ES2428639T3 - Sensor de detección de parámetros corporales y método para detectar parámetros corporales - Google Patents
Sensor de detección de parámetros corporales y método para detectar parámetros corporales Download PDFInfo
- Publication number
- ES2428639T3 ES2428639T3 ES06748811T ES06748811T ES2428639T3 ES 2428639 T3 ES2428639 T3 ES 2428639T3 ES 06748811 T ES06748811 T ES 06748811T ES 06748811 T ES06748811 T ES 06748811T ES 2428639 T3 ES2428639 T3 ES 2428639T3
- Authority
- ES
- Spain
- Prior art keywords
- sensors
- sensor
- bone
- implant
- view
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title description 15
- 238000001514 detection method Methods 0.000 title description 5
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 65
- 239000007943 implant Substances 0.000 claims abstract description 57
- 230000037182 bone density Effects 0.000 claims abstract description 17
- 206010017076 Fracture Diseases 0.000 claims abstract description 16
- 230000004927 fusion Effects 0.000 claims abstract description 10
- 230000003278 mimic effect Effects 0.000 claims abstract description 3
- 238000001356 surgical procedure Methods 0.000 description 20
- 210000003041 ligament Anatomy 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 15
- 208000001132 Osteoporosis Diseases 0.000 description 12
- 210000004872 soft tissue Anatomy 0.000 description 12
- 210000000689 upper leg Anatomy 0.000 description 12
- 210000001624 hip Anatomy 0.000 description 11
- 210000000629 knee joint Anatomy 0.000 description 11
- 208000010392 Bone Fractures Diseases 0.000 description 10
- 230000035876 healing Effects 0.000 description 10
- 238000003780 insertion Methods 0.000 description 10
- 230000037431 insertion Effects 0.000 description 10
- 229910052500 inorganic mineral Inorganic materials 0.000 description 8
- 210000003127 knee Anatomy 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000011707 mineral Substances 0.000 description 8
- 238000002604 ultrasonography Methods 0.000 description 8
- 210000002303 tibia Anatomy 0.000 description 7
- 230000002792 vascular Effects 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 210000000845 cartilage Anatomy 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 208000012661 Dyskinesia Diseases 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 210000004439 collateral ligament Anatomy 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 230000002980 postoperative effect Effects 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 238000012876 topography Methods 0.000 description 4
- 208000003076 Osteolysis Diseases 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 208000029791 lytic metastatic bone lesion Diseases 0.000 description 3
- 230000000399 orthopedic effect Effects 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 210000002435 tendon Anatomy 0.000 description 3
- 230000008733 trauma Effects 0.000 description 3
- 206010065687 Bone loss Diseases 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000037118 bone strength Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000326 densiometry Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 210000004394 hip joint Anatomy 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 230000000921 morphogenic effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 0 C(CC1)CC1C1*CCC1 Chemical compound C(CC1)CC1C1*CCC1 0.000 description 1
- 206010011985 Decubitus ulcer Diseases 0.000 description 1
- 208000037408 Device failure Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 206010023204 Joint dislocation Diseases 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010057751 Post procedural discharge Diseases 0.000 description 1
- 208000004550 Postoperative Pain Diseases 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 210000000588 acetabulum Anatomy 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 210000001264 anterior cruciate ligament Anatomy 0.000 description 1
- 230000003288 anthiarrhythmic effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003276 anti-hypertensive effect Effects 0.000 description 1
- 239000003416 antiarrhythmic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000011882 arthroplasty Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007469 bone scintigraphy Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011961 computed axial tomography Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009547 dual-energy X-ray absorptiometry Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 210000000527 greater trochanter Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000002690 local anesthesia Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000002346 musculoskeletal system Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000000422 nocturnal effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001009 osteoporotic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 210000004417 patella Anatomy 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000037368 penetrate the skin Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 210000003137 popliteal artery Anatomy 0.000 description 1
- 230000017363 positive regulation of growth Effects 0.000 description 1
- 210000002967 posterior cruciate ligament Anatomy 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002694 regional anesthesia Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000007958 sleep Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4851—Prosthesis assessment or monitoring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0031—Implanted circuitry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
- A61B5/0086—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/07—Endoradiosondes
- A61B5/076—Permanent implantations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/1459—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/447—Skin evaluation, e.g. for skin disorder diagnosis specially adapted for aiding the prevention of ulcer or pressure sore development, i.e. before the ulcer or sore has developed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4504—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4504—Bones
- A61B5/4509—Bone density determination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4523—Tendons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4528—Joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4533—Ligaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0875—Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6867—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
- A61B5/6878—Bone
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Rheumatology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physiology (AREA)
- Rehabilitation Therapy (AREA)
- Computer Networks & Wireless Communication (AREA)
- Dermatology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Prostheses (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Surgical Instruments (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Un sistema para evaluar la densidad ósea, que comprende: al menos dos sensores biométricos (1-9) para uso en implantes espinales en al menos una vértebra (10, 20; 110,120) de una espina dorsal, en donde los al menos dos sensores biométricos (1-9) están adaptados para medir almenos un parámetro biométrico en un entorno adyacente utilizando ondas de energía ultrasónica transmitidas yrecibidas entre los al menos dos sensores biométricos (1-9); y en donde cada sensor biométrico (1-9) está adaptado para enviar ondas de energía vibratoria que pueden imitar lacarga sobre un hueso para el tratamiento de fracturas y fusiones espinales.
Description
Sensor de detección de parámetros corporales y método para detectar parámetros corporales.
Campo técnico
La presente invención se refiere a un sistema para evaluar la densidad ósea.
Técnica anterior La tecnología de los sensores se ha revelado en las patentes norteamericanas Nos. 6,621,278, 6,856,141 y 6,984,993 de Ariav y esta tecnología ha sido cedida a Nexense Ltd. (las "patentes de Nexense"). Otro sensor biométrico para uso en implantes espinales es conocido por el documento US 2006/0036324 A1.
Sería beneficioso aplicar la tecnología de sensores existente a aplicaciones de detección de datos biométricos de modo que el personal de asistencia sanitaria pueda determinar características de sitios anatómicos.
Exposición de la invención Por consiguiente, un objeto de la presente invención consiste en proporcionar un sistema sensor para evaluar la densidad ósea. Según la invención, este objeto se consigue con un sistema como el definido en la reivindicación 1.
Otras particularidades que se consideran como características de la invención se exponen en la reivindicación subordinada adjunta.
Sin embargo, la construcción y el método de funcionamiento de la invención, junto con objetos y ventajas adicionales de la misma, se entenderán de forma óptima a partir de la descripción siguiente de realizaciones específicas cuando se lea ésta en relación con los dibujos que se acompañan.
Breve descripción de los dibujos Las ventajas de las realizaciones de la presente invención resultarán evidentes por la descripción detallada siguiente de realizaciones preferidas de la misma, cuya descripción deberá considerarse en unión de los dibujos que se acompañan, en los que:
La figura 1 es una vista lateral diagramática y fragmentaria de una porción de un espina dorsal con una fusión no instrumentada de la espina dorsal y sensores;
La figura 2 es una vista anteroposterior diagramática y fragmentaria de la porción de la espina dorsal de la figura 1;
La figura 3 es una vista lateral diagramática y fragmentaria de una porción de una espina dorsal con una jaula intervertebral y sensores;
La figura 4 es una vista anteroposterior diagramática y fragmentaria de la porción de espina dorsal de la figura 1 con sensores en tornillos pediculares;
La figura 5 es una vista lateral diagramática y fragmentaria de una porción de una espina dorsal con un implante de disco intervertebral y sensores,
La figura 6 es una vista en sección transversal ampliada diagramática y fragmentaria de un instrumento de inserción de sensores que puede ser utilizado para la invención;
La figura 7 es una vista en sección transversal diagramática y fragmentaria de un fémur superior con sensores implantados con el instrumento de la figura 6;
La figura 8 es una vista en sección transversal diagramática y fragmentaria de una vértebra con sensores implantados con el instrumento de la figura 6;
La figura 9 es una vista en sección transversal diagramática y fragmentaria de un fémur con sensores en un tornillo;
La figura 10 es una vista en sección transversal diagramática y fragmentaria de un fémur con sensores implantados según la invención;
La figura 11 es una vista en sección transversal diagramática y fragmentaria de una vértebra con sensores según la invención;
La figura 12 es una vista anteroposterior en sección transversal diagramática y fragmentaria de una articulación de rodilla con sensores;
La figura 13 es una vista en sección transversal lateral diagramática y fragmentaria de una articulación de rodilla con sensores;
La figura 14 es una vista en sección transversal diagramática y fragmentaria de una articulación de cadera con
sensores,
La figura 15 es una vista en sección transversal lateral diagramática y fragmentaria de vértebras con sensores;
La figura 16 es una vista en sección transversal axial diagramática y fragmentaria de una vértebra con sensores;
La figura 17 es una vista en sección transversal diagramática y fragmentaria de una articulación de rodilla con
sensores activos frente a ultrasonidos;
La figura 18 es una ilustración diagramática de un transmisor de ultrasonidos y una pantalla de ordenador que
muestra una articulación de rodilla con sensores activos frente a ultrasonidos que está siendo tratada;
La figura 19 es una vista en sección transversal diagramática y ampliada de un mango conectado a un cuerpo de
sensor implantable que puede utilizarse para la invención;
La figura 20 es una vista en sección transversal diagramática y ampliada del mango de la figura 19 desconectado del
cuerpo del sensor;
La figura 21 es una ilustración diagramática de un sistema de visualización por infrarrojos;
La figura 22 es una ilustración diagramática de un sistema de visualización electromagnético;
La figura 23 es una vista anterior fragmentaria y parcialmente oculta de una articulación de rodilla;
La figura 24 es una vista lateral fragmentaria y parcialmente oculta de la articulación de rodilla;
La figura 25 es una vista en alzado lateral fragmentario de un ligamento;
La figura 26 es una vista en alzado lateral fragmentario del ligamento de la figura 25 con una abrazadera de
sensores de ligamento;
La figura 27 es una vista en alzado lateral fragmentario del ligamento y la abrazadera de sensores de ligamento de
la figura 26;
La figura 28 es una vista en alzado lateral fragmentario del ligamento de la figura 25 con sensores fijados al mismo;
La figura 29 es una vista en sección transversal fragmentaria de una porción de un sistema de cánula ultrasónica;
La figura 30 es una vista en sección transversal fragmentaria de una porción de un dispositivo de despliegue de
cánula de un solo sensor;
La figura 31 es una vista en sección transversal fragmentaria de una porción del dispositivo de despliegue de cánula
de la figura 3 con múltiples sensores;
La figura 32 es una vista en sección transversal fragmentaria de una porción de un dispositivo de despliegue de
cánula multisensor;
La figura 33 es una vista en alzado lateral fragmentario de una cirugía de rodilla abierta con exclusión de tejido
blando y con cortes en cartílago y hueso, con sensores desplegados;
La figura 34 es una vista en sección transversal fragmentaria de una punta de trocar que aloja elementos sensores;
La figura 35 es una vista en sección transversal fragmentaria de un insertador para una matriz de sensores;
La figura 36 es una vista en alzado lateral diagramático de un cortador que aloja una matriz de sensores;
La figura 37 es una vista en alzado lateral diagramático de un escariador de huesos;
La figura 38 es una vista en sección transversal fragmentaria de un sistema sensor implantado en una cadera;
La figura 39 es una vista en sección transversal fragmentaria de un sistema sensor implantando en un fémur;
La figura 40 es una vista en sección transversal fragmentaria de un insertador de sensores de copa para el
despliegue de múltiples sensores;
La figura 41 es una vista en sección transversal lateral fragmentaria de dos segmentos espinales con un sistema de
implantación de sensores; y
La figura 42 es una vista en sección transversal axial fragmentaria de un nivel vertebral con un sensor implantado a través de un pedículo.
Mejor modo de realización de la invención Se revelan aspectos de la invención en la descripción siguiente y en los dibujos relacionados dirigidos a realizaciones específicas de la invención, en donde solamente la figura 10 y la figura 11 muestran realizaciones de la invención reivindicada. Se pueden idear realizaciones alternativas sin apartarse del alcance de la invención. Además, no se describirán con detalle o se omitirán elementos bien conocidos de ejemplos de realización de la invención a fin de no oscurecer los detalles relevantes de la misma.
Antes de que se revele y describa la presente invención, ha de entenderse que la terminología aquí utilizada es solamente para fines de descripción de realizaciones particulares y no se pretende que sea limitativa. Ha de hacerse notar que, tal como se utilizan en la memoria y en las reivindicaciones adjuntas, las formas singulares "un" y "el" y sus equivalentes femeninas incluyen varias referencias, a menos que el contexto disponga claramente otra cosa.
Aunque la memoria concluye con reivindicaciones que definen las características de la invención que se consideran como nuevas, se cree que la invención se comprenderá mejor por la consideración de la descripción siguiente en unión de las figuras de los dibujos, en las que se arrastran los números de referencia iguales. Las figuras de los dibujos no están dibujadas a escala.
Se puede utilizar un sistema sensor externamente aplicado para evaluar la integridad de la piel y la presión patológica que puede conducir a isquemia de la piel y finalmente quebrantamiento de la piel (decúbitos). Es importante detectar ciertos parámetros que puedan conducir al quebrantamiento de la piel. Es importante detectar elementos tales como, por ejemplo, presión, tiempo, cizalladura y flujo vascular. Se necesita la localización anatómica específica.
El sistema sensor puede incrustarse en un delgado material conformable adhesivo que se aplique a áreas preocupantes específicas. Ejemplos de áreas incluyen el talón, las caderas, el sacro y otras áreas de riesgo. Estos sensores cartografían el área anatómica. Si se exceden parámetros umbral, los sensores informan a un receptor telemétrico que, a su vez, activa una alarma para la enfermera u otro profesional de asistencia sanitaria. En una aplicación específica se utiliza la información para controlar la cama en la que está tendido el paciente a fin de aliviar el área preocupante. En particular, puede hacerse un ajuste de las celdas de aire en el colchón para que se descargue la zona preocupante afectada.
El sistema sensor externo puede configurarse de diversas maneras. En un ejemplo de realización se dispone un sensor dentro de un delgado adhesivo conformable que se aplica directamente al cuerpo del paciente y es alimentado por una delgada pila de litio. Este sensor o sensores documentan parámetros específicos tales como presión, tiempo, cizalladura y flujo vascular. El sensor informa telemétricamente a una unidad receptora y dispara una alarma si se exceden ciertos parámetros previamente programados. En una realización en la que se prevé una ayuda visual (tal como una pantalla de ordenador que presente la silueta corporal del paciente), se puede iluminar el área preocupante exacta y ésta puede ser visualizada así por el profesional de asistencia sanitaria.
Se necesitan sensores incrustados para detectar ciertos parámetros internos que no son directamente visibles para el ojo humano. Estos sensores se utilizarán en localizaciones específicas par detectar parámetros específicos.
Una forma de incrustar un sensor es mediante una intervención quirúrgica abierta. Durante tal intervención quirúrgica se incrusta el sensor por el cirujano directamente en hueso o tejido blando o se le fija directamente a un implante bien asegurado (por ejemplo, una prótesis (cadera, rodilla)). Se usa el sistema sensor durante la intervención quirúrgica para informar al cirujano sobre la posición y/o el funcionamiento del implante y sobre el equilibrio y/o alineación de tejido blando. Se incrusta directamente el sensor con un instrumento penetrante que libera el sensor a una profundidad predeterminada. El sensor se fija al implante bien asegurado con un sistema de bloqueo o un adhesivo específicos. Se activa el sensor antes del cierre para validar el sensor.
Otra forma de incrustar un sensor es mediante una intervención percutánea. La capacidad para implantar sensores en localizaciones específicas es importarte para evaluar sistemas internos. Se pueden implantar sensores de diámetros variables en hueso, tejido blando y/o implantes. La intervención se aplica bajo visualización suministrada, por ejemplo, por fluoroscopia, formación de imagen de ultrasonidos y escaneado CAT. Tal intervención puede realizarse con anestesia local o regional. Los parámetros evaluados son los que se exponen en esta memoria. El sistema percutáneo incluye un delgado instrumento con un trocar afilado que penetra en las mesetas de tejido necesarias y un brazo de despliegue libera el sensor o sensores a una profundidad o profundidades predeterminadas. El instrumento podría alojar también el sistema de navegación necesario para determinar la localización anatómica específica requerida.
Los parámetros a evaluar y los factores de tiempo determinan la fuente de energía para el sensor incrustado. Cuadros de corto tiempo (hasta 5 años) permiten el uso de una pila. Una duración más larga necesita sugerir el uso de sistemas externos de activación o alimentación energética o el uso de la energía cinética del paciente para
suministrar energía al sistema sensor. Estos sistemas de activación pueden utilizarse en seguida. Los sensores serían activados también en momentos predeterminados para vigilar ciclos de implante, movimiento anormal y umbrales de desgaste del implante.
La información se recibe por vía telemétrica. En un ejemplo de realización los sensores se programan previamente para "activarse" y enviar la información requerida si se excede un umbral específico. Los sensores podrían ser activados y utilizados también para retransmitir información a un receptor externo. Otras aplicaciones permiten el reajuste de un "implante inteligente" para liberar medicaciones específicas, productos biológicos y otras sustancias o para reajustar la alineación o la modularidad del implante.
El sistema sensor se activa y se lee inicialmente en la consulta de un médico y puede ocurrir una activación adicional en la casa del paciente, teniendo el paciente la posibilidad de enviar la información al médico, por ejemplo mediante aplicaciones de Internet.
Se programará el software para recibir la información, procesarla y luego retransmitirla al proveedor de asistencia sanitaria.
El sistema sensor tiene muchas aplicaciones diferentes. Por ejemplo, puede utilizarse para tratar la osteoporosis. La osteoporosis es un estado patológico del hueso que se caracteriza por masa ósea disminuida y riesgo incrementado de factura. Está bien aceptado que el contenido de minerales en el hueso y la densidad de minerales en el hueso están asociados con la resistencia del hueso.
La densidad ósea es un parámetro extremadamente importante del sistema musculoesquélético que se debe evaluar. Se utilizan mediciones de densidad ósea para cuantificar la resistencia ósea de una persona y finalmente predecir los riesgos incrementados asociados con la osteoporosis. La pérdida de hueco conduce a fracturas, compresión espinal y aflojamiento de implantes. En la actualidad, los médicos utilizan métodos externos tales como rayos X especializados.
La unidad de medición para la densitometría ósea es el contenido de minerales en el hueso, expresado en gramos. Los cambios de la densidad ósea son importantes en la evaluación de la osteoporosis, la curación de los huesos y el aflojamiento de los implantes mediante protección contra esfuerzos. Otra importante evaluación es con respecto a la osteolisis. La osteolisis puede destruir el hueso de una manera silenciosa. Es una reacción patológica del hospedante al desgaste de los apoyos, tal como de polietileno. Las partículas de polietileno activan una respuesta granulomatosa inmune que afecta inicialmente al hueso que rodea al implante. Los cambios de densidad ósea tendrán lugar antes de cambios císticos que conduzcan a una severa pérdida de hueso y a fallo del implante.
Existen múltiples sistemas externos que pueden evaluar la densidad ósea. Los problemas encontrados con tales sistemas están relacionados con los diversos sistemas propiamente dichos, pero también con las limitaciones socioeconómicas para llevar al paciente a la consulta a fin de evaluar una enfermedad indolora; esto va ligado a las estrictas asignaciones de pago que causan largos intervalos entre evaluaciones.
Los sensores permiten la evaluación de cambios en la densidad ósea, permitiendo que los proveedores de asistencia sanitaria conozcan datos internos en tiempo real. La aplicación de los sensores puede evaluar la osteoporosis y su progresión y/o respuesta al tratamiento. Evaluando los cambios en la densidad ósea, los sensores proporcionan una información temprana relativa a la curación de fracturas y cambios tempranos de osteolisis (cambios óseos relacionados con el desgaste del polietileno en los implantes).
Aunque la instrumentación varía con las diferentes modalidades, todas ellas registran la atenuación de un haz de energía a medida que pasa por hueso y tejido blando. Las comparaciones de los resultados se limitan necesariamente a huesos de igual forma, lo que supone una relación constante entre el espesor del hueso y el área que se escanea. Además, las mediciones son estrictamente específicas del sitio del esqueleto; así, los individuos pueden compararse solamente cuando se estudian localizaciones idénticas en el esqueleto.
Se puede utilizar la absorciometría de rayos X de energía doble para detectar pequeños cambios en el contenido de minerales del hueso en múltiples sitios anatómicos. Una desventaja importante de la técnica es que no permite que el examinador diferencie entre hueso cortical y hueso trabecular. El ultrasonido cuantitativo, en contraste con otros métodos de densitometría ósea que miden solamente el contenido de minerales del hueso, puede medir propiedades adicionales del hueso, tal como la integridad mecánica. La propagación de la onda ultrasónica a través del hueso es afectada por la masa del hueso, la arquitectura del hueso y la direccionalidad de la carga. Las mediciones por ultrasonidos cuantitativos como medidas para evaluar la resistencia y la rigidez del hueso se basan en el procesamiento de las señales ultrasónicas recibidas. La velocidad del sonido y la onda ultrasónica se propaga por el hueso y el tejido blando. El aflojamiento o subsidencia protésico y la fractura del fémur/tibia/acetábulo o la prótesis están asociados con pérdida ósea. En consecuencia, una evaluación exacta de cambios cuantificables progresivos en el contenido de minerales del hueso periprotésico puede ayudar al cirujano que realiza el tratamiento a determinar el momento en que se debe intervenir a fin de preservar la materia ósea para realizar una artroplastia de revisión. Esta información ayuda al desarrollo de implantes para hueso osteoporótico y contribuye a la evaluación
del tratamiento médico de las osteoporosis y los efectos de diferentes revestimientos de los implantes.
El sistema sensor puede utilizarse para evaluar el funcionamiento de implantes internos. El conocimiento actual del funcionamiento real de un implante es escaso. Los médicos continúan utilizando métodos externos, incluyendo rayos X, escaneos de huesos y evaluación del paciente. Si embargo, se les deja típicamente tan sólo la exploración quirúrgica abierta para llevar a cabo una investigación real del funcionamiento. La utilización de sensores según la presente invención permite la detección de un malfuncionamiento temprano y un fallo catastrófico inminente de un implante. Por tanto, se hace posible un intervención temprana. Esto a su vez disminuye la morbilidad de un paciente, reduce el futuro coste de la atención médica y aumenta la calidad de vida del paciente.
Los sensores pueden fijarse directamente a superficies del implante (preoperatoria y/o intraoperatoriamente) y directamente a la interfaz implante-hueso. Los sensores pueden implantarse también dentro del hueso y el tejido blando. En tal aplicación el médico podría evaluar parámetros importantes del sistema implante-hospedante. Ejemplos de parámetros que podrían medirse incluyen: estabilidad del implante, movimiento del implante, desgaste del implante, tiempos de ciclo del implante, identificación del implante, presión/carga del implante, integración del implante, análisis del fluido articular, información de superficies articulantes, función de los ligamentos y muchos más.
La aplicación de sensores permite determinar si el implante es inestable y/o si se produce un excesivo movimiento o subsidencia. En un ejemplo de aplicación el sensor puede estar configurado para liberar un producto ortobiológico desde un módulo implantado activado a fin de incrementar la integración. Como alternativa y/o adicionalmente, el sistema del implante con los sensores puede utilizarse para ajustar el ángulo/decalaje/tensión de tejido blando a fin de estabilizar el implante, si es necesario.
Se pueden utilizar sensores para detectar si los apoyos del implante se están desgastando o no. Los parámetros detectables de los apoyos incluyen desgaste temprano, fricción incrementada, etc. Un aviso de alarma temprana del sensor podría permitir un cambio temprano de los apoyos antes de un fallo catastrófico.
Un sensor de un implante de articulación puede detectar un aumento de calor, ácido u otra propiedad física. Tal conocimiento le proporcionaría al médico un aviso de infección temprano. En un ejemplo de aplicación al tratamiento de infecciones el sensor puede activar un módulo incrustado que libere un antibiótico.
Los sensores pueden utilizarse para analizar cirugías de la rodilla. Tales sensores pueden colocarse posteriormente en la rodilla para evaluar el flujo, la presión y/o el ritmo de la arteria poplítea. Un sensor de un implante femoral es colocado anteriormente para vigilar el flujo, la presión y/o el ritmo de la arteria/vena femoral. Un monitor vascular interno puede ser parte del implante e incluir dispositivos para liberar módulos antihipertensivos o antiarrítmicos a fin de modificar los cambios vasculares, cuando sea necesario.
En una realización el implante ortopédico interno es en sí el sensor. En una situación de trauma, por ejemplo, el tornillo de reducción puede ser tanto el implante como el sensor. Tal tornillo puede detectar un movimiento anormal en el sitio de la fractura y confirmar un aumento de densidad (es decir, curación). Tal aplicación permite que una implantación percutánea de proteína morfogénica ósea (BMB) ayude a la curación o a un ajuste percutáneo del hardware.
El sensor puede utilizarse en implantes espinales. Un sensor colocado en la espina dorsal/vértebras puede detectar un movimiento anormal en un sitio de fusión. El sensor evalúa la integración del implante espinal en los segmentos vertebrales adyacentes y/o detecta la inestabilidad de los segmentos vertebrales adyacentes. Los sensores implantados pueden activar un sistema o implante estabilizador de transición y determinar las áreas de movimiento excesivo para permitir una estabilidad percutánea derivada del hardware o de un producto ortobiológico. Haciendo ahora referencia con detalle a las figuras de los dibujos y en primer lugar particularmente a la figura 1 de los mismos, se muestra una vista lateral fragmentaria de una fusión de una porción de la espina dorsal. Una vértebra superior 10 está separada de una vértebra inferior 20 por un disco 30. Un injerto óseo 40 está cubierto primero por una faceta inferior 50 y luego por una faceta superior 60. La figura 2 es una vista anteroposterior de la porción de espina dorsal de la figura 1, en la que se muestra el inserto óseo 40 a cada lado del disco 30 con procesos transversos opuestos
70. Unos sensores 1 pueden detectar y transmitir información relativa al movimiento y las cargas de las vértebras 10, 20 y están implantados en diversos elementos espinales. Los elementos pueden incluir los pedículos espinales 80, los procesos transversos 70, las facetas, etc.
Las figuras 1 y 2 ilustran el modo en que pueden utilizarse sensores 1 en fusiones no instrumentadas de la espina dorsal. Los sensores 1 se activan en momentos variables en el período postoperatorio. Un movimiento anormal o excesivo alrededor de la "masa" de fusión ayuda a detectar, por ejemplo, una falta de unión.
La figura 3 ilustra el modo en que se pueden utilizar sensores 1 en fusiones espinales instrumentadas. Más particularmente, los sensores 1 se incorporan en la instrumentación de "jaula" 130 entre una placa vertebral inferior 110 y una placa vertebral superior 120. Tal sensor 1 detecta el movimiento y la carga y es activado para transmitir la
información en el período postoperatorio a fin de ayudar a determinar si la masa de fusión estaba sólida.
La figura 4 ilustra el modo en que pueden utilizarse sensores en tornillos de pediculares 130. Más particularmente, los sensores 1 se incorporan en el tornillo pedicular 130 para ayudar a detectar cualquier movimiento anormal entre las vértebras en la masa de fusión.
La figura 5 ilustra el modo en que pueden utilizarse sensores 1 en implantes de disco intervertebral (repuestos). Más particularmente, un repuesto de disco artificial 140 tiene sensores 1 colocados, por ejemplo, en la interfaz metalhueso. Estos sensores 1 detectan las cargas y también el movimiento para ayudar por vía intraoperatoria a la colocación del disco 140 y, por vía postoperatoria, a la determinación de la integración estable de la interfaz discohueso. Unos sensores internos 2 detectan el movimiento "normal" entre las interfaces internas del disco articulante para ayudar a confirmar postoperatoriamente que el repuesto de disco está funcionado y optimizar niveles con cargas y movimiento espinal variables.
La figura 6 ilustra un instrumento 150 de despliegue de sensores que se representa con un mango 151 y un émbolo
152. El mango 151 y el émbolo 152 permiten la inserción del sensor 3, que es parte de un trocar 153. El trocar 153 puede penetrar en el córtex y se puede desplegar el sensor 3. La figura 7 ilustra la inserción del sensor 3 en el fémur y la figura 8 ilustra la inserción del sensor 3 en una vértebra. El sensor 3 puede ser entonces desacoplado con un mecanismo de acoplamiento 154, por ejemplo mediante un proceso de desatornillamiento o un proceso de desrotación. Estas áreas corporales se utilizan como ejemplos debido a que son el área más comúnmente afectada con respecto a osteoporosis y trauma relacionado con la osteoporosis. El sensor 3 puede variar en tamaño desde varios milímetros hasta más de un centímetro. El sensor 3 puede implantarse por vía percutánea o de una manera quirúrgica abierta.
El sensor 3 puede ser parte de un hardware utilizado en la cadera y/o en la espina dorsal. El sensor 3 puede colocarse a diversas profundidades para permitir la evaluación del córtex y también del hueso trabecular. Con dos sensores 3 desplegados, se puede medir la distancia entre los sensores 3 en el área preocupante y el campo de potencia que puede generarse. Los campos de energía pueden ser fuentes de energía estándar tales como campos de ultrasonidos, radiofrecuencia y/o electromagnéticos. La deflexión de la onda de energía con el tiempo, por ejemplo, permitirá la detección de cambios en el parámetro deseado que se esté evaluando.
Un ejemplo de sistema sensor de monitorización externa según las figuras 6 a 8 permite lecturas nocturnas por contacto sobre el contenido de minerales del hueso y la densidad ósea. El sistema sensor puede permitir también una transferencia de ondas de energía según un patrón vibratorio que puede imitar la carga sobre el hueso y conducir a un contenido de minerales del hueso y una densidad ósea mejorados. Los sensores pueden enviar también ondas de energía por o a través de un implante para ayudar así a curar una fractura.
La fracturación de una cadera y una vértebra espinal es común con respecto a osteoporosis y trauma. La figura 9 ilustra el uso de un tornillo 4 como sensor interno. La fractura 160 es afianzada por un tornillo de compresión 4 y los sensores 4 están incrustados en el tornillo 4. Los sensores 4 del tornillo 4 pueden enviar energía a través del sitio de la fractura para obtener una lectura de densidad base y monitorizar el cambio de densidad con el tiempo para confirmar la curación. Los sensores 4 pueden activarse también externamente para enviar ondas de energía a la propia fractura a fin de ayudar a la curación. Los sensores 4 pueden detectar también el cambio de movimiento en el sitio de la fractura, así como el movimiento entre el tornillo y el hueso. Tal información ayuda a monitorizar la curación y facilita al proveedor de asistencia sanitaria la posibilidad de ajustar el soporte del peso, según se indica. Una vez que se ha curado la fractura, se pueden activar entonces los sensores 4 mostrados en las figuras 10 y 11 dentro del trocánter mayor para enviar ondas de energía a los otros dos sensores 4. Esto permitirá una evaluación continuada de la densidad ósea. Los sensores 4 pueden ser activados, por ejemplo, con un sistema de cama con sensores cuando el paciente está dormido. La fuente de energía y el receptor pueden fijarse, por ejemplo, a la superficie inferior de la cama. La información recibida puede ser evaluada cada noche, si es necesario, y enviada por medidas telefónicas estándar al doctor. La activación de los sensores por la noche permitirá lecturas a intervalos específicos durante el tratamiento de osteoporosis con diversas medicaciones.
Las ondas de energía externas e internas enviadas con sensores según la invención pueden ser utilizadas durante el tratamiento de fracturas y fusiones espinales.
El uso de ultrasonidos, campos electromagnéticos pulsados, campos magnéticos combinados, acoplamiento capacitivo y corriente eléctrica continua ha sido estudiado en sus efectos sobre la regulación ascendente de factores de crecimiento. Se ha demostrado que el ultrasonido pulsado activa los "integrinos", que son receptores de las superficies de las células que, cuando se activan, producen una cascada intracelular. Se expresan proteínas implicadas en la inflamación, la angiogénesis y la curación de huesos. Estas proteínas incluyen proteína morfogénica ósea (BMP)-7, fosfatasa alcalina, factor de crecimiento endotelial vascular y factor de crecimiento de insulina (IGF)-1. El uso de campos electromagnéticos pulsados ha demostrado tiempos de curación ósea incrementados en animales. Diversas formas de onda afectan al hueso de maneras diferentes.
Se puede utilizar un sistema sensor que emplee ultrasonidos cuantitativos para evaluar externamente la densidad
ósea calcánea. El sistema según la invención se fija a la cama del paciente y, utilizando formas de onda ultrasónicas externas como se muestra en las figuras 10 y 11, se puede evaluar la densidad ósea. Se ha demostrado que el uso de campos de energía estimula el proceso de curación ósea. La estimulación puede efectuarse con medidas externas, pero el uso de sistemas sensores internos puede cambiar las formas de onda y generar una señal vibratoria que puede "cargar" efectivamente el hueso. Se sabe, por varias leyes ortopédicas, que este efecto refuerza el córtex del hueso y se utiliza efectivamente en el tratamiento de fracturas y osteoporosis y se representa en la figura 10. Los sensores de la figura 10 están en el córtex o en el canal. Las formas de onda de energía son enviadas de uno a otro. Éstas pueden ser activadas y recibidas por un sistema externo o pueden ser parte del propio sensor. Análogamente, la figura 11 ilustra un segmento vertebral en el que los sensores 4 envían formas de onda de energía de uno a otro y a un receptor externo. Tal sistema/tratamiento puede utilizarse para tratar fracturas y osteoporosis.
El sistema sensor según la presente invención ilustra principalmente la cadera y la espina dorsal, pero puede aplicarse a todos los segmentos del esqueleto del cuerpo. Las figuras 12 a 18 ilustran diversas orientaciones de sensores según la invención para tratar la rodilla, la cadera y las vértebras.
Las figuras 19 y 20 ilustran un ejemplo de realización de un mango 170 que puede conectarse de manera soltable a un cuerpo de sensor implantable 5. En esta realización el mango tiene una rosca exterior que se atornilla en un taladro interior correspondientemente roscado del cuerpo 5.
Los sensores según la invención se utilizan en múltiples aplicaciones ortopédicas, incluyendo la alineación intraoperatoria de implantes de articulaciones. Los sensores y dispositivos/sistemas de monitorización que pueden utilizarse incluyen cualquiera de los bien conocidos en la técnica, tales como los descritos en las patentes de Nexense. La cirugía asistida por ordenador es también algo común y corriente.
En la actualidad, el uso de clavos en el fémur y la tibia permite que se fijen matrices a los huesos. Tal fijación ayuda a la orientación espacial de la articulación de la rodilla/cadera durante la operación. Estas matrices son reconocidas por ópticas de infrarrojos o por dispositivos electromagnéticos (véanse las figuras 21 y 22) para reproducir la información en un sistema de software reconocido que permita que el cirujano visualice la articulación de una manera tridimensional al tiempo que coloca el implante elegido sobre los huesos. Los problemas encontrados con la aplicación de tales clavos son muchos:
la necesidad de penetrar en los huesos fuera del campo de cirugía;
dolor y drenaje postoperatorio en los sitios de los clavos;
la posibilidad de aflojamiento de los clavos durante la cirugía, así como de bloqueo de las matrices y la luz infrarroja;
los clavos requieren que los cirujanos cambien el posicionamiento actual durante la intervención, lo que puede ser difícil; y
el campo magnético puede ser afectado por diversos metales e instrumentos que se utilicen en la cirugía.
El tiempo asociado con la inserción de los clavos, el bloqueo de las matrices y el establecimiento de la coincidencia de la topografía de la articulación contribuye a una duración significativamente grande de la intervención. Hay necesidad todavía de tocar individualmente múltiples puntos en el fémur y la tibia para permitir que el ordenador visualice la topografía de la rodilla. El tiempo para la transmisión de información desde los sensores hasta el receptor causa también un retardo potencial. Por tanto, sería deseable reducir o eliminar cada uno de estos problemas.
La figura 23 ilustra unos sensores 6 incrustados en el fémur y la tibia, y la figura 24 ilustra unos sensores 6 instalados en la rótula. Los ligamentos mostrados incluyen el ligamento colateral medial, el ligamento colateral lateral, el ligamento cruzado anterior y el ligamento cruzado posterior. Los sensores 6 se implantan antes de la cirugía por vía percutánea y/o artroscópica o intraoperatoria mediante cirugía abierta. La figura 25 representa un ligamento o un tendón, la figura 26 representa una abrazadera de sensores con un mango de compresión y liberación, la figura 27 representa el despliegue del sensor y la figura 28 revela los sensores desplegados en el ligamento. Como se muestra en los pasos ilustrados por las figuras 25 a 28, los sensores pueden incrustarse en los ligamentos (la figura 25 ilustra un ejemplo de ligamento) habilitando una abrazadera de sensores (figura 26) que se coloca alrededor del ligamento (figura 27) y asegura los sensores al mismo según se muestra en la figura 28. Estos pueden incrustarse también en el hueso, como se muestra más adelante en la figura 33. Se pueden utilizar técnicas de radiografía estándar para guiar el ángulo y la profundidad del despliegue.
Un sistema de cánula ultrasónica 180 permite una visualización externa no radiante de la colocación de los sensores según se muestra en la figura 29. La cánula 181 aloja el transmisor 182 y el receptor 183. Se posiciona entonces óptimamente el sensor de despliegue 184 para su inserción. El brazo ultrasónico podría utilizarse entonces para obtener una rápida topografía de la superficie y la profundidad de la articulación. El insertador ultrasónico envía
ondas de energía a los múltiples sensores incrustados 7, que las reflejan de uno a otro y de vuelta al transmisor ultrasónico, como se muestra en la figura 17. La figura 17 ilustra los sensores ultrasónicos 7 utilizando técnicas de reflexión con la onda sonora. Las ondas sonoras se reflejan desde el extremo del hueso y los sensores incrustados 7 volviendo al receptor del insertador ultrasónico. El receptor detecta las ondas sonoras reflejadas y activa la salida del sensor hacia una pantalla de ordenador para su visualización, como se muestra en la figura 18.
La onda ultrasónica exhibe también un haz pasante hacia la tibia. Por tanto, el transmisor irradia la onda ultrasónica hacia un receptor separado 190. El fémur/tibia desvía el haz de radiación disparando la salida del receptor. La capacidad añadida de los sensores incrustados 7 para reflejar continuamente el haz ultrasónico hacia la red de sensores 7 permite una información tridimensional precisa. El sensor 7 está programado para compensar superficies irregulares y temperaturas variables de la superficie. La medición del hueso se basa en el procesamiento de las señales ultrasónicas recibidas. La velocidad del sonido y la velocidad ultrasónica proporcionan ambas unas mediciones sobre la base de lo rápidamente que la onda ultrasónica se propaga a través del hueso y el tejido blando. Estas medidas características permiten la creación de una geometría tridimensional rápida, cuya información puede ser enviada externamente al sistema de ordenador que permitirá la integración de la prótesis, según se muestra en la figura 18.
Para que el sistema sensor obtenga la información necesaria relativa a la topografía espacial tridimensional de la articulación, es necesario implantar un mínimo de tres sensores en cada hueso que sea parte integrante de la articulación. El despliegue del sensor puede efectuarse con una sola cánula (figura 30) dotada de uno o varios sensores (figura 31) o con una cánula de despliegue de múltiples sensores (figura 32). El sensor tendría un trocar calibrado que penetraría en la piel, el músculo, el ligamento, el tendón, el cartílago y el hueso. La figura 33 ilustra el despliegue de los sensores en una cirugía de rodilla abierta en la que se ha excluido el tejido blando y se han hecho los cortes en el cartílago y en el hueso. Un mango 190 aloja un émbolo 191 que controla la profundidad de despliegue del sensor. Véanse las figuras 34 a 37. La profundidad mínima viene determinada por la cantidad de cartílago y hueso que se debe cortar para la implantación de la prótesis o el implante. Por ejemplo, en el fémur y la tibia se corta un mínimo de 10 a 15 milímetros. Se despliega el sensor profundamente con respecto a ese corte a fin de que no sea desalojado durante la intervención y pueda ser utilizado en el período postoperatorio. La punta del trocar alojaría los elementos del sensor (figura 34) y, al alcanzar la profundidad de despliegue deseada, se inserta el sensor 8 por liberación del mecanismo de bloqueo (figura 19), que puede ser un tornillo, una junta del tipo de girar para desbloquear, un dispositivo de arranque o cualquier otro mecanismo de desacoplamiento.
Una vez que se ha insertado el sistema sensor, la onda de energía externa que se utilizará puede ser ultrasónica o electromagnética. Por tanto, se podría evitar el uso del método de la matriz óptica. La deflexión de la energía a través de los diversos medios (cartílago y hueso) y el elemento de tiempo de la onda de energía son recibidos por los sensores 8 y/o reflejados de vuelta al receptor externo. Al tener los diversos sensores 8, se representa un modelo tridimensional. Esto permite que el cirujano incruste los sensores (figura 33), los utilice durante la cirugía (figuras 18 a 22) y luego los deje implantados para que sean utilizados después de la cirugía (figuras 12 y 13). Por consiguiente, la velocidad de transmisión de información sería incrementada en gran medida y procesada.
Las figuras 23 y 24 ilustran algunos elementos del tejido blando de la articulación de rodilla. El ACL, el PCL, el ligamento colateral medial y el ligamento colateral lateral son importantes para equilibrar una articulación de rodilla durante la cirugía. Los sensores se incrustan en el ligamento de un tendón mediante un mecanismo de pinza (véanse las figuras 25 a 28). La información es recibida y procesada por un sistema de software que está integrado en el dispositivo de cirugía de articulación asistido por ordenador y presenta un análogo visual de una articulación intraoperatoria (figura 22). Se evalúan la tensión, la presión, la cizalladura, etc. del ligamento. Una rejilla de equilibrado de tejido blando ayuda a los cirujanos a aproximarse con respecto a liberaciones de tejido blando y a rotación de componentes.
La figura 38 ilustra un sistema sensor similar en la cadera. El insertador es similar a un insertador de un solo sensor como se muestra en la figura 38 o puede modificarse como se muestra en la figura 38. El insertador está configurado como un escariador acetabular canulado que se utiliza en cirugía de cadera estándar. El mango 200 estabiliza el constructo y los sensores 8 son desplegados presionando un émbolo contenido en el mango 200. La figura 40 ilustra un insertador de sensor de copa. Los agujeros canulados permiten el despliegue del sensor 9. El constructo puede modificarse de manera similar a la figura 29 para que incluya un componente ultrasónico que ayude a visualizar la anatomía.
Las figuras 34 a 37 ilustran el desarrollo de insertadores "inteligentes" e instrumentos "inteligentes". El mango 210 del insertador/instrumento aloja una matriz de sensores 8 para ayudar al corte preciso del hueso (figura 36) y también a la inserción de la prótesis y los sensores (figuras 35 y 37). Estos sensores 8 son identificados espacialmente por el transductor y receptor ultrasónicos/electromagnéticos para permitir una confirmación de que se preparó apropiadamente la interfaz implante/hueso y de que se insertó el implante con la profundidad y ángulo apropiados. Se podría testar entonces la estabilidad de un componente cementado o ajustado a presión. Los sensores implantados sobre la prótesis en el momento de la cirugía o antes de la cirugía permiten también una inserción y orientación de precisión de la prótesis. Se realiza también una evaluación postoperatoria del
implante.
La figura 39 ilustra la inserción de los sensores 8 en el fémur. El sensor 8 puede desplegarse de fuera a dentro o de dentro a fuera o incorporarse en el centralizador distal de la prótesis y/o en el restrictor del canal.
La figura 41 ilustra la vista lateral de dos segmentos espinales. Se muestra el insertador de sensores de una manera percutánea desplegando el sensor en el cuerpo vertebral. La figura 42 ilustra una vista axial de un nivel vertebral. El sensor 9 se implanta a través del pedículo, el cual ha sido preparado para la instrumentación.
El sistema sensor implantado después de la inserción de la prótesis se ilustra en la figura 12, que es una vista anterior de la prótesis y que muestra la articulación de la rodilla, las prótesis femoral y tibial, el implante de polietileno y los sensores incrustados. La figura 13 ilustra una vista lateral de una articulación de rodilla con la prótesis implantada con sistema sensor. La figura 14 ilustra una prótesis de cadera total con el sistema sensor incrustado. La figura 15 ilustra una vista lateral de los sensores incrustados dentro de dos segmentos de las vértebras y un implante. La figura 16 ilustra un sistema sensor dentro de un cuerpo vertebral con una vista superior (axial) de una prótesis/implante.
El sistema sensor de la presente invención puede utilizarse preoperatoriamente para seguir la progresión de la patología de la articulación y las diferentes intervenciones de tratamiento. El sistema puede utilizarse intraoperatoriamente para ayudar a la implantación de la prótesis/instrumentación/hardware. En la espina dorsal se pueden evaluar los efectos sobre los elementos neurales, así como los cambios vasculares durante la cirugía, especialmente una cirugía correctora. Los sensores pueden utilizarse después postoperatoriamente para evaluar cambios con el tiempo y cambios dinámicos. Los sensores son activados intraoperatoriamente y se almacenan las lecturas de parámetros. Inmediatamente después de la operación se activa el sensor y se conoce una línea base.
Los sensores pueden alimentarse con pilas internas o con medidas externas. Se podría evaluar un paciente en la cama durante la noche con un sistema de activación sin contacto que pueda utilizar una frecuencia de radio o energía electromagnética/ultrasónica. La señal de energía del sistema sensor puede penetrar en la cama, activar los sensores y transmitirse a un receptor que puede estar fijado también a la cama. Los sensores pueden ser "actualizados" a lo largo del tiempo (por ejemplo, con refuerzos de software apropiados) para evaluar diversos parámetros. Los sensores pueden ser modificados por un dispositivo externo, tal como una unidad de memoria flash. Por ejemplo, un juego de sensores incrustados pueden monitorizar la progresión de una fusión espinal que está instrumentada. Una vez que se confirme un parámetro dado, se pueden reprogramar los mismos sensores para monitorizar los segmentos espinales adyacentes a fin de predecir un esfuerzo incrementado y finalmente una subluxación de un nivel adyacente.
Otra característica del sistema sensor es que puede girar a través de una serie de parámetros de sensor durante un período de evaluación. Un ejemplo de tal rotación puede ser la evaluación de la densidad ósea mientras duerme el paciente, y, después de esto, una evaluación de la viscosidad del fluido vascular de la articulación y de las superficies de apoyo. Tal evaluación puede tener lugar en una secuencia de tiempo fija a intervalos específicos o aleatoriamente, según se desee. La información puede ser enviada telemétricamente al proveedor de asistencia sanitaria por medio de dispositivos telefónicos corrientes. Asimismo, el paciente puede ser evaluado en la consulta del doctor con un activador de sensor externo. El paciente podría pasar luego por una serie de movimientos que le permitan al médico evaluar el funcionamiento del implante, incluyendo parámetros tales como carga, par de torsión, movimiento, estabilidad, etc.
El sistema de software aloja la información del sensor en una rejilla que permite comparaciones a intervalos. El médico evalúa entonces los datos y se iluminan las funciones que caigan fuera de las desviaciones estándar, siendo sometidos estos parámetros a una evaluación adicional.
Aun cuando estos sistemas sensores se discuten aquí principalmente con respecto a la rodilla, la cadera y la espina dorsal, estos sistemas pueden aplicarse a cualquiera de los sistemas del esqueleto del cuerpo.
El uso del sistema se ha explicado en la descripción de la presente invención para un sistema sensor musculoesquelético. Sin embargo, es de hacer notar que la presente invención no queda limitada de esta manera. El dispositivo según la invención puede utilizarse con cualquier necesidad.
Claims (2)
- REIVINDICACIONES1. Un sistema para evaluar la densidad ósea, que comprende:al menos dos sensores biométricos (1-9) para uso en implantes espinales en al menos una vértebra (10, 20; 110, 120) de una espina dorsal, en donde los al menos dos sensores biométricos (1-9) están adaptados para medir al 5 menos un parámetro biométrico en un entorno adyacente utilizando ondas de energía ultrasónica transmitidas y recibidas entre los al menos dos sensores biométricos (1-9); yen donde cada sensor biométrico (1-9) está adaptado para enviar ondas de energía vibratoria que pueden imitar la carga sobre un hueso para el tratamiento de fracturas y fusiones espinales.
- 2. El sistema según la reivindicación 1, que comprende además: 10 un receptor externo;en donde los al menos dos sensores biométricos (1-9) comprenden unos medios para transmitir al receptor externo datos relativos al al menos un parámetro biométrico; y en donde el receptor externo comprende unos medios para analizar los datos a fin de evaluar la densidad óseacalcánea de la al menos una vértebra (10, 20; 110, 120).
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66579705P | 2005-03-29 | 2005-03-29 | |
US665797P | 2005-03-29 | ||
US76376106P | 2006-02-01 | 2006-02-01 | |
US76386906P | 2006-02-01 | 2006-02-01 | |
US763869P | 2006-02-01 | ||
US763761P | 2006-02-01 | ||
PCT/US2006/011300 WO2006105098A2 (en) | 2005-03-29 | 2006-03-29 | Body parameter detecting sensor and method for detecting body parameters |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2428639T3 true ES2428639T3 (es) | 2013-11-08 |
Family
ID=37054017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES06748811T Active ES2428639T3 (es) | 2005-03-29 | 2006-03-29 | Sensor de detección de parámetros corporales y método para detectar parámetros corporales |
Country Status (13)
Country | Link |
---|---|
US (7) | US7918887B2 (es) |
EP (4) | EP2510874A3 (es) |
JP (2) | JP2008534140A (es) |
KR (2) | KR101301862B1 (es) |
CN (1) | CN104887235B (es) |
AU (1) | AU2006230176B2 (es) |
CA (1) | CA2600613C (es) |
DK (1) | DK1868498T3 (es) |
ES (1) | ES2428639T3 (es) |
GB (1) | GB2440059A (es) |
PL (1) | PL1868498T3 (es) |
RU (4) | RU2011137826A (es) |
WO (1) | WO2006105098A2 (es) |
Families Citing this family (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110213221A1 (en) * | 2005-03-29 | 2011-09-01 | Roche Martin W | Method for Detecting Body Parameters |
US20100204551A1 (en) * | 2008-10-22 | 2010-08-12 | Martin William Roche | Detection, Prevention and Treatment of Infections in Implantable Devices |
US20100100011A1 (en) * | 2008-10-22 | 2010-04-22 | Martin Roche | System and Method for Orthopedic Alignment and Measurement |
US8095198B2 (en) * | 2006-01-31 | 2012-01-10 | Warsaw Orthopedic. Inc. | Methods for detecting osteolytic conditions in the body |
WO2007090159A1 (en) * | 2006-01-31 | 2007-08-09 | Medtronic, Inc. | Implantable sensor |
US8078282B2 (en) | 2006-02-01 | 2011-12-13 | Warsaw Orthopedic, Inc | Implantable tissue growth stimulator |
US20070238992A1 (en) * | 2006-02-01 | 2007-10-11 | Sdgi Holdings, Inc. | Implantable sensor |
US7993269B2 (en) * | 2006-02-17 | 2011-08-09 | Medtronic, Inc. | Sensor and method for spinal monitoring |
AU2006339993A1 (en) * | 2006-03-14 | 2007-09-20 | Mako Surgical Corp. | Prosthetic device and system and method for implanting prosthetic device |
US7918796B2 (en) | 2006-04-11 | 2011-04-05 | Warsaw Orthopedic, Inc. | Volumetric measurement and visual feedback of tissues |
WO2008052367A1 (en) * | 2006-10-31 | 2008-05-08 | Ao Technology Ag | Method and device for measuring the local mechanical resistance of a porous body |
US7734353B2 (en) | 2007-04-19 | 2010-06-08 | Medtronic Inc. | Controlling temperature during recharge for treatment of infection or other conditions |
US7766862B2 (en) * | 2007-04-19 | 2010-08-03 | Medtronic, Inc. | Baseline acquisition for infection monitoring |
US20080262374A1 (en) * | 2007-04-19 | 2008-10-23 | Medtronic, Inc. | Event triggered infection monitoring |
US20080262332A1 (en) * | 2007-04-19 | 2008-10-23 | Medtronic, Inc. | Infection monitoring |
US20080262331A1 (en) * | 2007-04-19 | 2008-10-23 | Medtronic, Inc. | Infection monitoring |
US7604629B2 (en) * | 2007-04-19 | 2009-10-20 | Medtronic Inc. | Multi-parameter infection monitoring |
US7682355B2 (en) | 2007-04-19 | 2010-03-23 | Medtronic, Inc. | Refined infection monitoring |
US7822465B2 (en) * | 2007-04-25 | 2010-10-26 | Warsaw Orthopedic, Inc. | Device and method for image-based device performance measurement |
US20090005708A1 (en) * | 2007-06-29 | 2009-01-01 | Johanson Norman A | Orthopaedic Implant Load Sensor And Method Of Interpreting The Same |
US8100950B2 (en) * | 2007-07-27 | 2012-01-24 | The Cleveland Clinic Foundation | Oblique lumbar interbody fusion |
US8915866B2 (en) | 2008-01-18 | 2014-12-23 | Warsaw Orthopedic, Inc. | Implantable sensor and associated methods |
US8197489B2 (en) | 2008-06-27 | 2012-06-12 | Depuy Products, Inc. | Knee ligament balancer |
JP5185713B2 (ja) * | 2008-07-11 | 2013-04-17 | 日立アロカメディカル株式会社 | 人工関節検索装置 |
US8078440B2 (en) | 2008-09-19 | 2011-12-13 | Smith & Nephew, Inc. | Operatively tuning implants for increased performance |
US8126736B2 (en) | 2009-01-23 | 2012-02-28 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
US8685093B2 (en) | 2009-01-23 | 2014-04-01 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
US20100249535A1 (en) * | 2009-03-26 | 2010-09-30 | Jay Pierce | System and method for an orthopedic dynamic data repository and registry for recall |
US8597210B2 (en) | 2009-03-31 | 2013-12-03 | Depuy (Ireland) | System and method for displaying joint force data |
US8556830B2 (en) | 2009-03-31 | 2013-10-15 | Depuy | Device and method for displaying joint force data |
US8740817B2 (en) | 2009-03-31 | 2014-06-03 | Depuy (Ireland) | Device and method for determining forces of a patient's joint |
US8721568B2 (en) | 2009-03-31 | 2014-05-13 | Depuy (Ireland) | Method for performing an orthopaedic surgical procedure |
US8551023B2 (en) | 2009-03-31 | 2013-10-08 | Depuy (Ireland) | Device and method for determining force of a knee joint |
WO2010142045A1 (en) * | 2009-06-11 | 2010-12-16 | Ao Technology Ag | Device for processing and transmitting measured signals for monitoring and/or controlling medical implants, diagnostic devices or biological processes |
US8826733B2 (en) | 2009-06-30 | 2014-09-09 | Orthosensor Inc | Sensored prosthetic component and method |
US9259179B2 (en) | 2012-02-27 | 2016-02-16 | Orthosensor Inc. | Prosthetic knee joint measurement system including energy harvesting and method therefor |
US9839390B2 (en) | 2009-06-30 | 2017-12-12 | Orthosensor Inc. | Prosthetic component having a compliant surface |
US8714009B2 (en) | 2010-06-29 | 2014-05-06 | Orthosensor Inc. | Shielded capacitor sensor system for medical applications and method |
US8701484B2 (en) | 2010-06-29 | 2014-04-22 | Orthosensor Inc. | Small form factor medical sensor structure and method therefor |
US8679186B2 (en) | 2010-06-29 | 2014-03-25 | Ortho Sensor Inc. | Hermetically sealed prosthetic component and method therefor |
US8707782B2 (en) | 2009-06-30 | 2014-04-29 | Orthosensor Inc | Prosthetic component for monitoring synovial fluid and method |
US9462964B2 (en) | 2011-09-23 | 2016-10-11 | Orthosensor Inc | Small form factor muscular-skeletal parameter measurement system |
US8421479B2 (en) | 2009-06-30 | 2013-04-16 | Navisense | Pulsed echo propagation device and method for measuring a parameter |
US8720270B2 (en) | 2010-06-29 | 2014-05-13 | Ortho Sensor Inc. | Prosthetic component for monitoring joint health |
US20100331679A1 (en) * | 2009-06-30 | 2010-12-30 | Orthosensor | Pulsed echo sensing device and method for an orthopedic joint |
US8827986B2 (en) * | 2009-10-19 | 2014-09-09 | Pharmaco-Kinesis Corporation | Remotely activated piezoelectric pump for delivery of biological agents to the intervertebral disc and spine |
FR2952518B1 (fr) * | 2009-11-13 | 2011-10-28 | Univ Paris 6 Pierre Et Marie Curie | Dispositif de mesure d'une activite de la moelle epiniere d'un vertebre |
US8376937B2 (en) * | 2010-01-28 | 2013-02-19 | Warsaw Orhtopedic, Inc. | Tissue monitoring surgical retractor system |
US20130079675A1 (en) | 2011-09-23 | 2013-03-28 | Orthosensor | Insert measuring system having an internal sensor assembly |
EP2386493B1 (de) * | 2010-05-12 | 2017-09-06 | Mondi Halle GmbH | Standbodenbeutel aus einer heißsiegelfähigen Kunststofffolie |
US20110295159A1 (en) * | 2010-05-25 | 2011-12-01 | Pharmaco-Kinesis Corporation | Method and Apparatus for an Implantable Inertial-Based Sensing System for Real-Time, In Vivo Detection of Spinal Pseudarthrosis and Adjacent Segment Motion |
US8939030B2 (en) * | 2010-06-29 | 2015-01-27 | Orthosensor Inc | Edge-detect receiver for orthopedic parameter sensing |
US9095284B2 (en) * | 2010-10-28 | 2015-08-04 | Medtronic, Inc. | Distance measurement using implantable acoustic transducers |
KR101219710B1 (ko) * | 2010-11-29 | 2013-01-08 | 광주과학기술원 | 추간판 이상 검사 프로브 및 검사 장치 |
US20140379090A1 (en) * | 2011-08-08 | 2014-12-25 | Ecole Polytechnique Federale De Lausanne (Epfl) | In-vivo condition monitoring of metallic implants by electrochemical techniques |
GB201115411D0 (en) | 2011-09-07 | 2011-10-19 | Depuy Ireland | Surgical instrument |
US9414940B2 (en) | 2011-09-23 | 2016-08-16 | Orthosensor Inc. | Sensored head for a measurement tool for the muscular-skeletal system |
US8911448B2 (en) | 2011-09-23 | 2014-12-16 | Orthosensor, Inc | Device and method for enabling an orthopedic tool for parameter measurement |
US9839374B2 (en) | 2011-09-23 | 2017-12-12 | Orthosensor Inc. | System and method for vertebral load and location sensing |
US8942662B2 (en) * | 2012-02-16 | 2015-01-27 | The United States of America, as represented by the Secretary, Department of Health and Human Services, Center for Disease Control and Prevention | System and method to predict and avoid musculoskeletal injuries |
US9844335B2 (en) | 2012-02-27 | 2017-12-19 | Orthosensor Inc | Measurement device for the muscular-skeletal system having load distribution plates |
US9271675B2 (en) | 2012-02-27 | 2016-03-01 | Orthosensor Inc. | Muscular-skeletal joint stability detection and method therefor |
US9622701B2 (en) | 2012-02-27 | 2017-04-18 | Orthosensor Inc | Muscular-skeletal joint stability detection and method therefor |
US9381011B2 (en) | 2012-03-29 | 2016-07-05 | Depuy (Ireland) | Orthopedic surgical instrument for knee surgery |
US9545459B2 (en) | 2012-03-31 | 2017-01-17 | Depuy Ireland Unlimited Company | Container for surgical instruments and system including same |
US10098761B2 (en) | 2012-03-31 | 2018-10-16 | DePuy Synthes Products, Inc. | System and method for validating an orthopaedic surgical plan |
US10070973B2 (en) | 2012-03-31 | 2018-09-11 | Depuy Ireland Unlimited Company | Orthopaedic sensor module and system for determining joint forces of a patient's knee joint |
US10206792B2 (en) | 2012-03-31 | 2019-02-19 | Depuy Ireland Unlimited Company | Orthopaedic surgical system for determining joint forces of a patients knee joint |
AU2013262624B2 (en) | 2012-05-18 | 2018-03-01 | OrthAlign, Inc. | Devices and methods for knee arthroplasty |
US9237885B2 (en) | 2012-11-09 | 2016-01-19 | Orthosensor Inc. | Muscular-skeletal tracking system and method |
US9241742B2 (en) | 2013-03-14 | 2016-01-26 | DePuy Synthes Products, Inc. | Methods and devices for polyaxial screw alignment |
CN110882094A (zh) | 2013-03-15 | 2020-03-17 | 威廉·L·亨特 | 监测髋部置换物的装置、系统及方法 |
US11793424B2 (en) * | 2013-03-18 | 2023-10-24 | Orthosensor, Inc. | Kinetic assessment and alignment of the muscular-skeletal system and method therefor |
US9265447B2 (en) | 2013-03-18 | 2016-02-23 | Orthosensor Inc. | System for surgical information and feedback display |
US10299719B2 (en) | 2013-04-11 | 2019-05-28 | Ohio University | Systems and methods for establishing the stiffness of a bone using mechanical response tissue analysis |
US20160192878A1 (en) * | 2013-06-23 | 2016-07-07 | William L. Hunter | Devices, systems and methods for monitoring knee replacements |
FR3010628B1 (fr) | 2013-09-18 | 2015-10-16 | Medicrea International | Procede permettant de realiser la courbure ideale d'une tige d'un materiel d'osteosynthese vertebrale destinee a etayer la colonne vertebrale d'un patient |
FR3012030B1 (fr) | 2013-10-18 | 2015-12-25 | Medicrea International | Procede permettant de realiser la courbure ideale d'une tige d'un materiel d'osteosynthese vertebrale destinee a etayer la colonne vertebrale d'un patient |
US20150238691A1 (en) * | 2014-02-25 | 2015-08-27 | Elwha Llc | Control systems for release of medication responsive to joint activity |
WO2015200718A1 (en) | 2014-06-25 | 2015-12-30 | Hunter William L | Devices, systems and methods for using and monitoring tubes in body passageways |
EP4449979A2 (en) | 2014-06-25 | 2024-10-23 | Canary Medical Switzerland AG | Devices, systems and methods for using and monitoring implants |
WO2015200722A2 (en) | 2014-06-25 | 2015-12-30 | Parker, David, W. | Devices, systems and methods for using and monitoring orthopedic hardware |
US9993177B2 (en) | 2014-08-28 | 2018-06-12 | DePuy Synthes Products, Inc. | Systems and methods for intraoperatively measuring anatomical orientation |
CN112190236A (zh) | 2014-09-17 | 2021-01-08 | 卡纳里医疗公司 | 用于使用和监测医疗设备的设备、系统和方法 |
CN105212951B (zh) * | 2015-10-15 | 2017-10-20 | 中国人民解放军第二军医大学 | 脊柱在体生物力学测量装置 |
TWI547258B (zh) * | 2015-10-23 | 2016-09-01 | 國立交通大學 | 感測式骨頭固定元件 |
WO2017079655A2 (en) | 2015-11-04 | 2017-05-11 | Mcafee Paul C | Methods and apparatus for spinal reconstructive surgery and measuring spinal length and intervertebral spacing, tension and rotation |
AU2016366167A1 (en) | 2015-12-08 | 2018-07-12 | Kneevoice, Inc. | Assessing joint condition using acoustic sensors |
US9633538B1 (en) | 2015-12-09 | 2017-04-25 | International Business Machines Corporation | System and method for wearable indication of personal risk within a workplace |
US9691262B1 (en) | 2015-12-17 | 2017-06-27 | International Business Machines Corporation | Informing first responders based on incident detection, and automatic reporting of individual location and equipment state |
US10643447B2 (en) | 2015-12-29 | 2020-05-05 | International Business Machines Corporation | Predicting harmful chemical exposures and implementing corrective actions prior to overexposure |
US9848269B2 (en) | 2015-12-29 | 2017-12-19 | International Business Machines Corporation | Predicting harmful noise events and implementing corrective actions prior to noise induced hearing loss |
US9554411B1 (en) | 2015-12-30 | 2017-01-24 | DePuy Synthes Products, Inc. | Systems and methods for wirelessly powering or communicating with sterile-packed devices |
US10762460B2 (en) | 2015-12-30 | 2020-09-01 | International Business Machines Corporation | Predictive alerts for individual risk of injury with ameliorative actions |
US10335241B2 (en) | 2015-12-30 | 2019-07-02 | DePuy Synthes Products, Inc. | Method and apparatus for intraoperative measurements of anatomical orientation |
WO2017139556A1 (en) | 2016-02-12 | 2017-08-17 | Medos International Sarl | Systems and methods for intraoperatively measuring anatomical orientation |
US11191479B2 (en) | 2016-03-23 | 2021-12-07 | Canary Medical Inc. | Implantable reporting processor for an alert implant |
WO2017165717A1 (en) | 2016-03-23 | 2017-09-28 | Canary Medical Inc. | Implantable reporting processor for an alert implant |
US10912648B2 (en) | 2016-08-30 | 2021-02-09 | Longeviti Neuro Solutions Llc | Method for manufacturing a low-profile intercranial device and the low-profile intercranial device manufactured thereby |
US10820835B2 (en) | 2016-09-12 | 2020-11-03 | Medos International Sarl | Systems and methods for anatomical alignment |
WO2018109556A1 (en) | 2016-12-12 | 2018-06-21 | Medicrea International | Systems and methods for patient-specific spinal implants |
US10657338B2 (en) | 2017-01-16 | 2020-05-19 | Neva Electromagnetics, LLC | Microwave antenna array and testbed for osteoporosis detection |
US10863995B2 (en) | 2017-03-14 | 2020-12-15 | OrthAlign, Inc. | Soft tissue measurement and balancing systems and methods |
US11089975B2 (en) | 2017-03-31 | 2021-08-17 | DePuy Synthes Products, Inc. | Systems, devices and methods for enhancing operative accuracy using inertial measurement units |
JP7165668B2 (ja) | 2017-04-21 | 2022-11-04 | メディクレア インターナショナル | 1種または複数の患者特異的脊椎インプラントを開発するためのシステム |
EP3406185B1 (en) | 2017-05-22 | 2021-02-24 | Vestel Elektronik Sanayi ve Ticaret A.S. | Implantable medical device and intra-bone wireless communication system and methods |
US11419541B2 (en) | 2017-05-31 | 2022-08-23 | Ohio University | Systems and methods for patient specific modeling of the mechanical properties of bone |
BR112020002311A2 (pt) * | 2017-08-07 | 2020-09-08 | DePuy Synthes Products, Inc. | sensores implantáveis no corpo de um paciente, sistemas e métodos de uso dos mesmos |
AU2018332792B2 (en) | 2017-09-14 | 2024-07-25 | Howmedica Osteonics Corp. | Non-symmetrical insert sensing system and method therefor |
EP3682842B1 (en) * | 2017-09-14 | 2024-05-01 | Keio University | Implant installation strength evaluation method, implant installation strength evaluation device, and program |
US20190117285A1 (en) * | 2017-10-24 | 2019-04-25 | Hae Sun Paik | Checking apparatus for bone conglutination |
US10918333B2 (en) * | 2017-11-30 | 2021-02-16 | Bruin Biometrics, Llc | Implant evaluation using acoustic emissions |
US10918422B2 (en) | 2017-12-01 | 2021-02-16 | Medicrea International | Method and apparatus for inhibiting proximal junctional failure |
KR101884226B1 (ko) * | 2017-12-29 | 2018-08-02 | 신종환 | 골이식 대체재를 이용한 생체신호 검출장치 |
US11589992B2 (en) | 2018-01-09 | 2023-02-28 | Longeviti Neuro Solutions Llc | Universal low-profile intercranial assembly |
US11101554B2 (en) | 2018-01-16 | 2021-08-24 | Neva Electromagnetics, LLC | Dual antiphase antenna for better signal transmission into human body or signal reception from human body |
WO2019147608A1 (en) * | 2018-01-24 | 2019-08-01 | Ohio University | Methods for establishing the stiffness of a bone using mechanical response tissue analysis |
DE102018204949A1 (de) * | 2018-03-30 | 2019-10-02 | Bernhard Clasbrummel | Implantat und Verfahren zur Diagnose und/oder Behandlung entzündlicher Gewebezustände |
US11135066B2 (en) | 2018-04-23 | 2021-10-05 | Medos International Sarl | Mechanical fuse for surgical implants and related methods |
US11278238B2 (en) | 2018-09-14 | 2022-03-22 | Warsaw Orthopedic, Inc. | Wearable sensor device and analysis platform for objective outcome assessment in spinal diseases |
CN109009225A (zh) * | 2018-07-25 | 2018-12-18 | 中国科学院苏州生物医学工程技术研究所 | 骨骼检测方法、装置及骨密度仪 |
US11998456B2 (en) | 2018-10-05 | 2024-06-04 | Exactech, Inc. | Shoulder joint implant selection system |
AU2019354780A1 (en) | 2018-10-05 | 2021-04-22 | Howmedica Osteonics Corp. | A measurement system configured to support installation of a ball and socket joint and method therefor |
US11992424B2 (en) | 2018-10-05 | 2024-05-28 | Howmedica Osteonics Corp. | Measurement system for a selection of at least one prosthetic component of a shoulder joint during surgery |
US11877801B2 (en) | 2019-04-02 | 2024-01-23 | Medicrea International | Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures |
US11925417B2 (en) | 2019-04-02 | 2024-03-12 | Medicrea International | Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures |
US11937896B1 (en) * | 2019-05-10 | 2024-03-26 | Smith & Nephew, Inc. | Orthopedic implants with improved sensors |
US11723594B2 (en) | 2019-06-28 | 2023-08-15 | Orthosensor Inc. | Wireless system to power a low current device |
CN110742614B (zh) * | 2019-09-26 | 2023-05-16 | 南京林业大学 | 一种卧姿脊柱形态测试仪 |
JP7342140B2 (ja) * | 2019-09-27 | 2023-09-11 | 富士フイルム株式会社 | 情報処理装置、情報処理方法およびプログラム |
US11812978B2 (en) | 2019-10-15 | 2023-11-14 | Orthosensor Inc. | Knee balancing system using patient specific instruments |
US11769251B2 (en) | 2019-12-26 | 2023-09-26 | Medicrea International | Systems and methods for medical image analysis |
US20230346440A1 (en) * | 2020-02-20 | 2023-11-02 | Canary Medical Switzerland Ag | Medical device for implanting in boney tissue and characterization of bone fractures |
US20230157756A1 (en) * | 2020-05-04 | 2023-05-25 | Howmedica Osteonics Corp. | Surgical system for revision orthopedic surgical procedures |
DE202020103194U1 (de) * | 2020-06-03 | 2020-06-29 | Bornemann Gewindetechnik GmbH & Co. KG | Verbesserte Baugruppe mit Helixform und Anlage umfassend die verbesserte Baugruppe |
US20230233229A1 (en) * | 2020-06-26 | 2023-07-27 | Prometheus Regeneration R&D Limited | Intraosseous Implantable Microsensors and Methods of Use |
EP4104895A1 (en) | 2021-06-14 | 2022-12-21 | Instituto Politécnico De Leiria | Intelligent biomimetic biodevice and use thereof |
CN115211900A (zh) * | 2022-07-12 | 2022-10-21 | 北京易迈医疗科技有限公司 | 一种关节置换术的植入物嵌入式监测系统及方法 |
Family Cites Families (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146022A (en) * | 1977-11-16 | 1979-03-27 | Ronald A. Johnson | Fracture fixation by cerclage utilizing cortical bone tack and pull-out tension device |
JPS62117553A (ja) * | 1985-11-16 | 1987-05-29 | 肥後 矢吉 | 機能評価装置 |
JPH01299537A (ja) * | 1988-05-27 | 1989-12-04 | Agency Of Ind Science & Technol | 音響特性測定装置及び測温装置 |
US5197488A (en) | 1991-04-05 | 1993-03-30 | N. K. Biotechnical Engineering Co. | Knee joint load measuring instrument and joint prosthesis |
US5470354A (en) | 1991-11-12 | 1995-11-28 | Biomet Inc. | Force sensing apparatus and method for orthopaedic joint reconstruction |
US5425775A (en) | 1992-06-23 | 1995-06-20 | N.K. Biotechnical Engineering Company | Method for measuring patellofemoral forces |
US5445642A (en) | 1992-09-01 | 1995-08-29 | Depuy Inc. | Method for installing a femoral component |
US5456724A (en) | 1993-12-15 | 1995-10-10 | Industrial Technology Research Institute | Load sensor for bone graft |
US5524624A (en) | 1994-05-05 | 1996-06-11 | Amei Technologies Inc. | Apparatus and method for stimulating tissue growth with ultrasound |
FR2729844B1 (fr) | 1995-01-26 | 1997-11-28 | Sabin Pierre Jean Claude | Ensemble d'appareillage medical a implant permettant des connexions electriques a travers la peau |
US5676784A (en) | 1995-03-15 | 1997-10-14 | Abbott Laboratories | Method of fabricating a heater coil for a catheter used to monitor cardiac output |
US5756145A (en) | 1995-11-08 | 1998-05-26 | Baylor College Of Medicine | Durable, Resilient and effective antimicrobial coating for medical devices and method of coating therefor |
US5682886A (en) | 1995-12-26 | 1997-11-04 | Musculographics Inc | Computer-assisted surgical system |
ES2112203B1 (es) | 1996-01-24 | 1999-01-01 | Querol Luis Maria Ilzarbe | Dispositivo para medir la temperatura en el proceso de fresado en implantologia quirurgica. |
US5683396A (en) | 1996-02-20 | 1997-11-04 | Smith & Nephew, Inc. | Orthopaedic cutting instrumentation with cam locking arrangement |
US5702429A (en) | 1996-04-04 | 1997-12-30 | Medtronic, Inc. | Neural stimulation techniques with feedback |
CA2267353A1 (en) * | 1996-09-27 | 1998-04-02 | Metra Biosystems, Inc. | Ultrasonic waveform assay for bone assessment using values mapped over a region |
US6090114A (en) | 1997-02-10 | 2000-07-18 | Stryker Howmedica Osteonics Corp. | Tibial plateau resection guide |
US6228089B1 (en) | 1997-12-19 | 2001-05-08 | Depuy International Limited | Device for positioning and guiding a surgical instrument during orthopaedic interventions |
US6585649B1 (en) * | 1998-05-02 | 2003-07-01 | John D. Mendlein | Methods and devices for improving ultrasonic measurements using multiple angle interrogation |
US6493588B1 (en) | 1998-03-18 | 2002-12-10 | Mmc/Gatx Partnership No. 1 | Electro-nerve stimulator systems and methods |
US6014588A (en) | 1998-04-07 | 2000-01-11 | Fitz; William R. | Facet joint pain relief method and apparatus |
US6582365B1 (en) * | 1998-07-09 | 2003-06-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Advanced sensor systems for biotelemetry |
US6304766B1 (en) * | 1998-08-26 | 2001-10-16 | Sensors For Medicine And Science | Optical-based sensing devices, especially for in-situ sensing in humans |
US6126693A (en) * | 1998-09-18 | 2000-10-03 | Depuy Orthopaedics, Inc. | Tapped box femoral stem attachment for a modular knee prosthesis |
PT1117328E (pt) * | 1998-09-30 | 2008-12-02 | Univ North Carolina State | Métodos, sistemas e dispositivos implantáveis associados para monitorização dinâmica de tumores |
US6063091A (en) | 1998-10-13 | 2000-05-16 | Stryker Technologies Corporation | Methods and tools for tibial intermedullary revision surgery and associated tibial components |
US6106477A (en) | 1998-12-28 | 2000-08-22 | Medtronic, Inc. | Chronically implantable blood vessel cuff with sensor |
WO2000038570A1 (en) * | 1998-12-31 | 2000-07-06 | Ball Semiconductor, Inc. | Miniature implanted orthopedic sensors |
US6143035A (en) * | 1999-01-28 | 2000-11-07 | Depuy Orthopaedics, Inc. | Implanted bone stimulator and prosthesis system and method of enhancing bone growth |
EP1253854A4 (en) * | 1999-03-07 | 2010-01-06 | Discure Ltd | METHOD AND APPARATUS FOR COMPUTERIZED SURGERY |
US6470207B1 (en) | 1999-03-23 | 2002-10-22 | Surgical Navigation Technologies, Inc. | Navigational guidance via computer-assisted fluoroscopic imaging |
US7080554B2 (en) | 1999-04-28 | 2006-07-25 | Nexense Ltd. | High-precision measuring method and apparatus |
IL129651A (en) | 1999-04-28 | 2004-08-31 | Nexense Ltd | High-precision measuring method and apparatus |
US6984993B2 (en) | 1999-04-28 | 2006-01-10 | Nexense Ltd. | Method and apparatus for making high-precision measurements |
US6505075B1 (en) | 1999-05-29 | 2003-01-07 | Richard L. Weiner | Peripheral nerve stimulation method |
US6371123B1 (en) | 1999-06-11 | 2002-04-16 | Izex Technology, Inc. | System for orthopedic treatment protocol and method of use thereof |
US6347245B1 (en) * | 1999-07-14 | 2002-02-12 | Medtronic, Inc. | Medical device ECG marker for use in compressed data system |
US7366562B2 (en) | 2003-10-17 | 2008-04-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US6573706B2 (en) | 1999-11-18 | 2003-06-03 | Intellijoint Systems Ltd. | Method and apparatus for distance based detection of wear and the like in joints |
US6245109B1 (en) * | 1999-11-18 | 2001-06-12 | Intellijoint Systems, Ltd. | Artificial joint system and method utilizing same for monitoring wear and displacement of artificial joint members |
WO2001037733A2 (en) * | 1999-11-23 | 2001-05-31 | Noveon Ip Holdings Corp. | Implant loosening and fracture healing evaluation apparatus and method |
ATE345760T1 (de) | 1999-12-29 | 2006-12-15 | Hill Rom Services Inc | Krankenbett |
US6701174B1 (en) | 2000-04-07 | 2004-03-02 | Carnegie Mellon University | Computer-aided bone distraction |
US6535756B1 (en) | 2000-04-07 | 2003-03-18 | Surgical Navigation Technologies, Inc. | Trajectory storage apparatus and method for surgical navigation system |
DE10018654A1 (de) * | 2000-04-14 | 2001-12-13 | Jacek Czernicki | Verfahren und Vorrichtung zur Ermittlung des anatomischen Zustands eines Menschen oder eines Tieres, insbesondere zur Diagnose von Osteoporose |
US6656135B2 (en) * | 2000-05-01 | 2003-12-02 | Southwest Research Institute | Passive and wireless displacement measuring device |
US20020010390A1 (en) * | 2000-05-10 | 2002-01-24 | Guice David Lehmann | Method and system for monitoring the health and status of livestock and other animals |
US7018416B2 (en) | 2000-07-06 | 2006-03-28 | Zimmer Spine, Inc. | Bone implants and methods |
US6706005B2 (en) | 2000-08-25 | 2004-03-16 | The Cleveland Clinic Foundation | Apparatus and method for assessing loads on adjacent bones |
WO2002060380A2 (en) * | 2000-10-26 | 2002-08-08 | Healthetec, Inc. | Ultrasonic monitoring of bone density with diet feedback |
US20020107537A1 (en) | 2000-12-12 | 2002-08-08 | Lucia Singh | Metal breath freshening device |
US6558391B2 (en) | 2000-12-23 | 2003-05-06 | Stryker Technologies Corporation | Methods and tools for femoral resection in primary knee surgery |
EP1349492A2 (en) * | 2001-01-04 | 2003-10-08 | Medtronic, Inc. | Implantable medical device with sensor |
US7547307B2 (en) | 2001-02-27 | 2009-06-16 | Smith & Nephew, Inc. | Computer assisted knee arthroplasty instrumentation, systems, and processes |
US20020161304A1 (en) | 2001-04-30 | 2002-10-31 | Eide Per Kristian | Monitoring pressure in a body cavity |
WO2002098271A2 (en) * | 2001-06-05 | 2002-12-12 | Barnev Ltd. | Birth monitoring system |
WO2002098296A1 (en) * | 2001-06-05 | 2002-12-12 | Apex Medical, Inc. | Pressure sensing endograft |
US6589591B1 (en) | 2001-07-10 | 2003-07-08 | Baylor College Of Medicine | Method for treating medical devices using glycerol and an antimicrobial agent |
US20050203578A1 (en) | 2001-08-15 | 2005-09-15 | Weiner Michael L. | Process and apparatus for treating biological organisms |
EP1443859A4 (en) | 2001-10-24 | 2006-03-22 | Cutting Edge Surgical Inc | USE OF INTRAOSOUS ULTRASOUND DURING A SURGICAL IMPLANTATION |
US6645214B2 (en) | 2001-11-12 | 2003-11-11 | Depuy Orthopaedics, Inc. | Apparatus and method for bone positioning |
US6791545B2 (en) * | 2001-12-11 | 2004-09-14 | Lecroy Corporation | Measurement icons for digital oscilloscopes |
AU2003218010A1 (en) | 2002-03-06 | 2003-09-22 | Z-Kat, Inc. | System and method for using a haptic device in combination with a computer-assisted surgery system |
US8010180B2 (en) | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
EP1487385A2 (en) * | 2002-03-19 | 2004-12-22 | The Board of Trustees for the University of Illinois | System and method for prosthetic fitting and balancing in joints |
US6758850B2 (en) | 2002-03-29 | 2004-07-06 | Depuy Orthopaedics, Inc. | Instruments and methods for flexion gap adjustment |
US6638228B1 (en) * | 2002-04-26 | 2003-10-28 | Koninklijke Philips Electronics N.V. | Contrast-agent enhanced color-flow imaging |
US8996090B2 (en) | 2002-06-03 | 2015-03-31 | Exostat Medical, Inc. | Noninvasive detection of a physiologic parameter within a body tissue of a patient |
US7025778B2 (en) * | 2002-06-07 | 2006-04-11 | Endovascular Technologies, Inc. | Endovascular graft with pressure, temperature, flow and voltage sensors |
US6761741B2 (en) * | 2002-06-10 | 2004-07-13 | Kazuho Iesaka | Prosthetic joint |
US20060246103A1 (en) | 2002-07-22 | 2006-11-02 | Ralph James D | Implantable devices for the delivery of therapeutic agents to an orthopaedic surgical site |
US6821299B2 (en) | 2002-07-24 | 2004-11-23 | Zimmer Technology, Inc. | Implantable prosthesis for measuring six force components |
JP3910521B2 (ja) * | 2002-11-05 | 2007-04-25 | セイコーインスツル株式会社 | 血圧測定装置 |
JP4095919B2 (ja) | 2002-12-09 | 2008-06-04 | ジンマー株式会社 | 人工膝関節全置換手術用計測装置 |
DE10259437B3 (de) * | 2002-12-19 | 2004-09-16 | Fresenius Medical Care Deutschland Gmbh | Verfahren und Vorrichtung zur Bestimmung des Blutflusses in einer blutführenden Leitung |
US7022141B2 (en) | 2002-12-20 | 2006-04-04 | Depuy Products, Inc. | Alignment device for modular implants and method |
US7029477B2 (en) | 2002-12-20 | 2006-04-18 | Zimmer Technology, Inc. | Surgical instrument and positioning method |
US7542791B2 (en) | 2003-01-30 | 2009-06-02 | Medtronic Navigation, Inc. | Method and apparatus for preplanning a surgical procedure |
US6925339B2 (en) | 2003-02-04 | 2005-08-02 | Zimmer Technology, Inc. | Implant registration device for surgical navigation system |
US7458977B2 (en) | 2003-02-04 | 2008-12-02 | Zimmer Technology, Inc. | Surgical navigation instrument useful in marking anatomical structures |
JP2006524798A (ja) | 2003-02-13 | 2006-11-02 | ネクセンス リミテッド | 様々なパラメータの高感度測定を行なうための装置、およびそのような装置で特に有用なセンサ |
US7824444B2 (en) | 2003-03-20 | 2010-11-02 | Spineco, Inc. | Expandable spherical spinal implant |
US7527632B2 (en) | 2003-03-31 | 2009-05-05 | Cordis Corporation | Modified delivery device for coated medical devices |
US7972616B2 (en) | 2003-04-17 | 2011-07-05 | Nanosys, Inc. | Medical device applications of nanostructured surfaces |
EP2335651A1 (en) * | 2003-07-11 | 2011-06-22 | DePuy Products, Inc. | In vivo joint space measurement device |
US7190273B2 (en) * | 2003-07-11 | 2007-03-13 | Depuy Products, Inc. | Joint endoprosthesis with ambient condition sensing |
US20050015002A1 (en) * | 2003-07-18 | 2005-01-20 | Dixon Gary S. | Integrated protocol for diagnosis, treatment, and prevention of bone mass degradation |
US7455647B2 (en) | 2003-07-24 | 2008-11-25 | Samih Tarabichi | Dynamic spacer for total knee arthroplasty |
US7613497B2 (en) * | 2003-07-29 | 2009-11-03 | Biosense Webster, Inc. | Energy transfer amplification for intrabody devices |
JP4386171B2 (ja) | 2003-12-04 | 2009-12-16 | 三菱自動車工業株式会社 | 4輪駆動車の動力伝達装置 |
US7488324B1 (en) | 2003-12-08 | 2009-02-10 | Biomet Manufacturing Corporation | Femoral guide for implanting a femoral knee prosthesis |
IL159651A0 (en) | 2003-12-30 | 2004-06-01 | Nexense Ltd | Method and apparatus for measuring torque |
US7442196B2 (en) | 2004-02-06 | 2008-10-28 | Synvasive Technology, Inc. | Dynamic knee balancer |
US20050176823A1 (en) | 2004-02-10 | 2005-08-11 | Diaz Robert L. | Intra-operative procedure for post-operative pain control |
IL160365A0 (en) | 2004-02-12 | 2005-11-20 | Nexense Ltd | Method and apparatus for detecting panel conditions |
IL161937A (en) | 2004-05-11 | 2008-08-07 | Nexense Ltd | Sensor system for high-precision measurements of temperature, composition and/or pressure of a fluid |
CA2569605C (en) | 2004-06-07 | 2013-09-10 | Synthes (U.S.A.) | Orthopaedic implant with sensors |
US7794499B2 (en) * | 2004-06-08 | 2010-09-14 | Theken Disc, L.L.C. | Prosthetic intervertebral spinal disc with integral microprocessor |
US20060004431A1 (en) | 2004-07-01 | 2006-01-05 | Fuller Thomas A | Prophylactic bactericidal implant |
IL162940A0 (en) | 2004-07-08 | 2005-11-20 | Yechiel Cohen | Clamping device and dental handpiece including same |
US7658753B2 (en) * | 2004-08-03 | 2010-02-09 | K Spine, Inc. | Device and method for correcting a spinal deformity |
US20060058798A1 (en) | 2004-08-24 | 2006-03-16 | Roman Shawn D | Bone distractor with ratchet mechanism |
US7429936B2 (en) | 2004-08-26 | 2008-09-30 | Massachusetts Institute Of Technology | Parasitic mobility in dynamically distributed sensor networks |
CA2583911A1 (en) | 2004-10-28 | 2006-05-11 | Microchips, Inc. | Orthopedic and dental implant devices providing controlled drug delivery |
EP1819278A4 (en) | 2004-11-15 | 2009-04-08 | Izex Technologies Inc | INSTRUMENTAL ORTHOPEDIC IMPLANTS AND OTHER MEDICAL IMPLANTS |
IL166292A (en) | 2005-01-13 | 2009-11-18 | Nexense Ltd | Method and apparatus for high-precision measurement of frequency |
US20100204551A1 (en) | 2008-10-22 | 2010-08-12 | Martin William Roche | Detection, Prevention and Treatment of Infections in Implantable Devices |
US7474223B2 (en) | 2005-04-18 | 2009-01-06 | Warsaw Orthopedic, Inc. | Method and apparatus for implant identification |
US20070134287A1 (en) | 2005-12-09 | 2007-06-14 | Biomet Manufacturing Corp | Method for coating biocompatible substrates with antibiotics |
US7522701B2 (en) | 2005-12-20 | 2009-04-21 | General Electric Company | System and method for image composition using position sensors |
US7525309B2 (en) | 2005-12-30 | 2009-04-28 | Depuy Products, Inc. | Magnetic sensor array |
US20070225595A1 (en) | 2006-01-17 | 2007-09-27 | Don Malackowski | Hybrid navigation system for tracking the position of body tissue |
US20070238992A1 (en) | 2006-02-01 | 2007-10-11 | Sdgi Holdings, Inc. | Implantable sensor |
US8337508B2 (en) | 2006-03-20 | 2012-12-25 | Perception Raisonnement Action En Medecine | Distractor system |
US8635082B2 (en) | 2006-05-25 | 2014-01-21 | DePuy Synthes Products, LLC | Method and system for managing inventories of orthopaedic implants |
IL176025A0 (en) | 2006-05-30 | 2007-08-19 | Nexense Ltd | Force or displacement sensor |
GB0618612D0 (en) | 2006-09-21 | 2006-11-01 | Smith & Nephew | Medical device |
US8024026B2 (en) | 2007-05-31 | 2011-09-20 | General Electric Company | Dynamic reference method and system for use with surgical procedures |
US8744544B2 (en) | 2007-10-17 | 2014-06-03 | Integrated Sensing Systems, Inc. | System having wireless implantable sensor |
US8915866B2 (en) | 2008-01-18 | 2014-12-23 | Warsaw Orthopedic, Inc. | Implantable sensor and associated methods |
-
2006
- 2006-03-29 EP EP12005171A patent/EP2510874A3/en not_active Ceased
- 2006-03-29 EP EP06748811.4A patent/EP1868498B1/en not_active Not-in-force
- 2006-03-29 ES ES06748811T patent/ES2428639T3/es active Active
- 2006-03-29 EP EP15164456.4A patent/EP2929836B1/en active Active
- 2006-03-29 EP EP12005170.1A patent/EP2510873B1/en not_active Not-in-force
- 2006-03-29 KR KR1020077024121A patent/KR101301862B1/ko active IP Right Grant
- 2006-03-29 DK DK06748811.4T patent/DK1868498T3/da active
- 2006-03-29 CN CN201510178035.9A patent/CN104887235B/zh not_active Expired - Fee Related
- 2006-03-29 KR KR1020127030805A patent/KR101274641B1/ko active IP Right Grant
- 2006-03-29 JP JP2008504250A patent/JP2008534140A/ja active Pending
- 2006-03-29 PL PL06748811T patent/PL1868498T3/pl unknown
- 2006-03-29 US US11/391,988 patent/US7918887B2/en active Active
- 2006-03-29 WO PCT/US2006/011300 patent/WO2006105098A2/en active Application Filing
- 2006-03-29 CA CA2600613A patent/CA2600613C/en not_active Expired - Fee Related
- 2006-03-29 AU AU2006230176A patent/AU2006230176B2/en active Active
-
2007
- 2007-10-03 GB GB0719382A patent/GB2440059A/en not_active Withdrawn
-
2011
- 2011-01-27 US US13/014,767 patent/US8372147B2/en active Active
- 2011-01-27 US US13/014,773 patent/US8372153B2/en active Active
- 2011-01-27 US US13/014,782 patent/US8444654B2/en active Active
- 2011-01-28 US US13/015,685 patent/US8449556B2/en active Active
- 2011-09-14 RU RU2011137826/14A patent/RU2011137826A/ru not_active Application Discontinuation
- 2011-09-14 RU RU2011137825/14A patent/RU2011137825A/ru not_active Application Discontinuation
- 2011-09-14 RU RU2011137824/14A patent/RU2011137824A/ru not_active Application Discontinuation
- 2011-09-14 RU RU2011137823/14A patent/RU2011137823A/ru not_active Application Discontinuation
-
2012
- 2012-10-26 JP JP2012237156A patent/JP2013056173A/ja active Pending
-
2013
- 2013-04-08 US US13/858,556 patent/US8761859B2/en active Active
-
2014
- 2014-05-13 US US14/275,965 patent/US9451919B2/en active Active
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2428639T3 (es) | Sensor de detección de parámetros corporales y método para detectar parámetros corporales | |
US20210290062A1 (en) | Method for detecting body parameters | |
US11457813B2 (en) | Method for detecting body parameters | |
US20070238992A1 (en) | Implantable sensor | |
CN101287408A (zh) | 身体参数检测传感器和用于检测身体参数的方法 | |
WO2007090159A1 (en) | Implantable sensor | |
AU2012216813B2 (en) | Body parameter detecting sensor and method for detecting body parameters | |
AU2012203891B2 (en) | Body parameter detecting sensor and method for detecting body parameters | |
RU2444287C2 (ru) | Способ и опознавательное устройство для измерения биометрических параметров тела |