ES2605999T3 - Method for treating metal surfaces to confer high hydrophobicity and oleophobicity on them - Google Patents

Method for treating metal surfaces to confer high hydrophobicity and oleophobicity on them Download PDF

Info

Publication number
ES2605999T3
ES2605999T3 ES13756700.4T ES13756700T ES2605999T3 ES 2605999 T3 ES2605999 T3 ES 2605999T3 ES 13756700 T ES13756700 T ES 13756700T ES 2605999 T3 ES2605999 T3 ES 2605999T3
Authority
ES
Spain
Prior art keywords
coating
metal surfaces
stage
treated
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES13756700.4T
Other languages
Spanish (es)
Inventor
Mariarosa RAIMONDO
Federica Bezzi
Magda Blosi
Claudio MINGAZZI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agenzia Nazionale per le Nuove Tecnologie lEnergia e lo Sviluppo Economico Sostenibile ENEA
Consiglio Nazionale delle Richerche CNR
Original Assignee
Agenzia Nazionale per le Nuove Tecnologie lEnergia e lo Sviluppo Economico Sostenibile ENEA
Consiglio Nazionale delle Richerche CNR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agenzia Nazionale per le Nuove Tecnologie lEnergia e lo Sviluppo Economico Sostenibile ENEA, Consiglio Nazionale delle Richerche CNR filed Critical Agenzia Nazionale per le Nuove Tecnologie lEnergia e lo Sviluppo Economico Sostenibile ENEA
Application granted granted Critical
Publication of ES2605999T3 publication Critical patent/ES2605999T3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemically Coating (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

Método para el tratamiento de superficies metálicas para conferir a las mismas con alta hidrofobicidad y oleofobicidad, tanto estática como dinámica, caracterizado porque comprende consecutivamente: - una etapa de depositar un revestimiento de óxido metálico, en la que sobre una superficie metálica se deposita un sol producido a partir de una suspensión coloidal en agua de uno o más alcóxidos metálicos M(OR)n en presencia de un catalizador ácido, en la que: M está comprendida en el grupo que consiste en Al, Ti, Si, Y, Zn, Zr; R es una cadena alifática C1-C4 lineal o ramificada; y en la que la transición de sol a gel es provocada por evaporación de dicha agua de dicho revestimiento; - una etapa de consolidación, en la que dicho revestimiento se somete a una temperatura comprendida entre 150°C y 400°C; - una etapa de funcionalización, en la que dicho revestimiento se trata con agua hirviendo para la realización de los grupos hidroxilo y para modular la rugosidad de superficie en la escala nonométrica; - una segunda etapa de consolidación, en la que dicho revestimiento se somete a una temperatura comprendida entre 150°C y 400°C, y - una etapa de activación química superficial, en la que dicho revestimiento se trata con un compuesto de alquilsilano.Method for the treatment of metal surfaces to confer them with high hydrophobicity and oleophobicity, both static and dynamic, characterized in that it consecutively comprises: - a step of depositing a metal oxide coating, in which a sun is deposited on a metal surface produced from a colloidal suspension in water of one or more metal alkoxides M (OR) n in the presence of an acid catalyst, in which: M is comprised in the group consisting of Al, Ti, Si, Y, Zn, Zr; R is a linear or branched C1-C4 aliphatic chain; and wherein the transition from sol to gel is caused by evaporation of said water from said coating; - a consolidation step, in which said coating is subjected to a temperature between 150 ° C and 400 ° C; - a functionalization stage, in which said coating is treated with boiling water for the realization of the hydroxyl groups and to modulate the surface roughness on the nonometric scale; - a second consolidation stage, wherein said coating is subjected to a temperature between 150 ° C and 400 ° C, and - a surface chemical activation stage, wherein said coating is treated with an alkylsilane compound.

Description

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

DESCRIPCIONDESCRIPTION

Metodo para el tratamiento de superficies metalicas para conferir a las mismas una alta hidrofobicidad y oleofobicidadMethod for the treatment of metal surfaces to give them high hydrophobicity and oleophobicity

La presente invencion se refiere a un metodo para el tratamiento de superficies metalicas.The present invention relates to a method for the treatment of metal surfaces.

En muchos campos industriales desde hace mucho tiempo existe la necesidad de intervenir sobre las superficies metalicas, con la finalidad de conferir a las mismas altas caractensticas de hidrofobicidad (repelencia al agua) y oleofobicidad (repelencia al aceite). Como es conocido por los expertos en la tecnica de diferentes sectores industriales, en los que los metales o sus aleaciones constituyen importantes partes estructurales e interfaces, la posibilidad de proporcionar una superficie metalica con alta hidrofobicidad da como resultado las ventajas de evitar la adhesion de suciedad y contaminantes de diferente naturaleza, tambien de origen biologico, evitar la formacion de hielo y escarcha en condiciones medioambientales adversas, limitar eficazmente el fenomeno de desgaste y corrosion, reducir, o incluso evitar, el fenomeno de ensuciamiento debido a los diferentes agentes, permitir condiciones de fluido mas favorables en las proximidades de la superficie, con las consiguientes ganancias tambien en terminos de energfa.In many industrial fields there has been a need for a long time to intervene on metal surfaces, in order to confer on the same high hydrophobicity (water repellency) and oleophobicity (oil repellency) characteristics. As is known to those skilled in the art of different industrial sectors, in which metals or their alloys constitute important structural parts and interfaces, the possibility of providing a metal surface with high hydrophobicity results in the advantages of preventing dirt adhesion. and pollutants of different nature, also of biological origin, avoid the formation of ice and frost in adverse environmental conditions, effectively limit the phenomenon of wear and corrosion, reduce, or even avoid, the phenomenon of fouling due to different agents, allow conditions of more favorable fluid in the vicinity of the surface, with the consequent gains also in terms of energy.

A partir de los beneficios anteriormente enumerados puede dar como resultado inmediatamente que los campos de navegacion, el sector naval en general y aeroespacial, estan entre los mas sensibles en investigacion que buscan impartir a las superficies metalicas una alta hidrofobicidad y oleofobicidad.From the benefits listed above, it can immediately result in the navigation fields, the naval sector in general and aerospace, being among the most sensitive in research that seek to impart high hydrophobicity and oleophobicity to metal surfaces.

Se sabe que la hidrofobicidad de una superficie y, por lo tanto, su grado de repelencia al agua, depende de la combinacion apropiada de las caractensticas estructurales, en terminos de tamano de la rugosidad, y la energfa de la misma superficie, a su vez relacionadas con la composicion qmmica. Convencionalmente, una superficie se define como hidrofoba cuando el angulo de contacto (0) que la misma forma con un gota de agua es mayor que 90°, considerandose que la hidrofobicidad aumenta gradualmente a medida que el angulo de contacto 0 sobrepasa este umbral. La superhidrofobicidad se logra cuando el angulo de contacto de la superficie con una gota de agua es mayor que 150°. Analogamente, cuanto mayor es el angulo de contacto que forma la superficie con una gota de aceite, mayor es el grado de oleofobicidad.It is known that the hydrophobicity of a surface and, therefore, its degree of water repellency, depends on the appropriate combination of structural features, in terms of roughness size, and the energy of the same surface, in turn. related to chemical composition. Conventionally, a surface is defined as hydrophobic when the contact angle (0) that the same shape with a drop of water is greater than 90 °, considering that the hydrophobicity gradually increases as the contact angle 0 exceeds this threshold. Superhydrophobicity is achieved when the contact angle of the surface with a drop of water is greater than 150 °. Similarly, the greater the angle of contact that forms the surface with a drop of oil, the greater the degree of oleophobicity.

Ademas de la evaluacion del angulo de contacto estatico 0 (hidrofobicidad estatica), existen otros parametros dinamicos que definen el comportamiento hidrofobo de una superficie (hidrofobicidad dinamica). La hidrofobicidad dinamica se refiere a la capacidad de una gota de agua de "rodar" o "deslizarse" a lo largo de superficie, y despues dejar la misma una vez que el angulo de inclinacion comienza a aumentar. Experimentalmente, la hidrofobicidad dinamica puede expresarse de dos maneras, por medio del valor mmimo del angulo de inclinacion que la superficie debe presentar con el fin de producir la "rodadura" o el "deslizamiento” de una gota de tamano conocido, o por medio de la medicion del valor de histeresis (diferencia) entre el angulo de contacto con el cual una gota de volumen conocido avanza (Oa) sobre un plano inclinado y el angulo of recesion (Or).In addition to the evaluation of the static contact angle 0 (static hydrophobicity), there are other dynamic parameters that define the hydrophobic behavior of a surface (dynamic hydrophobicity). Dynamic hydrophobicity refers to the ability of a drop of water to "roll" or "slide" along the surface, and then leave it once the angle of inclination begins to increase. Experimentally, dynamic hydrophobicity can be expressed in two ways, by means of the minimum value of the angle of inclination that the surface must present in order to produce the "rolling" or "sliding" of a drop of known size, or by means of the measurement of the value of hysteresis (difference) between the contact angle with which a drop of known volume advances (Oa) on an inclined plane and the angle of recession (Or).

A este respecto, con el fin de activar un mecanismo real de autolimpieza sobre la superficie, es necesario que las gotitas de agua depositadas tengan la capacidad de "abandonar" la superficie propiamente dicha, arrastrando con ellas, mediante un mecanismo de rodadura o deslizamiento, las partfculas de suciedad y retirar sus residuos de la superficie. En consecuencia, con el fin de que la retirada de suciedad tenga la maxima eficacia, el deslizamiento o rodadura de las gotas sobre la superficie debe ser posible que tenga lugar en angulos de inclinacion bajos de la superficie (angulo de inclinacion bajo es equivalente una hidrofobicidad dinamica alta). En la bibliograffa, la hidrofobicidad dinamica se mide con respecto al comportamiento de una gotita de agua de 30 pi.In this regard, in order to activate a real self-cleaning mechanism on the surface, it is necessary that the water droplets deposited have the ability to "leave" the surface itself, dragging with them, by means of a rolling or sliding mechanism, the dirt particles and remove their debris from the surface. Consequently, in order for the removal of dirt to have maximum efficiency, the sliding or rolling of the drops on the surface must be possible to take place at low angles of inclination of the surface (low angle of inclination is equivalent to hydrophobicity high dynamics). In the bibliography, dynamic hydrophobicity is measured with respect to the behavior of a 30 pi water droplet.

La bibliograffa pertinente muestra como la relacion entre hidrofobicidad estatica e hidrofobicidad dinamica es compleja y, en muchos casos, incluso si el angulo de contacto estatico es suficientemente alto (> 150°), este no corresponde a una suficiente hidrofobicidad dinamica. Esto se debe a que la interaccion de la gotita con la superficie depende de una manera mas o menos directa de la rugosidad y energfa de la superficie, sus movimientos sobre la misma se ven afectados por los parametros adicionales, tales como falta de homogeneidad ffsica, diferencias en la qmmica y composicion, tamano de partfcula, etc., la influencia de los cuales es diffcil de interpretar.The relevant bibliography shows how the relationship between static hydrophobicity and dynamic hydrophobicity is complex and, in many cases, even if the static contact angle is sufficiently high (> 150 °), this does not correspond to a sufficient dynamic hydrophobicity. This is due to the fact that the interaction of the droplet with the surface depends in a more or less direct way on the surface roughness and energy, its movements on it are affected by additional parameters, such as lack of physical homogeneity, differences in chemistry and composition, particle size, etc., the influence of which is difficult to interpret.

Otra propiedad funcional de gran interes para las superficies metalicas es la oleofobicidad, es decir, la repelencia frente a aceites, grasas, etc. La provision de esta propiedad adicional a la superficie metalica permite evitar ffsicamente la adhesion de partfculas de suciedad y grasa, con el fin de implementar ademas el desempeno de la "autolimpieza". El grado de oleofobicidad de una superficie depende en gran medida de la energfa de la superficie propiamente dicha, o mejor aun, de la diferencia entre la tension superficial de la sustancia aceitosa y la energfa de la superficie propiamente dicha; la mas baja sera la ultima, la mas alta la repelencia de la superficie hacia la adhesion de sustancias con mayor tension superficial. En la bibliograffa, esta documentada la dificultad de generar superficies oleofobas, especialmente debido a la necesidad de tener energfas de superficie extremadamente bajas (<5mN/m) [Tsujii K.Et al. Angewyte Chemie- Edicion internacional en Ingles 1997 36 (9), 1011-1012)].Another functional property of great interest for metal surfaces is oleophobicity, that is, repellency against oils, fats, etc. The provision of this additional property to the metal surface makes it possible to physically prevent the adhesion of particles of dirt and grease, in order to further implement the performance of "self-cleaning". The degree of oleophobicity of a surface depends largely on the energy of the surface itself, or better yet, on the difference between the surface tension of the oily substance and the energy of the surface itself; the lowest will be the last, the highest the surface repellency towards the adhesion of substances with greater surface tension. In the bibliography, the difficulty of generating oleophobic surfaces is documented, especially due to the need to have extremely low surface energies (<5mN / m) [Tsujii K. Et al. Angewyte Chemie- International edition in English 1997 36 (9), 1011-1012)].

Hasta ahora, las soluciones para impartir una alta hidrofobicidad a superficies metalicas han resultado ser particularmente complejas y costosas y, por lo tanto, no adecuadas a ser aplicadas a escala industrial. De hecho, estas soluciones requieren tfpicamente materiales costosos, tiempos de preparacion prolongados y procedimientosUntil now, solutions for imparting high hydrophobicity to metal surfaces have proven to be particularly complex and expensive and, therefore, not suitable to be applied on an industrial scale. In fact, these solutions typically require expensive materials, long preparation times and procedures.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

de multiples etapas, ademas de dar como resultado angulos de contacto dinamicos generalmente superiores a 10°. Asimismo, en general los tratamientos de la tecnica anterior proporcionan la necesidad de usar disolventes organicos, los cuales, como es conocido, en una escala industrial implican una serie de problemas medioambientales, as^ como problemas relacionados con la seguridad y la salud de los trabajadores a cargo del tratamiento.multi-stage, in addition to resulting in dynamic contact angles generally greater than 10 °. Also, in general the prior art treatments provide the need to use organic solvents, which, as is known, on an industrial scale involve a number of environmental problems, as well as problems related to the safety and health of workers. in charge of the treatment.

Un metodo para revestir sustratos metalicos segun la tecnica anterior se describe en el documento de patente DE102007029668, en el que se describe un catalizador alcalino y se usa vapor para formar grupos hidroxilo en una etapa de funcionalizacion. Trabajando en catalisis basica, segun el documento de patente DE102007029668 existe la necesidad de crear tales condiciones que produzcan la densificacion del revestimiento. Por este motivo, D1 describe (parrafo 0055) un tratamiento termico a temperaturas crecientes, en medio controlado (aire o gas inerte a alta temperatura).A method for coating metal substrates according to the prior art is described in patent document DE102007029668, in which an alkaline catalyst is described and steam is used to form hydroxyl groups in a functionalization step. Working in basic catalysis, according to patent document DE102007029668 there is a need to create such conditions that produce the densification of the coating. For this reason, D1 describes (paragraph 0055) a heat treatment at increasing temperatures, in controlled medium (air or inert gas at high temperature).

Los documentos de patente DE1020077526, DE102010011185, WO2005066388, WO2008083310 y EP1142845 describen metodos similares para revestir un sustrato metalico que comprende un revestimiento sol con un alcoxido metalico con un catalizador acido; consolidar en dos etapas la capa obtenida, implicando la primera etapa un tratamiento con agua; y otros tratamientos con disoluciones que contienen compuestos de alquilsilano.Patent documents DE1020077526, DE102010011185, WO2005066388, WO2008083310 and EP1142845 describe similar methods for coating a metal substrate comprising a sol coating with a metal alkoxide with an acid catalyst; consolidate the layer obtained in two stages, the first stage involving a water treatment; and other treatments with solutions containing alkylsilane compounds.

El objeto de la presente invencion es proporcionar superficies metalicas que presentfan una alta hidrofobicidad y oleofobicidad sin comprometer su realizacion a escala industrial.The object of the present invention is to provide metal surfaces that exhibit high hydrophobicity and oleophobicity without compromising their realization on an industrial scale.

El objeto de la presente invencion es un metodo para el tratamiento de superficies metalicas, caracterizado porque comprende consecutivamente:The object of the present invention is a method for the treatment of metal surfaces, characterized in that it consecutively comprises:

- una etapa de depositar un revestimiento de oxido metalico, en la que sobre una superficie metalica se deposita un sol producido a partir de una suspension coloidal en agua de uno o mas alcoxidos metalicos M(OR)n en presencia de un catalizador acido,- a step of depositing a metal oxide coating, in which a sol produced from a colloidal suspension in water of one or more metal alkoxides M (OR) n is deposited on a metal surface in the presence of an acid catalyst,

en la que:in which:

M esta comprendida en el grupo que consiste en Al, Ti, Si, Y, Zn, Zr;M is comprised in the group consisting of Al, Ti, Si, Y, Zn, Zr;

R es una cadena alifatica C1-C4 lineal o ramificada;R is a linear or branched C1-C4 aliphatic chain;

- una etapa de consolidacion, en la que dicho revestimiento se somete a una temperatura comprendida entre 150°C y 400°C;- a consolidation step, in which said coating is subjected to a temperature between 150 ° C and 400 ° C;

- una etapa de funcionalizacion, en la que dicho revestimiento se trata con agua hirviendo para formar grupos hidroxilo;- a functionalization stage, in which said coating is treated with boiling water to form hydroxyl groups;

- una segunda etapa de consolidacion, en la que dicho revestimiento se somete a una temperatura comprendida entre 150°C y 400°C, y- a second consolidation stage, in which said coating is subjected to a temperature between 150 ° C and 400 ° C, and

- una etapa de activacion qrnmica superficial, en la que dicho revestimiento se trata con un compuesto de alquilsilano. Preferiblemente, en dicha etapa of activacion qrnmica superficial, dicho compuesto de alquilsilano es fluorado.- a stage of surface chemical activation, wherein said coating is treated with an alkylsilane compound. Preferably, in said step of surface chemical activation, said alkylsilane compound is fluorinated.

Preferiblemente, el metodo incluye una tercera etapa de consolidacion, en la que, despues de ser tratado con un compuesto de alquilsilano, dicho revestimiento se somete a una temperatura comprendida entre 50°C y 300°C.Preferably, the method includes a third consolidation step, in which, after being treated with an alkylsilane compound, said coating is subjected to a temperature between 50 ° C and 300 ° C.

Preferiblemente, la etapa de deposicion hace posible que dicho sol se deposite mediante revestimiento por inmersion, revestimiento por pulverizacion y revestimiento por centrifugacion.Preferably, the deposition step makes it possible for said sun to be deposited by immersion coating, spray coating and centrifugal coating.

Preferiblemente, dicho revestimiento tiene un espesor comprendido entre 50 y 500 nm.Preferably, said coating has a thickness between 50 and 500 nm.

Preferiblemente, en dicha etapa de fluoracion dicho revestimiento se trata con un compuesto fluorado mediante revestimiento por inmersion, revestimiento por pulverizacion y revestimiento por centrifugacion.Preferably, in said fluorination stage said coating is treated with a fluorinated compound by immersion coating, spray coating and centrifugal coating.

Preferiblemente, dicho compuesto fluorado es un fluor-alquilsilano.Preferably, said fluorinated compound is a fluorinated alkylsilane.

Un objeto adicional de la presente invencion es un componente metalico que tiene un revestimiento de superficie producido por el metodo que forma el objeto de la presente invencion.A further object of the present invention is a metal component having a surface coating produced by the method that forms the object of the present invention.

Para mayor entendimiento de la invencion, a continuacion se proporcionan algunas realizaciones con fines ilustrativos y no limitativos.For further understanding of the invention, some embodiments are provided below for illustrative and non-limiting purposes.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

EjemplosExamples

A continuacion, se describe un metodo para el tratamiento de superficies metalicas segun una realizacion preferida de la presente invencion. Con fines de comparacion el metodo tambien se aplico sobre una superficie ceramica y una superficie de vidrio.Next, a method for the treatment of metal surfaces according to a preferred embodiment of the present invention is described. For comparison purposes the method was also applied on a ceramic surface and a glass surface.

Siempre con fines de comparacion, el metodo se repitio sobre las mismas superficies metalicas con el unico cambio de que en la etapa de preparacion del sol, se uso alcohol isopropflico como disolvente en lugar de agua.Always for comparison purposes, the method was repeated on the same metal surfaces with the only change that at the stage of sun preparation, isopropyl alcohol was used as solvent instead of water.

En particular, la superficie metalica usada es aluminio, y la superficie ceramica es gres porcelanico y la superficie de vidrio es vidrio de sodio-calcio (Superfrost-Carlo Erba), todos adecuadamente desgrasados y pretratados.In particular, the metal surface used is aluminum, and the ceramic surface is porcelain stoneware and the glass surface is sodium-calcium glass (Superfrost-Carlo Erba), all properly degreased and pretreated.

A continuacion, se presentan las etapas de procedimiento de una realizacion preferida del metodo objeto de la presente invencion.Next, the process steps of a preferred embodiment of the method object of the present invention are presented.

Preparacion de un sol que comprende nanopartfculas de alumina (AhOa)Preparation of a sun comprising alumina nanoparticles (AhOa)

Se preparo una suspension coloidal de alumina por peptizacion de tri-sec butoxido de aluminio 0,5M en disolucion acuosa en presencia de acido mtrico como el catalizador acido. Las reacciones de hidrolisis y condensacion que produjeron la formacion del sol tuvieron lugar manteniendo el sistema bajo agitacion a 80°C. Las relaciones en moles del sol son como sigue: tri-sec butoxido de aluminio: agua: acido mtrico = 1 :100:0,07An aluminum colloidal suspension was prepared by peptization of 0.5M tri-sec aluminum butoxide in aqueous solution in the presence of metric acid as the acid catalyst. The hydrolysis and condensation reactions that produced the formation of the sun took place keeping the system under stirring at 80 ° C. The mole ratios of the sun are as follows: tri-sec aluminum butoxide: water: metric acid = 1: 100: 0.07

TratamientoTreatment

Las superficies bajo examen (metal, ceramica y vidrio) se sometieron a una operacion de "revestimiento por inmersion" en el sol a temperatura ambiente. La operacion de "revestimiento por inmersion" se realizo con una velocidad de inmersion y emersion de 120 mm/min y un tiempo de remojo en el sol de 5 segundos. Una vez que cada sustrato haya emergido del sol, el agua del disolvente se evapora provocando la transicion al estado de gel formado por nanopartfculas de AhO3 parcialmente hidrolizado.The surfaces under examination (metal, ceramic and glass) underwent a "dip coating" operation in the sun at room temperature. The "immersion coating" operation was carried out with a immersion and emersion speed of 120 mm / min and a soaking time in the sun of 5 seconds. Once each substrate has emerged from the sun, solvent water evaporates causing the transition to the gel state formed by partially hydrolyzed AhO3 nanoparticles.

Despues de evaporarse el agua, los sustratos se trataron termicamente en un horno a 400°C durante 10 minutos con el fin de retirar los residuos organicos y producir la densificacion del revestimiento formado.After evaporating the water, the substrates were heat treated in an oven at 400 ° C for 10 minutes in order to remove the organic waste and produce densification of the formed coating.

Para optimizar la adhesion entre la pelfcula y la superficie, antes de la deposicion el sustrato preferiblemente se lava y activa, por ejemplo, mediante ataques acidos/basicos de las superficies, tratamiento termico en aire, por mecanizado u otros.To optimize the adhesion between the film and the surface, before the deposition the substrate is preferably washed and activated, for example, by acid / basic attacks of the surfaces, thermal treatment in air, by machining or others.

Posteriormente, para provocar la reactividad de la superficie con la formacion de grupo funcionales hidroxilo y para modular la rugosidad de superficie a escala manometrica, las superficies tratadas se sumergieron en agua hirviendo durante 30 minutos y de nuevo se trataron termicamente en un horno a 400°C durante 10 minutos.Subsequently, to cause surface reactivity with the formation of a hydroxyl functional group and to modulate surface roughness on a manometric scale, the treated surfaces were immersed in boiling water for 30 minutes and again heat treated in a 400 ° oven. C for 10 minutes.

Finalmente, las superficies tratadas se sometieron a posterior operacion de "revestimiento por inmersion" en una disolucion que contema un compuesto de alquilsilano. En particular, el compuesto usado es un fluor-alquilsilano comercializado por la comparua EVONIK con el codigo F8263.Finally, the treated surfaces were subjected to subsequent "immersion coating" operation in a solution containing an alkylsilane compound. In particular, the compound used is a fluorinated alkylsilane marketed by the company EVONIK with the code F8263.

La operacion de "revestimiento por inmersion" ha sido realizada con una velocidad de inmersion y emersion de 120 mm/min y un tiempo de remojo de 2 minutos.The "immersion coating" operation has been carried out with a immersion and emersion speed of 120 mm / min and a soak time of 2 minutes.

Una vez que emergieron de la disolucion que contema un compuesto de fluor-alquilsilano, las superficies tratadas se mantuvieron en una estufa a 150°C durante 15 minutos con el fin de provocar la activacion qmmica de la superficie de la pelfcula de alumina.Once they emerged from the solution containing a fluor-alkylsilane compound, the treated surfaces were kept in an oven at 150 ° C for 15 minutes in order to cause the chemical activation of the surface of the alumina film.

Esta ultima etapa en un horno tambien puede evitarse. De hecho, la reticulacion del polfmero a la superficie inorganica tambien puede tener lugar a temperatura ambiente con, por supuesto, tiempos de reaccion mas prolongados.This last stage in an oven can also be avoided. In fact, cross-linking of the polymer to the inorganic surface can also take place at room temperature with, of course, longer reaction times.

Cada una de las superficies tratadas con el metodo descrito previamente ha presentado un revestimiento totalmente transparente. Este requisito asegura impartir las propiedades deseadas sin comprometer las caractensticas esteticas (color, apariencia, etc.) sobre las superficies implicadas en el tratamiento.Each of the surfaces treated with the previously described method has presented a completely transparent coating. This requirement ensures to impart the desired properties without compromising the aesthetic characteristics (color, appearance, etc.) on the surfaces involved in the treatment.

Ensayo de hidrofobicidad y oleofobicidadHydrophobicity and oleophobicity test

Las superficies tratadas como se describio previamente se sometieron a ensayos para verificar las caractensticas de: hidrofobicidad estatica con agua (angulo de contacto con agua (0st)); hidrofobicidad dinamica (expresada como un angulo de inclinacion mmimo de la superficie por la cual comienza el deslizamiento de una gota de agua de 30 pi (Odn) y como valores de histeresis (Oa - Or); oleofobicidad (angulo de contacto con aceite parafmico (0ol)); energfa superficial; hidrofobicidad estatica despues de la abrasion.The surfaces treated as previously described were tested to verify the characteristics of: static hydrophobicity with water (contact angle with water (0st)); Dynamic hydrophobicity (expressed as a minimum angle of inclination of the surface by which the sliding of a drop of water of 30 pi begins (Odn) and as hysteresis values (Oa - Or); oleophobicity (contact angle with paraphonic oil ( 0ol)); surface energy; static hydrophobicity after abrasion.

La abrasion se llevo a cabo simulando el procedimiento operacional estandarizado en el caso de vidrio revestido para edificios (UNI EN 1096-2, apendice E: ensayo de resistencia a la abrasion). En particular, se ha usado una almohadilla rotante de fieltro abrasiva (espesor de 10 mm ± 1 mm) con un diametro de 5,0 cm ± 0,5 cm y funcionando a una velocidad de 30 revoluciones/minuto. En estas condiciones la almohadilla de fieltro se aplico a las 5 superficies tratadas con una fuerza igual a 4N y durante un tiempo igual a 30 segundos.Abrasion was carried out simulating the standardized operational procedure in the case of coated glass for buildings (UNI EN 1096-2, appendix E: abrasion resistance test). In particular, a rotating abrasive felt pad (thickness of 10 mm ± 1 mm) with a diameter of 5.0 cm ± 0.5 cm and operating at a speed of 30 revolutions / minute has been used. Under these conditions the felt pad was applied to the 5 treated surfaces with a force equal to 4N and for a time equal to 30 seconds.

La Tabla I muestra los valores medidos de las caractensticas anteriores.Table I shows the measured values of the previous characteristics.

En la Tabla I con SM1 se indica la superficie metalica tratada con la etapa de inmersion en agua hirviendo; con SM2 se indica la superficie metalica tratada con la etapa de aplicacion de un chorro de vapor de agua; con SC se indica la superficie ceramica tratada; con SV se indica la superficie de vidrio tratada; con SMalc se indica la superficie 10 metalica tratada en la que se usa alcohol isopropflico en lugar de agua en la etapa de preparacion del sol.Table I with SM1 indicates the metal surface treated with the immersion stage in boiling water; with SM2 the metal surface treated with the step of applying a water vapor jet is indicated; with SC the treated ceramic surface is indicated; with SV the treated glass surface is indicated; With SMalc the treated metallic surface 10 is indicated in which isopropyl alcohol is used instead of water in the sun preparation stage.

Tabla ITable I

©st(°) Odn (°) Oa - Or (°) ©cl (°) Energfa superficial (mN/m) ©st(°) despues de la abrasion  © st (°) Odn (°) Oa - Or (°) © cl (°) Surface energy (mN / m) © st (°) after abrasion

SM1  SM1
172 ± 8 5 0,4 130 ± 3 0,34 168 ± 3  172 ± 8 5 0.4 130 ± 3 0.34 168 ± 3

SM2  SM2
164 ± 8 6 1,0 121 ± 3 0,58 150 ± 4  164 ± 8 6 1.0 121 ± 3 0.58 150 ± 4

SMalc  SMalc
158 ± 4 10 6,2 110 ± 2 0,18 142 ± 3  158 ± 4 10 6.2 110 ± 2 0.18 142 ± 3

SC  SC
161 ± 13 47,5 1,4 121 ± 8 0,50 123 ± 6  161 ± 13 47.5 1.4 121 ± 8 0.50 123 ± 6

SV  SV
116 ± 1 48 1,1 102 ± 3 0,55 115 ± 1  116 ± 1 48 1.1 102 ± 3 0.55 115 ± 1

Los valores presentados en la Tabla I muestran los inesperados y sorprendentes efectos del metodo que forma el objeto de la presente invencion.The values presented in Table I show the unexpected and surprising effects of the method that forms the object of the present invention.

De hecho, puede observase como el metodo es mas eficaz cuando se aplica sobre superficies metalicas mas bien 15 que sobre superficies ceramicas o de vidrio, y como el uso de agua en la etapa of preparacion del sol produce mejores efectos que el uso de un alcohol. Esta evidencia es particularmente sorprendente, haciendo hincapie al mismo tiempo sobre una de las mas importante ventajas de la presente invencion. De hecho, la presente invencion, en la que no se usan disolventes organicos sino agua, no solo proporciona mejores caractensticas de hidrofobicidad y oleofobicidad a las superficies metalicas, sino que en una dimension industrial tambien implica enormes ventajas 20 en terminos de seguridad, salud del personal, gestion de la produccion, sostenibilidad medioambiental y economica.In fact, it can be seen how the method is more effective when applied to metal surfaces rather than ceramic or glass surfaces, and how the use of water at the stage of sun preparation produces better effects than the use of an alcohol . This evidence is particularly surprising, while emphasizing one of the most important advantages of the present invention. In fact, the present invention, in which organic solvents are not used but water, not only provides better hydrophobicity and oleophobicity characteristics to metal surfaces, but in an industrial dimension it also implies enormous advantages in terms of safety, health of personnel, production management, environmental and economic sustainability.

Tambien cabe destacar como los valores de hidrofobicidad dinamica resultan ser sorprendentemente mejores que los obtenidos sobre la superficie ceramica o sobre la superficie de vidrio.It should also be noted that the dynamic hydrophobicity values turn out to be surprisingly better than those obtained on the ceramic surface or on the glass surface.

Los valores de hidrofobicidad dinamica que se pueden encontrar en superficies metalicas tratadas con el metodo de la presente invencion son tales como para asegurar una alta repelencia a la suciedad y contaminantes de diversos 25 tipos, tambien de origen biologico, evitar en condiciones medioambientales adversas la formacion de hielo y escarcha, limitar eficazmente el fenomeno de desgaste y corrosion, reducir, o incluso evitar, el fenomeno de ensuciamiento debido a los diferentes agentes, permitir condiciones dinamicas de fluido mas favorables en las proximidades de la superficie, con las consiguientes ganancias tambien en terminos de energfa.The dynamic hydrophobicity values that can be found on metal surfaces treated with the method of the present invention are such as to ensure a high repellency to dirt and contaminants of various types, also of biological origin, to avoid formation in adverse environmental conditions. of ice and frost, effectively limit the phenomenon of wear and corrosion, reduce, or even avoid, the fouling phenomenon due to the different agents, allow more favorable dynamic fluid conditions in the vicinity of the surface, with consequent gains also in energy terms

Ademas, las superficies indicadas como SM1 y SM2 se sometieron a ensayos para determinar la resistencia al 30 congelamiento/descongelamiento segun UNI En 539-2 (2006). En particular, las superficies SM1 y SM2 se sometieron a ciclos sucesivos de congelamiento/descongelamiento en una camara climatica en la que se llevaron a cabo excursiones termicas continuas de +11°C a -17°C y en la que la etapa de descongelamiento tiene lugar por medio de inmersion en agua y la posterior fase de congelamiento tiene lugar despues de que el agua haya sido drenada desde el interior camara climatica. El numero de ciclos de congelamiento/descongelamiento a los que se 35 sometieron las superficies SM1 y SM2 fue igual a: 36, 119, 234, 345, 447. La evaluacion de la resistencia a los ciclos de congelamiento/descongelamiento se basa en las mediciones de hidrofobicidad estatica (angulo de contacto estatico) e hidrofobicidad dinamica (histeresis) despues de cada uno de dichos ciclos de congelamiento/descongelamiento. En la Tabla II se presentan los valores detectados de angulo de contacto estatico e histeresis.In addition, the surfaces indicated as SM1 and SM2 were tested for resistance to freezing / thawing according to UNI in 539-2 (2006). In particular, surfaces SM1 and SM2 were subjected to successive freeze / thaw cycles in a climate chamber in which continuous thermal excursions of + 11 ° C to -17 ° C were carried out and in which the defrost stage has place by means of immersion in water and the subsequent freezing phase takes place after the water has been drained from the inside of the climate chamber. The number of freeze / thaw cycles to which surfaces SM1 and SM2 were subjected was equal to: 36, 119, 234, 345, 447. The evaluation of resistance to freeze / thaw cycles is based on measurements of static hydrophobicity (static contact angle) and dynamic hydrophobicity (hysteresis) after each of said freeze / thaw cycles. Table II shows the values of static contact angle and hysteresis.

40 Tabla II40 Table II

Numero de ciclos  Number of cycles
Angulo de contacto estatico (°) Histeresis (°)  Static contact angle (°) Hysteresis (°)

36  36
145 ± 3 12 ± 3  145 ± 3 12 ± 3

Numero de ciclos  Number of cycles
Angulo de contacto estatico (°) Histeresis (°)  Static contact angle (°) Hysteresis (°)

119  119
140 ± 2 12 ± 2  140 ± 2 12 ± 2

234  2. 3. 4
140 ± 5 11 ± 3  140 ± 5 11 ± 3

345  3. 4. 5
140 ± 5 19 ± 5  140 ± 5 19 ± 5

447  447
134 ± 3 7 ± 4  134 ± 3 7 ± 4

A partir de los valores recogidos en la Tabla II, es posible entender como incluso despues de los ciclos de congelamiento/descongelamiento las superficies tratadas con el metodo que forma el objeto of la presente invencion siguen mostrando caractensticas superiores de hidrofobicidad.From the values shown in Table II, it is possible to understand how even after the freeze / thaw cycles the surfaces treated with the method that forms the object of the present invention continue to show superior hydrophobicity characteristics.

El resultado obtenido a partir de los ensayos de congelamiento/descongelamiento es una prueba adicional de la 5 estructura a nanoescala del revestimiento confirmada por las observaciones realizadas en un microscopio electronico de barrido con emision de campo (SEM-FEG), de la eficacia del metodo de la presente invencion y de su potencial en la industria.The result obtained from the freeze / thaw tests is an additional test of the nanoscale structure of the coating confirmed by the observations made in a scanning electron microscope with field emission (SEM-FEG), of the effectiveness of the method of the present invention and its potential in the industry.

Claims (10)

55 1010 15fifteen 20twenty 2525 3030 3535 4040 REIVINDICACIONES 1. Metodo para el tratamiento de superficies metalicas para conferir a las mismas con alta hidrofobicidad y oleofobicidad, tanto estatica como dinamica, caracterizado porque comprende consecutivamente:1. Method for the treatment of metal surfaces to confer them with high hydrophobicity and oleophobicity, both static and dynamic, characterized in that it comprises consecutively: - una etapa de depositar un revestimiento de oxido metalico, en la que sobre una superficie metalica se deposita un sol producido a partir de una suspension coloidal en agua de uno o mas alcoxidos metalicos M(OR)n en presencia de un catalizador acido,- a step of depositing a metal oxide coating, in which a sol produced from a colloidal suspension in water of one or more metal alkoxides M (OR) n is deposited on a metal surface in the presence of an acid catalyst, en la que:in which: M esta comprendida en el grupo que consiste en Al, Ti, Si, Y, Zn, Zr;M is comprised in the group consisting of Al, Ti, Si, Y, Zn, Zr; R es una cadena alifatica C1-C4 lineal o ramificada;R is a linear or branched C1-C4 aliphatic chain; y en la que la transicion de sol a gel es provocada por evaporacion de dicha agua de dicho revestimiento;and in which the transition from sol to gel is caused by evaporation of said water from said coating; - una etapa de consolidacion, en la que dicho revestimiento se somete a una temperatura comprendida entre 150°C y 400°C;- a consolidation step, in which said coating is subjected to a temperature between 150 ° C and 400 ° C; - una etapa de funcionalizacion, en la que dicho revestimiento se trata con agua hirviendo para la realizacion de los grupos hidroxilo y para modular la rugosidad de superficie en la escala nonometrica;- a functionalization stage, in which said coating is treated with boiling water for the realization of the hydroxyl groups and to modulate the surface roughness on the non-metric scale; - una segunda etapa de consolidacion, en la que dicho revestimiento se somete a una temperatura comprendida entre 150°C y 400°C, y- a second consolidation stage, in which said coating is subjected to a temperature between 150 ° C and 400 ° C, and - una etapa de activacion qrnmica superficial, en la que dicho revestimiento se trata con un compuesto de alquilsilano.- a stage of surface chemical activation, wherein said coating is treated with an alkylsilane compound. 2. Metodo para el tratamiento de superficies metalicas segun la reivindicacion 1, caracterizado porque en dicha etapa de deposicion, M es Al.2. Method for the treatment of metal surfaces according to claim 1, characterized in that in said deposition stage, M is Al. 3. Metodo para el tratamiento de superficies metalicas segun la reivindicacion 1 o 2, caracterizado porque en dicha etapa de funcionalizacion, dicho revestimiento se trata con agua hirviendo durante un tiempo de al menos 30 min.3. Method for the treatment of metal surfaces according to claim 1 or 2, characterized in that in said stage of functionalization, said coating is treated with boiling water for a time of at least 30 min. 4. Metodo para el tratamiento de superficies metalicas segun cualquiera las reivindicaciones precedentes,4. Method for treating metal surfaces according to any preceding claim, caracterizado porque en dicha etapa de activacion qrnmica superficial dicho compuesto de alquilsilano es fluorado.characterized in that in said step of surface chemical activation said alkylsilane compound is fluorinated. 5. Metodo para el tratamiento de superficies metalicas segun cualquiera las reivindicaciones precedentes,5. Method for treating metal surfaces according to any preceding claim, caracterizado porque comprende una tercera etapa de consolidacion, en la que despues de tratar con un compuesto de alquilsilano, dicho revestimiento se somete a una temperatura entre 50°C y 300°C.characterized in that it comprises a third consolidation stage, in which after treating with an alkylsilane compound, said coating is subjected to a temperature between 50 ° C and 300 ° C. 6. Metodo para el tratamiento de superficies metalicas segun cualquiera las reivindicaciones precedentes,6. Method for treating metal surfaces according to any preceding claim, caracterizado porque la etapa de deposicion posibilita que dicho sol se deposite por medio de revestimiento por inmersion, revestimiento por pulverizacion y revestimiento por centrifugacioncharacterized in that the deposition stage allows said sun to be deposited by immersion coating, spray coating and centrifugal coating 7. Metodo para el tratamiento de superficies metalicas segun cualquiera las reivindicaciones precedentes,7. Method for treating metal surfaces according to any preceding claim, caracterizado porque dicho revestimiento tiene un espesor entre 50 y 500 nm.characterized in that said coating has a thickness between 50 and 500 nm. 8. Metodo para el tratamiento de superficies metalicas segun cualquiera las reivindicaciones precedentes,8. Method for treating metal surfaces according to any preceding claim, caracterizado porque en dicha etapa of activacion qrnmica superficial dicho revestimiento se trata con un compuesto fluorado por medio de revestimiento por inmersion, revestimiento por pulverizacion y revestimiento por centrifugacion.characterized in that in said step of surface chemical activation said coating is treated with a fluorinated compound by means of immersion coating, spray coating and centrifugal coating. 9. Metodo para el tratamiento de superficies metalicas segun la reivindicacion 8, caracterizado porque dicho compuesto fluorado es un fluor-alquilsilano.9. Method for the treatment of metal surfaces according to claim 8, characterized in that said fluorinated compound is a fluorinated alkylsilane. 10. Elemento metalico que tiene un revestimiento de superficie realizado por el metodo segun cualquiera de las reivindicaciones precedentes.10. Metal element having a surface coating made by the method according to any of the preceding claims.
ES13756700.4T 2012-06-21 2013-06-21 Method for treating metal surfaces to confer high hydrophobicity and oleophobicity on them Active ES2605999T3 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT000291A ITRM20120291A1 (en) 2012-06-21 2012-06-21 METHOD FOR THE TREATMENT OF METALLIC SURFACES TO CONFER TO THE SAME AS A HIGH HYDROPHOBICITY AND OLEOPHOBICITY
ITRM20120291 2012-06-21
PCT/IT2013/000175 WO2013190587A2 (en) 2012-06-21 2013-06-21 Method for the treatment of metal surfaces for bestowing thereon a high hydrophobicity and oleophobicity

Publications (1)

Publication Number Publication Date
ES2605999T3 true ES2605999T3 (en) 2017-03-17

Family

ID=46584172

Family Applications (1)

Application Number Title Priority Date Filing Date
ES13756700.4T Active ES2605999T3 (en) 2012-06-21 2013-06-21 Method for treating metal surfaces to confer high hydrophobicity and oleophobicity on them

Country Status (5)

Country Link
EP (1) EP2864522B1 (en)
ES (1) ES2605999T3 (en)
IT (1) ITRM20120291A1 (en)
PL (1) PL2864522T3 (en)
WO (1) WO2013190587A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3670740B1 (en) 2018-12-20 2022-02-02 European Central Bank Amphiphobic cellulosic materials, production thereof and uses

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287971A (en) * 2000-03-31 2001-10-16 Matsushita Electric Ind Co Ltd Antifouling film, method for producing the same, antifouling glass for automobile using the same film, method for producing the same glass and automobile using the same glass
DE102004001097B4 (en) * 2004-01-05 2014-06-05 Epg (Engineered Nanoproducts Germany) Ag Metallic substrates with deformable vitreous coating
US8227040B2 (en) * 2006-12-29 2012-07-24 3M Innovative Properties Company Method of curing metal alkoxide-containing films
DE102007007526A1 (en) * 2007-02-15 2008-08-21 Epg (Engineered Nanoproducts Germany) Ag Finest interference pigments containing glass layers on metal, glass and ceramic surfaces and methods for their preparation
DE102007029668A1 (en) * 2007-06-27 2009-01-08 Epg (Engineered Nanoproducts Germany) Ag Ultra-hard composite coatings on metal surfaces and process for their preparation
DE102010011185A1 (en) * 2010-03-12 2011-09-15 Epg (Engineered Nanoproducts Germany) Ag Metallic surfaces with a thin, glass or ceramic-like protective layer with high chemical resistance and improved non-stick properties

Also Published As

Publication number Publication date
ITRM20120291A1 (en) 2013-12-22
EP2864522A2 (en) 2015-04-29
EP2864522B1 (en) 2016-09-07
PL2864522T3 (en) 2017-06-30
WO2013190587A2 (en) 2013-12-27
WO2013190587A3 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
Lomga et al. Fabrication of durable and regenerable superhydrophobic coatings with excellent self-cleaning and anti-fogging properties for aluminium surfaces
Boinovich et al. Synergistic effect of superhydrophobicity and oxidized layers on corrosion resistance of aluminum alloy surface textured by nanosecond laser treatment
Liao et al. Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property
Fu et al. Development of sol–gel icephobic coatings: effect of surface roughness and surface energy
Xu et al. Fabrication of superhydrophobic surfaces with hierarchical structure through a solution-immersion process on copper and galvanized iron substrates
Mahadik et al. Silica based superhydrophobic coating for long-term industrial and domestic applications
Kim et al. Simple approach to superhydrophobic nanostructured Al for practical antifrosting application based on enhanced self-propelled jumping droplets
Zhang et al. Fabrication of a highly stable superhydrophobic surface with dual-scale structure and its antifrosting properties
Hu et al. Fabrication of biomimetic superhydrophobic surface based on nanosecond laser-treated titanium alloy surface and organic polysilazane composite coating
Raimondo et al. Wetting behavior and remarkable durability of amphiphobic aluminum alloys surfaces in a wide range of environmental conditions
Esmaeilirad et al. A cost-effective method to create physically and thermally stable and storable super-hydrophobic aluminum alloy surfaces
Heale et al. Slippery liquid infused porous TiO2/SnO2 nanocomposite thin films via aerosol assisted chemical vapor deposition with anti-icing and fog retardant properties
Milionis et al. Water-based scalable methods for self-cleaning antibacterial ZnO-nanostructured surfaces
Galvan et al. Ionic-liquid-infused nanostructures as repellent surfaces
US20230031778A1 (en) Selectively Applied Gradient Coating Compositions
Nanda et al. Self-assembled monolayer of functionalized silica microparticles for self-cleaning applications
Park et al. Production of an EP/PDMS/SA/AlZnO coated superhydrophobic surface through an aerosol-assisted chemical vapor deposition process
Tran et al. Ultrafast and eco-friendly fabrication process for robust, repairable superhydrophobic metallic surfaces with tunable water adhesion
ES2605999T3 (en) Method for treating metal surfaces to confer high hydrophobicity and oleophobicity on them
Redkina et al. Hydrophobic and anticorrosion properties of thin phosphonate-siloxane films formed on a laser textured zinc surface
Jiao et al. Functional microtextured superhydrophobic surface with excellent anti-wear resistance and friction reduction properties
Wei et al. A slippery liquid-infused network-like surface with anti/de-icing properties constructed based on the phosphating reaction
Kumar et al. Recent progresses in super-hydrophobicity and micro-texturing for engineering applications
Li et al. Robust superhydrophobic materials with outstanding durability fabricated by epoxy adhesive-assisted facile spray method
KR20190064045A (en) Method for coating metal substrate based on nano particle spray coating for improving corrosion resistance and antifouling of marine equipment