ES2335851B1 - METHOD FOR LOW TEMPERATURE PREPARATION OF BIOCERAMIC PARTS WITH THREE-DIMENSIONAL POROSITY DESIGNED AND INTERCONNECTED. - Google Patents

METHOD FOR LOW TEMPERATURE PREPARATION OF BIOCERAMIC PARTS WITH THREE-DIMENSIONAL POROSITY DESIGNED AND INTERCONNECTED. Download PDF

Info

Publication number
ES2335851B1
ES2335851B1 ES200802813A ES200802813A ES2335851B1 ES 2335851 B1 ES2335851 B1 ES 2335851B1 ES 200802813 A ES200802813 A ES 200802813A ES 200802813 A ES200802813 A ES 200802813A ES 2335851 B1 ES2335851 B1 ES 2335851B1
Authority
ES
Spain
Prior art keywords
bioceramics
mold
pieces
preparing parts
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES200802813A
Other languages
Spanish (es)
Other versions
ES2335851A1 (en
Inventor
Maria Victoria Cabañas Criado
Juan Peña Lopez
Maria Vallet Regi
Jesus Roman Zaragoza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad Complutense de Madrid
Original Assignee
Universidad Complutense de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Complutense de Madrid filed Critical Universidad Complutense de Madrid
Priority to ES200802813A priority Critical patent/ES2335851B1/en
Priority to PCT/ES2009/000480 priority patent/WO2010037881A1/en
Publication of ES2335851A1 publication Critical patent/ES2335851A1/en
Application granted granted Critical
Publication of ES2335851B1 publication Critical patent/ES2335851B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • C04B2235/3212Calcium phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Método para la preparación a baja temperatura de piezas de biocerámicas con porosidad tridimensional diseñada e interconectada.Method for low temperature preparation of bioceramics pieces with three-dimensional porosity designed e interconnected

El método se basa en la gelificación de una suspensión acuosa de una cerámica y un aglutinante biocompatible en el interior de un molde. El proceso de consolidación se produce a una temperatura entre 30 y 45ºC, dependiendo de la formulación empleada. El método permite la introducción, durante el proceso de fabricación, de sustancias biológicas o farmacológicamente activas. El diseño del molde, compuesto por un entramado de filamentos rígidos, determina básicamente la porosidad de la pieza, si bien esta puede verse afectada por otros factores (proceso de secado, composición de la mezcla).The method is based on the gelation of a aqueous suspension of a ceramic and a biocompatible binder in The inside of a mold. The consolidation process occurs at a temperature between 30 and 45 ° C, depending on the formulation employee. The method allows the introduction, during the process of manufacture of biological or pharmacologically active substances. The mold design, consisting of a network of filaments rigid, basically determines the porosity of the piece, although This may be affected by other factors (drying process, composition of the mixture).

El tamaño de poro, la geometría y el porcentaje de porosidad pueden ser modificados en las tres direcciones del espacio. El tamaño de poro que se puede alcanzar con este método (entre 300 y 1000 \mum) así como el hecho de que los poros estén interconectados facilita el proceso de vascularización y, consecuentemente, la integración del material implantado y, en la mayoría de los casos, la posterior regeneración del tejido.Pore size, geometry and percentage Porosity can be modified in the three directions of the space. The pore size that can be achieved with this method (between 300 and 1000 µm) as well as the fact that the pores are interconnected facilitates the vascularization process and, consequently, the integration of the implanted material and, in the Most cases, subsequent tissue regeneration.

El último fin de esas piezas es su aplicación como implantes para la regeneración del tejido óseo en ingeniería tisular.The last purpose of these pieces is their application as implants for the regeneration of bone tissue in engineering tissue.

Description

Método para la preparación a baja temperatura de piezas de biocerámicas con porosidad tridimensional diseñada e interconectada.Method for low temperature preparation of bioceramics pieces with three-dimensional porosity designed e interconnected

Sector de la técnicaTechnical sector

La presente invención se encuadra dentro del campo técnico de fabricación de implantes en cirugía ortopédica para relleno de defectos óseos, para soportes de crecimiento celular en ingeniería de tejidos (Tissue Enginneering Scaffolds) y como bioreactores. El método de preparación propuesto permite la incorporación de sustancias biológicas o farmacológicamente activas pudiendo actuar como sistemas de liberación controlada.The present invention fits within the Technical field of implant manufacturing in orthopedic surgery for bone defect filling, for cell growth media in tissue engineering (Tissue Enginneering Scaffolds) and how bioreactors The proposed preparation method allows the incorporation of biological or pharmacologically active substances being able to act as controlled release systems.

Estado del arteState of the art

La aplicación de ingeniería de tejidos a la reparación terapéutica de tejidos óseos se ha convertido en una solución prometedora. Esto conlleva sembrar y adherir in vivo células humanas sobre una estructura. Las células, una vez implantadas, proliferan, migran y se diferencian en tejido específico mientras segregan componentes necesarios para crear el tejido requerido. La elección de la estructura a implantar es crucial para que permita a las células comportarse de una manera adecuada para producir tejidos de una determinada forma y tamaño. Los materiales utilizados para la regeneración de tejido óseo incluyen tanto materiales cerámicos sintéticos como naturales inorgánicos, como la hidoxiapatita y el fosfato tricálcico ya que estas cerámicas simulan la composición natural del hueso.The application of tissue engineering to the therapeutic repair of bone tissues has become a promising solution. This entails sowing and adhering in vivo human cells on a structure. The cells, once implanted, proliferate, migrate and differentiate into specific tissue while secreting components necessary to create the required tissue. The choice of the structure to be implanted is crucial to allow the cells to behave in a suitable way to produce tissues of a certain shape and size. The materials used for bone tissue regeneration include both synthetic and inorganic natural ceramic materials, such as hidoxyapatite and tricalcium phosphate since these ceramics simulate the natural composition of the bone.

Además de su composición, la porosidad de la estructura es un aspecto fundamental para permitir la penetración de sangre, oxígeno y nutrientes necesarios para las células. Sin embargo, las técnicas convencionales de fabricación de estas estructuras no son capaces de controlar el tamaño de poro, la geometría de los poros, la distribución espacial, y, sobre todo, la construcción de canales internos interconectados que permita a la sangre, el oxígeno, nutrientes, etc. circular a través de toda la estructura.In addition to its composition, the porosity of the structure is a fundamental aspect to allow the penetration of blood, oxygen and nutrients necessary for the cells. Without However, the conventional manufacturing techniques of these structures are not able to control the pore size, the pore geometry, spatial distribution, and, above all, the construction of interconnected internal channels that allow blood, oxygen, nutrients, etc. circulate through all the structure.

Existen numerosos trabajos que describen métodos de obtener piezas de biocerámicas con una porosidad relativamente controlada. Así, el documento US2004/0002770 describe un método de obtención de cerámicas con porosidad controlada por compresión de un polímero sobre el material cerámico poroso. Aunque se puede conseguir una distribución homogénea de los poros en cuanto a forma y tamaño, la interconexión entre los poros no es igualmente controlable.There are numerous works that describe methods of obtaining bioceramics pieces with a relatively porosity controlled. Thus, document US2004 / 0002770 describes a method of obtaining ceramics with porosity controlled by compression of a polymer on the porous ceramic material. Although you can achieve a homogeneous distribution of pores in terms of shape and size, the interconnection between the pores is not equally controllable.

Actualmente existe un creciente interés en desarrollar nuevas técnicas de prototipado que permiten controlar la arquitectura de la pieza, esto es, la forma, tamaño e interconexiones de los poros. Dentro de estas técnicas están el Micromecanizado de Silicio que consiste en depositar capas de material sobre una oblea de silicio con una forma predeterminada (Microfabrication Technology for Vascularized Tissue Engineering. Borenstein et al., Biomedical Devices 4:3 (2002), 167-175) o el Modelado por Deposición Fundida (Fused Deposition Modeling, FDM) donde se construyen objetos tridimensionales de forma directa a partir de datos 3D CAD; un cabezal de temperatura controlada extruye material termoplástico por capas llegando a formar, por superposición de capas, una estructura tridimensional. Como material termoplástico se suele utilizar la policaprolactona, que es un polímero bioreabsorbible (Fused Deposition modeling of novel scaffold architectures for tissue engineering applications. Zein et al. Biomaterials 23 (2002), 1169-1185). Una de las técnicas más utilizadas es la llamada Fabricación de Sólidos de Forma Libre (Solid Freeform Fabrication, SFF), fundamentada en la utilización de un porógeno tridimensional o plantilla producido a partir de mallas sinterizadas de fibras de nylon u otro polímero similar, que hace que la matriz resultante de la infiltración y polimerización del material de reticulación sea la estructura inversa o negativo del template, consiguiéndose una gran regularidad geométrica de poros y canales interconectados. Para conseguir este negativo, la plantilla debe eliminarse.There is currently a growing interest in developing new prototyping techniques that allow controlling the architecture of the piece, that is, the shape, size and interconnections of the pores. Among these techniques are Silicon Micromachining, which consists of depositing layers of material on a silicon wafer with a predetermined shape ( Microfabrication Technology for Vascularized Tissue Engineering. Borenstein et al., Biomedical Devices 4: 3 (2002), 167-175 ) or Fused Deposition Modeling (FDM) modeling where three-dimensional objects are constructed directly from 3D CAD data; A temperature controlled head extrudes thermoplastic material in layers, forming a three-dimensional structure by superposition of layers. As a thermoplastic material, polycaprolactone is usually used, which is a bioreabsorbable polymer ( Fused Deposition modeling of novel scaffold architectures for tissue engineering applications . Zein et al. Biomaterials 23 (2002), 1169-1185). One of the most used techniques is the so-called Manufacturing of Free Form Solids (SFF), based on the use of a three-dimensional porogen or template produced from sintered meshes of nylon fibers or another similar polymer, which makes that the matrix resulting from the infiltration and polymerization of the crosslinking material is the inverse or negative structure of the template, achieving a great geometric regularity of interconnected pores and channels. To get this negative, the template must be deleted.

El trabajo publicado por Liang y Weng (Artificially controlling of inner structure to porous hydroxyapatite ceramic by using solidified coated fibers, Material Letters 60 (2006) 3569-3572) describe la fabricación de piezas cerámicas de hidroxiapatita a partir de una estructura tridimensional de fibra que se construye para originar una determinada distribución de tamaños y conectividad de los poros. Sobre esta estructura de fibra se añade una suspensión de aglutinante e hidroxiapatita. Una vez consolidada la pieza, se retira la estructura de fibra por pirólisis.The work published by Liang and Weng ( Artificially controlling of inner structure to porous hydroxyapatite ceramic by using solidified coated fibers , Material Letters 60 (2006) 3569-3572) describes the manufacture of hydroxyapatite ceramic pieces from a three-dimensional fiber structure that It is built to cause a certain distribution of pore sizes and connectivity. A binder and hydroxyapatite suspension is added to this fiber structure. Once the piece is consolidated, the fiber structure is removed by pyrolysis.

El documento US 2004/0062809 describe un proceso de preparación de un polímero biocompatible con una estructura tridimensional y porosidad diseñada. Para ello, emplea un molde sobre el que se forma el material biocompatible. Una vez finalizada tal formación, el molde se elimina por disolución (empleando un disolvente) o por digestión enzimática.US 2004/0062809 describes a process of preparing a biocompatible polymer with a structure Three-dimensional and porosity designed. To do this, use a mold on which the biocompatible material is formed. Once finished such formation, the mold is removed by dissolution (using a solvent) or by enzymatic digestion.

En un trabajo previo publicado por los inventores de esta invención (Cabañas et al. Room Temperature synthesis of agarose/sol-gel glass pieces with tailored interconnected porosity, J. Biomedical Materials Research Part A, 2006) se describe un procedimiento de obtención de piezas de porosidad diseñada a partir de moldes tridimensionales de poliestireno sobre el que se vierte una suspensión de agarosa (aglutinante) y un material cerámico bioactivo. Una vez consolidada la pieza cerámica el molde se retira por tratamiento con una disolución acuosa de sosa.In a previous work published by the inventors of this invention (Cabañas et al. Room Temperature synthesis of agarose / sol-gel glass pieces with tailored interconnected porosity , J. Biomedical Materials Research Part A, 2006) a method of obtaining parts is described of porosity designed from three-dimensional polystyrene molds on which an agarose suspension (binder) and a bioactive ceramic material are poured. Once the ceramic piece is consolidated, the mold is removed by treatment with an aqueous solution of soda.

Los métodos descritos anteriormente basados en técnicas de fabricación de moldes con porosidad controlada consiguen obtener piezas con una distribución de tamaño, forma e interconexión de los poros apropiada. Sin embargo, la etapa de eliminación del molde conlleva un tratamiento térmico o químico que puede dañar la estructura de la pieza cerámica. Por otro lado, estos tratamientos hacen que la inclusión de una sustancia biológica o farmacológicamente activa dentro de la pieza cerámica que actuará como implante, deba hacerse una vez obtenida la pieza lo cual puede tener el inconveniente de no distribuirse de forma homogénea a través de toda la estructura y, además, dificulta el control de la cantidad de sustancia a incluir.The methods described above based on mold manufacturing techniques with controlled porosity get obtain parts with a distribution of size, shape and interconnection of the appropriate pores. However, the elimination stage of mold involves a thermal or chemical treatment that can damage the structure of the ceramic piece. On the other hand, these treatments make the inclusion of a biological substance or pharmacologically active within the ceramic piece that will act as an implant, it must be done once the piece is obtained which can have the disadvantage of not being distributed homogeneously to throughout the entire structure and also makes it difficult to control the amount of substance to include.

El documento EP 1 449 818 describe un proceso para obtener una estructura porosa de fosfato cálcico sinterizado que consiste en mezclar polvos de precursores del fosfato cálcico y presurizarlos entre 5 y 500 MPa sobre una varillas de metal, de madera o bambú que después se retiran. Un grupo de varillas se disponen sobre un mismo plano de forma paralela en la misma dirección; sobre este grupo se superpone otro en la misma dirección o en una dirección distinta. Finalmente, se pueden añadir más grupos de varillas de forma perpendicular a los primeros grupos. Una vez compactados los polvos, se retiran las varillas dando lugar a una pieza porosa. Para que la pieza tenga una dureza apropiada debe ser sintetizada a una temperatura elevada, entre 500 y 1300ºC. En el documento US 2005/0025807 se describe un proceso para obtener un cemento fraguado de fosfato cálcico que también utiliza el mismo sistema de varillas como molde para obtener un material poroso. Después del fraguado, el material debe ser calentado entre 300 y 500ºC para obtener la dureza apropiada, a menos que se utilice un polímero biocompatible (especialmente colágeno) como agente aglutinante. También se puede incluir en fármaco en la mezcla a fraguar para formar el cemento. En el año 2005, Ito (Three-dimensionally perforated phosphate cíacium phosphate ceramics. J. Wuhan University of Technology - Mat. Sci. Ed., 20. Suppl.) describió el mismo procedimiento de varillas para producir cerámicas porosas de fosfato cálcico por compresión de una disolución de polvos de precursores a una presión de 36 MPa y posterior sintetizado a temperaturas próximas a 1000ºC; también emplea aglutinantes como la metil celulosa.EP 1 449 818 describes a process for obtaining a porous structure of sintered calcium phosphate consisting of mixing powders of calcium phosphate precursors and pressurizing them between 5 and 500 MPa on a metal, wood or bamboo rod that is then removed. A group of rods are arranged on the same plane in parallel in the same direction; over this group another overlaps in the same direction or in a different direction. Finally, more groups of rods can be added perpendicular to the first groups. Once the powders are compacted, the rods are removed giving rise to a porous piece. In order for the piece to have an appropriate hardness it must be synthesized at an elevated temperature, between 500 and 1300 ° C. US 2005/0025807 describes a process to obtain a calcium phosphate setting cement that also uses the same rod system as a mold to obtain a porous material. After setting, the material must be heated between 300 and 500 ° C to obtain the appropriate hardness, unless a biocompatible polymer (especially collagen) is used as the binding agent. It can also be included in drug in the mixture to be set to form the cement. In 2005, Ito ( Three-dimensionally perforated phosphate ciacium phosphate ceramics. J. Wuhan University of Technology - Mat. Sci. Ed. , 20. Suppl.) Described the same rod procedure to produce porous calcium phosphate ceramic by compression of a solution of precursor powders at a pressure of 36 MPa and subsequently synthesized at temperatures close to 1000 ° C; It also uses binders such as methyl cellulose.

La presente invención supera las limitaciones anteriores ya que permite un diseño de la porosidad no sólo en dos sino en las tres direcciones del espacio a través de un molde previamente diseñado y el molde se elimina de forma mecánica sin necesidad de un tratamiento térmico, químico o cualquier otro tipo de tratamiento que pueda alterar la composición de la pieza. La pieza de biocerámica se forma sobre el mismo molde por gelificación de una suspensión acuosa a temperatura ambiente sin necesidad de aplicar presión. La presencia de un agente aglutinante hace que no sea necesario un tratamiento posterior de sintetizado. Esto hace también posible la incorporación de una sustancia biológica o farmacológicamente activa a la composición inicial de la cerámica, quedando esta sustancia perfectamente distribuida a lo largo de toda la estructura. Se consiguen piezas de cualquier biocerámica con poros interconectaados en las tres direcciones del espacio, con una dureza apropiada a la vez que fáciles de moldear para uso como implantes para la regeneración del tejido óseo.The present invention overcomes the limitations previous as it allows a porosity design not only in two but in the three directions of space through a mold previously designed and the mold is removed mechanically without need for heat treatment, chemical or any other type of treatment that can alter the composition of the piece. The Bioceramic piece is formed on the same mold by gelation of an aqueous suspension at room temperature without the need for apply pressure The presence of a binding agent does not a subsequent synthesizing treatment is necessary. This does also possible the incorporation of a biological substance or pharmacologically active to the initial composition of the ceramic, remaining this substance perfectly distributed throughout the structure. You get pieces of any bioceramics with interconnected pores in the three directions of space, with a appropriate hardness while easy to mold for use as implants for bone tissue regeneration.

Descripción Description Breve descripción de la invenciónBrief Description of the Invention

La invención que se propone consiste en una técnica de conformado mediante la cual se pueden preparar, a baja temperatura, piezas de biocerámicas con una porosidad diseñada e interconectada en las tres direcciones del espacio. El hecho de trabajar a estas temperaturas permite la inclusión, durante el proceso de fabricación, de sustancias biológica o farmacológicamente activas (fármacos, hormonas, factores de crecimiento óseo, proteínas, etc.) para su posterior liberación así como diferentes poblaciones celulares.The proposed invention consists of a forming technique by which they can be prepared, at low temperature, bioceramics pieces with a porosity designed and interconnected in the three directions of space. The fact of working at these temperatures allows inclusion, during manufacturing process of substances biologically or pharmacologically active (drugs, hormones, bone growth factors, proteins, etc.) for later release as well as different cell populations

El método se basa en la solidificación por gelificación, a una temperatura comprendida entre 30 y 45ºC, de una suspensión acuosa de una cerámica (hidroxiapatita, fosfato tricálcico, biovidrios, materiales mesoporosos de base silícea, etc. o combinación de ellos) y un aglutinante con características de termogel (agarosa, gelano, etc. solos o mezclados con sustancias como gelatina, quitosano, alginatos, dextranos). La consolidación se produce en poco tiempo (menos de 5 minutos), dentro de un molde cuyo diseño determina la porosidad de la pieza debido a la presencia de un entramado tridimensional de filamentos rígidos. El tamaño de poro, la geometría y el porcentaje de porosidad pueden ser modificados en las tres direcciones del espacio.The method is based on solidification by gelation, at a temperature between 30 and 45 ° C, of a aqueous suspension of a ceramic (hydroxyapatite, phosphate tricalcium, bioglasses, siliceous mesoporous materials, etc. or combination of them) and a binder with characteristics of thermogel (agarose, gelane, etc. alone or mixed with substances such as gelatin, chitosan, alginates, dextrans). The consolidation is produces in a short time (less than 5 minutes), within a mold whose design determines the porosity of the piece due to the presence of a three-dimensional network of rigid filaments. The size of Pore, geometry and porosity percentage can be modified in the three directions of space.

La pieza húmeda puede ser manipulada y cortada fácilmente para obtener la forma deseada. Asimismo, la pieza, que contiene un elevado porcentaje de agua, se puede secar en una estufa o ser liofilizada, lo que permite su perfecta conservación, lo cual es de gran importancia en el caso de que se introduzcan sustancias biológica o farmacológicamente activas. La liofilización apenas modifica las dimensiones de las piezas y permite una rápida recuperación del estado original en presencia de un fluido.The wet piece can be manipulated and cut Easily to get the desired shape. Also, the piece, which It contains a high percentage of water, it can be dried in an oven or be lyophilized, which allows its perfect preservation, which It is of great importance in the event that substances are introduced biologically or pharmacologically active. Lyophilization barely modify the dimensions of the pieces and allows a quick recovery of the original state in the presence of a fluid.

Además de las ventajas reseñadas (temperatura de trabajo inferior a 45ºC, ausencia de disolventes agresivos y versatilidad en el diseño de la porosidad e interconexión de los poros) el sistema propuesto es extraordinariamente simple y económico.In addition to the advantages outlined (temperature of work below 45ºC, absence of aggressive solvents and versatility in the design of porosity and interconnection of pores) the proposed system is extraordinarily simple and economic.

Descripción detallada de la invenciónDetailed description of the invention

En primer lugar se prepara la disolución del termogel; para ello se pesa una determinada cantidad de producto sólido y se introduce en un contenedor termostatizado que contiene una disolución acuosa en continua agitación. Se aumenta la temperatura hasta que se produce la fúsión/solubilización del producto, momento en el que se puede disminuir la temperatura de trabajo y añadir la cerámica y otros posibles componentes. La temperatura de trabajo depende de la estabilidad térmica de las sustancias que se incluyen en esta etapa. El sistema se mantiene en agitación durante un tiempo para conseguir una distribución homogénea de los componentes. Finalmente, se vierte la suspensión en el molde.First, the solution of the thermogel; for this a certain amount of product is weighed solid and inserted into a thermostated container containing an aqueous solution in continuous stirring. It increases temperature until melting / solubilization of the product, at which time the temperature of work and add pottery and other possible components. The working temperature depends on the thermal stability of the substances that are included in this stage. The system remains in stirring for a while to get a distribution homogeneous components. Finally, the suspension is poured into mold.

El molde consiste, básicamente, en un paralelepípedo desmontable que carece de lado superior, por el que se añade la suspensión. Dos de los lados (en adelante X e Y) están constituidos por una base sobre la que se han fijado, perpendicularmente, una serie de filamentos rígidos (a modo de cama de fakir) según el diseño previamente establecido. El molde se diseña/fabrica de manera que asegure una estanqueidad suficiente durante el proceso de consolidación tanto en las dimensiones X e Y como en la base del molde (en adelante Z).The mold basically consists of a Detachable parallelepiped that lacks top side, whereby The suspension is added. Two of the sides (hereinafter X and Y) are constituted by a base on which they have been fixed, perpendicularly, a series of rigid filaments (as a bed de fakir) according to the previously established design. The mold is design / manufacture in a way that ensures sufficient tightness during the consolidation process in both the X and Y dimensions as in the base of the mold (hereinafter Z).

Una vez que se ha producido la consolidación de la pieza se procede a retirar los filamentos de las dimensiones X e Y y se introducen los filamentos a lo largo de la tercera dimensión Z, de manera que transcurran por las intersecciones de las dimensiones X e Y. Finalizado el proceso, se extrae el molde y, en fresco, se procede a la elaboración de las piezas con la forma deseada (cilindros, placas, cubos, etc.) mediante el uso de diferentes tipos de utensilios de corte.Once the consolidation of the piece proceeds to remove the filaments of the dimensions X and And and the filaments are introduced along the third dimension Z, so that they pass through the intersections of the dimensions X and Y. After the process, the mold is removed and, in fresh, we proceed to the elaboration of the pieces with the form desired (cylinders, plates, cubes, etc.) by using Different types of cutting utensils.

Finalmente, las piezas obtenidas pueden ser utilizadas húmedas o secas; el proceso de secado se puede realizar mediante liofilización o en estufa (a una temperatura próxima a 37ºC), dando lugar a piezas porosas que presentarán distintas características.Finally, the pieces obtained can be used wet or dry; The drying process can be performed by lyophilization or in an oven (at a temperature close to 37ºC), giving rise to porous pieces that will present different features.

La porosidad de las piezas así como el tamaño de poro (entre 300 y 1000 \mum) vendrán determinados por las dimensiones de los filamentos rígidos, el número de filamentos en cada dirección, su geometría y por el proceso de secado.The porosity of the pieces as well as the size of pore (between 300 and 1000 µm) will be determined by the Rigid filament dimensions, the number of filaments in each direction, its geometry and the drying process.

Las ventajas de trabajar en las condiciones de síntesis de la presente invención (bajas temperaturas y no utilización de solventes agresivos, ni tóxicos) son claras ya que permiten, por un lado la síntesis de andamios tridimensionales para regeneración tisular de biocerámicas que no puedan sufrir un tratamiento térmico (ej. Nanopartículas de carbonatohidroxiapatita precipitadas a 40ºC) y, por otro, la inclusión durante el proceso de fabricación de moléculas biológicas o farmacológicamente activas que en estas condiciones no perderán su actividad. Asimismo, durante el proceso de fabricación se pueden introducir otro tipo de sustancias, como polietilenglicol, dextrano, quitosano, ácido poliláctico, ácido poliglicólico, etc, que interaccionen con la sustancia activa controlando su liberación.The advantages of working in the conditions of synthesis of the present invention (low temperatures and not use of aggressive or toxic solvents) are clear since allow, on the one hand the synthesis of three-dimensional scaffolding for tissue regeneration of bioceramics that cannot undergo heat treatment (eg carbonate hydroxyapatite nanoparticles precipitated at 40 ° C) and, on the other, the inclusion during the process of manufacture of biological or pharmacologically active molecules that Under these conditions they will not lose their activity. Also, during the manufacturing process can introduce other substances, such as polyethylene glycol, dextran, chitosan, polylactic acid, acid polyglycolic, etc., that interact with the active substance Controlling his release

Los andamios tridimensionales sintetizados en la presente invención pueden utilizarse como soportes para la regeneración de distintos tipos de tejido, ya que todos los componentes empleados en las formulaciones ensayadas han mostrado una buena biocompatibilidad y, en algunos casos biodegradabilidad.The three-dimensional scaffolds synthesized in the The present invention can be used as supports for regeneration of different types of tissue, since all components used in the formulations tested have shown good biocompatibility and, in some cases biodegradability

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Breve descripción de las figurasBrief description of the figures

La Figura 1(a) muestra un esquema de la vista superior del molde con los filamentos en las direcciones X e Y extraídos mientras que la Figura 1(b) se muestra una fotografía desde la vista superior del molde donde se observan los filamentos que se pueden mover sobre los ejes X e Y.Figure 1 (a) shows an outline of the top view of the mold with the filaments in the X and Y directions extracted while Figure 1 (b) shows a photograph from the top view of the mold where the filaments that can move on the X and Y axes.

La Figura 2(a) muestra un esquema de la vista superior del molde con los filamentos en las direcciones X e Y en su interior, mientras que la Figura 2(b) muestra una fotografía del molde desde una vista superior y con los filamentos en las direcciones X e Y en su interior.Figure 2 (a) shows a diagram of the top view of the mold with the filaments in the X and Y directions inside, while Figure 2 (b) shows a photograph of the mold from a top view and with the filaments in the X and Y directions inside.

La figura 3(a) representa un esquema de la introducción de los filamentos en la dirección Z dentro del molde, mientras que la Figura 3(b) muestra una fotografía de esta introducción en el molde.Figure 3 (a) represents a scheme of the introduction of the filaments in the Z direction within the mold, while Figure 3 (b) shows a photograph of This introduction in the mold.

La Figura 4 muestra diferentes ejemplos de piezas preparadas mediante el procedimiento descrito en la presente invención.Figure 4 shows different examples of parts prepared by the procedure described herein invention.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Modo de realización de la invenciónEmbodiment of the invention

La invención se ilustra mediante los siguientes ejemplos, los cuales no son limitativos de su alcance.The invention is illustrated by the following examples, which are not limiting of its scope.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Ejemplo 1Example 1

Se describe la preparación de piezas porosas de nanopartículas de carbonatohidroxiapatita y agarosa, que incluye los siguientes pasos:The preparation of porous pieces of nanoparticles of carbonatehydroxyapatite and agarose, which includes Next steps:

Preparación del moldeMold Preparation

Inicialmente se diseña y construye el entramado tridimensional que se utilizará para la preparación de piezas porosas, determinando el tamaño del molde y las dimensiones de los filamentos rígidos. En este caso se ha utilizado un molde cúbico de 2 cm de lado y filamentos cilíndricos de acero inoxidable de 1 mm de diámetro.Initially the fabric is designed and constructed three-dimensional to be used for the preparation of parts porous, determining the size of the mold and the dimensions of the rigid filaments In this case a cubic mold of 2 cm side and 1 mm stainless steel cylindrical filaments diameter.

Preparación de la suspensiónPreparation of the suspension

Se introduce el polvo de agarosa en agua dentro de un reactor de vidrio en una proporción del 2,5% peso/volumen. Se eleva la temperatura de la suspensión a 85ºC, tal que la agarosa se funde, agitando continuamente la suspensión. Se enfría el sistema y, cuando la suspensión alcanza 40ºC, se adiciona un 10% peso/volumen de la cerámica carbonatohidroxiapatita. La mezcla se agita durante unos minutos y se vierte en el molde diseñado. La suspensión así formada se deja reposar unos minutos a temperatura ambiente, produciéndose la consolidación de la misma.Agarose powder is introduced into water inside of a glass reactor in a proportion of 2.5% weight / volume. Be raise the temperature of the suspension to 85 ° C, such that the agarose is melts, continuously stirring the suspension. The system cools and, when the suspension reaches 40 ° C, 10% weight / volume is added of the ceramic carbonatehydroxyapatite. The mixture is stirred for few minutes and poured into the designed mold. Suspension as well formed let stand a few minutes at room temperature, taking place the consolidation of it.

Preparación de las piezasPreparation of the pieces

Una vez que la pasta está consolidada se retiran mecánicamente los filamentos de las direcciones X e Y y se introducen los filamentos a lo largo de la tercera dimensión de manera que transcurran por las intersecciones de las direcciones X e Y. Pasados unos minutos se retira mecánicamente la base conteniendo los filamentos a lo largo de Z, obteniéndose un bloque cúbico constituido por agarosa/hidroxiapatita/agua, con porosidad tridimensional interconectada. Visualmente, se pueden apreciar en la pieza húmeda poros de 1000 \mum en las tres direcciones. Esta pieza se puede cortar fácilmente con una cuchilla, haciendo cubos y otros paralelepípedos más pequeños, cilindros,
etc.
Once the paste is consolidated, the filaments of the X and Y directions are mechanically removed and the filaments are introduced along the third dimension so that they pass through the intersections of the X and Y directions. After a few minutes it is mechanically removed. the base containing the filaments along Z, obtaining a cubic block consisting of agarose / hydroxyapatite / water, with interconnected three-dimensional porosity. Visually, 1000 µm pores in the three directions can be seen in the wet piece. This piece can be easily cut with a blade, making cubes and other smaller parallelepipeds, cylinders,
etc.

Se seleccionó la construcción de piezas cúbicas de 0,5 cm de lado. Estas piezas se secaron mediante liofilización (congelación de producto húmedo a -80ºC durante 4 horas y posterior tratamiento a vacío durante 24 horas). Durante el proceso el material pierde todo el agua, aproximadamente un 89%, sufre una ligera contracción (inferior al 10%) y mantiene su forma externa. Las piezas presentan una porosidad tridimensional con tamaños de poros de 900-950 \mum, así como otros de tamaño inferior, entre 0,5 y 100 \mum, característicos del material y del proceso de secado.The construction of cubic pieces was selected 0.5 cm side. These pieces were dried by lyophilization (freezing of wet product at -80ºC for 4 hours and later vacuum treatment for 24 hours). During the process the material loses all water, approximately 89%, suffers a slight contraction (less than 10%) and maintains its external shape. The pieces have a three-dimensional porosity with sizes of 900-950 µm pores, as well as others in size lower, between 0.5 and 100 µm, characteristic of the material and the drying process.

Características de las piezasCharacteristics of the pieces

La caracterización de las piezas secas por difracción de rayos X indica la presencia de máximos de difracción correspondientes a hidroxiapatita y un fondo amorfo debido a la agarosa. El espectro FTIR indica la presencia de los dos componentes, no apreciándose ninguna interacción entre ellos.The characterization of dry pieces by X-ray diffraction indicates the presence of diffraction maxima corresponding to hydroxyapatite and an amorphous background due to the agarose The FTIR spectrum indicates the presence of both components, not appreciating any interaction between them.

El material obtenido se comporta como un hidrogel. Así, en presencia de un fluido acuoso capta de modo inmediato el fluido, hinchándose ligeramente, y recuperando el comportamiento inicial de un material elástico y fácilmente manejable. Este pequeño hinchamiento permite el perfecto ajuste del material a un defecto óseo cuando se introduce como implante in vivo y se rehidrata al entrar en contacto directo con la sangre.The material obtained behaves like a hydrogel. Thus, in the presence of an aqueous fluid, it immediately captures the fluid, swelling slightly, and recovering the initial behavior of an elastic and easily manageable material. This small swelling allows the perfect adjustment of the material to a bone defect when introduced as an implant in vivo and rehydrates when it comes into direct contact with the blood.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Ejemplo 2Example 2

En este ejemplo se describe la incorporación del antibiótico vancomicina en piezas biocerámicas porosas de un biovidrio sol-gelThis example describes the incorporation of antibiotic vancomycin in porous bioceramic pieces of a sol-gel bioglass

Preparación del moldeMold Preparation

Como en el ejemplo 1 se diseña y construye el entramado tridimensional que se utilizará para la preparación de piezas porosas, determinando el tamaño del molde y las dimensiones de los filamentos rígidos. En este caso se ha utilizado un molde cúbico de 4 cm de lado y filamentos cilindricos de acero inoxidable de 1 mm de diámetro.As in example 1 the design and construction of the three-dimensional fabric that will be used for the preparation of porous pieces, determining mold size and dimensions of the rigid filaments. In this case a mold has been used 4 cm cubic side and stainless steel cylindrical filaments 1 mm in diameter.

Preparación de la suspensiónPreparation of the suspension

En primer lugar se prepara una mezcla constituida por 6 gramos de un biovidrio sol-gel, de composición molar 70SiO_{2}/26CaO/4P_{2}O_{5} y 0,4 gramos de vancomicina.First a mixture is prepared consisting of 6 grams of a sol-gel bioglass, of 70SiO2 / 26CaO / 4P2O5 molar composition and 0.4 grams of vancomycin

Se introduce 1 gramo de agarosa en 40 mL de agua destilada dentro de un reactor de vidrio. Se eleva la temperatura de la suspensión a 85ºC, hasta conseguir la fusión de la agarosa, agitando continuamente. Se enfría el sistema y, cuando la suspensión alcanza los 40ºC, se adiciona la mezcla biovidrio/vancomicina, se agita durante unos minutos y se vierte en el molde diseñado. La suspensión se deja reposar unos minutos a temperatura ambiente, produciéndose la consolidación de la misma.1 gram of agarose is introduced into 40 mL of water distilled inside a glass reactor. The temperature of the suspension at 85 ° C, until the agarose melts, stirring continuously. The system cools and, when the suspension reaches 40 ° C, the biovidrio / vancomycin mixture is added, Shake for a few minutes and pour into the designed mold. The suspension is allowed to stand a few minutes at room temperature, taking place the consolidation of it.

Preparación de las piezasPreparation of the pieces

Una vez que la pasta está consolidada se retiran mecánicamente los filamentos de las direcciones X e Y y se introducen los filamentos a lo largo de la tercera dimensión de manera que transcurran por las intersecciones de las direcciones X e Y. Pasados unos minutos se retira mecánicamente la base conteniendo los filamentos a lo largo de Z, obteniéndose un bloque cúbico constituido por agarosa/biovidrio/vancomicina/agua, con porosidad tridimensional interconectada. Visualmente, se pueden apreciar en la pieza húmeda poros de 1000 \mum en las tres direcciones. Esta pieza se puede cortar fácilmente con una cuchilla.Once the pasta is consolidated they are removed mechanically the filaments of the X and Y directions and it introduce the filaments along the third dimension of so that they pass through the intersections of the X and e directions Y. After a few minutes, the base containing the base is mechanically removed the filaments along Z, obtaining a cubic block consisting of agarose / bioglass / vancomycin / water, with porosity three-dimensional interconnected. Visually, they can be seen in the wet piece pores of 1000 µm in all three directions. This Piece can be easily cut with a blade.

       \newpage\ newpage
    

Se seleccionó la construcción de piezas cilíndricas de 13x4 mm. Estas piezas se secaron mediante liofilización. Durante el proceso el material pierde todo el agua, aproximadamente un 84%, sufre una ligera contracción (entre un 5 y un 10%) conservando su forma externa. Las piezas presentan una porosidad tridimensional con tamaños de poros de 900-
950 \mum, así como otros de tamaño inferior, entre 0,5 y 100 \mum, característicos del material y del proceso de secado.
The construction of cylindrical pieces of 13x4 mm was selected. These pieces were dried by lyophilization. During the process the material loses all the water, approximately 84%, undergoes a slight contraction (between 5 and 10%) while retaining its external shape. The pieces have a three-dimensional porosity with pore sizes of 900-
950 µm, as well as others of smaller size, between 0.5 and 100 µm, characteristic of the material and the drying process.

Características de las piezasCharacteristics of the pieces

La caracterización de las piezas secas por difracción de rayos X indica que se trata de un material amorfo. El espectro FTIR indica la existencia de los tres componentes, no apreciándose ninguna interacción entre ellos.The characterization of dry pieces by X-ray diffraction indicates that it is an amorphous material. He FTIR spectrum indicates the existence of the three components, not Appreciating no interaction between them.

Cuando se introducen las piezas en un solución de tampón fosfato a pH = 7,4 y a 37ºC, se observa la liberación paulatina de vancomicina mediante espectroscopia VIS-UV. Simultáneamente a este proceso tiene lugar un hinchamiento debido a la captación del fluido por parte del hidrogel, de modo que la pieza recupera su elasticidad inicial lo que permite su fácil manejo. Este pequeño hinchamiento hace que la pieza se ajuste al defecto óseo cuando se introduce como implante in vivo al estar en contacto directo con la sangre.When the pieces are introduced into a phosphate buffer solution at pH = 7.4 and at 37 ° C, the gradual release of vancomycin is observed by VIS-UV spectroscopy. Simultaneously to this process a swelling occurs due to the capture of the fluid by the hydrogel, so that the piece recovers its initial elasticity which allows its easy handling. This small swelling causes the piece to adjust to the bone defect when it is introduced as an implant in vivo when in direct contact with the blood.

Claims (14)

1. Método para la preparación de piezas de biocerámicas que comprende las siguientes etapas:1. Method for preparing parts of Bioceramics comprising the following stages:
(a)(to)
Preparar una suspensión acuosa de una cerámica biocompatible en un agente aglutinante con características de termogel.Prepare an aqueous suspension of a biocompatible ceramic in a binding agent with characteristics Thermogel
(b)(b)
Diseñar un molde en forma de entramado tridimensional a base de filamentos según la porosidad deseada.Design a framing mold three-dimensional filament based on porosity desired.
(c)(C)
Introducir la suspensión en el molde.Insert the suspension into the mold.
(d)(d)
Dejar consolidar la suspensión en el molde por gelificación.Let consolidate the suspension in the gelation mold.
(e)(and)
Retirar mecánicamente el molde.Mechanically remove the mold.
(f)(F)
Extraer la pieza.Remove the piece.
         \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
      
2. Método para la preparación de piezas biocerámicas, según reivindicación 1, donde la cerámica es hidroxiapatita, fosfato tricálcico, un biovidrio, material mesoporoso de base silícea o combinación de ellos.2. Method for preparing parts bioceramics according to claim 1, wherein the ceramic is hydroxyapatite, tricalcium phosphate, a bioglass, material mesoporous siliceous base or combination of them. 3. Método para la preparación de piezas biocerámicas, según reivindicación 1, donde el polímero biodegradable es agarosa o gelano, pudiendo mezclarse con otras sustancias tales como gelatina, quitosano o alginatos.3. Method for preparing parts bioceramics according to claim 1, wherein the polymer biodegradable is agarose or gelane, being able to mix with others substances such as gelatin, chitosan or alginates. 4. Método para la preparación de piezas biocerámicas, según reivindicación 1, donde el molde es una estructura tridimensional desmontable a base de filamentos rígidos constituidos por un material inerte y dispuestos en las tres direcciones del espacio.4. Method for preparing parts bioceramics according to claim 1, wherein the mold is a detachable three-dimensional structure based on rigid filaments constituted by an inert material and arranged in the three Space directions 5. Método para la preparación de piezas biocerámicas, según reivindicación 1, donde las piezas se secan posteriormente en estufa o por liofilización.5. Method for preparing parts bioceramics, according to claim 1, wherein the pieces are dried subsequently in an oven or by lyophilization. 6. Método para la preparación de piezas biocerámicas, según reivindicación 1, donde la solidificación por gelación se realiza a una temperatura comprendida entre 30 y 45ºC.6. Method for preparing parts bioceramics according to claim 1, wherein the solidification by gelation is performed at a temperature between 30 and 45 ° C 7. Método para la preparación de piezas biocerámicas, según reivindicaciones anteriores, donde se puede añadir a la suspensión acuosa sustancias biológica o farmacológicamente activas.7. Method for preparing parts bioceramics, according to previous claims, where you can add biological substances to the aqueous suspension or pharmacologically active. 8. Método para la preparación de piezas biocerámicas, según reivindicaciones anteriores, donde las sustancias biológica o farmacológicamente activa son fármacos, hormonas, factores de crecimiento óseo o proteínas.8. Method for preparing parts bioceramics, according to previous claims, wherein the Biologically or pharmacologically active substances are drugs, hormones, bone growth factors or proteins. 9. Método para la preparación de piezas biocerámicas, según reivindicaciones anteriores, donde la suspensión acuosa puede contener sustancias que interaccionen con la sustancia activa controlando su liberación como polietilenglicol, dextrano, quitosano, ácido poliláctico o ácido poliglicólico.9. Method for preparing parts bioceramics, according to previous claims, wherein the suspension aqueous may contain substances that interact with the substance activates controlling its release as polyethylene glycol, dextran, Chitosan, polylactic acid or polyglycolic acid. 10. Piezas de biocerámicas obtenidas a través del método reivindicado con una porosidad interconectada y diseñada en las tres direcciones del espacio e incluso dentro de la misma dirección con un tamaño de poro comprendido entre 300 y 1000 \mum.10. Bioceramics pieces obtained through of the claimed method with an interconnected and designed porosity in the three directions of space and even within it address with a pore size between 300 and 1000 \ mum. 11. Piezas de biocerámicas, según reivindicación 10, que incluyen una o varias sustancias biológicamente activas.11. Bioceramics pieces according to claim 10, which include one or more biologically active substances. 12. Piezas de biocerámicas, según reivindicaciones 10 y 11, que incluyen sustancias que faciliten la liberación controlada de la sustancia activa.12. Bioceramics pieces, according to claims 10 and 11, including substances that facilitate the controlled release of the active substance. 13. Uso de las piezas biocerámicas reivindicadas como implantes para la regeneración de tejido óseo.13. Use of claimed bioceramics as implants for the regeneration of bone tissue. 14. Uso de las piezas biocerámicas reivindicadas como sistema de liberación de sustancias.14. Use of the claimed bioceramic pieces as a substance release system.
ES200802813A 2008-10-03 2008-10-03 METHOD FOR LOW TEMPERATURE PREPARATION OF BIOCERAMIC PARTS WITH THREE-DIMENSIONAL POROSITY DESIGNED AND INTERCONNECTED. Active ES2335851B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES200802813A ES2335851B1 (en) 2008-10-03 2008-10-03 METHOD FOR LOW TEMPERATURE PREPARATION OF BIOCERAMIC PARTS WITH THREE-DIMENSIONAL POROSITY DESIGNED AND INTERCONNECTED.
PCT/ES2009/000480 WO2010037881A1 (en) 2008-10-03 2009-10-01 Method for the low-temperature preparation of bioceramic parts with patterned and interconnected three-dimensional porosity.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200802813A ES2335851B1 (en) 2008-10-03 2008-10-03 METHOD FOR LOW TEMPERATURE PREPARATION OF BIOCERAMIC PARTS WITH THREE-DIMENSIONAL POROSITY DESIGNED AND INTERCONNECTED.

Publications (2)

Publication Number Publication Date
ES2335851A1 ES2335851A1 (en) 2010-04-05
ES2335851B1 true ES2335851B1 (en) 2011-01-24

Family

ID=42026650

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200802813A Active ES2335851B1 (en) 2008-10-03 2008-10-03 METHOD FOR LOW TEMPERATURE PREPARATION OF BIOCERAMIC PARTS WITH THREE-DIMENSIONAL POROSITY DESIGNED AND INTERCONNECTED.

Country Status (2)

Country Link
ES (1) ES2335851B1 (en)
WO (1) WO2010037881A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103623466B (en) * 2013-12-19 2015-07-01 华东理工大学 Functionalized mesoporous bioglass porous scaffolds as well as preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500405B1 (en) * 2002-05-01 2014-03-05 Japan Science and Technology Agency Method for preparing porous composite material
EP2014256A1 (en) * 2007-07-12 2009-01-14 Straumann Holding AG Composite bone repair material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAREK POTOSECK "{}Hydroxyapatite foams produced by gelcastins using agarose"{} Materials Letters 31.07.2007 [online] Vol.62, páginas 1055-1057; apartados 2-3. *
SÁNCHEZ-SALCEDO, S. et al. "{}Hydroxyapatite/beta-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering"{} CHEMICAL ENGINEERING JOURNAL 13.02.2008 Vol. 138, páginas 62-71; apartados 1,2.2,2.3,3.2; figuras 6a,b. *

Also Published As

Publication number Publication date
WO2010037881A1 (en) 2010-04-08
ES2335851A1 (en) 2010-04-05

Similar Documents

Publication Publication Date Title
Sun et al. 3D printed calcium phosphate scaffolds with controlled release of osteogenic drugs for bone regeneration
Babaie et al. Fabrication aspects of porous biomaterials in orthopedic applications: A review
CN105031718B (en) Bone repair porous composite scaffold based on 3D-Bioplotter printing technology and preparation method thereof
Sopyan et al. Porous hydroxyapatite for artificial bone applications
Du et al. Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility
Chevalier et al. Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field
JP6810331B2 (en) Bioactive porous bone graft implant
Sánchez-Salcedo et al. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering
AU2002367314B2 (en) Tissue engineering scaffolds
ES2256273T3 (en) PORE SYNTHETIC OSEO GRAFT AND MANUFACTURING METHOD
Kim et al. In situ formation of biphasic calcium phosphates and their biological performance in vivo
WO2012174837A1 (en) Bionic bone repairing scaffold of layered structure and manufacturing method thereof
Dash et al. Gel casting of hydroxyapatite with naphthalene as pore former
Zhang et al. Biodegradable elastic sponge from nanofibrous biphasic calcium phosphate ceramic as an advanced material for regenerative medicine
CN105311673A (en) 3D (three-dimensional) printing mesoporous bioactivity glass modified biological ceramic support, and preparation method and application thereof
CN108939162B (en) Preparation method of mesoporous bioglass/sodium alginate-sodium alginate layered bone tissue engineering scaffold
Abdurrahim et al. Recent progress on the development of porous bioactive calcium phosphate for biomedical applications
WO2007128192A1 (en) A medical strengthened-type porous bioceramics, its preparation method and application
CN110101487B (en) Multi-stage biomimetic mineralized collagen-based skull repairing implant and preparation method thereof
KR100941374B1 (en) Bio-degradable triple pore ceramic-polymer scaffold and preparation method thereof
ES2803976T3 (en) Bone substitute material
BRPI1003676A2 (en) suspensions for the preparation of biosilicate-based bone scaffolds, obtained bone grafts and processes for obtaining them
KR101297701B1 (en) Methods for preparing bone cement scaffold and bone cement scaffold prepared thereby
ES2939266T3 (en) Collagen matrix or granulated mixture of bone substitute material
ES2335851B1 (en) METHOD FOR LOW TEMPERATURE PREPARATION OF BIOCERAMIC PARTS WITH THREE-DIMENSIONAL POROSITY DESIGNED AND INTERCONNECTED.

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20100405

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2335851

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20110112