ES2612153T3 - Uso de óxido de cerio y un polipéptido extraído de un mejillón formador de biso para la fabricación de un recubrimiento inhibidor de la corrosión - Google Patents

Uso de óxido de cerio y un polipéptido extraído de un mejillón formador de biso para la fabricación de un recubrimiento inhibidor de la corrosión Download PDF

Info

Publication number
ES2612153T3
ES2612153T3 ES11720064.2T ES11720064T ES2612153T3 ES 2612153 T3 ES2612153 T3 ES 2612153T3 ES 11720064 T ES11720064 T ES 11720064T ES 2612153 T3 ES2612153 T3 ES 2612153T3
Authority
ES
Spain
Prior art keywords
mussel
cerium oxide
manufacture
forming
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES11720064.2T
Other languages
English (en)
Inventor
Majid Sababi
Fan Zhang
Jinshan Pan
Per Claesson
Andra DEDINAITÉ
Olga Krivosheeva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biopolymer Technology of Sweden AB
Original Assignee
Biopolymer Technology of Sweden AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biopolymer Technology of Sweden AB filed Critical Biopolymer Technology of Sweden AB
Application granted granted Critical
Publication of ES2612153T3 publication Critical patent/ES2612153T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D189/00Coating compositions based on proteins; Coating compositions based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/173Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/185Refractory metal-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Uso de al menos un óxido de cerio y al menos un polímero, en el que el al menos un polímero comprende al menos un componente de catecol unido de manera covalente al mismo, en el que el al menos un óxido de cerio está en forma de partículas con un diámetro de 1-1000 nm, en el que el al menos un polímero presenta una carga neta positiva a un pH de 7, y en el que el al menos un polímero es al menos un polipéptido extraído de un mejillón formador de biso, para la fabricación de un recubrimiento para la prevención de la corrosión de metales.

Description

imagen1
imagen2
imagen3
imagen4
imagen5
imagen6
imagen7
imagen8
5
10
15
20
25
30
35
40
45
50
55
60
Ejemplo 2
Se usó Zn puro como metal de sustrato. Se usaron las mismas nanopartículas de ceria y MAP puras que las usadas en el ejemplo 1.
Las superficies de muestra de Zn se lijaron en húmedo sucesivamente con papel de lija de 500, 800, 1200 granos, tras limpiar, se dejaron las muestras durante la noche en un recipiente cerrado. Se realizó la deposición de la película de material compuesto al día siguiente.
Se preparó disolución de MAP nueva 2 min antes de la inmersión. Para la deposición de la película, la disolución de MAP contiene MAP 0,1 mg/mL, ácido cítrico al 1% y NaCl 50 mM, y el pH era de 6. La disolución de ceria contiene 500 ppm de nanopartículas de ceria dispersadas en agua y NaCl 50 mM. El procedimiento de deposición de la película fue el mismo que el habitual: 1 hora de inmersión en la disolución de MAP y 40 min en la disolución de ceria, sin aclarar con agua entremedias. Se realizó la deposición de la película alternando inmersión en la disolución de MAP y disolución de ceria 4 veces.
Se indicó que, al inicio de la segunda inmersión en la disolución de MAP, se observó algo de producto de reacción como capa grisácea que flotaba en la superficie de la disolución de MAP. El producto de flotación empezó a aparecer en la disolución de MAP tras la primera deposición de ceria, y se observó en todas las etapas adicionales para la deposición de la película en la disolución de MAP.
Se expusieron las muestras de Zn con la película de material compuesto de MAP y nanopartículas de ceria depositada a la disolución de NaCl 0,1 M con H3PO4 0,2 M a pH 4,6, se registró el potencial de circuito abierto (OCP) de manera continua durante 15 minutos, y entonces se realizó EIS tras 1 hora, 1, 3 y 7 días de exposición, como para las muestras de acero al carbono (ejemplo 1).
Los resultados de 3 mediciones paralelas muestran una buena reproducibilidad, por lo que únicamente se presentan los resultados de un conjunto de muestras en este informe.
La figura 8 muestra el OCP frente al tiempo para la muestra de Zn con la película de material compuesto de MAP y ceria en el inicio, tras 1 hora, 1, 3 y 7 días de exposición. En el inicio, el OCP de la muestra estaba a aproximadamente -1,1 V frente a Ag/AgCl, lo cual es similar a Zn sin ninguna película de superficie. Esto indica que la película de material compuesto de MAP y ceria es permeable al electrolito. El OCP aumentó ligeramente tras 1 día, indicando que se había producido algún cambio en la película de superficie. Sigue con que el OCP aumentó significativamente con el tiempo, alcanzado aproximadamente -0,7 V tras 3 días y -0,6 V tras 7 días. Está claro que, durante la exposición, tienen lugar algunas interacciones en las películas de material compuesto y/o entre la película y productos de corrosión de Zn, que conducen a un ennoblecimiento pronunciado de la superficie de Zn. Por consiguiente, esto dio como resultado una protección potenciada frente a la corrosión de Zn en la disolución, tal como se confirmó mediante las mediciones de EIS.
La figura 9 muestra diagramas de Bode típicos de los espectros de EIS obtenidos para la muestra de Zn con la película de material compuesto de MAP y ceria tras 1 hora, 1, 3 y 7 días de exposición. Como puede observarse a partir de los espectro de EIS, con una exposición prolongada, la muestra presenta cada vez más comportamiento capacitivo, y la impedancia en el extremo de frecuencia baja (una media de resistencia a la corrosión) aumentó aproximadamente dos órdenes de magnitud. Los resultados sugieren una gran potenciación en la resistencia a la corrosión de la muestra, lo que implica que la capa de superficie (película de material compuesto y productos de corrosión) se vuelve más protectora con la exposición.
Debe mencionarse que Zn es un metal activo que habitualmente se corroerá rápidamente en disoluciones ácidas o disoluciones de NaCl porque no se formarán productos de corrosión estables sobre la superficie, y el OCP permanece en el nivel bajo debido a la reacción de corrosión electroquímica dominante de Zn. Basándose en los resultados anteriores, puede concluirse que la película de material compuesto de MAP y ceria tiene un mecanismo de protección para el sustrato de zinc en la disolución.
Las figuras (figuras 10a-10d) muestran una comparación entre los resultados de EIS de la muestra de Zn con la película de material compuesto de MAP y ceria y los de la muestra de control sin ninguna película. Aparentemente la resistencia a la corrosión de la muestra de control también aumentó con la exposición en esta disolución. Los inventores especulan que esto puede ser un resultado de la interacción entre Zn y ácido fosfórico presente en la disolución, similar a un tratamiento con fosfato.
9

Claims (1)

  1. imagen1
ES11720064.2T 2010-07-16 2011-05-02 Uso de óxido de cerio y un polipéptido extraído de un mejillón formador de biso para la fabricación de un recubrimiento inhibidor de la corrosión Active ES2612153T3 (es)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
SE1050806 2010-07-16
SE1050806 2010-07-16
US36548710P 2010-07-19 2010-07-19
US365487P 2010-07-19
PCT/EP2011/056940 WO2012007199A1 (en) 2010-07-16 2011-05-02 Corrosion inhibiting coating based on cerium oxide and a catecholic polymer

Publications (1)

Publication Number Publication Date
ES2612153T3 true ES2612153T3 (es) 2017-05-12

Family

ID=44303374

Family Applications (1)

Application Number Title Priority Date Filing Date
ES11720064.2T Active ES2612153T3 (es) 2010-07-16 2011-05-02 Uso de óxido de cerio y un polipéptido extraído de un mejillón formador de biso para la fabricación de un recubrimiento inhibidor de la corrosión

Country Status (6)

Country Link
US (2) US9617433B2 (es)
EP (1) EP2593519B1 (es)
CA (1) CA2804826C (es)
DK (1) DK2593519T3 (es)
ES (1) ES2612153T3 (es)
WO (1) WO2012007199A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260641B2 (en) 2011-05-09 2016-02-16 Biopolymer Products Of Sweden Ab Dryable adhesive coating
MX2022006150A (es) * 2019-11-22 2022-06-17 Basf Coatings Gmbh Material de recubrimiento por electrodeposicion que contiene derivados de catecol como agentes anticorrosivos.
EP4073181B1 (en) 2019-12-09 2023-11-01 BioPolymer Products of Sweden AB Coating for corrosion protection

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE526755A (es) * 1953-02-24 1900-01-01
US4585585A (en) 1984-03-07 1986-04-29 University Of Connecticut Research & Development Corporation Decapeptides produced from bioadhesive polyphenolic proteins
JPS6323670A (ja) 1986-04-25 1988-01-30 バイオ−ポリマ−ズ インコ−ポレ−テツド 接着・被覆組成物とその使用方法
FR2724331B1 (fr) * 1994-09-12 1996-12-13 Rhone Poulenc Chimie Dispersions colloidales d'un compose de cerium a ph eleve et leurs procedes de preparation
FR2724330B1 (fr) * 1994-09-12 1997-01-31 Rhone Poulenc Chimie Dispersion colloidale d'un compose de cerium a concentration elevee et son procede de preparation
US6368586B1 (en) * 1996-01-26 2002-04-09 Brown University Research Foundation Methods and compositions for enhancing the bioadhesive properties of polymers
US6190780B1 (en) 1996-02-05 2001-02-20 Nippon Steel Corporation Surface treated metal material and surface treating agent
WO2003008376A2 (en) 2001-07-20 2003-01-30 Northwestern University Adhesive dopa-containing polymers and related methods of use
US7294211B2 (en) * 2002-01-04 2007-11-13 University Of Dayton Non-toxic corrosion-protection conversion coats based on cobalt
WO2003060019A1 (en) * 2002-01-04 2003-07-24 University Of Dayton Non-toxic corrosion protection pigments based on cobalt
US7186690B2 (en) 2002-03-26 2007-03-06 Biopolymer Products Of Sweden Ab Method for attaching two surfaces to each other using a bioadhesive polyphenolic protein and periodate ions
US7048807B2 (en) 2002-08-08 2006-05-23 The Curators Of The University Of Missouri Cerium-based spontaneous coating process for corrosion protection of aluminum alloys
CA2549195A1 (en) * 2003-12-09 2005-06-23 Spherics, Inc. Bioadhesive polymers with catechol functionality
WO2005092920A1 (en) * 2004-03-26 2005-10-06 Postech Foundation Mussel bioadhesive
KR101004745B1 (ko) * 2005-04-08 2011-01-04 주식회사 포스코 홍합 접착제
WO2007002318A2 (en) * 2005-06-23 2007-01-04 Spherics, Inc. Bioadhesive polymers
EP2086515A2 (en) * 2006-03-02 2009-08-12 Vaunnex, Inc. Rate-controlled bioadhesive oral dosage formulations
US20080015138A1 (en) * 2006-07-17 2008-01-17 Affinergy, Inc. Metal binding compounds, metal binding compositions, and their uses
WO2008013226A1 (fr) * 2006-07-28 2008-01-31 Showa Denko K.K. Composition de polissage
US8673286B2 (en) * 2007-04-09 2014-03-18 Northwestern University DOPA-functionalized, branched, poly(aklylene oxide) adhesives
US8206843B2 (en) 2007-05-16 2012-06-26 Guizhou University Bioceramic coating, method of making and use thereof
US20080299059A1 (en) * 2007-05-30 2008-12-04 L'oreal Usa Products, Inc. Cosmetic compositions containing functionalized metal-oxide layered pigments and methods of use
EP2394199A4 (en) * 2009-02-06 2012-06-27 Knc Ner Acquisition Sub Inc BIOADHESIVE CONSTRUCTIONS WITH POLYMERIC MIXTURES
US8883519B1 (en) * 2009-03-17 2014-11-11 University Of Central Florida Research Foundation, Inc. Oxidase activity of polymeric coated cerium oxide nanoparticles
US8796394B2 (en) * 2009-08-27 2014-08-05 Northwestern University Antifouling hydrogels, coatings, and methods of synthesis and use thereof
CN101658837A (zh) 2009-09-24 2010-03-03 中国海洋大学 一种金属表面防腐蚀膜的制备方法

Also Published As

Publication number Publication date
US20160177105A1 (en) 2016-06-23
CA2804826A1 (en) 2012-01-19
EP2593519B1 (en) 2016-10-26
US9617433B2 (en) 2017-04-11
EP2593519A1 (en) 2013-05-22
US20130183452A1 (en) 2013-07-18
WO2012007199A1 (en) 2012-01-19
CA2804826C (en) 2016-10-18
DK2593519T3 (en) 2017-02-06
CN103221493A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
Aramaki Synergistic inhibition of zinc corrosion in 0.5 M NaCl by combination of cerium (III) chloride and sodium silicate
Aramaki A self-healing protective film prepared on zinc by treatment in a Ce (NO3) 3 solution and modification with Ce (NO3) 3
Shi et al. Corrosion protection of aluminium alloy 2024-T3 in 0.05 M NaCl by cerium cinnamate
Askari et al. Mechanistic approach for evaluation of the corrosion inhibition of potassium zinc phosphate pigment on the steel surface: application of surface analysis and electrochemical techniques
Obot et al. Enhanced corrosion inhibition effect of tannic acid in the presence of gallic acid at mild steel/HCl acid solution interface
ES2496566T3 (es) Procedimiento húmedo en húmedo y disolución ácida libre de cromo para el tratamiento de protección frente a la corrosión de superficies de acero
Yohai et al. Phosphate ions as corrosion inhibitors for reinforcement steel in chloride-rich environments
Zhang et al. Electrochemically generated sol–gel films as inhibitor containers of superhydrophobic surfaces for the active corrosion protection of metals
Lei et al. Electrochemical synthesis of polypyrrole films on copper from phytic solution for corrosion protection
Aramaki Preparation of self-healing protective films on a zinc electrode treated in a cerium (III) nitrate solution and modified with sodium phosphate and cerium (III) nitrate
ES2612153T3 (es) Uso de óxido de cerio y un polipéptido extraído de un mejillón formador de biso para la fabricación de un recubrimiento inhibidor de la corrosión
Lutz et al. A multiple-action self-healing coating
Nik et al. Study of Henna (Lawsonia inermis) as natural corrosion inhibitor for aluminum alloy in seawater
Goncharova et al. Protection of copper by treatment with hot vapors of octadecylamine, 1, 2, 3‐benzotriazole, and their mixtures
Zhang et al. Self-assembled urea-amine compound as vapor phase corrosion inhibitor for mild steel
Otani et al. Effects of metal cations on corrosion of mild steel in model fresh water
Aramaki Self-healing mechanism of a protective film prepared on a Ce (NO3) 3-pretreated zinc electrode by modification with Zn (NO3) 2 and Na3PO4
Kuznetsov Organic corrosion inhibitors: Where are we now? Part I. Adsorption
Goncharova et al. A new corrosion inhibitor for zinc chamber treatment
Aramaki XPS and EPMA studies on self-healing mechanism of a protective film composed of hydrated cerium (III) oxide and sodium phosphate on zinc
Mohana et al. Effect of sodium nitrite–borax blend on the corrosion rate of low carbon steel in industrial water medium
Li et al. Effects of sulfate and nitrate anions on aluminum corrosion in slightly alkaline solution
Mehdipour et al. Electrochemical study of effect of the concentration of azole derivatives on corrosion behavior of stainless steel in H2SO4
Fouda et al. Ginger extract as green corrosion inhibitor for steel in sulfide polluted salt water
Goncharova et al. Vapor-phase protection of steel by inhibitors based on salts of higher carboxylic acids