ES2597983B1 - Sistema y dispositivo de recolección de energía piezoeléctrico - Google Patents
Sistema y dispositivo de recolección de energía piezoeléctrico Download PDFInfo
- Publication number
- ES2597983B1 ES2597983B1 ES201530896A ES201530896A ES2597983B1 ES 2597983 B1 ES2597983 B1 ES 2597983B1 ES 201530896 A ES201530896 A ES 201530896A ES 201530896 A ES201530896 A ES 201530896A ES 2597983 B1 ES2597983 B1 ES 2597983B1
- Authority
- ES
- Spain
- Prior art keywords
- piezoelectric
- nanostructures
- energy collection
- zno
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002070 nanowire Substances 0.000 claims abstract description 32
- 239000003990 capacitor Substances 0.000 claims abstract description 25
- 239000002086 nanomaterial Substances 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 8
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 abstract description 13
- 239000010703 silicon Substances 0.000 abstract description 13
- 230000010354 integration Effects 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 6
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 38
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000010409 thin film Substances 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000026683 transduction Effects 0.000 description 5
- 238000010361 transduction Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 1
- 229920001486 SU-8 photoresist Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
- H02N2/186—Vibration harvesters
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N39/00—Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
- H02N2/181—Circuits; Control arrangements or methods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/304—Beam type
- H10N30/306—Cantilevers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/704—Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
- H10N30/706—Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
- H10N30/708—Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/802—Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/852—Composite materials, e.g. having 1-3 or 2-2 type connectivity
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Micromachines (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Sistema y dispositivo de recolección de energía piezoeléctrico. El dispositivo y sistema se acciona mediante energía mecánica disponible en el entorno. Se forma por una viga en voladizo, basado en nanoestructuras de ZnO e integrado monolíticamente con diodos Schottky y un condensador que cubre enteramente el chip. Se usará ZnO de dos formas diferentes: nanohilos (NW) y nanoláminas (NS). Estas nanoestructuras se harán crecer mediante un proceso hidrotérmico compatible con silicio y usando parte del electrodo de condensador superior como capa semilla. Se propone un flujo de proceso etapa por etapa para la integración monolítica en un mismo dispositivo. Esta integración permitirá una reducción de las pérdidas de potencia y facilitará la combinación de varios generadores sin preocupaciones sobre la polaridad del estrés mecánico o de la carga eléctrica.
Description
5
10
15
20
25
30
35
SISTEMA Y DISPOSITIVO DE RECOLECCION DE ENERGIA PIEZOELECTRICO
DESCRIPCION
Campo de invencion
La presente invencion pertenece al campo de la electronica y, mas especlficamente, a dispositivos piezoelectricos a escala nanometrica para recolectar energla mecanica.
Estado de la tecnica
Existe una necesidad de generadores electricos que puedan proporcionar potencia con alta resistencia a impactos y factor de calidad.
Los dispositivos de MEMS anteriores (MEMS significa sistemas microelectromecanicos) usan pellcula delgada de AlN convencional y tienen las desventajas de tener una tension de rotura crltica limitada y una rigidez significativa que hacen que no sean optimos para aplicaciones de vibraciones ambientales. Ademas, hasta ahora, requieren circuitos de gestion de potencia y control externos que hacen diflcil su integration y fabrication a gran escala.
Recientemente se ha propuesto un enfoque basado en nanofibras piezoelectricas. No obstante, este dispositivo anterior tiene varias desventajas: baja densidad superficial de fibras, baja capacidad de integracion, diflcil de obtener un gran numero de fibras alineadas, contamination del sustrato debido a nitracion/oxidacion de fibras. Ademas, requiere un complejo desarrollo tecnologico (electrohilado). Ademas, este dispositivo es menos compatible con tecnologlas de silicio de VLSI (integracion a muy gran escala).
En los ultimos anos se han estado usando nanohilos de ZnO como material piezoelectrico, porque pueden hacerse crecer de manera economica y facil mediante un metodo hidrotermico. La principal aplicacion ha sido la recoleccion de energla y sensores, pero los dispositivos han sido principalmente dispositivos macroscopicos voluminosos dedicados a generar la mayor potencia posible. Sin embargo, la tecnologla de MEMS no se ha aprovechado para combinar satisfactoriamente estas nanoestructuras con dispositivos moviles a escala micrometrica para seleccionar como objetivo el pequeno nicho de energla que ofrecen las vibraciones ambientales.
El documento US20050134149A1 propone un dispositivo de recoleccion de vibraciones piezoelectrico que tiene una estructura de pila de platillos con una masa
5
10
15
20
25
30
35
de prueba encima. Esta propuesta es diferente de la presente invention, ademas de por su disposition, porque la invencion propuesta usa nanoestructuras de ZnO como material piezoelectrico principal en lugar de pellculas delgadas. Ademas, los dispositivos segun la invencion pueden integrar de manera monolltica diodos y condensadores.
Breve description de la invencion
La invencion se dedica a desarrollar una familia de dispositivos nanoestructurados piezoelectricos compatibles con silicio con condensador de almacenamiento de carga de amortiguacion y rectification integrado que puede recolectar energla a partir de movimientos mecanicos.
Segun la invencion, un dispositivo de recoleccion de energla piezoelectrico comprende una parte anclada, una masa inercial y una estructura flexible movil. La estructura flexible comprende una capa piezoelectrica con una pluralidad de nanoestructuras. Un condensador esta formado entre un electrodo inferior de una region altamente dopada y un electrodo superior de una capa metalica y un diodo esta formado entre dicha capa metalica y una region ligeramente dopada en la parte anclada, el diodo esta en serie con el condensador.
Preferiblemente, la estructura flexible es una viga en voladizo entre la parte anclada y la masa inercial, sin embargo otras estructuras moviles son posibles. Por ejemplo, una viga sujeta en ambos extremos, una suspension en serpentln, una membrana u otro elemento elastico que puede desempenar el papel de muelle o resorte.
La viga en voladizo esta disenada para curvarse provocando as! que las nanoestructuras piezoelectricas generen una corriente inducida por potencial piezoelectrico rectificada por el diodo y almacenada por el condensador. Preferiblemente, se forma una capa semilla que comprende Au bajo la capa piezoelectrica constituida por ZnO para hacer crecer nanohilos como nanoestructuras. Preferiblemente, la longitud de los nanohilos es de desde 100 nm hasta 10 pm. Alternativamente, se forma una capa semilla que comprende AlN bajo la capa piezoelectrica constituida por ZnO para hacer crecer nanolaminas como nanoestructuras. Preferiblemente, el diametro de las nanolaminas oscila entre 100 nm y 10 pm.
Los electrodos del condensador se extienden desde la viga en voladizo hasta la parte anclada pero, preferiblemente, pueden extenderse para cubrir toda la superficie de chip disponible para maximizar el valor de la capacitancia.
5
10
15
20
25
30
35
Preferiblemente, el material de sustrato es silicio cristalino de tipo n.
Alternativamente, el material de sustrato es silicio cristalino de tipo p.
Segun la invention, tambien se propone un sistema de recoleccion de energla. El sistema comprende una matriz de dispositivos de recoleccion de energla piezoelectricos, en el que dispositivos adyacentes estan apilados dejando un hueco entre los mismos para el movimiento de la masa inercial.
Preferiblemente, los dispositivos de recoleccion de energla se combinan en serie. Alternativamente, los dispositivos de recoleccion de energla se combinan en paralelo.
En resumen, se propone un nuevo enfoque para producir dispositivos de recopilacion de energla de MEMS piezoelectricos, tambien denominados colectores de MEMS. Los dispositivos propuestos se basan en nanohilos (NW) y nanolaminas (NS) como material piezoelectrico con un diodo y condensador integrados de manera monolltica en una tecnologla compatible con silicio.
En algunas realizaciones se elige ZnO como solution de bajo coste para hacer crecer NW y NS mediante un metodo hidrotermico. ZnO tambien proporciona una mayor tension soportada, flexibilidad potenciada y coste de fabrication reducido. Al mismo tiempo, es mucho mas facil de integrar con silicio que otros enfoques basados en nanoestructuras. El dispositivo permite un movimiento fuera del plano cuando se excita mecanicamente.
El dispositivo de recoleccion de energla propuesto contiene un diodo Schottky y condensador integrados de manera monolltica ademas del nanogenerador piezoelectrico lo que permite un almacenamiento de carga de amortiguacion y rectification de senal in situ.
De manera positiva, pueden combinarse varios dispositivos de recoleccion de energla para maximizar la potencia extralda sin preocuparse por las fases de las senales de CA (Corriente Alterna) a la salida. La compensation entre el tamano y el numero de dispositivos de recoleccion de energla muestra que varios dispositivos mas pequenos dirigidos a diferentes frecuencias de resonancia pueden obtener una mayor densidad de potencia generada que una unica unidad mas grande con el mismo tamano global. La invencion tiene ventajas adicionales: una flexibilidad global superior y menor riesgo de roturas, mejor rendimiento y almacenamiento y rectificacion integrados. Esta combination de production de potencia con fiabilidad mejora los dispositivos del estado de la tecnica conocidos.
Estos y otros aspectos de la invencion resultaran evidentes a partir de los dibujos y las realizaciones a modo de ejemplo.
5
10
15
20
25
30
35
Breve descripcion de los dibujos
A continuation se describe muy brevemente una serie de dibujos que ayudan a entender mejor la invention y que estan expresamente relacionados con realizaciones de dicha invention, presentadas como ejemplo no limitativo de la misma.
Figura 1: Configuration de dispositivo funcional. (Izquierda) Una estructura en voladizo para movimientos mecanicos fuera del plano, con las dos nanoestructuras de ZnO diferentes para la transduction piezoelectrica: nanohilos (derecha-parte inferior) y nanolaminas (derecha-parte superior)
Figura 2: Varias vistas de nanohilos de ZnO. La figura 2a es una vista global. La figura 2b es una vista detallada. La figura 2c muestra una vista desde arriba de nanolaminas. La figura 2d muestra una vista inclinada.
La figura 3 es una section transversal del dispositivo final construido sobre un sustrato de SOI.
La figura 4 es una medicion por difraccion de rayos X (XRD) de nanolaminas de ZnO que se hacen crecer sobre una capa semilla de AlN.
Descripcion detallada
Se comentaran varias realizaciones para entender mejor la invention.
Tal como se indico anteriormente, uno de los objetivos de esta invention es hacer que el dispositivo de recopilacion de energla sea lo suficientemente robusto, que pueda funcionar de una manera fiable en las condiciones impuestas. Con este fin, se adoptan nanoestructuras piezoelectricas, tambien conocidas en general como nanogeneradores (NG), en lugar de pellculas delgadas.
El enfoque aprovecha ZnO como material de transduction para convertir la energla mecanica procedente de las aceleraciones de entrada presentes en el entorno para dos casos diferentes. Se integraran dos tipos de nanoestructuras de ZnO para obtener dispositivos utilizables: nanohilos (NW) y nanolaminas (NS).
Tanto los NW como las NS pueden generarse compartiendo practicamente el mismo proceso de fabricacion: Estas nanoestructuras de ZnO tienen las particularidades de usar:
- toda la superficie del chip para fabricar el condensador de almacenamiento,
- el electrodo superior de este condensador como capa semilla para hacer crecer las nanoestructuras de ZnO encima del voladizo que va a curvarse, y
5
10
15
20
25
30
35
- una pequena region de chipde silicio sin dopar para integrar de manera monolltica diodos de Schottky.
Disposicion del dispositivo
La figura 1 muestra la configuracion de uno de los dispositivos finales. La configuracion comun de las diferentes versiones de diseno se basa en una arquitectura en voladizo, porque los dispositivos de recopilacion piezoelectricos basados en silicio actuales muestran el mejor rendimiento con un sistema de masa- muelle. Sin embargo, pueden usarse otras suspensiones, tales como vigas sujetas en ambos extremos, flexiones en serpentln, membranas u otros elementos elasticos en lugar de la viga en voladizo.
Una masa 11 inercial esta conectada a traves de una viga 16 en voladizo al resto del chip 13 . Encima de este voladizo hay una capa 15 piezoelectrica compuesta por nanoestructuras de ZnO. Integrado de manera monolltica en el mismo chip 13, hay un diodo Schottky 12 y un condensador 14.
Se generaran varios tamanos para obtener diferentes frecuencias de resonancia, y se combinaran para obtener matrices de multiples frecuencias de dispositivos de recopilacion de energla. Las dimensiones laterales tlpicas de los voladizos y la masa inercial oscilaran entre 0,5 y 5 mm, y el grosor objetivo de la capa piezoelectrica sera de aproximadamente 1 pm para el primer prototipo. Los dispositivos de recopilacion pueden combinarse para producir una matriz segun una combinacion en serie o en paralelo de los mismos. Dependiendo de esta combinacion electrica, se obtendra un incremento de los niveles de corriente o de voltaje de salida para combinaciones en serie y en paralelo, respectivamente. Con el fin de combinar flsicamente los dispositivos, pueden apilarse dejando suficiente espacio entre ellos para el movimiento resonante de la masa inercial.
Tal como se ilustra en la figura 3, el resorte se construye por medio de vigas de silicio microestructuradas sobre la capa de dispositivo de SOI y se cubre por el diferente material piezoelectrico que desempena el papel de resorte mecanico y transductor. La masa 11 inercial se crea mediante grabado de la capa de silicio tanto superior como inferior de la oblea de SOI (silicio sobre aislante) mediante RIE (grabado ionico reactivo) y DRIE (grabado ionico reactivo profundo), respectivamente. La parte no grabada que corresponde al marco del chip que formara la parte 17 anclada.
El uso de una oblea de SOI facilita la definicion de la viga 16 en voladizo y la masa 11 inercial. Esta oblea sera de tipo n con el fin de poder integrar un diodo Schottky 12 y un condensador 14 junto con la estructura movil. El diodo 12 tendra el papel de rectificar, con pocas perdidas, la senal de CA generada por los NG que al mismo
5
10
15
20
25
30
35
tiempo se haran crecer justo encima de la gran superficie del condensador 14 para ahorrar espacio.
Esta configuration crea una red de un diodo 12, capa 15 de CA piezoelectrica como generador y un condensador 14 en serie, por tanto para cada estimulacion mecanica sobre los NG, se almacenaran cargas negativas en el condensador 14. Debido a la rectification in situ, pueden conectarse entre si diferentes disenos con diferentes tamanos y la production de voltaje siempre se sumara. Por ejemplo, voladizos 13 mas largos y/o masas 11 inerciales mas grandes daran como resultado frecuencias de resonancia inferiores y vigas mas gruesas y/o materiales mas rlgidos aumentaran las frecuencias de resonancia.
Materiales
Estos dispositivos usan una oblea de SOI como parte estructural principal. El sustrato se elige con el fin de facilitar las definiciones de la masa inercial y la viga. Entonces se usan dos materiales piezoelectricos diferentes:
AlN: Este material piezoelectrico se ha usado durante varios anos para fabricar FBAR (resonador de ondas acusticas de volumen de pellcula) y colectores de energla. AlN se usa como capa semilla para hacer crecer NS de ZnO que se adaptaran a una capa piezoelectrica nanoestructurada funcional. AlN se procesa mediante pulverization catodica por RF sobre una capa delgada de Ti/Pt que confiere una buena orientation cristalina. Pueden depositarse capas delgadas de menos de 100 nm y el analisis de XRD de la figura 4 muestra que la estructura y orientacion cristalinas son estables. El grosor final usado en este tipo de dispositivos puede ser de entre 10 nm y 1 um.
ZnO: Este material piezoelectrico y semiconductor se usara para hacer crecer nanoestructuras, especlficamente sobre nanohilos (NW) y nanolaminas (NS) de ZnO piezoelectricos. En los ultimos anos se han usado NG de ZnO para la recoleccion de energla. Estas nanoestructuras tienen las ventajas de ser mas flexibles, menos sensibles a la rotura, y puede actuarse sobre las mismas mas facilmente que sobre pellculas delgadas. El metodo de crecimiento se basa en una reaction qulmica hidrotermica a baja temperatura (< 80°C) directamente sobre el sustrato de silicio cubierto por una capa semilla. Este metodo de crecimiento es especialmente rapido, facil, economico y completamente compatible con tecnologlas microelectronicas basadas en silicio a nivel de oblea.
La figura 2 muestra los dos tipos de nanoestructuras de ZnO que se usaran para fabricar los dispositivos.
Para el caso de NS, se usa una capa delgada de AlN (el grosor puede ser menor de <100 nm) como capa semilla, barrera portadora antiapantallamiento y material
5
10
15
20
25
30
35
piezoelectrico adicional. De esta manera, la capa delgada de AlN no debe afectar a las propiedades mecanicas del dispositivo porque la tension creada disminuye con el grosor. El metodo de crecimiento para NS de ZnO es el mismo que para los NW, pero se usa una capa semilla diferente que afecta totalmente a la forma de la nanoestructura que se hace crecer. El punto principal que hace que esta nanoestructura sea una solucion prometedora para NG es la alta uniformidad, reproducibilidad y rapidez del crecimiento de NS.
Se han llevado a cabo varios estudios con el fin de verificar que NS de ZnO que se hacen crecer sobre AlN tienen una buena cristalinidad y por tanto propiedades piezoelectricas.
La figura 2 muestra el resultado de una difraccion de electrones en el area seleccionada (SAED) generada en un TEM de una unica capa de NS en la que puede observarse una alta cristalinidad del material. Tambien puede observarse en la figura 2 que la direction de crecimiento es perpendicular al eje c, al contrario que un NW de ZnO tlpico que crece a lo largo del eje c. En el caso de NS, puede observarse un plano de crecimiento preferible (0001) a costa de la inhibition del plano de crecimiento {1010}, lo cual se invierte completamente en el caso de NW. Ademas, queda claro el tamano hexagonal de los cristales de ZnO, tlpico de una red cristalina de wurtzita. El cristal hexagonal puede tener un diametro de mas de 1-5 pm y un grosor de menos de 20 nm lo cual significa una enorme relation de aspecto superior a 100.
Tambien se realizo un estudio de XRD para observar otras orientaciones cristalinas presentes en una matriz de NS. El resultado puede observarse en la figura 4. Puede observarse un pico destacado para la orientation (002) deseada del ZnO, tambien puede verse claramente la contribution de la pellcula delgada de AlN.
Flujo de proceso
Tal como ya se menciono, se integraran un condensador y un diodo junto con el dispositivo de recopilacion de energla con el fin de tener un sistema compacto que puede obtener un voltaje de CC (Corriente Continua) a partir de una aceleracion de entrada variable. El proceso de fabrication va dirigido a ser compatible con tecnologlas de CMOS poco exigentes.
A continuation se indican las etapas del proceso que deben seguirse para llevar a cabo la fabricacion tecnologica, incluyendo siete etapas fotolitograficas:
1. Se realiza una implantation de n+ en areas seleccionadas de la capa de dispositivo de SOI dopada con n mediante un oxido de protection que se hizo crecer anteriormente. Esta implantacion definira el contacto ohmico con silicio y el electrodo inferior del condensador. (Mascara N+)
5
10
15
20
25
30
35
2. Se lleva a cabo una oxidacion de campo de 1060 nm con el fin de pasivar los diferentes dispositivos. Por medio de grabado ionico reactivo (RIE) y grabado en humedo este oxido puede retirarse selectivamente para definir regiones activas. (Mascara de areas activas)
3. Realizar una oxidacion de compuerta de 365 A a 950°C para crear la capa de oxido delgada necesaria para producir el condensador.
4. Retirar este oxido delgado mediante grabados en seco y en humedo a partir de areas de contacto para permitir el acceso electrico a los diferentes contactos. (Mascara de contacto)
5. Encima de estas areas de contacto, se pulverizara una multicapa de Cr/Ni/Au para crear el electrodo superior del condensador, la superficie de contacto metal- semiconductor del diodo Schottky y los contactos metalicos. El electrodo del condensador puede disenarse para cubrir toda la superficie del chip disponible para maximizar su capacidad de carga lo cual es una gran mejora en comparacion con dispositivos del estado de la tecnica. La ultima capa de Au expuesta tambien se usara como capa semilla para hacer crecer NW de ZnO.
6. Con el fin de fabricar la version de este dispositivo basado en NS de ZnO, se depositara una capa de Ti/Pt seguida por una capa de AlN de 100 nm mediante pulverizacion catodica por RF para generar la capa semilla para estas nanoestructuras.
7. La multicapa metalica total y capa semilla, cuando sea aplicable, se graban posteriormente en areas seleccionadas. (Mascara de metal 1)
8. Se haran crecer nanohilos y nanolaminas de ZnO mediante un proceso hidrotermico sobre las respectivas capas semilla depositadas sobre el electrodo superior del condensador, lo que hace que este dispositivo sea unico.
9. Se recubrira por centrifugacion (Spin-coating) una capa de pollmero (por ejemplo PMMA, PDMS o SU8) sobre la superficie y se revelara para incrustar los NW/NS para evitar cortocircuitos entre electrodos de NG, si es necesario.
10. Se depositara una capa gruesa de aluminio (tambien pueden usarse otros metales tales como titanio y platino), se litografiara y se grabara para cubrir los NW/NS incrustados, creando el electrodo superior de NG. (Mascara de metal 2).
11. Se fotolitografla el contorno de las estructuras moviles sobre el lado del dispositivo (mascara delantera de RIE) y se graba la capa del dispositivo de SOI mediante RIE.
12. En el lado trasero, se deposita aluminio, se fotolitografla y se graba para crear una mascara dura para DRIE. (Mascara trasera de DRIE).
5
10
15
20
25
30
13. Se graba completamente mediante DRIE la oblea de manipulation de SOI hasta el oxido enterrado. Antes de realizar esta etapa se recubre una capa resistente protectora sobre el lado delantero.
14. Se desprenden cuidadosamente las estructuras mediante grabado en humedo del SiO2 y se disuelve el recubrimiento de capa resistente mediante inmersion en acetona.
El dispositivo final es una viga en voladizo piezoelectrica cargada en la punta desprendida con condensador y diodo integrados tal como se muestra en la figura 3. Esta integration permite reducir las perdidas de potencia y facilita la combination de varios generadores sin necesidad de controlar las diferencias de fase de los potenciales piezoelectricos generados (es decir no se necesita ninguna sincronizacion de movimientos resonantes).
Rendimiento
Para el dispositivo basado en NW de ZnO, se supone que la densidad de NW sera de ~4 NW/pm2. Si cada NW toma una parte activa en la generation de carga, y a partir de un valor de 4 pW/NW medido cuando se curva un NW mediante una punta de AFM [4], puede estimarse una potencia generada de ~1,6 mW/cm2. Sin embargo, en el presente caso la estimulacion mecanica se producira mediante la compresion de las matrices de NW derivada del curvado de la viga y una superficie de transduction tlpica de 1 mm2. Se ha notificado una production de potencia de 1,45 mW/cm2 (para un area de transduction de ~4 mm2) para una estructura similar a la que se colocara encima del condensador integrado para niveles de presion similares a los logrados con el curvado de la viga en voladizo. Teniendo en cuenta la presente configuration de dispositivo (area de transduction de ~1 mm2, aceleracion de 1-10 g, tension principal de 1-10 MPa), una potencia de salida objetivo de 500 pW/cm2 es un valor razonable. Para el caso de NS, no se dispone de datos anteriores, pero se esperan densidades de potencia comparables debido a las dimensiones y configuration de cristales similares tanto de NW como de NS.
A partir de resultados anteriores, obtenidos usando estructuras similares pero con un enfoque de pellcula delgada, puede estimarse un valor llmite inferior para los presentes prototipos.
Para el primer prototipo, las dimensiones de los dispositivos finales seran de 0,5x0,5x0,05 cm3, y se basaran en una oblea de SOI de tipo n. Se espera que se use un marco o soporte de vidrio o silicio con el fin de permitir que la masa inercial se
mueva arriba y abajo. Este marco de soporte puede aumentar el grosor del dispositivo final en 0,05 cm.
NUMEROS DE REFERENCIA 5 11 Masa inercial.
12 Diodo de Schottky.
13 Chip que forma el dispositivo.
14 Condensador.
15 Capa piezoelectrica.
10 16 Viga en voladizo.
17 Parte anclada.
Claims (11)
- 5101520253035REIVINDICACIONES1. Dispositivo de recoleccion de energla piezoelectrico, que comprende:- una parte (17) anclada;- una masa (11) inercial;- una estructura flexible; caracterizado por que:- la estructura flexible comprende una capa (15) piezoelectrica con una pluralidad de nanoestructuras;- un condensador (14) esta formado entre un electrodo inferior de una region altamente dopada y un electrodo superior de una capa metalica; y- un diodo (12) esta formado entre dicha capa metalica y una region ligeramente dopada en la parte (17) anclada, estando el diodo (12) en serie con el condensador(14),en el que la estructura flexible esta configurada para curvarse provocando asl que las nanoestructuras piezoelectricas generen una corriente inducida por potencial piezoelectrico rectificada por el diodo (12) y almacenada por el condensador (14).
- 2. Dispositivo segun la reivindicacion 1, en el que la estructura movil es una viga (16) en voladizo entre la parte (17) anclada y la masa (11) inercial.
- 3. Dispositivo segun la reivindicacion 1 o 2, en el que una capa semilla que comprende Au esta formada bajo la capa (15) piezoelectrica constituida por ZnO y las nanoestructuras son nanohilos.
- 4. Dispositivo segun la reivindicacion 3, en el que la longitud de los nanohilos es de desde 100 nm hasta 10 pm.
- 5. Dispositivo segun la reivindicacion 1 o 2, en el que una capa semilla que comprende AlN esta formada bajo la capa (15) piezoelectrica constituida por ZnO y las nanoestructuras son nanolaminas.
- 6. Dispositivo segun la reivindicacion 5, en el que el diametro de las nanolaminas oscila entre 100 nm y 10 pm.
- 7. Dispositivo segun cualquiera de las reivindicaciones, en el que los electrodos del condensador (14) se extienden desde la estructura flexible hasta la parte (17) anclada.
- 8. Dispositivo segun cualquiera de las reivindicaciones, en el que el material de sustrato es silicio cristalino de tipo n.5 9. Dispositivo segun cualquiera de las reivindicaciones 1 a 7, en el que el material desustrato es silicio cristalino de tipo p.
- 10. Sistema de recoleccion de energla que comprende una matriz de dispositivos de recoleccion de energla piezoelectricos segun cualquiera de las reivindicaciones 1 a 9,10 en el que dispositivos adyacentes estan apilados dejando un hueco entre los mismos para el movimiento de la masa (11) inercial.
- 11. Sistema segun la reivindicacion 10, en el que los dispositivos de recoleccion de energla se combinan en serie.15
- 12. El sistema segun la reivindicacion 10, en el que los dispositivos de recoleccion de energla se combinan en paralelo.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201530896A ES2597983B1 (es) | 2015-06-24 | 2015-06-24 | Sistema y dispositivo de recolección de energía piezoeléctrico |
US15/757,965 US20200228032A1 (en) | 2015-06-24 | 2016-05-20 | System and device for collecting piezoelectric energy |
PCT/ES2016/070381 WO2016207458A1 (es) | 2015-06-24 | 2016-05-20 | Sistema y dispositivo de recolección de energía piezoeléctrico |
EP16813778.4A EP3319133B1 (en) | 2015-06-24 | 2016-05-20 | System and device for collecting piezoelectric energy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201530896A ES2597983B1 (es) | 2015-06-24 | 2015-06-24 | Sistema y dispositivo de recolección de energía piezoeléctrico |
Publications (3)
Publication Number | Publication Date |
---|---|
ES2597983A2 ES2597983A2 (es) | 2017-01-24 |
ES2597983R2 ES2597983R2 (es) | 2017-02-28 |
ES2597983B1 true ES2597983B1 (es) | 2017-12-12 |
Family
ID=57584731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES201530896A Active ES2597983B1 (es) | 2015-06-24 | 2015-06-24 | Sistema y dispositivo de recolección de energía piezoeléctrico |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200228032A1 (es) |
EP (1) | EP3319133B1 (es) |
ES (1) | ES2597983B1 (es) |
WO (1) | WO2016207458A1 (es) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3351291B1 (en) * | 2017-01-20 | 2022-11-23 | Consejo Superior de Investigaciones Científicas (CSIC) | Self-generating voltage device for electrical cell stimulation, and method thereof |
CA3045152A1 (en) * | 2018-06-04 | 2019-12-04 | Alam Mahmud | 1d/2d hybrid piezoelectric nanogenerator and method for making same |
CN110331388B (zh) * | 2019-06-26 | 2021-05-28 | 五邑大学 | 一种基于水热法快速生长ZnO纳米多孔薄膜的方法 |
NL2028025B1 (en) * | 2021-04-21 | 2022-11-01 | Univ Delft Tech | A compliant structure |
EP4432546A1 (fr) * | 2023-03-17 | 2024-09-18 | Cairdac | Récupérateur d'énergie à transducteur piézoélectrique, notamment pour l'alimentation d'une capsule cardiaque autonome, avec structure oscillante à gradient de raideur en flexion |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050134149A1 (en) * | 2003-07-11 | 2005-06-23 | Deng Ken K. | Piezoelectric vibration energy harvesting device |
WO2012158914A1 (en) * | 2011-05-17 | 2012-11-22 | Georgia Tech Research Corporation | Nanogenerator for self-powered system with wireless data transmission |
KR101906589B1 (ko) * | 2011-08-30 | 2018-10-11 | 한국전자통신연구원 | 압전 에너지 하베스팅/저장 장치 및 그 제조 방법 |
-
2015
- 2015-06-24 ES ES201530896A patent/ES2597983B1/es active Active
-
2016
- 2016-05-20 WO PCT/ES2016/070381 patent/WO2016207458A1/es active Application Filing
- 2016-05-20 EP EP16813778.4A patent/EP3319133B1/en active Active
- 2016-05-20 US US15/757,965 patent/US20200228032A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2016207458A1 (es) | 2016-12-29 |
EP3319133A1 (en) | 2018-05-09 |
EP3319133C0 (en) | 2023-09-20 |
ES2597983A2 (es) | 2017-01-24 |
ES2597983R2 (es) | 2017-02-28 |
US20200228032A1 (en) | 2020-07-16 |
EP3319133A4 (en) | 2018-09-12 |
EP3319133B1 (en) | 2023-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2597983B1 (es) | Sistema y dispositivo de recolección de energía piezoeléctrico | |
Toprak et al. | Piezoelectric energy harvesting: State-of-the-art and challenges | |
Xu et al. | Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting | |
US20100084947A1 (en) | High Efficiency Piezoelectric Energy Harvester Having Spiral Structure | |
US11012006B2 (en) | Micro electromechanical system (MEMS) energy harvester with residual stress induced instability | |
Xu et al. | Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters | |
US20120049694A1 (en) | Micromachined Piezoelectric Energy Harvester with Polymer Beam | |
KR102695700B1 (ko) | 에너지 하베스팅 소자 및 센서, 그리고 이의 제조 및 사용 방법 | |
WO2019210425A1 (en) | Wideband piezoelectric vibratory mems harvester | |
KR20180066787A (ko) | 확률 공진을 통한 진동 에너지 수확기 및 이를 이용한 진동 에너지 수확 시스템 | |
WO2011129855A2 (en) | Wide-bandwidth mems-scale piezoelectric energy harvesting device | |
WO2012164545A1 (en) | Energy scavenging from a rotating gear using an impact type piezoelectric mems scavenger | |
Jagtap et al. | Geometry optimization of a MEMS-based energy harvesting device | |
Triches et al. | A MEMS energy harvesting device for vibration with low acceleration | |
Reilly et al. | Thin film piezoelectric energy scavenging systems for long term medical monitoring | |
Iqbal et al. | Comparison of seven cantilever designs for piezoelectric energy harvester based on Mo/AlN/3C-SiC | |
Kirubaveni et al. | Analysis of rectangular and triangular end array type piezoelectric vibration energy harvester | |
Kottapalli et al. | MEMS/NEMS-enabled energy harvesters as self-powered sensors | |
Crovetto et al. | MEMS fabricated energy harvesting device with 2D resonant structure | |
Abbasalipour et al. | High-energy density micro-machined cellular arrays of electrostatic actuators | |
Sil et al. | Investigation of design parameters in MEMS based piezoelectric vibration energy harvester | |
JP6199122B2 (ja) | 振動発電機 | |
Tiwari et al. | Study of different energy scavenging techniques through vibration and its micro power applications | |
KR20180111719A (ko) | 확률 공진을 통한 진동 에너지 수확기 및 이를 이용한 진동 에너지 수확 시스템 | |
Murillo et al. | Hybrid resonant energy harvester integrating ZnO NWs with MEMS for enabling zero-power wireless sensor nodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG2A | Definitive protection |
Ref document number: 2597983 Country of ref document: ES Kind code of ref document: B1 Effective date: 20171212 |