada bar), after 16 hours of serum deprivation and subsequent exposure to CaCl2 0 , 5 mM, 1.4 mM or 3 mM for 48 hours. Figure 1C shows a Western blot analysis of caspase 3 activation and PARP cleavage in native SK-N-LP cells (wild type, WT) and SK-N-LP cells with CASR overexpression (CASR) after being exposed for 24 hours (first two lanes) and 48 hours (last two lanes) to the in vitro model described in section A.

La figura 2 muestra la viabilidad celular de lmeas celulares nativas de neuroblastoma tratadas in vitro con cinacalcet o con NPS R-568 durante 72 horas. Se representa el porcentaje de viabilidad respecto al control frente a la concentracion (Conc.) en pM de cinacalcet (circulo) o R-568 (cuadrado). Las lmeas celulares analizadas son las siguientes: LAN-1 (Fig. 2A), SK-N-LP (Fig. 2B), SK-N-JD (Fig. 2C), SK-N-BE(2)c (Fig. 2D), LA1-5s (Fig. 2E), LA1-55n (Fig. 2F) y SK-N-AS (Fig. 2G).Figure 2 shows the cell viability of native neuroblastoma cell lines treated in vitro with cinacalcet or with NPS R-568 for 72 hours. The percentage of viability with respect to the control versus concentration (Conc.) In pM of cinacalcet (circle) or R-568 (square) is represented. The analyzed cell lines are the following: LAN-1 (Fig. 2A), SK-N-LP (Fig. 2B), SK-N-JD (Fig. 2C), SK-N-BE (2) c (Fig 2D), LA1-5s (Fig. 2E), LA1-55n (Fig. 2F) and SK-N-AS (Fig. 2G).

La figura 3 muestra el examen morfologico de xenoimplantes generados a partir de las lmeas celulares LAN-1 (Fig. 3A, 3C, 3E) y SK-N-LP (Fig. 3B, 3D, 3F) tratados con cinacalcet (Fig. 3C-3F) o no (Fig. 3A, 3B). Se muestran espedmenes en los que el cinacalcet produjo mayoritariamente muerte celular (Fig. 3C, 3D) o citodiferenciacion (Fig. 3E, 3F).Figure 3 shows the morphological examination of xenoimplants generated from the cell lines LAN-1 (Fig. 3A, 3C, 3E) and SK-N-LP (Fig. 3B, 3D, 3F) treated with cinacalcet (Fig. 3C -3F) or not (Fig. 3A, 3B). Specimens are shown in which cinacalcet produced mostly cell death (Fig. 3C, 3D) or cytodifferentiation (Fig. 3E, 3F).

Descripcion detallada de la invencionDetailed description of the invention

En un aspecto, la presente invencion se refiere a cinacalcet para su uso en el tratamiento de tumores neuroblasticos. En una realizacion particular, se refiere a cinacalcet para su uso en el tratamiento de neuroblastomas. En otra realizacion particular, se refiere a cinacalcet para su uso en el tratamiento de ganglioneuroblastomas. En otra realizacion particular, se refiere a cinacalcet para su uso en el tratamiento de ganglioneuromas.In one aspect, the present invention relates to cinacalcet for use in the treatment of neuroblastic tumors. In a particular embodiment, it refers to cinacalcet for use in the treatment of neuroblastomas. In another particular embodiment, it refers to cinacalcet for use in the treatment of ganglioneuroblastomas. In another particular embodiment, it refers to cinacalcet for use in the treatment of ganglioneuromas.

Como se ha mencionado en el apartado de antecedentes, la patente US 5.688.938 describe NPS R-568 como el compuesto agonista de CASR mas activo. A este respecto, en la presente invencion se llevan a cabo ensayos comparativos de los efectos del uso de cinacalcet y R-568 en el tratamiento de tumores neuroblasticos. Sorprendentemente, cinacalcet presenta una serie de ventajas frente a NPS R-568 desde el punto de vista farmacologico y farmacodinamico. Uno de los efectos mas importantes y sorprendentes del cinacalcet es la induccion de apoptosis a concentraciones significativamente mas bajas que el NPS R-568 (Figura 2, Tabla 1). Esto supone importantes ventajas del cinacalcet frente a otros agonistas de CASR ya que permite un tratamiento eficaz con la administracion de una dosis menor de medicamento lo que en general implica menor riesgo de que aparezcan efectos secundarios o toxicidad y mayor tolerancia al tratamiento, ademas de facilitar la administracion y pauta de administracion. Estas ventajas se muestran especialmente relevantes cuando un farmaco se debe administrar de manera sostenida en el tiempo, como puede ser el caso del cinacalcet administrado para el tratamiento de los tumores neuroblasticos. Estos tumores presentan frecuentes recafdas, lo que hace previsible que este tratamiento, igual que otros utilizados en el contexto de enfermedad minima residual para evitar la recafda, deba administrarse de manera continuada durante un largo periodo de tiempo. Asimismo, es posible que si un tumor ha respondido adecuadamente al tratamiento inicial con cinacalcet se pueda beneficiar de la reutilizacion de este farmaco en caso de reaparecer (tras la remision inicial), estrategia que se ha mostrado util con diversos tratamientos en oncologfa (rechallenging).As mentioned in the background section, US Patent 5,688,938 describes NPS R-568 as the most active CASR agonist compound. In this regard, comparative trials of the effects of the use of cinacalcet and R-568 in the treatment of neuroblastic tumors are carried out in the present invention. Surprisingly, cinacalcet has a number of advantages over NPS R-568 from a pharmacological and pharmacodynamic point of view. One of the most important and surprising effects of cinacalcet is the induction of apoptosis at significantly lower concentrations than the NPS R-568 (Figure 2, Table 1). This implies important advantages of cinacalcet over other CASR agonists as it allows an effective treatment with the administration of a lower dose of medication which generally implies a lower risk of side effects or toxicity and greater tolerance to treatment, in addition to facilitating the administration and administration guideline. These advantages are especially relevant when a drug must be administered steadily over time, such as cinacalcet administered for the treatment of neuroblastic tumors. These tumors have frequent relapses, which makes it foreseeable that this treatment, as well as others used in the context of minimal residual disease to prevent relapse, should be administered continuously for a long period of time. Likewise, it is possible that if a tumor has responded adequately to the initial treatment with cinacalcet, it may benefit from the reuse of this drug if it reappears (after the initial remission), a strategy that has been shown to be useful with various treatments in oncology (rechallenging) .

EjemplosExamples

A continuacion se detallan unos ejemplos concretos de realizacion de la invencion que sirven para ilustrar la invencion.Below are some concrete examples of realization of the invention that serve to illustrate the invention.

Ejemplo 1. Analisis de los efectos promovidos in vitro por la activacion de CASR mediante calcio en lmeas celulares de neuroblastoma con o sin sobreexpresion de CASR.Example 1. Analysis of the effects promoted in vitro by the activation of CASR by calcium in neuroblastoma cell lines with or without CASR overexpression.

Celulas SK-N-LP nativas, establemente transfectadas con pCMV-GFP o con pCMV-CASR-GFP (1x106) en RPMI 10% FBS fueron sembradas en placas P100. Al dfa siguiente, el medio se sustituyo por uno libre de suero (DMEM libre de calcio suplementado con albumina bovina al 0,2%, L-glutamina 4 mM y CaCl2 0,5 mM). Este se mantuvo durante 16 horas, antes de sustituirlo por el mismo medio suplementado o no con CaCl2 hasta 3 mM. Se observo asf que las celulas con sobreexpresion de CASR sufnan muerte celular en este modelo cuando eran expuestas a CaCl2Native SK-N-LP cells, stably transfected with pCMV-GFP or with pCMV-CASR-GFP (1x106) in RPMI 10% FBS were seeded on P100 plates. The next day, the medium was replaced by a serum-free (calcium-free DMEM supplemented with 0.2% bovine albumine, 4 mM L-glutamine and 0.5 mM CaCl2). This was maintained for 16 hours, before replacing it with the same medium supplemented or not with CaCl2 up to 3 mM. It was thus observed that cells with overexpression of CASR suffer cell death in this model when they were exposed to CaCl2

55

1010

15fifteen

20twenty

2525

3030

3535

4040

3 mM (Figura 1A, panel inferior) pero no a 0,5 mM (datos no mostrados). Este fenomeno, que se iniciaba sobre las 6 horas tras el tratamiento con calcio y era masivo a partir de las 48 horas, apenas era apreciable en las lmeas celulares nativas o transfectadas con pCMV-GFP (Figura 1A, panel superior). En estas ultimas, se detectaron indicios de muerte celular, pero las celulas continuaron proliferando hasta alcanzar confluencia, mientras que las celulas con sobreexpresion de CASR desaparecieron completamente en 5 d^as.3 mM (Figure 1A, bottom panel) but not at 0.5 mM (data not shown). This phenomenon, which began about 6 hours after treatment with calcium and was massive after 48 hours, was barely noticeable in native cell lines or transfected with pCMV-GFP (Figure 1A, upper panel). In the latter, signs of cell death were detected, but the cells continued to proliferate until they reached confluence, while the cells with overexpression of CASR disappeared completely within 5 days.

Para cuantificar la disminucion de la viabilidad celular, se realizo el mismo modelo en placas de 24 pocillos en las lmeas y clones mencionados mas arriba (Figura 1B). A las 48 horas, se cuantifico el porcentaje de celulas viables mediante el sistema CellTiter 96(r) Aqueous One Solution Cell Proliferation Assay (MTS) de Promega. Se observo asf que la viabilidad celular de las celulas con sobreexpresion de CASR (barra negra, Figura 1B) disminrna significativamente mas que la de la lmea celular SK-N-LP nativa (barra vada, Figura 1B).To quantify the decrease in cell viability, the same model was made in 24-well plates in the lines and clones mentioned above (Figure 1B). At 48 hours, the percentage of viable cells was quantified using the Promega CellTiter 96 (r) Aqueous One Solution Cell Proliferation Assay (MTS) system. It was thus observed that the cell viability of the cells with overexpression of CASR (black bar, Figure 1B) decreases significantly more than that of the native SK-N-LP cell line (bar vada, Figure 1B).

Con el fin de determinar si el proceso de muerte celular tema lugar mediante apoptosis, se extrajeron protemas totales de celulas SK-N-LP nativas (wild-type, WT) y con sobreexpresion de CASR (CASR) a las 24 y 48 horas de exposicion a este modelo. Las protemas se sometieron a electroforesis en gel SDS-PAGE, se transfirieron a membrana de nitrocelulosa y se incubaron con anticuerpos espedficos para detectar caspasa 3 activada y c-PARP (Cell Signaling). Se utilizaron anticuerpos secundarios apropiados marcados con peroxidasa y el revelado se efectuo con el sistema ECL de Amersham. Asf, se puso de manifiesto que la muerte celular inducida por activacion de CASR mediante calcio se acompana de activacion de caspasa 3 y clivaje de PARP (Figura 1C), lo cual es compatible con muerte celular por apoptosis.In order to determine whether the process of cell death is subject to apoptosis, total proteins were extracted from native SK-N-LP (wild-type, WT) cells and with overexpression of CASR (CASR) at 24 and 48 hours after Exposure to this model. The proteins were subjected to SDS-PAGE gel electrophoresis, transferred to nitrocellulose membrane and incubated with specific antibodies to detect activated caspase 3 and c-PARP (Cell Signaling). Appropriate peroxidase-labeled secondary antibodies were used and development was carried out with the Amersham ECL system. Thus, it was revealed that cell death induced by activation of CASR by calcium is accompanied by activation of caspase 3 and cleavage of PARP (Figure 1C), which is compatible with cell death by apoptosis.

Ejemplo 2. Analisis de los efectos sobre la viabilidad celular promovidos in vitro por cinacalcet y NPS R-568 en siete lmeas celulares de neuroblastoma.Example 2. Analysis of the effects on cell viability promoted in vitro by cinacalcet and NPS R-568 in seven neuroblastoma cell lines.

Se sembraron 5x103 celulas de cada lmea celular (LAN-1, SK-N-BE(2)c, LA1-55n, LA1-5s, SK-N-LP, SK-N-JD, SK- N-AS) en placas de 96 pocillos (6 replicas por condicion). Al dfa siguiente, se retiro el medio inicial (RPMI 10% FBS) y se sustituyo por el mismo medio que contema concentraciones diversas (100 |jM, 65 |jM, 30 |jM, 25 |jM, 20 |jM, 15 |jM, 10 jiM, 5 jiM, 3 jiM, 1 jiM, 0,3 jiM) de cinacalcet (Selleck Biochemicals) o NPS R-568 (Tocris) o cantidades equivalentes de DMSO (Sigma-Aldrich). A las 72 horas, se evaluo la viabilidad celular mediante la cuantificacion del porcentaje de celulas viables mediante el sistema CellTiter 96(r) Aqueous One Solution Cell Proliferation Assay (MTS) de Promega. Se observo asf que ambos farmacos indudan una disminucion de la viabilidad celular en las 7 lmeas celulares examinadas (Figura 2), y que en 5 de ellas la CI50 (concentracion de farmaco que produce la muerte del 50% de las celulas con respecto al control) de cinacalcet era menor que la de NPS R-568 de manera estadfsticamente significativa (Tabla 1). En el caso de las lmeas celulares SK-N-AS y LA1-55n la diferencia en el efecto promovido por ambos farmacos no fue estadfsticamente significativa (Tabla 1).5x103 cells of each cell line (LAN-1, SK-N-BE (2) c, LA1-55n, LA1-5s, SK-N-LP, SK-N-JD, SK-N-AS) were seeded in 96-well plates (6 replicates per condition). The following day, the initial medium (RPMI 10% FBS) was removed and replaced by the same medium that contains various concentrations (100 | jM, 65 | jM, 30 | jM, 25 | jM, 20 | jM, 15 | jM , 10 jiM, 5 jiM, 3 jiM, 1 jiM, 0.3 jiM) of cinacalcet (Selleck Biochemicals) or NPS R-568 (Tocris) or equivalent amounts of DMSO (Sigma-Aldrich). At 72 hours, cell viability was assessed by quantifying the percentage of viable cells using the Promega CellTiter 96 (r) Aqueous One Solution Cell Proliferation Assay (MTS) system. It was observed that both drugs induce a decrease in cell viability in the 7 cell lines examined (Figure 2), and that in 5 of them the IC50 (drug concentration that causes the death of 50% of the cells with respect to the control ) of cinacalcet was lower than that of NPS R-568 in a statistically significant way (Table 1). In the case of the SK-N-AS and LA1-55n cell lines, the difference in the effect promoted by both drugs was not statistically significant (Table 1).

Tabla 1. Valores de CI50 obtenidos al tratar con cinacalcet o NPS R-568 siete lmeas celulares nativas de neuroblastoma.Table 1. IC50 values obtained by treating seven native cell lines of neuroblastoma with cinacalcet or NPS R-568.

Lmea celular  Cell phone
Cinacalcet NPS R-568 P valor  Cinacalcet NPS R-568 P value

LAN-1  LAN-1
17,19 24,81 < 0,0001  17.19 24.81 <0.0001

SK-N-LP  SK-N-LP
10,31 22,38 < 0,0001  10.31 22.38 <0.0001

SK-N-JD  SK-N-JD
10,92 25,82 < 0,0001  10.92 25.82 <0.0001

SK-N-BE(2)C  SK-N-BE (2) C
10,69 16,65 < 0,0001  10.69 16.65 <0.0001

LA1 -5s  LA1 -5s
16,73 34,5 < 0,0001  16.73 34.5 <0.0001

LA1-55n  LA1-55n
10,52 11,42 no significativo  10.52 11.42 not significant

SK-N-AS  SK-N-AS
10,26 15,14 no significativo  10.26 15.14 not significant

Ejemplo 3. Analisis de los efectos del tratamiento con cinacalcet en un modelo in vivo de neuroblastoma.Example 3. Analysis of the effects of cinacalcet treatment in an in vivo neuroblastoma model.

Se generaron xenoimplantes de las lmeas celulares LAN-1 y SK-N-LP para lo cual se inocularon partes almuotas de 10x106 celulas provenientes de dichas lmeas celulares subcutaneamente en ratones hembra atfmicos nu/nu de 4-6 semanas (Charles Rivers). A partir del dfa 12, cuando el tumor en formacion ya era medible con pie de rey, se inicio el tratamiento de 6 dfas por semana con cinacalcet 100 mg/kg por via oral (Figuras 3C-3F) y con el vehmulo como control negativo (Figuras 3A y 3B). Se midio el volumen tumoral cada 2-3 dfas. A los 40 dfas, los ratones se sacrificaron. Cada tumor se peso antes de fraccionarlo en dos mitades: una de congelo en nitrogeno lfquido para el analisis de expresion y la otra se fijo y se embebio en parafina para el examen morfologico y los analisis inmunohistoqmmicos. En el analisis morfologico de los xenoimplantes de ambas lmeas celulares tratadas conXenoimplants of the LAN-1 and SK-N-LP cell lines were generated for which almuots of 10x106 cells were inoculated from said cell lines subcutaneously in 4-6 weeks atomic nu / nu female mice (Charles Rivers). From day 12, when the tumor in formation was already measurable with king's foot, the treatment of 6 days per week with 100 mg / kg cinacalcet was started orally (Figures 3C-3F) and with the vehicle as a negative control (Figures 3A and 3B). Tumor volume was measured every 2-3 days. At 40 days, the mice were sacrificed. Each tumor was weighed before dividing it into two halves: one freezing in liquid nitrogen for expression analysis and the other was fixed and embedded in paraffin for morphological examination and immunohistochemical analysis. In the morphological analysis of the xenoimplants of both cell lines treated with

cinacalcet, se observaron espedmenes en los que hada grandes areas con necrosis y/o apoptosis (Figuras 3C y 3D) y/o signos morfologicos de diferenciacion en las celulas que eran viables (Figuras 3E y 3F).cinacalcet, spurs were observed in which there are large areas with necrosis and / or apoptosis (Figures 3C and 3D) and / or morphological signs of differentiation in the cells that were viable (Figures 3E and 3F).

Claims (1)

REIVINDICACIONES 1) Cinacalcet para su uso el tratamiento de tumores neuroblasticos.1) Cinacalcet for use in the treatment of neuroblastic tumors. 5 2) Cinacalcet para su uso segun la reivindicacion 1, en el que el tumor neurobastico es un neuroblastoma.2) Cinacalcet for use according to claim 1, in which the neurobastic tumor is a neuroblastoma. 3) Cinacalcet para su uso segun la reivindicacion 1, en el que el tumor neurobastico es un ganglioneuroblastoma.3) Cinacalcet for use according to claim 1, wherein the neurobastic tumor is a ganglioneuroblastoma. 4) Cinacalcet para su uso segun la reivindicacion 1, en el que el tumor neurobastico es un ganglioneuroma.4) Cinacalcet for use according to claim 1, wherein the neurobastic tumor is a ganglioneuroma.
ES13769054.1T 2012-03-29 2013-01-21 Cinacalcet and neuroblastic tumors Active ES2616435T3 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ES201230476A ES2384069B1 (en) 2012-03-29 2012-03-29 Cinacalcet and neuroblastic tumors
ES201230476 2012-03-29
PCT/ES2013/070019 WO2013144397A1 (en) 2012-03-29 2013-01-21 Cinacalcet and neuroblastic tumours

Publications (1)

Publication Number Publication Date
ES2616435T3 true ES2616435T3 (en) 2017-06-13

Family

ID=46232426

Family Applications (2)

Application Number Title Priority Date Filing Date
ES201230476A Expired - Fee Related ES2384069B1 (en) 2012-03-29 2012-03-29 Cinacalcet and neuroblastic tumors
ES13769054.1T Active ES2616435T3 (en) 2012-03-29 2013-01-21 Cinacalcet and neuroblastic tumors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES201230476A Expired - Fee Related ES2384069B1 (en) 2012-03-29 2012-03-29 Cinacalcet and neuroblastic tumors

Country Status (5)

Country Link
US (1) US9498455B2 (en)
EP (1) EP2842552B1 (en)
CA (1) CA2877555A1 (en)
ES (2) ES2384069B1 (en)
WO (1) WO2013144397A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201615221A (en) * 2014-10-24 2016-05-01 朗齊生物醫學股份有限公司 The new indication of the anti-inflammatory drugs
EP3326624A1 (en) 2015-07-22 2018-05-30 Hospital Sant Joan de Deu Immunotherapy for casr-expressing cancer (e.g. neuroblastoma)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688938A (en) * 1991-08-23 1997-11-18 The Brigham & Women's Hospital, Inc. Calcium receptor-active molecules
AU2351699A (en) * 1998-01-30 1999-08-16 Brigham And Women's Hospital The human calcium-sensing receptor in the detection and treatment of cancer
US7176243B2 (en) * 2000-06-02 2007-02-13 The General Hospital Corporation CaR receptor as a mediator of migratory cell chemotaxis and/or chemokinesis
WO2008075173A2 (en) * 2006-12-15 2008-06-26 Ruprecht-Karls-Universität Heidelberg Methods for treating podocyte-related disorders
WO2009103796A1 (en) * 2008-02-20 2009-08-27 Technische Universität Dresden Use of substances for sensitization of tumor cells to radiation and/or chemotherapy
WO2009128523A1 (en) * 2008-04-17 2009-10-22 味の素株式会社 Immunostimulating agent
FR2939314A1 (en) * 2008-12-04 2010-06-11 Univ Victor Segalen Bordeaux 2 NOVEL COMPOSITIONS AND METHODS FOR THE POTENTIATION OF APOPTOSIS SIGNALS IN TUMOR CELLS

Also Published As

Publication number Publication date
ES2384069A1 (en) 2012-06-29
EP2842552B1 (en) 2016-11-16
WO2013144397A1 (en) 2013-10-03
EP2842552A1 (en) 2015-03-04
US20150342907A1 (en) 2015-12-03
EP2842552A4 (en) 2015-10-28
US9498455B2 (en) 2016-11-22
CA2877555A1 (en) 2013-10-03
ES2384069B1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
Dohle et al. Quinazolinone-based anticancer agents: synthesis, antiproliferative SAR, antitubulin activity, and tubulin co-crystal structure
Amphoux et al. Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain
Lang et al. Ion channels in cancer: future perspectives and clinical potential
Kiptoo et al. Enhancement of drug absorption through the blood− brain barrier and inhibition of intercellular tight junction resealing by E-cadherin peptides
Li et al. Cryptotanshinone inhibits breast cancer cell growth by suppressing estrogen receptor signaling
De Mario et al. Identification and functional validation of FDA-approved positive and negative modulators of the mitochondrial calcium uniporter
Yan et al. Blockade of Her2/neu binding to Hsp90 by emodin azide methyl anthraquinone derivative induces proteasomal degradation of Her2/neu
White The regulation of tumor cell invasion and metastasis by endoplasmic reticulum-to-mitochondrial Ca2+ transfer
BR112013024211B1 (en) TREATMENT OF SOLID TUMORS
Shapovalov et al. Calcium channels and prostate cancer
Gurrapu et al. Monocarboxylate transporter 1 inhibitors as potential anticancer agents
ES2788390T3 (en) Medical composition comprising a heterocyclic diamino-carboxamide compound as active ingredient
Chen et al. Retinoic acid induces apoptosis of prostate cancer DU145 cells through Cdk5 overactivation
Li et al. 5-HT6 receptor antagonist SB-399885 potentiates haloperidol and risperidone-induced dopamine efflux in the medial prefrontal cortex or hippocampus
ES2616435T3 (en) Cinacalcet and neuroblastic tumors
Della Torre et al. The conundrum of estrogen receptor oscillatory activity in the search for an appropriate hormone replacement therapy
Dong et al. Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge
Li et al. Multiple organic cation transporters contribute to the renal transport of sulpiride
ES2734479T3 (en) Means and methods to treat solid tumors
Li et al. The Active Fraction of Polyrhachis vicina Roger (AFPR) activates ERK to cause necroptosis in colorectal cancer
Luo et al. Oxazole-4-carboxamide/butylated hydroxytoluene hybrids with GSK-3β inhibitory and neuroprotective activities against Alzheimer's disease
AR111803A1 (en) DERIVED FROM CICLOPENTAN [G] QUINAZOLIN-4-ONA AND ITS EMPLOYMENT IN THE TREATMENT OF CANCER RESISTANT TO PLATINUM
Zhang et al. Glycogen synthesis kinase-3β involves in the analgesic effect of liraglutide on diabetic neuropathic pain
Chen et al. Activating Sphingosine-1-phospahte signaling in endothelial cells increases myosin light chain phosphorylation to decrease endothelial permeability thereby inhibiting cancer metastasis
Takahashi et al. Aryl urea derivatives of spiropiperidines as NPY Y5 receptor antagonists