ITRM20120291A1 - METHOD FOR THE TREATMENT OF METALLIC SURFACES TO CONFER TO THE SAME AS A HIGH HYDROPHOBICITY AND OLEOPHOBICITY - Google Patents
METHOD FOR THE TREATMENT OF METALLIC SURFACES TO CONFER TO THE SAME AS A HIGH HYDROPHOBICITY AND OLEOPHOBICITY Download PDFInfo
- Publication number
- ITRM20120291A1 ITRM20120291A1 IT000291A ITRM20120291A ITRM20120291A1 IT RM20120291 A1 ITRM20120291 A1 IT RM20120291A1 IT 000291 A IT000291 A IT 000291A IT RM20120291 A ITRM20120291 A IT RM20120291A IT RM20120291 A1 ITRM20120291 A1 IT RM20120291A1
- Authority
- IT
- Italy
- Prior art keywords
- coating
- treatment
- treated
- metal
- metal surfaces
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 28
- 238000011282 treatment Methods 0.000 title claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 21
- 230000003068 static effect Effects 0.000 claims description 11
- -1 alkylsilane compound Chemical class 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 238000007596 consolidation process Methods 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 5
- 238000003618 dip coating Methods 0.000 claims description 4
- 238000004528 spin coating Methods 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 239000003377 acid catalyst Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 230000003746 surface roughness Effects 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 150000004703 alkoxides Chemical class 0.000 claims description 2
- 238000007306 functionalization reaction Methods 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011521 glass Substances 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- WOZZOSDBXABUFO-UHFFFAOYSA-N tri(butan-2-yloxy)alumane Chemical compound [Al+3].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-] WOZZOSDBXABUFO-UHFFFAOYSA-N 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VEUACKUBDLVUAC-UHFFFAOYSA-N [Na].[Ca] Chemical group [Na].[Ca] VEUACKUBDLVUAC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052572 stoneware Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1295—Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Chemically Coating (AREA)
- Surface Treatment Of Glass (AREA)
- Chemical Treatment Of Metals (AREA)
Description
DESCRIZIONE DESCRIPTION
“METODO PER IL TRATTAMENTO DI SUPERFICI METALLICHE PER CONFERIRE ALLE STESSE UNA ELEVATA IDROFOBICITA' ED OLEOFOBICITA'†⠀ œMETHOD FOR THE TREATMENT OF METALLIC SURFACES TO GIVE THEM A HIGH HYDROPHOBICITY AND OLEOPHOBICITYâ €
La presente invenzione à ̈ relativa ad un metodo per il trattamento di superfici metalliche. The present invention relates to a method for treating metal surfaces.
In molti campi industriali da tempo à ̈ sentita la necessità di intervenire sulle superfici metalliche, al fine di conferire alle stesse elevate caratteristiche di idrofobicità (repellenza all’acqua) e oleofobicità (repellenza agli oli). Come à ̈ noto ai tecnici di diversi settori industriali, dove i metalli o loro leghe costituiscono parti strutturali e interfacce di rilievo, la possibilità di dotare una superficie metallica di una elevata idrofobicità si traduce nei vantaggi di prevenire l’adesione di sporco e contaminanti di diversa natura, anche di origine biologica, evitare la formazione di ghiaccio e brina in condizioni ambientali avverse, limitare efficacemente fenomeni di usura e corrosione, ridurre, o addirittura evitare, fenomeni di fouling da agenti diversi, consentire condizioni fluidodinamiche più favorevoli nelle vicinanze della superficie, con conseguenti guadagni anche in termini energetici. In many industrial fields the need has long been felt to intervene on metal surfaces, in order to give the same high characteristics of hydrophobicity (water repellency) and oleophobicity (oil repellency). As is known to technicians of various industrial sectors, where metals or their alloys are structural parts and important interfaces, the possibility of providing a metal surface with a high hydrophobicity translates into the advantages of preventing the adhesion of dirt and contaminants. of different nature, also of biological origin, avoid the formation of ice and frost in adverse environmental conditions, effectively limit wear and corrosion phenomena, reduce, or even avoid, fouling phenomena from different agents, allow more favorable fluid dynamic conditions in the vicinity of the surface, with consequent gains also in energy terms.
Dai vantaggi sopra elencati può risultare immediato come i settori della nautica, della marina in genere e dell’aerospazio siano tra i più sensibili nella ricerca che mira ad impartire alle superfici metalliche una elevata idrofobicità e oleofobicità From the advantages listed above it can be immediate how the nautical, marine in general and aerospace sectors are among the most sensitive in the research that aims to impart a high hydrophobicity and oleophobicity to metal surfaces.
E’ noto che l’idrofobicità di una superficie e, quindi, il suo grado di repulsione nei confronti dell’acqua, dipenda dall’opportuna combinazione tra le caratteristiche strutturali, in termini di dimensioni della rugosità , e l’energia della superficie stessa, a sua volta legata al chimismo. Convenzionalmente, una superficie si definisce idrofoba quando l’angolo di contatto (Î ̧) che la stessa forma con una goccia d’acqua à ̈ superiore a 90°; si parla di idrofobicità via via crescente quanto più l’angolo di contatto Î ̧ sale al di sopra di tale valore limite. La superidrofobicità si raggiunge quando l’angolo di contatto della superficie con una goccia d’acqua à ̈ superiore ai 150°. Analogamente, tanto più elevato à ̈ l’angolo di contatto che la superficie forma con una goccia di olio, tanto più elevato à ̈ il grado di oleofobicità . It is known that the hydrophobicity of a surface and, therefore, its degree of repulsion towards water, depends on the appropriate combination between the structural characteristics, in terms of roughness dimensions, and the energy of the surface itself, in turn linked to chemism. Conventionally, a surface is defined as hydrophobic when the contact angle (Î ̧) that it forms with a drop of water is greater than 90 °; we speak of hydrophobicity gradually increasing the more the contact angle Î ̧ rises above this limit value. Superhydrophobicity is reached when the contact angle of the surface with a drop of water is greater than 150 °. Similarly, the higher the contact angle that the surface forms with a drop of oil, the higher the degree of oleophobicity.
In aggiunta alla valutazione dell’angolo di contatto statico Ï‘ (idrofobicità statica), ci sono altri parametri dinamici che definiscono il comportamento idrofobo di una superficie (idrofobicità dinamica). L’idrofobicità dinamica à ̈ legata alla capacità di una goccia d’acqua di “rotolare†o “scivolare†lungo una superficie e, quindi abbandonare la stessa una volta che si inizia ad aumentare l’angolo di inclinazione. Sperimentalmente, l’idrofobicità dinamica può essere espressa in due modi, attraverso il valore minimo dell’angolo di inclinazione che la superficie deve presentare perché si verifichi il “rotolamento†o lo “scivolamento†di una goccia di dimensioni note, oppure mediante la misura del valore di isteresi (differenza) tra l’angolo di contatto con cui una goccia di volume noto avanza (Ï‘A) su un piano inclinato e l’angolo di recessione (Ï‘R). In addition to the evaluation of the static contact angle '(static hydrophobicity), there are other dynamic parameters that define the hydrophobic behavior of a surface (dynamic hydrophobicity). Dynamic hydrophobicity is linked to the ability of a drop of water to â € œrollâ € or â € œslipâ € along a surface and, therefore, to abandon it once you start increasing the angle of inclination. Experimentally, dynamic hydrophobicity can be expressed in two ways, through the minimum value of the angle of inclination that the surface must have for the â € œrollingâ € or â € œslippingâ € of a drop of known size to occur. , or by measuring the hysteresis value (difference) between the contact angle with which a drop of known volume advances (Ï'A) on an inclined plane and the recession angle (Ï'R).
A tale riguardo, perché si attivi un reale meccanismo di autopulenza a carico della superficie, à ̈ necessario che le gocce d’acqua che si depositano abbiano poi la capacità di “abbandonare†la superficie stessa, portandosi dietro, con un meccanismo di rotolamento o scivolamento, le particelle di sporco ed eliminandone i residui dalla superficie. Di conseguenza, perché la rimozione dello sporco risulti della massima efficacia, lo scivolamento o rotolamento delle gocce sulla superficie deve poter avvenire per bassi angoli di inclinazione della superficie (basso angolo di inclinazione equivale ad una elevata idrofobicità dinamica). In letteratura, l’idrofobicità dinamica viene misurata facendo riferimento al comportamento di una goccia d’acqua di 30 Î1⁄4l. In this regard, in order to activate a real self-cleaning mechanism on the surface, it is necessary that the drops of water that are deposited then have the ability to â € œabandonâ € the surface itself, taking with them, with a rolling or sliding, dirt particles and eliminating residues from the surface. Consequently, for the removal of dirt to be of maximum effectiveness, the sliding or rolling of the drops on the surface must be able to take place for low surface inclination angles (low inclination angle equals high dynamic hydrophobicity). In literature, dynamic hydrophobicity is measured by referring to the behavior of a 30 Î1⁄4l drop of water.
La letteratura in merito testimonia come la relazione tra idrofobicità statica e idrofobicità dinamica à ̈ complessa e, in molti casi, anche se l’angolo di contatto statico à ̈ sufficientemente elevato (>150°), ad esso non corrisponde una idrofobicità dinamica sufficiente. Questo perché se l’interazione della goccia con la superficie dipende in maniera più o meno diretta dalla rugosità e dall’energia superficiali, il suo movimento sulla stessa risente di parametri addizionali, quali disomogeneità fisiche, differenze di chimismo e composizione, dimensione di particelle, etc, la cui influenza à ̈ di difficile interpretazione. The literature on this subject shows how the relationship between static hydrophobicity and dynamic hydrophobicity is complex and, in many cases, even if the static contact angle is sufficiently high (> 150 °), it does not correspond to a sufficient dynamic hydrophobicity. . This is because if the interaction of the drop with the surface depends more or less directly on the surface roughness and energy, its movement on the same is affected by additional parameters, such as physical inhomogeneities, differences in chemism and composition, size of particles, etc, whose influence is difficult to interpret.
Un’altra proprietà funzionale di grande interesse per le superfici metalliche à ̈ l’oleofobicità , ossia la repellenza nei confronti di oli, grassi, etc. Il conferimento di questa proprietà aggiuntiva ad una superficie metallica consente di prevenire fisicamente l’adesione dello sporco e delle particelle di grasso, in modo da implementare ulteriormente le prestazioni di “autopulenza†. Il grado di oleofobicità di una superficie dipende fortemente dalla energia della superficie stessa o, meglio, dalla differenza tra la tensione superficiale della sostanza oleosa e l’energia della superficie stessa; tanto più bassa sarà quest’ultima, tanto maggiore sarà la repellenza della superficie verso l’adesione di sostanze con tensione superficiale più elevata. In letteratura, à ̈ documentata la difficoltà di generare superfici oleofobiche, soprattutto a causa della necessità di avere energie superficiali estremamente basse (<5mN/m) [Tsujii K. Et al. Angewandte Chemie-International Edition in English 1997, 36 (9), 1011-1012)]. Another functional property of great interest for metal surfaces is oleophobicity, that is the repellence towards oils, greases, etc. The conferment of this additional property to a metal surface allows to physically prevent the adhesion of dirt and grease particles, in order to further implement the â € œautopulenceâ € performance. The degree of oleophobicity of a surface strongly depends on the energy of the surface itself or, better, on the difference between the surface tension of the oily substance and the energy of the surface itself; the lower the latter, the greater the repellency of the surface towards the adhesion of substances with higher surface tension. In the literature, the difficulty of generating oleophobic surfaces is documented, mainly due to the need for extremely low surface energies (<5mN / m) [Tsujii K. Et al. Angewandte Chemie-International Edition in English 1997, 36 (9), 1011-1012)].
Fino ad oggi, le soluzioni per impartire alle superfici metalliche una elevata idrofobicità sono risultate particolarmente complesse e costose e, quindi, non idonee ad essere applicate su scala industriale. Infatti, tali soluzioni richiedono generalmente materiali costosi, lunghi tempi di preparazione e procedure multistep, oltre a risultare in angoli di contatto dinamici generalmente superiori ai 10°. Inoltre, generalmente i trattamenti dell’arte nota prevedono la necessità di utilizzo di solventi organici, i quali, come à ̈ noto, su scala industriale comportano una serie di problematiche ambientali, oltre che problematiche legate alla sicurezza e alla salute dei lavoratori preposti al trattamento. Up to now, the solutions to impart a high hydrophobicity to metal surfaces have proved to be particularly complex and expensive and, therefore, not suitable for application on an industrial scale. In fact, such solutions generally require expensive materials, long preparation times and multistep procedures, as well as resulting in dynamic contact angles generally higher than 10 °. Furthermore, generally the treatments of the known art require the use of organic solvents, which, as is known, on an industrial scale involve a series of environmental problems, as well as problems related to the safety and health of the workers in charge of treatment.
Scopo della presente invenzione à ̈ quello di realizzare superfici metalliche presentanti una elevata idrofobicità e oleofobicità senza per questo compromettere la loro realizzazione su scala industriale. The purpose of the present invention is that of realizing metallic surfaces having a high hydrophobicity and oleophobicity without compromising their realization on an industrial scale.
Oggetto della presente invenzione à ̈ un metodo per il trattamento di superfici metalliche caratterizzato dal fatto di comprendere in successione: The object of the present invention is a method for the treatment of metal surfaces characterized by the fact of comprising in succession:
- una fase di deposizione di un rivestimento di ossido metallico, in cui su di una superficie metallica viene depositato un sol realizzato da una sospensione colloidale in acqua di uno o più alcossidi metallici M(OR)n in presenza di un catalizzatore acido, - a deposition phase of a metal oxide coating, in which a sol is deposited on a metal surface made from a colloidal suspension in water of one or more M (OR) n metal alkoxides in the presence of an acid catalyst,
in cui: in which:
M Ã ̈ compreso nel gruppo composto da Al, Ti, Si, Y, Zn, Zr; M is included in the group composed of Al, Ti, Si, Y, Zn, Zr;
R à ̈ un catena alifatica C1-C4 lineare o ramificata; - una fase di consolidamento, in cui detto rivestimento à ̈ sottoposto ad una temperatura compresa tra 150°C e 400°C; R is a linear or branched C1-C4 aliphatic chain; - a consolidation phase, in which said coating is subjected to a temperature between 150 ° C and 400 ° C;
- una fase di funzionalizzazione, in cui detto rivestimento à ̈ trattato con acqua bollente e/o con vapore per la realizzazione di gruppi ossidrilici; - a functionalization phase, in which said coating is treated with boiling water and / or with steam to form hydroxyl groups;
- una seconda fase di consolidamento, in cui detto rivestimento à ̈ sottoposto ad una temperatura compresa tra 150°C e 400°C; e - a second consolidation phase, in which said coating is subjected to a temperature between 150 ° C and 400 ° C; And
- una fase di attivazione chimica superficiale, in cui detto rivestimento à ̈ trattato con un composto alchilsilano. - a phase of surface chemical activation, in which said coating is treated with an alkylsilane compound.
Preferibilmente, in detta fase di attivazione chimica superficiale detto composto alchilsilano à ̈ florurato. Preferably, in said surface chemical activation step said alkylsilane compound is fluorinated.
Preferibilmente, il metodo comprende una terza fase di consolidamento, in cui dopo essere stato trattato con un composto alchilsilano il detto rivestimento à ̈ sottoposto ad una temperatura compresa tra 50°C e 300°C. Preferably, the method comprises a third consolidation step, in which after being treated with an alkylsilane compound the said coating is subjected to a temperature between 50 ° C and 300 ° C.
Preferibilmente, la fase di deposizione prevede che il detto sol sia depositato mediante una tecnica di dip coating o di spray coating o di spin-coating. Preferably, the deposition step provides that said sol is deposited by means of a dip coating or spray coating or spin-coating technique.
Preferibilmente, detto rivestimento ha uno spessore compreso tra 50 e 500nm Preferably, said coating has a thickness of between 50 and 500nm
Preferibilmente, in detta fase di florurazione detto rivestimento à ̈ trattato con un composto florurato mediante una tecnica di dip coating o di spray coating o di spincoating. Preferably, in said florination phase said coating is treated with a fluorinated compound by means of a dip coating or spray coating or spincoating technique.
Preferibilmente, il detto composto florurato à ̈ un floroalchilsilano. Preferably, the said fluorinated compound is a floroalkyl silane.
Un ulteriore oggetto della presente invenzione à ̈ un componente metallico avente un rivestimento superficiale realizzato mediante il metodo oggetto della presente invenzione. A further object of the present invention is a metal component having a surface coating made by means of the method object of the present invention.
Per una migliore comprensione dell’invenzione sono riportate di seguito delle forme di realizzazione a puro titolo illustrativo e non limitativo. For a better understanding of the invention, some embodiments are reported below for illustrative and non-limiting purposes.
ESEMPI EXAMPLES
Di seguito à ̈ descritto un metodo per il trattamento di superfici metalliche secondo una preferita forma di realizzazione della presente invenzione. Per confronto il metodo à ̈ stato applicato anche su di una superficie ceramica e su di una superficie di vetro. A method for treating metal surfaces according to a preferred embodiment of the present invention is described below. For comparison, the method was also applied to a ceramic surface and a glass surface.
Sempre a scopo di confronto, il metodo à ̈ stato ripetuto sulle medesime superfici metalliche con l’unica variante che nella fase di preparazione del sol, come solvente à ̈ stato utilizzato alcol isopropilico anziché acqua. Again for comparison purposes, the method was repeated on the same metal surfaces with the only variation that in the preparation phase of the sol, isopropyl alcohol was used as solvent instead of water.
In particolare, la superficie metallica utilizzata à ̈ alluminio, e la superficie ceramica utilizzata à ̈ grà ̈s porcellanato e la superficie vetrosa à ̈ un vetro sodicocalcico (Superfrost-Carlo Erba), tutte opportunamente sgrassate e pretrattate. In particular, the metal surface used is aluminum, and the ceramic surface used is porcelain stoneware and the glass surface is sodium-calcium glass (Superfrost-Carlo Erba), all suitably degreased and pre-treated.
Di seguito sono riportati i passaggi procedurali di una preferita forma di realizzazione del metodo oggetto della presente invenzione. The procedural steps of a preferred embodiment of the method object of the present invention are reported below.
- Preparazione del sol comprendente nano particelle di allumina (Al2O3) – - Preparation of the sol comprising nano particles of alumina (Al2O3) -
Una sospensione colloidale di allumina à ̈ stata preparata mediante peptizzazione dell’alluminio tri-secbutossido in soluzione acquosa allo 0,5 M in presenza di acido nitrico come catalizzatore acido. Le reazioni di idrolisi e condensazione che portano alla formazione del sol avvengono mantenendo il sistema in agitazione a 80°C. I rapporti molari del sol sono i seguenti: A colloidal suspension of alumina was prepared by peptization of aluminum tri-secbutoxide in a 0.5 M aqueous solution in the presence of nitric acid as an acid catalyst. The hydrolysis and condensation reactions that lead to the formation of the sol take place by keeping the system stirred at 80 ° C. The molar ratios of the sol are as follows:
alluminio tri-sec-butossido:acqua:acido nitrico=1:100:0.07 aluminum tri-sec-butoxide: water: nitric acid = 1: 100: 0.07
- Trattamento -Le superfici prese in esame (metallica, ceramica e vetro) sono state sottoposte ad una operazione di “dip coating†nel sol a temperatura ambiente. L’operazione di “dip coating†à ̈ stata realizzata con una velocità di immersione ed emersione di 120 mm/min ed un tempo di stasi nel sol di 5 secondi. Una volta che ogni singolo substrato à ̈ emerso dal sol, il solvente acqua viene evaporato promuovendo la transizione allo stato di gel costituito dalle nano particelle di Al2O3parzialmente idrolizzate. - Treatment - The surfaces examined (metal, ceramic and glass) were subjected to a â € œdip coatingâ € operation in the sol at room temperature. The â € œdip coatingâ € operation was carried out with an immersion and emersion speed of 120 mm / min and a soak time in the sol of 5 seconds. Once each individual substrate has emerged from the sol, the solvent water is evaporated promoting the transition to the gel state consisting of the partially hydrolyzed Al2O3 nano particles.
Dopo che l’acqua à ̈ evaporata, i substrati sono stati trattati termicamente in un forno a 400°C per 10 minuti al fine di eliminare i residui organici e di promuovere la densificazione del rivestimento formatosi. After the water evaporated, the substrates were heat treated in an oven at 400 ° C for 10 minutes in order to eliminate the organic residues and to promote the densification of the formed coating.
Per ottimizzare l’adesione tra il film e la superficie, prima della deposizione il substrato viene preferibilmente pulito ed attivato, ad esempio mediante attacchi acidi/basici delle superfici, trattamenti termici in aria, lavorazione meccanica o altro. To optimize the adhesion between the film and the surface, before deposition the substrate is preferably cleaned and activated, for example by acid / basic attacks of the surfaces, heat treatments in air, mechanical processing or other.
Successivamente, per promuovere la reattività della superficie con la formazione di gruppi funzionali ossidrilici e per modulare la rugosità superficiale su scala nanometrica, le superfici trattate sono state immerse in acqua bollente per 30 minuti e nuovamente trattati termicamente in un forno a 400°C per 10 minuti. Subsequently, to promote the reactivity of the surface with the formation of hydroxyl functional groups and to modulate the surface roughness on a nanometric scale, the treated surfaces were immersed in boiling water for 30 minutes and again heat treated in an oven at 400 ° C for 10 minutes.
Alternativamente all’immersione in acqua bollente, parte delle superficie metalliche sono state trattate con un getto di vapore per un tempo di 30 min per essere successivamente trattate termicamente in un forno a 400°C per 10 minuti come sopra descritto. As an alternative to immersion in boiling water, part of the metal surfaces were treated with a jet of steam for a time of 30 min to be subsequently heat treated in an oven at 400 ° C for 10 minutes as described above.
Infine, le superfici trattate sono state sottoposte ad una ulteriore operazione di “dip coating†in una soluzione contenente un composto alchilsilano. In particolare, il composto utilizzato à ̈ un fluoroalchilsilano commercializzato con la sigla F8263 dalla società EVONIK. Finally, the treated surfaces were subjected to a further â € œdip coatingâ € operation in a solution containing an alkylsilane compound. In particular, the compound used is a fluoroalkyl silane marketed under the initials F8263 by the company EVONIK.
L’operazione di “dip coating†à ̈ stata realizzata con una velocità di immersione ed emersione di 120 mm/min ed un tempo di stasi di 2 minuti. The â € œdip coatingâ € operation was carried out with an immersion and emersion speed of 120 mm / min and a stasis time of 2 minutes.
Una volta emersi dalla soluzione contenente un composto fluoroalchilsilano, le superfici trattate sono state mantenute in stufa a 150°C per 15 minuti al fine di promuovere l’attivazione chimica superficiale del film di allumina. Once emerged from the solution containing a fluoroalkylsilane compound, the treated surfaces were kept in an oven at 150 ° C for 15 minutes in order to promote the surface chemical activation of the alumina film.
Questo ultimo passaggio in stufa può anche essere evitato. Infatti, il cross linking del polimero alla superficie inorganica può anche avvenire a temperatura ambiente con, ovviamente, tempi di reazione più lunghi. This last step in the stove can also be avoided. In fact, the cross linking of the polymer to the inorganic surface can also take place at room temperature with, obviously, longer reaction times.
Ognuna delle superfici trattate con il metodo sopra descritto ha presentato un rivestimento assolutamente trasparente. Tale requisito garantisce il conferimento delle proprietà ricercate senza compromettere le caratteristiche estetiche (colore, aspetto, ecc) presenti sulle superfici interessate al trattamento. Each of the surfaces treated with the method described above presented an absolutely transparent coating. This requirement guarantees the conferment of the sought-after properties without compromising the aesthetic characteristics (color, appearance, etc.) present on the surfaces involved in the treatment.
- Test di idrofobicità e olefobicità -Le superfici trattate come sopra descritto sono state sottoposte a test per verificare le caratteristiche di: idrofobicità statica con acqua (angolo di contatto con l’acqua (Ï‘st)); idrofobicità dinamica (espressa sia come angolo di inclinazione minimo della superficie a cui inizia lo scorrimento di una goccia d’acqua di 30 Î1⁄4l (Ï‘dn) sia come valori di isteresi (Ï‘A- Ï‘R)); oleofobicità (angolo di contatto con olio di paraffina (Ï‘ol)); l’energia superficiale; idrofobicità statica dopo abrasione. - Hydrophobicity and olephobicity test - The surfaces treated as described above have been subjected to tests to verify the characteristics of: static hydrophobicity with water (contact angle with water ('st)); dynamic hydrophobicity (expressed both as the minimum inclination angle of the surface at which the flow of a drop of water of 30 Î1⁄4l (Ï‘dn) begins and as hysteresis values (Ï‘A- Ï‘R)); oleophobicity (contact angle with paraffin oil ('ol)); surface energy; static hydrophobicity after abrasion.
L’abrasione à ̈ stata realizzata simulando la procedura operativa standardizzata nel caso di vetri rivestiti per edilizia (UNI EN 1096-2, Appendice E: Prova di resistenza all’abrasione). In particolare, à ̈ stato utilizzato un tampone di feltro abrasivo rotante (spessore 10 mm ± 1 mm) con diametro 5.0 cm ± 0.5 cm e azionato ad una velocità di 30 giri/minuto. In queste condizioni il tampone di feltro à ̈ stato applicato alle superfici trattate con una forza pari a 4N e per un tempo pari a 30 secondi. Abrasion was achieved by simulating the standardized operating procedure in the case of coated glass for building (UNI EN 1096-2, Appendix E: Abrasion resistance test). In particular, a rotating abrasive felt pad was used (thickness 10 mm ± 1 mm) with a diameter of 5.0 cm ± 0.5 cm and operated at a speed of 30 rpm. In these conditions the felt pad was applied to the treated surfaces with a force equal to 4N and for a time equal to 30 seconds.
In Tabella I sono riportati i valori rilevati delle caratteristiche sopra riportate. Table I shows the measured values of the above characteristics.
In Tabella I con SM1 si indica la superficie metallica trattata con la fase di immersione in acqua bollente; con SM2 si indica la superficie metallica trattata con la fase di applicazione del getto di vapore; con SC si indica la superficie ceramica trattata; con SV si indica la superficie vetrosa trattata; con SMalc. si indica la superficie metallica trattata avendo utilizzato alcol isopropilico anziché acqua nella fase di preparazione del sol. In Table I SM1 indicates the metal surface treated with the step of immersion in boiling water; SM2 indicates the metal surface treated with the application phase of the steam jet; SC indicates the treated ceramic surface; SV indicates the treated glass surface; with SMalc. it indicates the metal surface treated having used isopropyl alcohol instead of water in the preparation phase of the sol.
TABELLA I TABLE I
Ï‘st(°) Ï‘dn(°) Ï‘A- Ï‘R(°) Ï‘ol(°) Energia Ï‘st(°) superficiale dopo (mN/m) abrasione SM1 172 ± 8 5 0,4 130 ± 3 0,34 168 ± 3 SM2 164 ± 8 6 1,0 121 ± 3 0,58 150 ± 4 alc. 158 ± 4 10 6,2 110 ± 2 0,18 142 ± 3 SC 161 ± 13 47,5 1,4 121 ± 8 0,50 123± 6 SV 116 ± 1 48 1,1 102 ± 3 0.55 115 ± 1 Ï'st (°) Ï'dn (°) Ï'A- Ï'R (°) Ï'ol (°) Surface energy Ï'st (°) after (mN / m) abrasion SM1 172 ± 8 5 0, 4 130 ± 3 0.34 168 ± 3 SM2 164 ± 8 6 1.0 121 ± 3 0.58 150 ± 4 alc. 158 ± 4 10 6.2 110 ± 2 0.18 142 ± 3 SC 161 ± 13 47.5 1.4 121 ± 8 0.50 123 ± 6 SV 116 ± 1 48 1.1 102 ± 3 0.55 115 ± 1
I valori riportati in Tabella I evidenziano gli effetti inaspettati e sorprendenti del metodo oggetto della presente invenzione. The values reported in Table I highlight the unexpected and surprising effects of the method object of the present invention.
Infatti, si può constatare sia come il metodo risulti più efficace quando applicato su superfici metalliche anziché su superfici ceramiche o di vetro, sia come l’uso dell’acqua nella fase di preparazione del sol produca effetti migliori rispetto all’uso di un alcol. Quest’ultima evidenza risulta essere particolarmente sorprendente, esaltando al contempo uno dei più importanti vantaggi della presente invenzione. Infatti, la presente invenzione, non utilizzando solventi organici ma acqua, non solo garantisce migliori caratteristiche di idrofobicità ed oleofobicità alle superfici metalliche, ma in una dimensione industriale comporta anche enormi vantaggi in termini di sicurezza, di salute del personale, di gestione produttiva, sostenibilità ambientale ed economica. In fact, it can be seen both how the method is more effective when applied on metal surfaces rather than on ceramic or glass surfaces, and how the use of water in the preparation phase of the sol produces better effects than use of an alcohol. This latter evidence is particularly surprising, while at the same time enhancing one of the most important advantages of the present invention. In fact, the present invention, not using organic solvents but water, not only guarantees better characteristics of hydrophobicity and oleophobicity to metal surfaces, but in an industrial dimension also entails enormous advantages in terms of safety, health of personnel, production management, sustainability. environmental and economic.
Va inoltre evidenziato come i valori di idrofobicità dinamica risultino sorprendentemente migliori di quelli ottenuti sulla superficie ceramica o sulla superficie vetrosa. It should also be noted that the dynamic hydrophobicity values are surprisingly better than those obtained on the ceramic surface or on the glass surface.
I valori di idrofobicità dinamica riscontrabili sulle superfici metalliche trattate con il metodo della presente invenzione sono tali da garantire elevata repulsione allo sporco e contaminanti di diversa natura, anche di origine biologica, evitare in condizioni ambientali avverse la formazione di ghiaccio e brina, limitare efficacemente fenomeni di usura e corrosione, ridurre, o addirittura evitare, fenomeni di fouling da agenti diversi, consentire condizioni fluidodinamiche più favorevoli nelle vicinanze della superficie, con conseguenti guadagni anche in termini energetici. The dynamic hydrophobicity values that can be found on the metal surfaces treated with the method of the present invention are such as to guarantee high repulsion against dirt and contaminants of different nature, including biological origin, avoid the formation of ice and frost in adverse environmental conditions, effectively limit phenomena of wear and corrosion, reduce, or even avoid, fouling phenomena from different agents, allow more favorable fluid dynamic conditions in the vicinity of the surface, with consequent gains also in energy terms.
Inoltre, le superfici indicate come SM1 e SM2 sono state sottoposte a prove di gelo/disgelo secondo la norma UNI EN 539-2(2006). In particolare, le superfici SM1 e SM2 sono state sottoposte a cicli successivi di gelo/disgelo in cella climatica in cui avvengono continue escursioni termiche da 11°C a -17°C ed in cui la fase di disgelo avviene per immersione in acqua e la successiva fase di gelo avviene dopo aver drenato l’acqua dall’interno della cella climatica. Il numero di cicli di gelo/disgelo a cui sono state sottoposte le superfici SM1 e SM2 sono stati pari a: 36, 119, 234, 345, 447. La valutazione della resistenza ai cicli di gelo/disgelo à ̈ basata sulle misure dell’idrofobicità statica (angolo di contatto statico) e dell’idrofobicità dinamica (isteresi) dopo ognuno dei suddetti cicli di gelo/disgelo. In tabella II sono riportati i valori rilevati di angolo di contatto statico e di isteresi. Furthermore, the surfaces indicated as SM1 and SM2 have been subjected to freeze / thaw tests according to the UNI EN 539-2 (2006) standard. In particular, the surfaces SM1 and SM2 have been subjected to successive freeze / thaw cycles in a climatic chamber in which continuous thermal excursions from 11 ° C to -17 ° C occur and in which the thaw phase occurs by immersion in water and the subsequent frost phase occurs after draining the water from the inside of the climatic chamber. The number of freeze / thaw cycles to which surfaces SM1 and SM2 were subjected were equal to: 36, 119, 234, 345, 447. The evaluation of the resistance to freeze / thaw cycles is based on measurements of the Static hydrophobicity (static contact angle) and dynamic hydrophobicity (hysteresis) after each of the above freeze / thaw cycles. Table II shows the detected values of static contact angle and hysteresis.
Tabella II Table II
Numero cicli Angolo contatto Isteresi (°) Number of cycles Contact angle Hysteresis (°)
statico (°) static (°)
36 145 ± 3 12 ± 3 36 145 ± 3 12 ± 3
119 140 ± 2 12 ± 2 119 140 ± 2 12 ± 2
234 140 ± 5 11 ± 3 234 140 ± 5 11 ± 3
345 140 ± 5 19 ± 5 345 140 ± 5 19 ± 5
447 134 ± 3 7 ± 4 447 134 ± 3 7 ± 4
Dai valori riportati in Tabella II si evince come anche dopo i cicli di gelo/disgelo le superfici trattate con il metodo oggetto della presente invenzione continuano a manifestare elevate caratteristiche di idrofobicità . From the values reported in Table II it can be seen that even after the freeze / thaw cycles the surfaces treated with the method object of the present invention continue to show high hydrophobic characteristics.
Il risultato ottenuto dalle prove di gelo/disgelo à ̈ una ulteriore prova della struttura nanometrica del rivestimento confermata dalle osservazioni effettuate al microscopio a scansione elettronica con sorgente ad emissione di campo (SEM-FEG), dell’efficacia del metodo della presente invenzione e delle sue potenzialità in ambito industriale. The result obtained from the freeze / thaw tests is a further proof of the nanometric structure of the coating confirmed by the observations carried out at the scanning electron microscope with field emission source (SEM-FEG), of the effectiveness of the method of the present invention and of its potential in the industrial field.
Claims (8)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT000291A ITRM20120291A1 (en) | 2012-06-21 | 2012-06-21 | METHOD FOR THE TREATMENT OF METALLIC SURFACES TO CONFER TO THE SAME AS A HIGH HYDROPHOBICITY AND OLEOPHOBICITY |
| ES13756700.4T ES2605999T3 (en) | 2012-06-21 | 2013-06-21 | Method for treating metal surfaces to confer high hydrophobicity and oleophobicity on them |
| PL13756700T PL2864522T3 (en) | 2012-06-21 | 2013-06-21 | Method for the treatment of metal surfaces for bestowing thereon a high hydrophobicity and oleophobicity |
| PCT/IT2013/000175 WO2013190587A2 (en) | 2012-06-21 | 2013-06-21 | Method for the treatment of metal surfaces for bestowing thereon a high hydrophobicity and oleophobicity |
| EP13756700.4A EP2864522B1 (en) | 2012-06-21 | 2013-06-21 | Method for the treatment of metal surfaces for bestowing thereon a high hydrophobicity and oleophobicity |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT000291A ITRM20120291A1 (en) | 2012-06-21 | 2012-06-21 | METHOD FOR THE TREATMENT OF METALLIC SURFACES TO CONFER TO THE SAME AS A HIGH HYDROPHOBICITY AND OLEOPHOBICITY |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| ITRM20120291A1 true ITRM20120291A1 (en) | 2013-12-22 |
Family
ID=46584172
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| IT000291A ITRM20120291A1 (en) | 2012-06-21 | 2012-06-21 | METHOD FOR THE TREATMENT OF METALLIC SURFACES TO CONFER TO THE SAME AS A HIGH HYDROPHOBICITY AND OLEOPHOBICITY |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP2864522B1 (en) |
| ES (1) | ES2605999T3 (en) |
| IT (1) | ITRM20120291A1 (en) |
| PL (1) | PL2864522T3 (en) |
| WO (1) | WO2013190587A2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3670740B1 (en) | 2018-12-20 | 2022-02-02 | European Central Bank | Amphiphobic cellulosic materials, production thereof and uses |
| IT202200024981A1 (en) | 2022-12-05 | 2024-06-05 | Johnson Screens Inc | METAL FILTER PLATES COATED WITH MULTIFUNCTIONAL NANOCOATINGS |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005066388A2 (en) * | 2004-01-05 | 2005-07-21 | Epg (Engineered Nanoproducts Germany) Gmbh | Metallic substrates comprising a deformable glass-type coating |
| WO2008083310A1 (en) * | 2006-12-29 | 2008-07-10 | 3M Innovative Properties Company | Method of curing metal alkoxide-containing films |
| DE102007007526A1 (en) * | 2007-02-15 | 2008-08-21 | Epg (Engineered Nanoproducts Germany) Ag | Finest interference pigments containing glass layers on metal, glass and ceramic surfaces and methods for their preparation |
| DE102007029668A1 (en) * | 2007-06-27 | 2009-01-08 | Epg (Engineered Nanoproducts Germany) Ag | Ultra-hard composite coatings on metal surfaces and process for their preparation |
| DE102010011185A1 (en) * | 2010-03-12 | 2011-09-15 | Epg (Engineered Nanoproducts Germany) Ag | Metallic surfaces with a thin, glass or ceramic-like protective layer with high chemical resistance and improved non-stick properties |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001287971A (en) * | 2000-03-31 | 2001-10-16 | Matsushita Electric Ind Co Ltd | Antifouling coating and method for producing the same, antifouling glass for automobile using the same, method for producing the same, and automobile using the same |
-
2012
- 2012-06-21 IT IT000291A patent/ITRM20120291A1/en unknown
-
2013
- 2013-06-21 PL PL13756700T patent/PL2864522T3/en unknown
- 2013-06-21 WO PCT/IT2013/000175 patent/WO2013190587A2/en active Application Filing
- 2013-06-21 ES ES13756700.4T patent/ES2605999T3/en active Active
- 2013-06-21 EP EP13756700.4A patent/EP2864522B1/en not_active Not-in-force
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005066388A2 (en) * | 2004-01-05 | 2005-07-21 | Epg (Engineered Nanoproducts Germany) Gmbh | Metallic substrates comprising a deformable glass-type coating |
| WO2008083310A1 (en) * | 2006-12-29 | 2008-07-10 | 3M Innovative Properties Company | Method of curing metal alkoxide-containing films |
| DE102007007526A1 (en) * | 2007-02-15 | 2008-08-21 | Epg (Engineered Nanoproducts Germany) Ag | Finest interference pigments containing glass layers on metal, glass and ceramic surfaces and methods for their preparation |
| DE102007029668A1 (en) * | 2007-06-27 | 2009-01-08 | Epg (Engineered Nanoproducts Germany) Ag | Ultra-hard composite coatings on metal surfaces and process for their preparation |
| DE102010011185A1 (en) * | 2010-03-12 | 2011-09-15 | Epg (Engineered Nanoproducts Germany) Ag | Metallic surfaces with a thin, glass or ceramic-like protective layer with high chemical resistance and improved non-stick properties |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2864522A2 (en) | 2015-04-29 |
| EP2864522B1 (en) | 2016-09-07 |
| PL2864522T3 (en) | 2017-06-30 |
| WO2013190587A2 (en) | 2013-12-27 |
| WO2013190587A3 (en) | 2014-03-13 |
| ES2605999T3 (en) | 2017-03-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Maitra et al. | Hierarchically nanotextured surfaces maintaining superhydrophobicity under severely adverse conditions | |
| Zhang et al. | Robust, scalable and fluorine-free superhydrophobic anti-corrosion coating with shielding functions in marine submerged and atmospheric zones | |
| Shao et al. | Effects of inorganic sealant and brief heat treatments on corrosion behavior of plasma sprayed Cr2O3–Al2O3 composite ceramic coatings | |
| Jia et al. | One-step approach to prepare superhydrophobic wood with enhanced mechanical and chemical durability: Driving of alkali | |
| Liu et al. | Robust and durable surperhydrophobic F-DLC coating for anti-icing in aircrafts engineering | |
| Wang et al. | Corrosion resistant polymer derived ceramic composite environmental barrier coatings | |
| Mahade et al. | Isothermal oxidation behavior of Gd2Zr2O7/YSZ multilayered thermal barrier coatings | |
| Lin et al. | Superhydrophobic materials with good oil/water separation and self-cleaning property | |
| Phani et al. | RETRACTED: Structural, mechanical and corrosion resistance properties of Al2O3–CeO2 nanocomposites in silica matrix on Mg alloys by a sol–gel dip coating technique | |
| Ge et al. | Formation and properties of superhydrophobic Al coatings on steel | |
| Liu et al. | Structure design and fabrication of environmental barrier coatings for crack resistance | |
| Yang et al. | Corrosion and tribocorrosion mitigation of perhydropolysilazane-derived coatings on low carbon steel | |
| JP2012510358A (en) | Method for producing parts, particularly for high temperature applications, and parts | |
| Li et al. | Mechanical, chemical and wetting properties of a superhydrophobic surface based on functionalized ZrO2 on stainless steel | |
| Li et al. | Effect of heating self-healing and construction of composite structure on corrosion resistance of superhydrophobic phosphate ceramic coating in long-term water environment | |
| ITRM20120291A1 (en) | METHOD FOR THE TREATMENT OF METALLIC SURFACES TO CONFER TO THE SAME AS A HIGH HYDROPHOBICITY AND OLEOPHOBICITY | |
| Salvador et al. | Influence of the pretreatment and curing of alkoxysilanes on the protection of the titanium–aluminum–vanadium alloy | |
| Dai et al. | A multi-level biomimetic LDH coatings with super hydrophobicity, corrosion resistance, anti-icing and anti-fouling properties on magnesium alloy | |
| EP2971242B1 (en) | Corrosion protection material and method for protecting aluminum coatings | |
| Zhang et al. | Characterization and tribological investigation of Al2O3 and modified Al2O3 sol-gel films | |
| Fair et al. | Precipitation coating of monazite on woven ceramic fibers: II. Effect of processing conditions on coating morphology and strength retention of Nextel™ 610 and 720 fibers | |
| Doodman et al. | Alumina nanostructured coating for corrosion protection of 316L stainless steel | |
| ITRM20110104A1 (en) | METHOD FOR THE TREATMENT OF CERAMIC SURFACES TO CONFER TO THE SAME AS A HIGH HYDROPHOBICITY AND OLEOPHOBICITY | |
| Pint et al. | Predicting EBC Temperature Limits for Industrial Gas Turbines | |
| Fedel et al. | Polymethyl (hydro)/polydimethylsilazane-derived coatings applied on AA1050: Effect of the dilution in butyl acetate on the structural and electrochemical properties |