ES2328779A1 - Digital read-out integrated circuit for the digital reading of high-speed image sensors - Google Patents

Digital read-out integrated circuit for the digital reading of high-speed image sensors Download PDF

Info

Publication number
ES2328779A1
ES2328779A1 ES200801428A ES200801428A ES2328779A1 ES 2328779 A1 ES2328779 A1 ES 2328779A1 ES 200801428 A ES200801428 A ES 200801428A ES 200801428 A ES200801428 A ES 200801428A ES 2328779 A1 ES2328779 A1 ES 2328779A1
Authority
ES
Spain
Prior art keywords
pdm
digital
int
integrated circuit
cds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES200801428A
Other languages
Spanish (es)
Other versions
ES2328779B1 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to ES200801428A priority Critical patent/ES2328779B1/en
Priority to PCT/ES2009/070157 priority patent/WO2009138545A1/en
Publication of ES2328779A1 publication Critical patent/ES2328779A1/en
Application granted granted Critical
Publication of ES2328779B1 publication Critical patent/ES2328779B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/322Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M3/324Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement
    • H03M3/326Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement by averaging out the errors
    • H03M3/338Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement by averaging out the errors by permutation in the time domain, e.g. dynamic element matching
    • H03M3/342Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement by averaging out the errors by permutation in the time domain, e.g. dynamic element matching by double sampling, e.g. correlated double sampling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/941Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated using an optical detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/155Control of the image-sensor operation, e.g. image processing within the image-sensor
    • H04N5/3355
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M3/43Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a single bit one
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/436Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
    • H03M3/456Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a first order loop filter in the feedforward path

Abstract

The invention relates to read-out integrated circuits (ROIC) for reading image sensor arrays. The invention comprises a novel pulse modulator topology as part of the analog-digital converter for active digital pixels, which attenuates signal losses caused by the initialisation times of the analog integrator. The invention also comprises the use of the function enabling cancellation of the low-frequency noise of the analog integrator using correlated double sampling. The invention is advantageous over current technology in that it increases the image capture speed or alternatively reduces the power consumption in active pixels without a loss of resolution.

Description

Circuito integrado para la lectura digital de sensores de imagen de alta velocidad.Integrated circuit for digital reading of high speed image sensors.

Sector de la técnicaTechnical sector

La presente invención se refiere a los sectores de las tecnologías de la información y de las comunicaciones, y describe un dispositivo microelectrónico específico para la captura digital de imágenes estáticas o dinámicas. Dichas imágenes se descomponen en píxeles, cuyo valor individual se obtiene de la lectura de un sensor óptico monolítico o híbrido. La agrupación en matriz de estos sensores constituye el plano focal de la imagen a capturar. Teniendo en cuenta el estado de la técnica actual, la presente invención presenta la ventaja de permitir mantener la resolución frente a una mayor velocidad de captura de la imagen o alternativamente disminuir el consumo de potencia en los píxeles activos.The present invention relates to the sectors of information and communications technologies, and describes a specific microelectronic device for capture digital static or dynamic images. These images are decompose in pixels, whose individual value is obtained from the reading of a monolithic or hybrid optical sensor. The grouping in matrix of these sensors constitutes the focal plane of the image at capture. Taking into account the current state of the art, the The present invention has the advantage of maintaining the resolution versus faster image capture speed or alternatively decrease power consumption in pixels assets.

Estado de la técnica actualCurrent state of the art

El mercado de los semiconductores experimenta actualmente una creciente demanda de dispositivos portátiles capaces de capturar imágenes a muy alta velocidad, para aplicaciones tales como navegación nocturna en automoción, diagnóstico médico o equipamiento estratégico. En general, estos dispositivos de imagen se basan en matrices de plano focal (Focal Plane Array, FPA) formadas por píxeles activos sensores (Active Pixel Sensor, APS), cada uno conteniendo tanto el elemento sensor óptico como su circuito individual de pre-procesado.The semiconductor market is currently experiencing a growing demand for portable devices capable of capturing images at very high speed, for applications such as automotive night navigation, medical diagnosis or strategic equipment. In general, these imaging devices are based on focal plane arrays ( Focal Plane Array , FPA) formed by active pixel sensors ( Active Pixel Sensor , APS), each containing both the optical sensor element and its individual pre-processed circuit .

Las técnicas de diseño modernas para celdas APS incluyen parcialmente [US5461425, 1995-10-24, Standford University (US); US6707410, 2004-03-16, Micron Technology Inc. (US); US7023369, 2006-04-04, University of Rochester (US)] o completamente [US6741198, 2004-03-25, R3 Logic Inc (US)] el conversor analógico-digital (Analog-to-Digital Converter, ADC) dentro del propio APS, dando lugar a pixeles activos digitales (Digital Pixel Sensor, DPS). Dadas las restricciones de espacio físico dentro del pixel activo, las arquitecturas ADC más adoptadas en la actualidad para celdas DPS son de tipo predictivo, frente a las alternativas directas (p.e. paralela) y algorítmicas (p.e. aproximaciones sucesivas), ya que permiten simplificar las partes analógicas del ADC. En ese sentido, la cadena de procesado completa o parcialmente incluida dentro de cada DPS se muestra en la Figura 1. Su principio básico de funcionamiento es el siguiente: el sensor óptico (1) genera una corriente I_{sens} (2) proporcional a la potencia de la iluminación incidente (3) y a su función de respuesta; el nivel de corriente (2) se convierte a lectura digital de salida b_{out} (4) discreta, en amplitud y tiempo, mediante el bloque ADC predictivo (5). Dicho ADC (5) se compone de dos etapas en cascada: un modulador PDM, Pulse Density Modulation, (6) y un filtro digital (11). La primera etapa (6) se encarga de discretizar la amplitud a l bit en forma de tren de pulsos V_{pdm} (7); las partes principales de este modulador (6) son un bloque de ganancia de baja frecuencia (8), un cuantificador (9) y un conversor digital-analógico (Digital-to-Analog Converter, DAC) (10) que suministra la realimentación necesaria para la predicción. La potencia del error de cuantificación resultante de dicha modulación se concentra principalmente en las componentes de alta frecuencia de V_{pdm} (7), por lo que se aplica a continuación un filtrado digital paso bajo en la segunda etapa (11), que además completa la discretización en tiempo. Como resultado se obtiene la palabra digital de salida b_{out} (4).Modern design techniques for APS cells partially include [US5461425, 1995-10-24, Standford University (US); US6707410, 2004-03-16, Micron Technology Inc. (US); US7023369, 2006-04-04, University of Rochester (US)] or completely [US6741198, 2004-03-25, R3 Logic Inc (US)] the analog -to-digital converter (ADC) within the APS itself, giving rise to active digital pixels ( Digital Pixel Sensor , DPS). Given the constraints of physical space within the active pixel, the most commonly adopted ADC architectures for DPS cells are predictive, compared to direct alternatives (eg parallel) and algorithmic (eg successive approximations), since they allow simplifying the parts ADC analog. In that sense, the complete or partially included processing chain within each DPS is shown in Figure 1. Its basic principle of operation is as follows: the optical sensor (1) generates an I_ {sens} current (2) proportional to the power of the incident lighting (3) and its response function; the current level (2) is converted to discrete digital output b_ {out} (4), in amplitude and time, by the predictive ADC block (5). Said ADC (5) consists of two stages in cascade: a PDM modulator, Pulse Density Modulation , (6) and a digital filter (11). The first stage (6) is responsible for discretizing the amplitude to the bit in the form of a pulse train V_ {pdm} (7); The main parts of this modulator (6) are a low frequency gain block (8), a quantizer (9) and a digital -to-analog converter (DAC) (10) that provides the necessary feedback For prediction. The power of the quantization error resulting from said modulation is mainly concentrated in the high frequency components of V_ {pdm}, so that a low-pass digital filtering is then applied in the second stage (11), which also Complete the discretization in time. As a result, the digital output word b_ {out} (4) is obtained.

Con el fin de reducir el consumo de potencia por pixel, el modulador (6) suele implementarse mediante técnicas de diseño asíncronas, ya sean de tipo "tiempo a primer suceso" (time to first spike) [US5565915, 1996-10-15, Matsushita Electric Industrial Co; US6271785, 2001-09-07, Texas Instruments Inc; US6377303, 2002-04-23, Intel Corp; US6525304, 2003-02-25, Foveon Inc; US6559788, 2003-05-06; US6969879, 2005-11-29, STMicroelectronics Ltd; US7071982, 2006-07-04, Texas Instruments Inc; US7164114, 2007-01-16, Via Technologies Inc], o de tipo "conteo de sucesos" (spike counting) [US7095439, 2006-09-22, Motorola Inc]. La ventaja de la segunda estrategia es la baja actividad de conmutación digital durante la conversión analógica-digital, con la consiguiente reducción del ruido electrónico.In order to reduce the power consumption per pixel, the modulator (6) is usually implemented by asynchronous design techniques, whether they are of the " time to first spike" type [US5565915, 1996-10-15, Matsushita Electric Industrial Co; US6271785, 2001-09-07, Texas Instruments Inc; US6377303, 2002-04-23, Intel Corp; US6525304, 2003-02-25, Foveon Inc; US6559788, 2003-05-06; US6969879, 2005-11-29, STMicroelectronics Ltd; US7071982, 2006-07-04, Texas Instruments Inc; US7164114, 2007-01-16, Via Technologies Inc], or of type "event counting" ( spike counting ) [US7095439, 2006-09-22, Motorola Inc]. The advantage of the second strategy is the low digital switching activity during analog-digital conversion, with the consequent reduction of electronic noise.

En el caso de celdas DPS de alta velocidad de adquisición, la topología de circuitos comúnmente empleada para moduladores PDM (6) de conteo de sucesos y también para el filtrado digital (11) se muestran en la Figura 2. Con el fin de minimizar el tamaño de la celda DPS, el modulador PDM compacto de conteo de sucesos (200) se reduce a: un integrador implementado mediante un amplificador de transimpedancia capacitivo (Capacitive Translmpedance Amplifier, CTIA) (201) con capacidad de integración C_{int} (202), que hace las funciones de bloque de ganancia de baja frecuencia (8) y polariza el sensor óptico (1) a una referencia V_{ref} (203); un comparador (204), que hace las funciones de cuantificador (9) respecto a un umbral V_{th} (205); y una realimentación del tren de pulsos V_{pdm} (7) hacia la inicialización (206) del CTIA (201), que hace las funciones de DAC (10). Aparte de esta inicialización en cada pulso de V_{pdm} (7), el CTIA (201) también se inicializa previamente a la fase de conversión analógica-digital mediante la señal V_{init} (207) y por el mismo mecanismo (206). El uso del CTIA (201) está especialmente indicado para celdas DPS de alta velocidad que requieran valores bajos de C_{int} (202), dado que permite compensar valores elevados de capacidad parásita de entrada C_{par} (208), ya sea debida al propio sensor óptico (1), al CTIA (201), o a la interconexión monolítica o híbrida entre ambos. Opcionalmente, el modulador PDM (200) también puede incorporar una segunda capacidad C_{cds} (209) controlada por la misma señal V_{pdm} (7) a través de la [lave (210), y destinada a cancelar por CDS (Correlated Double Sampling) el ruido de baja frecuencia del CTIA (201) en la señal integrada V_{int} (211). Respecto al filtrado digital (11), su realización se reduce a un filtro paso-bajo de primer orden implementado mediante un contador digital (212), que hace las funciones de integrador, y una entrada de inicialización (213) controlada por V_{init} (207), que implementa las pérdidas en dicho integrador.In the case of high-speed DPS acquisition cells, the circuit topology commonly used for PDM modulators (6) for event counting and also for digital filtering (11) is shown in Figure 2. In order to minimize the DPS cell size, the compact PDM event count modulator (200) is reduced to: an integrator implemented by means of a capacitive transimpedance amplifier ( Capacitive Translmpedance Amplifier , CTIA) (201) with C_ {int} integration capability (202 ), which functions as a low frequency gain block (8) and polarizes the optical sensor (1) to a reference V_ {ref} (203); a comparator (204), which functions as a quantifier (9) with respect to a threshold V_ {th} (205); and a feedback of the pulse train V_ {pdm} (7) towards the initialization (206) of the CTIA (201), which performs the functions of DAC (10). Apart from this initialization on each pulse of V_ {pdm} (7), the CTIA (201) is also initialized before the analog-to-digital conversion phase by means of the V_ {init} signal (207) and by the same mechanism (206 ). The use of CTIA (201) is especially indicated for high-speed DPS cells that require low C_ {int} values (202), since it allows compensating high values of parasitic input capacity C_ {par} (208), either due to the optical sensor itself (1), CTIA (201), or the monolithic or hybrid interconnection between the two. Optionally, the PDM modulator (200) can also incorporate a second capacity C_ {cds} (209) controlled by the same signal V_ {pdm} (7) through the [key (210), and intended to cancel by CDS ( Correlated Double Sampling ) the low frequency noise of the CTIA (201) in the integrated signal V_ {int} (211). Regarding digital filtering (11), its realization is reduced to a first-order low-pass filter implemented by means of a digital counter (212), which functions as an integrator, and an initialization input (213) controlled by V_ {init } (207), which implements the losses in said integrator.

El principio de funcionamiento del ADC predicitvo (5) basado en el modulador PDM (200) y el contador digital (212) se ilustra en la Figura 3, teniendo en cuenta que las llaves de la Figura 2 realizan la operación indicada en cada caso para niveles lógicos altos de sus señales de control. Una vez iniciada la fase de conversión analógica-digital (300) mediante V_{init} (207), la evolución de la señal integrada V_{int} (211) describe una rampa (302), positiva o negativa según el signo de I_{sens} (2), hasta el disparo del comparador (204) a una distancia V_{th} (205), positiva o negativa según el signo de I_{sens} (2), respecto al nivel de reposo V_{ref} (203). Como consecuencia del mencionado disparo, se produce un pulso (303) en la señal V_{pdm} (7) que causa la inicialización del CTIA (201) y la vuelta de la señal integrada V_{int} (211) al nivel de reposo V_{ref} (203) para empezar de nuevo el ciclo. En condiciones ideales (301), la duración de dicho pulso (303) es despreciable comparada con su periodicidad T_{pdmideal} (304), y en consecuencia la frecuencia de la señal V_{pdm} (7) es 1/T_{pdmideal}=I_{sens}/C_{int}V_{th}. Teniendo en cuenta que el contador (212) integra el número de pulsos en V_{pdm} (7) dentro de la ventana de adquisición T_{frame} (305), la lectura digital de salida b_{out} (4) en condiciones ideales (301) es proporcional a la corriente I_{sens} (2) del sensor óptico (1) a medir según b_{out}=T_{frame}/T_{pdmideal}=I_{sens}(T_{frame}/C_{int}V_{th}).The ADC operating principle Predictive (5) based on the PDM modulator (200) and the counter Digital (212) is illustrated in Figure 3, taking into account that Figure 2 keys perform the operation indicated in each case for high logic levels of its control signals. One time Started the analog-digital conversion phase (300) by V_ {init} (207), the evolution of the integrated signal V_ {int} (211) describes a ramp (302), positive or negative according to the sign of I_ {sens} (2), until the comparator trip (204) to a distance V_ {th} (205), positive or negative according to the sign of I_ {sens} (2), with respect to the resting level V_ {ref} (203). How as a result of the said shot, a pulse (303) occurs in the signal V_ {pdm} (7) that causes the initialization of the CTIA (201) and the return of the integrated signal V_ {int} (211) to the standby level V_ {ref} (203) to start the cycle again. In conditions ideals (301), the duration of said pulse (303) is negligible compared to its periodicity T_ {pdmideal} (304), and in consequently the frequency of the signal V_ {pdm} (7) is 1 / T_ {pdmideal} = I_ {sens} / C_ {int} V_ {th}. Taking into account that the counter (212) integrates the number of pulses in V_ {pdm} (7) within the acquisition window T_ {frame} (305), the reading digital output b_ {out} (4) under ideal conditions (301) is proportional to the current I_ {sens} (2) of the optical sensor (1) a measure according b_ {out} = T_ {frame} / T_ {pdmideal} = I_ {sens} (T_ {frame} / C_ {int} V_ {th}).

En la práctica (306), las limitaciones de potencia en los distintos bloques del modulador PDM (200) provocan una duración T_{res} (307), no nula, de los pulsos (308) en V_{pdm} (7). Teniendo en cuenta que el CTIA (201) no puede integrar la corriente del sensor I_{sens} (2) en la capacidad C_{int} (202) durante el tiempo T_{res} (307), la evolución real (305) de la señal integrada V_{int} (211) presenta una periodicidad T_{pdmreal} (309) superior a la ideal T_{pdmideal} (304), causando una pérdida de pulsos en la señal V_{pdm} (7) (p.e. 1 pulso en la Figura 3) a la salida del modulador PDM (200). Esta pérdida se hace especialmente patente en celdas DPS de alta velocidad, en las que la periodicidad ideal de los pulsos T_{pdmideal} (304) es corta y comparable al propio tiempo T_{res} (307).In practice (306), the limitations of power in the different blocks of the PDM modulator (200) cause a duration T_ {res} (307), not zero, of the pulses (308) in V_ {pdm} (7). Bearing in mind that CTIA (201) cannot integrate the sensor current I_ {sens} (2) into the capacity C_ {int} (202) during the time T_ {res} (307), the evolution real (305) of the integrated signal V_ {int} (211) presents a periodicity T_ {pdmreal} (309) higher than the ideal T_ {pdmideal} (304), causing a loss of pulses in the V_ {pdm} signal (7) (e.g. 1 pulse in Figure 3) at the output of the PDM modulator (200). This loss is especially evident in high DPS cells speed, in which the ideal periodicity of the pulses T_ {pdmideal} (304) is short and comparable at the same time T_ {res} (307).

Un ejemplo de los efectos causados en el ADC predictivo (5) por la pérdida de pulsos en la señal V_{pdm} (7) se presenta en la Figura 4. En este caso se ha simulado un modelo eléctrico del modulador PDM (200) para una tecnología complementaria metal-óxido-semiconductor (Complementary Metal-Oxide-Semiconductor, CMOS) de 0.18 \mum, alimentado a 1.8V, con C_{int}=C_{cds}=100fF, V_{ref}=1V y V_{th}=100 mV. El gráfico muestra el valor de la palabra digital de salida b_{out} (4), en términos del bit menos significativo (Least Significant Bit, LSB), para T_{frame}= 2 ms en función de la corriente I_{sens} (2) generada en el sensor óptico (1). Dicha curva de conversión analógica-digital (401) se calcula para distintos valores de consumo de corriente I_{bias} (400) en cada bloque del modulador PDM (200), equivalente a fijar distintos valores de T_{res} (307). A medida que se limita la potencia disponible en los circuitos de la celda DPS bajando I_{bias} (400), el consecuente aumento de T_{res} (307) acentúa rápidamente la pérdida de pulsos en la señal V_{pdm} (7). Dado que esta pérdida es dependiente de la propia señal a medir I_{sens} (2), su efecto se traduce en una no-linealidad de la lectura digital de salida b_{out} (4). En particular, se observa una saturación de la parte superior de la curva de conversión del ADC predicitvo (5), tal y corno puede apreciarse en la Figura 4.An example of the effects caused in the predictive ADC (5) by the loss of pulses in the V_ {pdm} signal (7) is presented in Figure 4. In this case an electric model of the PDM modulator (200) has been simulated for a complementary metal-oxide-semiconductor technology ( Complementary Metal-Oxide-Semiconductor , CMOS) of 0.18 µm, powered at 1.8V, with C_ {int} = C_ {cds} = 100fF, V_ {ref} = 1V and V_ {th} = 100 mV. The graph shows the value of the digital output word b_ {out} (4), in terms of the least significant bit ( Least Significant Bit , LSB), for T_ {frame} = 2 ms depending on the current I_ {sens} (2) generated in the optical sensor (1). Said analog-digital conversion curve (401) is calculated for different current consumption values I_ {bias} (400) in each block of the PDM modulator (200), equivalent to setting different values of T_ {res} (307). As the available power in the DPS cell circuits is limited by lowering I_ {bias} (400), the consequent increase in T_ {res} (307) rapidly accentuates the loss of pulses in the V_ {pdm} signal (7 ). Since this loss is dependent on the signal to be measured I_ {sens} (2), its effect is translated into a non-linearity of the digital output reading b_ {out} (4). In particular, a saturation of the upper part of the prediction ADC conversion curve (5) is observed, as can be seen in Figure 4.

El circuito integrado presentado en esta memoria de invención trata de resolver este efecto indeseado de no-lineraridad y de saturación de la señal de salida por medio de una topología de modulador PDM compacto de conteo de sucesos que no requiera un elevado consumo de potencia en sus circuitos, sobre todo para celdas DPS de alta velocidad de adquisición de datos (imágenes). La presente invención trata, igualmente, de superar las limitaciones que presentan los circuitos actualmente en el mercado y para ello se introduce una nueva topología de modulador PDM especialmente indicada para evitar las pérdidas de pulsos debidas al tiempo de inicialización del bloque CTIA. Esta topología facilita la reducción de la potencia disipada en cada pixel activo o alternativamente permite aumentar la velocidad de captura de la imagen.The integrated circuit presented in this report of invention tries to solve this unwanted effect of non-linearity and saturation of the output signal  by means of a compact PDM modulator topology of events that do not require high power consumption in their circuits, especially for high-speed DPS cells data acquisition (images). The present invention addresses, also, to overcome the limitations presented by the circuits currently on the market and for this a new one is introduced PDM modulator topology especially indicated to avoid pulse losses due to block initialization time CTIA. This topology facilitates the reduction of dissipated power in each active pixel or alternatively it allows to increase the Image capture speed.

Descripción de la invenciónDescription of the invention Breve descripción de la invenciónBrief Description of the Invention

El Circuito Integrado para la Lectura Digital de Sensores de Imagen de Alta Velocidad objeto de la presente invención se caracteriza por comprender un sensor óptico (1), y un ADC predictivo (5) completa o parcialmente dentro de la celda DPS. Dicho ADC (5) está compuesto, según la Figura 5, por un nuevo modulador PDM de conteo de sucesos (500), que realiza la inicialización del CTIA (501) y la reducción de su ruido por CDS mediante la inyección controlada de carga en la capacidad de integración C_{int} (502); así como por un contador digital (212), para el filtrado paso-bajo del ruido de cuantificación del modulador PDM (500).The Integrated Circuit for Digital Reading of High Speed Image Sensors object of the present invention is characterized by comprising an optical sensor (1), and a Predictive ADC (5) completely or partially within the DPS cell. Said ADC (5) is composed, according to Figure 5, by a new PDM event count modulator (500), which performs the initialization of CTIA (501) and reduction of its noise by CDS by controlled injection of load in the ability to C_ {int} integration (502); as well as by a digital counter (212), for low-pass filtering of noise from PDM modulator quantification (500).

El nuevo bloque modulador PDM de conteo de sucesos (500) utiliza una capacidad específica C_{reset/cds} (503) que permite la integración de la corriente del sensor I_{sens} (2) durante la inicialización del propio CTIA (501). Asimismo, la capacidad C_{reset/cds} (503) también se emplea para muestrear el ruido de baja frecuencia de salida del CTIA (501) y realizar su pre-compensación durante la generación de cada pulso en V_{pdm} (7).The new PDM modulator block for counting events (500) use a specific capacity C_ {reset / cds} (503) that allows the integration of the sensor current I_ {sens} (2) during the initialization of CTIA itself (501). Also, the capacity C_ {reset / cds} (503) is also used to sample the low frequency output noise of the CTIA (501) and perform your pre-compensation during the generation of each pulse in V_ {pdm} (7).

En comparación con las referencias del estado de la técnica ya mencionadas anteriormente, la invención permite mantener la linealidad del ADC (5) incluso para valores de tiempo de inicialización del CTIA (501) próximos al periodo de los pulsos V_{pdm} (7). En consecuencia, se puede aumentar la velocidad de adquisición de la imagen para la misma potencia disipada o, alternativamente, reducir el consumo de potencia en los circuitos del modulador PDM (500) manteniendo la velocidad de adquisición.In comparison with the references of the state of The technique already mentioned above, the invention allows maintain the linearity of the ADC (5) even for time values of initialization of the CTIA (501) next to the pulse period V_ {pdm} (7). Consequently, the speed of image acquisition for the same power dissipated or, alternatively, reduce the power consumption in the circuits of the PDM modulator (500) maintaining the speed of acquisition.

       \newpage\ newpage
    
Descripción detallada de la invenciónDetailed description of the invention

El Circuito Integrado para la Lectura Digital de Sensores de Imagen de Alta Velocidad objeto de la presente invención se caracteriza por comprender un sensor óptico (1), y un ADC predictivo (5), completa o parcialmente dentro de la celda DPS, compuesto según la Figura 5 por un nuevo modulador PDM de conteo de sucesos (500) y por un contador digital (212).The Integrated Circuit for Digital Reading of High Speed Image Sensors object of the present invention is characterized by comprising an optical sensor (1), and a Predictive ADC (5), completely or partially within the DPS cell, composed according to Figure 5 by a new PDM modulator counting events (500) and by a digital counter (212).

El nuevo modulador PDM compacto de conteo de sucesos (500) incorpora: un CTIA (501) con capacidad de integración C_{int} (502), inicializable mediante el interruptor (504), que hace las funciones de bloque de ganancia de baja frecuencia (8); un comparador (204), que hace las funciones de cuantificador (9) respecto a un umbral V_{th} (205); una capacidad C_{reset/cds} (503), idéntica a la de integración C_{int} (502), que hace las funciones de DAC (10) y está conectada en uno de sus extremos al nivel de reposo V_{ref} (203) de la señal integrada V_{int} (505), mientras el otro extremo de la misma C_{reset/cds} (503) puede conectarse alternativamente a la salida o a la entrada no inversora del CTIA (501) mediante los interruptores (506) y (507), respectivamente, según la salida V_{pdm} (7) del propio modulador PDM (500).The new compact PDM modulator counting events (500) incorporates: a CTIA (501) with integration capability C_ {int} (502), initializable by switch (504), which performs the functions of low frequency gain block (8); a comparator (204), which functions as a quantifier (9) with respect to a threshold V_ {th} (205); a capacity C_ {reset / cds} (503), identical to that of integration C_ {int} (502), which does the DAC functions (10) and is connected at one of its ends to the resting level V_ {ref} (203) of the integrated signal V_ {int} (505), while the other end of it C_ {reset / cds} (503) can be connected alternately to the output or to the input no CTIA inverter (501) using switches (506) and (507), respectively, according to the output V_ {pdm} (7) of the modulator itself PDM (500).

El principio de funcionamiento del nuevo modulador PDM (500) se ilustra en la Figura 6, teniendo en cuenta que los interruptores de la Figura 5 realizan la operación indicada en cada caso para niveles lógicos altos de sus señales de control. La fase de conversión analógica-digital se inicia con la apertura de la [lave (504) mediante V_{init} (207). Durante la ventana de conversión (300), se permite que la corriente I_{sens} (2) generada por la iluminación incidente (3) en el sensor (1) se pueda integrar en C_{int} (502) mediante el CTIA (501), mientras la capacidad C_{reset/cds} (503) permanece conectada a la salida del propio CTIA (501) a través del interruptor (506) muestreando el valor de la señal integrada V_{int} (505). El mismo CTIA (501) se encarga también de polarizar el sensor (1) al nivel de tensión de reposo V_{ref} (203) y de compensar el efecto de la capacidad parásita de entrada C_{par} (208). La evolución de la señal integrada V_{int} (505) a la salida del CTIA (501) describe una rampa (601), positiva o negativa según el signo de I_{sens} (2), hasta el nivel de disparo del comparador (204) situado a una distancia V_{th} (205), positiva o negativa según el signo de I_{sens} (2), respecto al nivel de reposo V_{ref} (203). Como consecuencia de dicho disparo, se produce un pulso (602) en la señal V_{pdm} (7), causando la apertura de la llave (506) y el cierre de la llave (507). La consecuente conmutación de C_{reset/cds} (503) inyecta el nivel de carga necesario en la capacidad C_{int} (502) para provocar el retorno de la señal V_{int} (505) a su valor de reposo V_{ref} (203), completando así la inicialización del CTIA (501).The operating principle of the new PDM modulator (500) is illustrated in Figure 6, taking into account that the switches in Figure 5 perform the indicated operation in each case for high logic levels of its control signals. The analog-digital conversion phase starts with the opening of the [wash (504) by V_ {init} (207). During the conversion window (300), the current is allowed I_ {sens} (2) generated by the incident lighting (3) in the sensor (1) can be integrated into C_ {int} (502) through CTIA (501), while the capacity C_ {reset / cds} (503) remains connected to the output of CTIA itself (501) through the switch (506) sampling the value of the integrated signal V_ {int} (505). The same CTIA (501) is also responsible for polarizing the sensor (1) at the resting voltage level V_ {ref} (203) and of compensate for the effect of the parasitic input capacity C_ {par} (208). The evolution of the integrated signal V_ {int} (505) to the CTIA exit (501) describes a ramp (601), positive or negative according to the sign of I_ {sens} (2), up to the trigger level of the comparator (204) located at a distance V_ {th} (205), positive or negative according to the sign of I_ {sens} (2), with respect to the level of rest V_ {ref} (203). As a result of this shot, produces a pulse (602) on the signal V_ {pdm} (7), causing the opening of the key (506) and closing of the key (507). The consequent switching of C_ {reset / cds} (503) injects the level load required in capacity C_ {int} (502) to cause the return of signal V_ {int} (505) to its idle value V_ {ref} (203), thus completing the initialization of CTIA (501).

Sin embargo, y a diferencia de la topología PDM (200) ya comentada en el Estado de la Técnica, durante la duración T_{res} (603) del pulso V_{pdm} (7) también se permite la integración de I_{sens} (2) en C_{int} (502), combinándose con la carga inyectada a través de C_{reset/cds} (503). Este efecto puede observarse en la evolución real (600) de la señal integrada V_{int} (505), donde la rampa (601) no vuelve hasta el nivel de reposo V_{ref} (203) después del disparo del comparador (204) debido precisamente al efecto de la corriente I_{sens} (2). De hecho, el CTIA (501) opera como un integrador continuo en tiempo durante toda la ventana de conversión T_{frame} (305), bloqueando únicamente C_{int} (502) durante la fase previa a dicha ventana con el fin de inicializar la polarización del sensor óptico (1). En consecuencia, el periodo real T_{pdmreal} (604) de la señal V_{pdm} (7) coincide con el periodo teórico T_{pdmideal} (304) en condiciones ideales (301), incluso para tiempos de inicialización T_{res} (603) comparables con el periodo nominal T_{pdmideal} (304). Por lo tanto, la frecuencia de la señal V_{pdm} (7) es proporcional a la corriente del sensor a medir según 1/T_{pdmreal}=I_{sens}/C_{int}V_{th}. Teniendo en cuenta que el contador (212) integra el número de pulsos en V_{pdm} (7) dentro de la ventana de adquisición T_{frame} (305), la lectura digital de salida b_{out} (4) en condiciones reales (600) coincide con el caso ideal (301) y es proporcional a la corriente I_{sens} (2) del sensor óptico (1) a medir según la expresión b_{out}=T_{frame}/T_{pdmreal}=I_{sens}(T_{frame}/C_{int}V_{th}).However, and unlike the PDM topology (200) already commented in the State of the Art, during the duration T_ {res} (603) of the pulse V_ {pdm} (7) also allows integration of I_ {sens} (2) in C_ {int} (502), combined with the load injected through C_ {reset / cds} (503). This effect can be observed in the actual evolution (600) of the integrated signal V_ {int} (505), where the ramp (601) does not return to the level of standby V_ {ref} (203) after comparator trip (204) due precisely to the effect of the current I_ {sens} (2). From In fact, CTIA (501) operates as a continuous time integrator throughout the conversion window T_ {frame} (305), blocking only C_ {int} (502) during the pre-window phase in order to initialize the polarization of the optical sensor (1). In consequently, the actual period T_ {pdmreal} (604) of the signal V_ {pdm} (7) coincides with the theoretical period T_ {pdmideal} (304) in ideal conditions (301), even for times of initialization T_ {res} (603) comparable to the nominal period T_ {pdmideal} (304). Therefore, the signal frequency V_ {pdm} (7) is proportional to the sensor current to be measured according to 1 / T_ {pdmreal} = I_ {sens} / C_ {int} V_ {th}. Having in note that the counter (212) integrates the number of pulses in V_ {pdm} (7) within the acquisition window T_ {frame} (305), digital output reading b_ {out} (4) in conditions real (600) matches the ideal case (301) and is proportional to the  current I_ {sens} (2) of the optical sensor (1) to be measured according to the expression b_ {out} = T_ {frame} / T_ {pdmreal} = I_ {sens} (T_ {frame} / C_ {int} V_ {th}).

Aparte de la función de inicialización de C_{int} (502), la capacidad C_{reset/cds} (503) también se emplea para la atenuación del ruido electrónico de baja frecuencia del CTIA (501) mediante CDS. Antes de producirse el disparo del comparador (204), C_{reset/cds} (503) mantiene muestreado el ruido electrónico en V_{int} (505) generado por el CTIA (501). Durante el tiempo de inicialización T_{res} (603), dicho ruido se pre-substrae de C_{int} (502) de cara al siguiente ciclo de integración, implementando así el mecanismo de CDS. En consecuencia, las componentes del ruido del CTIA (501) se ven atenuadas de un modo inversamente proporcional a su frecuencia.Apart from the initialization function of C_ {int} (502), the capacity C_ {reset / cds} (503) is also used for low frequency electronic noise attenuation of CTIA (501) through CDS. Before the shot of the comparator (204), C_ {reset / cds} (503) keeps sampled the electronic noise in V_ {int} (505) generated by the CTIA (501). During the initialization time T_ {res} (603), said noise is pre-substrat of C_ {int} (502) for the following integration cycle, thus implementing the CDS mechanism. In consequently, the noise components of the CTIA (501) are seen attenuated in a manner inversely proportional to its frequency.

Ejemplo de realización de la invenciónExample of embodiment of the invention

A continuación se presenta un ejemplo de realización compacta de la invención, en el que se detalla una posible implementación circuital para cada uno de los bloques del nuevo modulador PDM de conteo de sucesos (500) definido en el apartado de la Descripción Detallada de la Invención. El ejemplo a continuación detallado se ha diseñado y simulado eléctricamente para una tecnología CMOS real de 0.18 \mum alimentada a 1.8V, aunque la misma invención ya ha sido integrada con éxito para una tecnología de 0.35 \mum alimentada a 1.25V.Below is an example of compact embodiment of the invention, in which a detailed possible circuit implementation for each of the blocks of the new event counting PDM modulator (500) defined in the section of the Detailed Description of the Invention. The example a Detailed continuation has been electrically designed and simulated to a real 0.18 µm CMOS technology powered at 1.8V, although the same invention has already been successfully integrated for a 0.35 µm technology powered at 1.25V.

Según se muestra en la Figura 7, el bloque integrador CTIA (501) se implementa en este caso mediante un amplificador inversor de etapa única compuesto por el transistor MOS de efecto campo tipo N (N-type MOS Field Effect Transistor, NMOSFET) M1 (700) y la fuente de corriente I_{bias} (701), junto a la capacidad de integración C_{int} (502). El nivel de reposo V_{ref} (203) se genera localmente dentro del propio modulador a través del NMOSFET M2 (702), idéntico a MI (700), y la fuente de corriente I_{bias} (703), idéntica también a I_{bias} (701). Tanto la llave de pre-inicialización (504) como las de conmutación (506) y (507) de C_{reset/cds} (503) se implementan mediante NMOSFETs de dimensiones mínimas. Para la realización del comparador (204), se recurre a otro amplificador inversor de etapa única, compuesto por el NMOSFET M3 (704), con relación de aspecto 1/K respecto a Ml (700), y la fuente de corriente I_{bias} (705), idéntica a I_{bias} (701), en cascada con un inversor digital (706) compuesto de MOSFETs complementarios de dimensiones mínimas. En consecuencia, y suponiendo que Ml (700) y M3 (704) estén operando en la región subumbral y en saturación, la expresión del umbral equivalente (205) es V_{th}=nU_{t}In(K), donde n y U_{t} son la pendiente subumbral del transistor y el potencial térmico de operación, respectivamente.As shown in Figure 7, the CTIA integrator block (501) is implemented in this case by a single stage inverting amplifier composed of the N-type MOS Field Effect Transistor , NMOSFET M1 ( 700) and the current source I_ {bias} (701), together with the integration capacity C_ {int} (502). The resting level V_ {ref} (203) is generated locally within the modulator itself through the NMOSFET M2 (702), identical to MI (700), and the current source I_ {bias} (703), also identical to I_ {bias} (701). Both the pre-initialization key (504) and the switching keys (506) and (507) of C_ {reset / cds} (503) are implemented by means of NMOSFETs of minimum dimensions. For the realization of the comparator (204), another single stage inverting amplifier is used, composed of the NMOSFET M3 (704), with aspect ratio 1 / K with respect to Ml (700), and the current source I_ {bias } (705), identical to I_ {bias} (701), cascaded with a digital inverter (706) composed of complementary MOSFETs of minimum dimensions. Consequently, and assuming that Ml (700) and M3 (704) are operating in the sub-threshold region and in saturation, the equivalent threshold expression (205) is V_ {th} = nU_ {t} In (K), where n U_ {t} are the subthreshold slope of the transistor and the thermal operation potential, respectively.

En base al circuito descrito en la Figura 7, los resultados de la simulación eléctrica para el caso de diseño C_{int}=C_{cds}=100fF, V_{ref}=1V y V_{th}=100 mV (para K=20 y T=27ºC) se presentan en la Figura 8. El gráfico muestra el valor de la palabra digital de salida b_{out} (4), en términos de LSB (Least Significant Bit) para T_{frame}= 2 ms en función de la corriente I_{sens} (2) generada en el sensor óptico (1). Dichas curvas de conversión analógica-digital (801) se calculan para distintos valores de consumo de corriente I_{bias} (800) en las fuentes (701), (703) y (705) del modulador PDM (500), equivalente a fijar distintos valores de T_{res} (603).Based on the circuit described in Figure 7, the results of the electrical simulation for the design case C_ {int} = C_ {cds} = 100fF, V_ {ref} = 1V and V_ {th} = 100 mV (for K = 20 and T = 27ºC) are presented in Figure 8. The graph shows the value of the digital output word b_ {out} (4), in terms of LSB ( Least Significant Bit ) for T_ {frame} = 2 ms depending on the current I_ {sens} (2) generated in the optical sensor (1). Said analog-digital conversion curves (801) are calculated for different current consumption values I_ {bias} (800) at the sources (701), (703) and (705) of the PDM modulator (500), equivalent to setting different values of T_ {res} (603).

De la comparación directa entre las Figuras 2 (Estado de la Técnica actual) y 8 (resultados obtenidos en este ejemplo) se deduce claramente que mediante el dispositivo presentado en esta memoria de invención, la saturación de la curva de conversión analógica-digital se ha reducido en un factor 75% respecto al valor inicial, incluso en configuraciones que presenten drásticas limitaciones de potencia en los circuitos de la celda DPS. Este resultado práctico constituye (representa) un importante avance en la tecnología.From the direct comparison between Figures 2 (Current State of the Art) and 8 (results obtained in this example) it is clear that through the device presented herein, the saturation of the curve analog-to-digital conversion has been reduced by 75% factor with respect to the initial value, even in configurations that have drastic power limitations in the circuits of the DPS cell. This practical result constitutes (represents) a important advance in technology.

Descripción detallada de las figurasDetailed description of the figures

Fig.1: La figura muestra un esquema general de lectura digital de pixel, parcial o completamente incluido en cada celda DPS, tal y cómo se fabrica actualmente (véase Estado de la Técnica). En la misma se aprecia la existencia de: un sensor óptico (1), y un ADC predictivo (5), formado por un modulador PDM (6) y un filtro digital paso-bajo de salida (11). Dicho modulador PDM (6) se compone de: un bloque de ganancia en baja frecuencia (8), un cuantificador (9), y un DAC (10) que suministra la realimentación necesaria para la predicción.Fig. 1: The figure shows a general scheme of digital pixel reading, partially or completely included in each DPS cell, as it is currently manufactured (see Status of the Technique). It shows the existence of: an optical sensor (1), and a predictive ADC (5), consisting of a PDM modulator (6) and a Low pass digital output filter (11). Saying PDM modulator (6) consists of: a low gain block frequency (8), a quantifier (9), and a DAC (10) that supplies Feedback needed for prediction.

Fig.2: La figura muestra una topología compacta de ADC predictivo (5), parcial o completamente incluido en cada celda DPS, tal y cómo se fabrica actualmente (véase Estado de la Técnica). En la misma se aprecia la existencia de: un modulador PDM de conteo de sucesos de alta velocidad (200), y un contador digital (212). Dicho modulador PDM (200) se compone de: un integrador CTIA (201) con capacidad de integración C_{int} (202), una segunda capacidad C_{cds} (209) para cancelación del ruido por CDS, un comparador (204) y una realimentación del tren de pulsos V_{pdm} (7) hacia la inicialización (206) del CTIA (201).Fig. 2: The figure shows a compact topology of predictive ADC (5), partially or completely included in each DPS cell, as it is currently manufactured (see Status of the Technique). It shows the existence of: a PDM modulator High speed event count (200), and a digital counter (212). Said PDM modulator (200) is composed of: a CTIA integrator (201) with C_ {int} integration capability (202), a second C_ {cds} capacity (209) for noise cancellation by CDS, a comparator (204) and a feedback of the pulse train V_ {pdm} (7) towards the initialization (206) of the CTIA (201).

Fig.3: La figura muestra el funcionamiento de la topología PDM (200) presentado en la Figura 2, tal y cómo se fabrica actualmente (véase Estado de la Técnica). En la misma se aprecia la evolución temporal de las señales de ventana de adquisición V_{init} (207), de integración V_{int} (211), y de salida V_{pdm} (7), tanto para el caso ideal (301) como para implementaciones reales (306).Fig. 3: The figure shows the operation of the PDM topology (200) presented in Figure 2, as it is currently manufactures (see State of the Art). In it appreciate the temporal evolution of window signals from acquisition V_ {init} (207), integration V_ {int} (211), and output V_ {pdm} (7), both for the ideal case (301) and for real implementations (306).

Fig.4: La figura muestra un ejemplo de resultados de simulación eléctrica para la topología PDM (200) presentada en la Figura 2. En la misma se aprecia la curva de transferencia (401) del ADC predictivo (5) en términos de palabra digital de salida b_{out} (4) en función de la corriente I_{sens} (2), generada en el sensor óptico (1), para distintos valores de consumo de corriente I_{bias} (400) en cada bloque del modulador PDM (200).Fig. 4: The figure shows an example of Electrical simulation results for the PDM topology (200) presented in Figure 2. It shows the curve of transfer (401) of the predictive ADC (5) in word terms digital output b_ {out} (4) depending on the current I_ {sens} (2), generated in the optical sensor (1), for different current consumption values I_ {bias} (400) in each block of the PDM modulator (200).

Fig.5: La figura muestra la nueva topología de modulador PDM de conteo de sucesos de alta velocidad (500) propuesta en la invención. En la misma se aprecia que dicho modulador PDM (500) se compone de: un CTIA (501) con capacidad de integración C_{int} (502) y pre-inicializable mediante la llave (504), un comparador (204), y una capacidad C_{reset/cds} (503) conectada en uno de sus extremos al nivel de reposo V_{ref} (203) de la señal integrada V_{int} (505), mientras el otro extremo de la misma C_{reset/cds} (503) puede conectarse alternativamente a la salida o a la entrada no inversora del CTIA (501) mediante las llaves (506) y (507), respectivamente, según la salida V_{pdm} (7) del propio modulador PDM (500).Fig. 5: The figure shows the new topology of PDM high speed event counting modulator (500) proposed in the invention. It shows that said PDM modulator (500) consists of: a CTIA (501) with the ability to C_ {int} (502) and pre-initializable integration by means of the key (504), a comparator (204), and a capacity C_ {reset / cds} (503) connected at one of its ends at the level of idle V_ {ref} (203) of the integrated signal V_ {int} (505), while the other end of it C_ {reset / cds} (503) can alternatively connect to the output or to the non-inverting input of the CTIA (501) using the keys (506) and (507), respectively, according to the output V_ {pdm} (7) of the PDM modulator (500) itself.

Fig.6: La figura muestra el funcionamiento de la nueva topología PDM (500) propuesta en la invención. En la misma se aprecia la evolución temporal de las señales de ventana de adquisición V_{init} (207), de integración V_{int} (211) y de salida V_{pdm} (7), tanto para el caso ideal (301) como para implementaciones reales (600).Fig. 6: The figure shows the operation of the new PDM topology (500) proposed in the invention. In it appreciate the temporal evolution of window signals from acquisition V_ {init} (207), integration V_ {int} (211) and output V_ {pdm} (7), both for the ideal case (301) and for real implementations (600).

Fig.7: La figura muestra un ejemplo de realización compacta de la nueva topología PDM (500) propuesta en la invención. En la misma se aprecia la implementación de los bloques de la Figura 5 mediante MOSFETs (700, 702 y 704), fuentes de corriente (701, 703 y 705), llaves (504, 506 y 507) y puertas lógicas (706).Fig. 7: The figure shows an example of compact realization of the new PDM topology (500) proposed in the invention. It shows the implementation of the blocks of Figure 5 using MOSFETs (700, 702 and 704), sources of current (701, 703 and 705), keys (504, 506 and 507) and doors Logic (706).

Fig.8: La figura muestra un ejemplo de resultados de simulación eléctrica para la realización práctica de la nueva topología PDM (500) propuesta en la invención. En la misma se aprecia la curva de transferencia (801) del ADC predictivo (5) en términos de palabra digital de salida b_{out} (4) en función de la corriente I_{sens} (2), generada en el sensor óptico (1), para distintos valores de consumo de corriente I_{bias} (800) en cada fuente de corriente (701, 703 y 705).Fig. 8: The figure shows an example of electrical simulation results for the practical realization of the new PDM topology (500) proposed in the invention. In the same the transfer curve (801) of the predictive ADC (5) is appreciated in terms of digital output word b_ {out} (4) based on the current I_ {sens} (2), generated in the optical sensor (1), for different values of current consumption I_ {bias} (800) in each current source (701, 703 and 705).

Claims (6)

1. Circuito integrado para la lectura digital de sensores de imagen de alta velocidad caracterizado porque comprende (véase la Figura 5):1. Integrated circuit for digital reading of high-speed image sensors characterized in that it comprises (see Figure 5):
un nuevo modulador PDM de conteo de sucesos (500) que incorpora: un CTIA (501) con capacidad de integración C_{int} (502) y pre-inicializable mediante la llave (504), que hace las funciones de bloque de ganancia de baja frecuencia (8), polariza el sensor óptico (1) a una referencia V_{ref} (203) y compensa los efectos de la capacidad parásita de entrada C_{par} (208); un comparador (204), que hace las funciones de cuantificador (9) respecto a un umbral V_{th} (205); una capacidad C_{reset/cds} (503), idéntica a la de integración C_{int} (502), que hace las funciones de DAC (10) y está conectada en uno de sus extremos al nivel de reposo V_{ref} (203) de la señal integrada V_{int} (505), mientras el otro extremo de la misma C_{reset/cds} (503) puede conectarse alternativamente a la salida o a la entrada no inversora del CTIA (501) mediante las llaves (506) y (507), respectivamente, según la salida V_{pdm} (7) del propio modulador PDM (500).a new PDM event count modulator (500) that incorporates: a CTIA (501) with C_ {int} integration capability (502) and pre-initializable using the key (504), which makes Low frequency gain block functions (8), polarize the optical sensor (1) to a reference V_ {ref} (203) and compensates for the effects of the parasitic input capacity C_ {par} (208); a comparator (204), which functions as a quantifier (9) with respect to a threshold V_ (205); a capacity C_ {reset / cds} (503), identical to that of integration C_ {int} (502), which performs the functions of DAC (10) and is connected in one from its ends to the resting level V_ {ref} (203) of the signal integrated V_ {int} (505), while the other end of it C_ {reset / cds} (503) can alternatively be connected to the output or to the non-inverting input of the CTIA (501) using the keys (506) and (507), respectively, according to the V_ {pdm} (7) output of the PDM modulator itself (500).
2. Circuito integrado para la lectura digital de sensores de imagen de alta velocidad, según la reivindicación 1 y caracterizado por comprender (véase la Figura 5):2. Integrated circuit for digital reading of high-speed image sensors, according to claim 1 and characterized by understanding (see Figure 5):
un sensor óptico (1);an optical sensor (one);
un modulador PDM según la reivindicación 1;a PDM modulator according to claim 1;
3. Circuito integrado para la lectura digital de sensores de imagen de alta velocidad, según las reivindicaciones 1 y 2, caracterizado por comprender (véase la Figura 5):3. Integrated circuit for digital reading of high-speed image sensors, according to claims 1 and 2, characterized by understanding (see Figure 5):
un modulador PDM según la reivindicación 1;a PDM modulator according to claim 1;
un contador digital (212) con inicialización (213), que hace las funciones de filtro digital paso-bajo (11).an accountant digital (212) with initialization (213), which performs the functions of digital low-pass filter (11).
4. Circuito integrado para la lectura digital de sensores de imagen de alta velocidad, según las reivindicaciones 1, 2 y 3, caracterizado por comprender (véase la Figura 5):4. Integrated circuit for digital reading of high-speed image sensors, according to claims 1, 2 and 3, characterized by understanding (see Figure 5):
un sensor óptico (1);an optical sensor (one);
un modulador PDM según la reivindicación 1;a PDM modulator according to claim 1;
un contador digital (212) con inicialización (213), que hace las funciones de filtro digital paso-bajo (11).an accountant digital (212) with initialization (213), which performs the functions of digital low-pass filter (11).
5. Circuito integrado según la reivindicación 1, caracterizado (véase la Figura 6) por inicializar la capacidad de integración C_{int} (502) del integrador CTIA (501) en cada pulso de salida del modulador PDM (500) mediante la apertura de la llave (506) y el cierre de la llave (507), inyectando a través de C_{reset/cds} (503) el nivel de carga necesario para provocar el retorno de la señal V_{int} (505) a su valor de reposo V_{ref} (203), sin interrumpir la integración de la corriente I_{sens} (2) del sensor óptico (1) en la capacidad de integración C_{int} (502) en ningún momento durante toda la ventana de conversión T_{frame} (305).5. Integrated circuit according to claim 1, characterized (see Figure 6) for initializing the integration capacity C_ {int} (502) of the CTIA integrator (501) in each output pulse of the PDM modulator (500) by opening the key (506) and the closing of the key (507), injecting through C_ {reset / cds} (503) the level of charge necessary to cause the return of the V_ {int} signal (505) to its value standby V_ {ref} (203), without interrupting the integration of the current I_ {sens} (2) of the optical sensor (1) into the integration capacity C_ {int} (502) at any time during the entire window of T_ {frame} conversion (305). 6. Circuito integrado según la reivindicación 1, caracterizado (véase la Figura 5) por emplear la misma capacidad C_{reset/cds} (503) que en la reivindicación 2 para atenuar por CDS el efecto del ruido de baja frecuencia del CTIA (501) mediante su pre-compensación en C_{int} (502) en cada generación de pulsos de salida del modulador PDM (500).6. Integrated circuit according to claim 1, characterized (see Figure 5) for using the same C_ {reset / cds} capacity (503) as in claim 2 to attenuate by CDS the effect of CTIA low frequency noise (501 ) by means of its pre-compensation in C_ {int} (502) in each output pulse generation of the PDM modulator (500).
ES200801428A 2008-05-16 2008-05-16 INTEGRATED CIRCUIT FOR THE DIGITAL READING OF HIGH SPEED IMAGE SENSORS. Expired - Fee Related ES2328779B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES200801428A ES2328779B1 (en) 2008-05-16 2008-05-16 INTEGRATED CIRCUIT FOR THE DIGITAL READING OF HIGH SPEED IMAGE SENSORS.
PCT/ES2009/070157 WO2009138545A1 (en) 2008-05-16 2009-05-14 Digital read-out integrated circuit for the digital reading of high-speed image sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200801428A ES2328779B1 (en) 2008-05-16 2008-05-16 INTEGRATED CIRCUIT FOR THE DIGITAL READING OF HIGH SPEED IMAGE SENSORS.

Publications (2)

Publication Number Publication Date
ES2328779A1 true ES2328779A1 (en) 2009-11-17
ES2328779B1 ES2328779B1 (en) 2010-08-30

Family

ID=41258516

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200801428A Expired - Fee Related ES2328779B1 (en) 2008-05-16 2008-05-16 INTEGRATED CIRCUIT FOR THE DIGITAL READING OF HIGH SPEED IMAGE SENSORS.

Country Status (2)

Country Link
ES (1) ES2328779B1 (en)
WO (1) WO2009138545A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197834B2 (en) 2012-02-29 2015-11-24 Sabanci Üniversitesi Self-reset asynchronous pulse frequency modulated DROIC with extended counting and having reduced quantization noise

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767042A (en) * 1993-06-15 1995-03-10 Matsushita Electric Ind Co Ltd Solid-state imaging device
US5565915A (en) * 1993-06-15 1996-10-15 Matsushita Electric Industrial Co., Ltd. Solid-state image taking apparatus including photodiode and circuit for converting output signal of the photodiode into signal which varies with time at variation rate depending on intensity of light applied to the photodiode
EP0954167A2 (en) * 1998-04-29 1999-11-03 Texas Instruments Incorporated Improvements in or relating to image processing systems
WO2002047377A1 (en) * 2000-12-07 2002-06-13 Hamamatsu Photonics K.K. Photosensor and photosensing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767042A (en) * 1993-06-15 1995-03-10 Matsushita Electric Ind Co Ltd Solid-state imaging device
US5565915A (en) * 1993-06-15 1996-10-15 Matsushita Electric Industrial Co., Ltd. Solid-state image taking apparatus including photodiode and circuit for converting output signal of the photodiode into signal which varies with time at variation rate depending on intensity of light applied to the photodiode
EP0954167A2 (en) * 1998-04-29 1999-11-03 Texas Instruments Incorporated Improvements in or relating to image processing systems
WO2002047377A1 (en) * 2000-12-07 2002-06-13 Hamamatsu Photonics K.K. Photosensor and photosensing method

Also Published As

Publication number Publication date
WO2009138545A1 (en) 2009-11-19
ES2328779B1 (en) 2010-08-30

Similar Documents

Publication Publication Date Title
US10178336B2 (en) Flexible readout and signal processing in a computational sensor array
McIlrath A low-power low-noise ultrawide-dynamic-range CMOS imager with pixel-parallel A/D conversion
US10547802B2 (en) Solid-state image pickup device and control method therefor, and electronic apparatus
US6977601B1 (en) Low power current input delta-sigma ADC using injection FET reference
US20030227040A1 (en) Image sensor
Marisa et al. Pseudo asynchronous level crossing ADC for ECG signal acquisition
Prabha et al. A highly digital VCO-based ADC architecture for current sensing applications
JP6321182B2 (en) Pixel circuit having photodiode biased with constant voltage and associated imaging method
US6777660B1 (en) CMOS active pixel with reset noise reduction
US10033402B2 (en) Low power analog to digital converter
KR20190012659A (en) Comparator for low-banding noise, and cmos image sensor thereof
CN114245039A (en) Readout integrated circuit and infrared imager
US20090002535A1 (en) Offset-compensated self-reset cmos image sensors
JP2015216614A (en) Light-detecting device using conversion of optical radiation on switching diode and method thereof
ES2328779B1 (en) INTEGRATED CIRCUIT FOR THE DIGITAL READING OF HIGH SPEED IMAGE SENSORS.
US7969493B2 (en) Matching free dynamic digital pixel sensor
Guellec et al. Sigma-delta column-wise A/D conversion for cooled ROIC
KR102446289B1 (en) Pixel bias apparatus for ramp ground noise cancellation, and cmos image sensor thereof
Abbasi et al. A partially pixel-parallel DROIC for MWIR imagers with columnwise residue quantization
Manghisoni et al. High accuracy injection circuit for pixel-level calibration of readout electronics
Abbasi et al. A DROIC based on PFM ADCs employing over-integration for error shaping
Zhao et al. A low power cryogenic CMOS ROIC for 512× 512 infrared focal plane array
JP3644445B2 (en) Image reading signal processing apparatus
Mandl et al. All-digital monolithic scanning readout based on sigma-delta analog-to-digital conversion
US20220139476A1 (en) Circuit for reduced charge-injection errors

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20091117

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2328779B1

Country of ref document: ES

FD2A Announcement of lapse in spain

Effective date: 20180924