EP4445461A1 - Procédé de fonctionnement de disjoncteur électronique, disjoncteur électronique et système électrique comprenant un disjoncteur électronique - Google Patents

Procédé de fonctionnement de disjoncteur électronique, disjoncteur électronique et système électrique comprenant un disjoncteur électronique

Info

Publication number
EP4445461A1
EP4445461A1 EP23704267.6A EP23704267A EP4445461A1 EP 4445461 A1 EP4445461 A1 EP 4445461A1 EP 23704267 A EP23704267 A EP 23704267A EP 4445461 A1 EP4445461 A1 EP 4445461A1
Authority
EP
European Patent Office
Prior art keywords
circuit
circuit breaker
short
line
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23704267.6A
Other languages
German (de)
English (en)
Inventor
Marvin TANNHÄUSER
Fabian Döbler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Publication of EP4445461A1 publication Critical patent/EP4445461A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • H02H7/228Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices for covered wires or cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/06Details with automatic reconnection
    • H02H3/07Details with automatic reconnection and with permanent disconnection after a predetermined number of reconnection cycles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/40Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to ratio of voltage and current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/10Adaptation for built-in fuses
    • H01H2009/108Building a sliding and/or a removable bridging connector for batteries

Definitions

  • the invention relates to a method for operating an electronic circuit breaker, an electronic circuit breaker and an electrical system with an electronic circuit breaker.
  • Modern semiconductor miniature circuit breakers SCCB for short, sometimes also Solid State Circuit Breaker, SSCB for short; the abbreviation SCCB will be used below
  • SCCB Solid State Circuit Breaker
  • MBC miniature circuit breakers
  • a circuit breaker according to the invention in particular a semiconductor miniature circuit breaker SCCB, enables or at least supports the localization of a short-circuit point without the line itself having to be inspected at great expense. This is a considerable advantage, for example, in the case of lines laid in walls or underground.
  • no special diagnostic device has to be connected to the short-circuited circuit—the diagnosis is carried out by the circuit breaker according to the invention or the circuit breaker according to the invention supports a higher-level device that can be occasionally or permanently coupled to the circuit breaker in the diagnosis.
  • FIG. 1 shows a basic circuit diagram of a circuit breaker according to an embodiment of the present invention
  • FIG. 2 shows an equivalent circuit diagram for a short-circuited circuit with a circuit breaker according to an embodiment of the present invention
  • FIG. 3 shows a simplified equivalent circuit diagram of the circuit according to FIG. 2;
  • FIG. 5 shows an exemplary course of the current and voltage of a circuit breaker when executing an exemplary embodiment of the method according to the invention.
  • FIG. 1 shows a basic circuit diagram of a circuit breaker 100, in particular a semiconductor miniature circuit breaker SCCB, according to an exemplary embodiment of the present invention.
  • the SCCB 100 has line side terminals 101 and 102 and load side terminals 103 and 104 .
  • the N conductor of the exemplary AC system extends between terminals 102 and 104 and the L conductor between terminals 101 and 103.
  • the SCCB 100 has at least one mechanical switching contact.
  • the SCCB 100 has two mechanical switching contacts 111, 112, which can electrically isolate the input terminals 101, 102 from the output terminals 103, 104 for both conductor paths L and N. in the In the example provided, the two switching contacts 111, 112 are coupled and combined to form a two-pole mechanical isolating switch 110.
  • the SCCB 100 has an electronic switching element or a power semiconductor element 120, which is preferably arranged in the L conductor path and has a line-side pole 121, a load-side pole 122 and a control input 123 .
  • the electronic switching element 120 is controlled by a control element 130 via a signal line 134 via the control input 123 , in particular switched on and off as a function of an operating state specified by the control element 130 .
  • the control element 130 can be a microcontroller, for example. In exemplary embodiments of the invention, it can also be provided that the microcontroller 130 also controls the mechanical switching element 110 (not shown). In other exemplary embodiments it can be provided that the mechanical switching element 110 is controlled by a separate electronic or electromechanical control element (not shown), which in turn can be coupled to the control element 130 .
  • the control element 130 receives signals or measured values from sensors or measuring devices of the SCCB 100, which is indicated by arrows 131, 132, 133 in the illustration in FIG.
  • the signal conversions that may be necessary have not been shown, since the responsible specialist is well acquainted with the relevant mechanisms.
  • the voltage u3 can be determined directly (not shown) by appropriate measuring means arranged at the output terminals, in which case the means 140 or 150 can be dispensed with in some cases.
  • the example SCCB 100 has means 160 for determining the current i flowing through the SCCB 100 , which are preferably arranged in the conductor track L switched by the power semiconductor 120 .
  • the means 160 supply a value representing the time-dependent current i via the relationship 133 to the control element 130.
  • controller 130 The rest of the functionality of the controller 130 is explained in more detail below in connection with FIGS. 4 and 5 .
  • FIG. 2 shows a greatly simplified equivalent circuit of a load circuit 200 which is protected by an SCCB 100.
  • FIG. The representation of the SCCB 100 has also been greatly simplified and reduced to the representation of the network-side terminals 101, 102, the load-side terminals 103, 104 and the switching means 120, 111 in the L path.
  • the voltages u1, u2 and u3 already mentioned and the current i are also shown for a better overview.
  • the load circuit 200 has a short circuit at a short circuit point K in the line between the load side terminals 103, 104 of the SCCB 100 and the actual consumer (not shown).
  • the distance or more precisely the line length between the load-side terminals 103, 104 of the SCCB 100 and the short circuit is denoted by X and indicated by a double arrow.
  • the line starting from the load-side L terminal 103 of the SCCB 100, has the following elements: a first ohmic line component 211 with the value Rl/2, a first inductive line component 221 with the value L /2, an ohmic short-circuit component 230 with the value R2, a second inductive line component 222 with the value L/2 and a second ohmic line component 212 with the value R1/2.
  • the ohmic components 211, 212 and the inductive components 221, 222 for the forward and return lines are each approximately the same and therefore each approximately half of the total line resistance RI and the total line inductance L between the load-side terminals 103, 104 of the SCCB 100 and the short-circuit point K.
  • FIG. 1 A further simplified equivalent circuit diagram of the load circuit 200 between the load-side terminals 103, 104 of the SCCB 100 and the short-circuit point K is shown in FIG.
  • the ohmic line component RI, the inductive line component L and the ohmic resistance R2 at the short-circuit point K form the simplified load circuit 200 through which the current i flows.
  • the voltage u3 which is also the time-dependent supply voltage of the consumer circuit 200 and in time-dependent voltage drops u4, u5 and u6 across the Divides components RI, L and R2.
  • u3 u4 + u5 + u6.
  • the method starts in step 410, for example in response to a request generated by an operator, if the following conditions are met: the electronic switching element 120 of the SCCB 100 was switched off due to a detected short-circuit event (or is in the high-impedance state) and the mechanical switching element 110 is (or was again) closed.
  • step 420 there is a wait until the AC input voltage ul at the input terminals 101, 102 of the SCCB 100 reaches a defined value, for example at least 80% of the positive or negative peak value of the AC input voltage, preferably approximately the positive or negative peak value of the AC input voltage.
  • a wait in step 420 until the magnitude of the input AC voltage ul at the input terminals 101, 102 of the SCCB 100 falls below a defined value, for example a value less than or equal to a safety voltage at which accidental touching of live parts without Danger for humans is, for example, 50 volts or less or 60 volts or less or 24 volts or less.
  • step 430 the electronic switching element 120 of the SCCB is switched on, whereupon the consumer circuit 200 affected by a short circuit is supplied with electrical energy and current i begins to flow.
  • this is the point in time tO.
  • a current value il of the current i flowing in load circuit 200 is determined and, preferably at approximately the same time, a voltage value u31 is measured on the input side of load circuit 200 applied voltage u3 determined.
  • These values u31 and il are stored in a memory (not shown).
  • the respective instantaneous values for u1 and u2 at time t1 are determined for the SCCB 100 shown in the example in FIG.
  • u3 and i can also be detected at different points in time. It may then be necessary to determine pairs of values for u3 and i by interpolation.
  • the SCCB 100 has a (single) voltage measuring device that is first connected to the lines L and N to determine an instantaneous value for ul or u3, and then to the terminals of a path L integrated Measuring resistor or shunt (not shown) to determine the voltage drop across this measuring resistor, from which, for example, the controller 130 then calculates an instantaneous value for the current i.
  • step 450 it is checked whether the instantaneous value il of the current i exceeds a maximum value of the current i that can be specified for the method. If so, the method continues with step 470 for security reasons. If no, the method continues with step 460.
  • the maximum value of the current i that can be specified for the method is five times the amplitude value of the rated current of the circuit breaker 100.
  • the check as to whether the current exceeds the specified maximum value can be carried out in parallel with the steps described here, for example with a higher polling frequency - Frequency and / or by dedicated hardware to prevent by a then initiated switching off the electronic switching element 120 exceeding the maximum value for the current i safely and quickly.
  • step 450 it can additionally or alternatively be checked in step 450 whether the absolute value of the voltage u3 exceeds a predefinable maximum value, for example the already mentioned protective tension, exceeds. If so, the method continues with step 470 for security reasons. If no, the method continues with step 460.
  • a predefinable maximum value for example the already mentioned protective tension
  • step 460 it is checked whether a predefinable number of values for u3 and i have been determined.
  • the minimum number of value pairs is 2.
  • for example 3, 4, 5, 6, 7 or 8 value pairs can be used.
  • step 430 it can additionally or alternatively be checked, in parallel with the steps described here or at a suitable point in the sequence described here, whether the time that has already elapsed since the electronic switching element 120 of the SCCB 100 was switched on in step 430 is a predetermined one has reached its maximum value.
  • step 440 If the predefinable number of pairs of values has not yet been reached and/or the maximum time for switching on the electronic switching element 120 has not yet been reached, a jump is made back to step 440 and instantaneous values for u3 and i are determined again. This is indicated by way of example in FIG. 5: at time t2, the values u32 and i2 are determined as described above for u31 and i1.
  • step 470 is continued.
  • step 470 the electronic switching element 120 of the SCCB 100 is switched off if this is not due to the parallel running fending processes (for example by one of the above-described checks for exceeding a maximum current value or maximum amount of voltage or the maximum duty cycle) has already taken place.
  • the electronic switching element 120 is switched off at time t3.
  • the distance X between the load-side terminals 103, 104 of the SCCB 100 and the short-circuit point K can be calculated by dividing L by the inductance per unit length given, for example, in pH/m:
  • the inductance per unit length depends in particular on the line and/or conductor material and/or the conductor cross section and/or the arrangement of the conductors in the line.
  • the value for X determined in this way is then stored and displayed to an operator or forwarded to a higher-level device (not shown) for display.
  • the calculations described above can be performed entirely by the controller 130 of the SCCB. Alternatively, individual or all calculation steps can be carried out by a superordinate device, so that, for example, the required computing power only has to be implemented once per control box and/or is made available by a portable device as required.
  • the higher-level and/or portable device can be connected to the SCCB 100 either permanently or as required by wire or wirelessly (not shown) and can in particular have a convenient display of the determined value for X and optionally other parameters.
  • the value L is output to the operator or made available for output to the operator and it is up to the operator to determine the inductance per unit length for the consumer circuit 200 and then to calculate X from L and the inductance per unit length - calculate.
  • the line resistance RI of the line between circuit breaker 100 and the short-circuit point K is calculated from the voltage values u31, u32 and the measured current values i1, i2 and optionally output to the operator or made available for output to the operator.
  • RI is first calculated from the determined line length X and a line resistance per unit length known, for example, from data sheets, by multiplying X by a per unit resistance (given in m ⁇ /m, for example):
  • the resistance per unit length is also dependent in particular on the line and/or conductor material and/or the conductor cross section and/or the arrangement of the conductors in the line.
  • the electrical resistance R2 at the short-circuit point K can then optionally be calculated by subtracting RI from this auxiliary variable.
  • the value for R2 can be output to the operator or made available for output to the operator or used for further calculations.
  • an error code can optionally be generated and transmitted to an operator or made available for transmission, indicating that the automatic determination of the parameter(s) L and/or X was not possible.
  • step 480 After the parameters X and/or L and/or RI and/or R2 have been calculated and output or provided, the method ends with step 480. It is of course possible to restart the method in response to a corresponding operator input. In exemplary embodiments, it is possible to run the method automatically several times in succession and to calculate an average before the parameters are output in order to arrive at a better estimate.
  • the estimate is based, among other things, on the assumption that the processes described take place linearly (and with regard to the AC system to which the SCCB 100 and the consumer circuit 200 are connected, quasi-stationary) in the very short time intervals considered.
  • the evaluation of more than two pairs of values then makes it possible to exclude pairs of values from consideration for which the above-mentioned prerequisites turn out to be incorrect through comparison with the other pairs of values or interpolation, for example in the case of transient processes or in the Interference coupled into the line.
  • a controller 130 for example a microcontroller, of a modern SCCB 100 and to transmit the results to the operator's display device via a wireless or wired interface.
  • the display device can be, for example, a Bluetooth or other near- wireless technology with the SCCB 100 connectable mobile device such as a smartphone act.
  • the software running on this mobile device can be designed in such a way that the operator initiates the method in the first place with a user input, which is then transmitted to the SCCB 100 .

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

L'invention concerne un procédé de fonctionnement de disjoncteur (100) qui protège un circuit électrique (200). Le disjoncteur (100) comporte un élément de commutation mécanique (110) et un élément de commutation électronique (120) connecté en série à celui-ci. En une étape, le circuit (200) est réactivé au moyen de l'élément de commutation électronique (120) après avoir été désactivé par l'élément de commutation électronique (120) en raison d'un court-circuit dans le circuit protégé (200), ledit court-circuit étant détecté par le disjoncteur (100). Au moins deux valeurs de mesure de courant (i1, i 2) séparées par un intervalle de temps sont ensuite déterminées pour le courant (i) circulant à travers le disjoncteur (100), et au moins deux valeurs de tension (u31, u32) séparées par un intervalle de temps sont déterminées pour des bornes côté charge (103, 104) du disjoncteur électronique (100). Le circuit (200) est de nouveau désactivé par l'élément de commutation électronique (120) en cas d'un ou de plusieurs critères. Enfin, l'impédance (L) de la ligne entre le disjoncteur (100) et l'emplacement de court-circuit (K) est calculée à partir des valeurs de tension (u31, u32) et des valeurs de mesure de courant (i1, i2) et de son intervalle de temps (Δt).
EP23704267.6A 2022-02-25 2023-01-31 Procédé de fonctionnement de disjoncteur électronique, disjoncteur électronique et système électrique comprenant un disjoncteur électronique Pending EP4445461A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022201963.6A DE102022201963B3 (de) 2022-02-25 2022-02-25 Verfahren zum Betreiben eines elektronischen Schutzschalters, elektronischer Schutzschalter sowie elektrische Anlage mit einem elektronischen Schutzschalter
PCT/EP2023/052275 WO2023160965A1 (fr) 2022-02-25 2023-01-31 Procédé de fonctionnement de disjoncteur électronique, disjoncteur électronique et système électrique comprenant un disjoncteur électronique

Publications (1)

Publication Number Publication Date
EP4445461A1 true EP4445461A1 (fr) 2024-10-16

Family

ID=85222195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23704267.6A Pending EP4445461A1 (fr) 2022-02-25 2023-01-31 Procédé de fonctionnement de disjoncteur électronique, disjoncteur électronique et système électrique comprenant un disjoncteur électronique

Country Status (5)

Country Link
US (1) US20250183651A1 (fr)
EP (1) EP4445461A1 (fr)
CN (1) CN118743125A (fr)
DE (1) DE102022201963B3 (fr)
WO (1) WO2023160965A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100149A (en) * 1976-02-18 1977-08-22 Tokyo Electric Power Co Inc:The Digital failure point evaluating unit
FR2527781A1 (fr) * 1982-05-26 1983-12-02 Enertec Procede de mesure de distance d'un defaut sur une ligne avec prise en compte des capacites reparties
CN103201921B (zh) * 2010-11-10 2016-01-06 Abb研究有限公司 故障中断设备及其控制方法
ES2848651T3 (es) 2016-03-01 2021-08-11 Atom Power Inc Disyuntor híbrido de entrehierro/estado sólido
EP4233084A1 (fr) 2020-12-21 2023-08-30 Siemens Aktiengesellschaft Disjoncteur et procédé

Also Published As

Publication number Publication date
US20250183651A1 (en) 2025-06-05
WO2023160965A1 (fr) 2023-08-31
CN118743125A (zh) 2024-10-01
DE102022201963B3 (de) 2023-03-16

Similar Documents

Publication Publication Date Title
EP3428667B1 (fr) Procédé d'obtention d'une instruction, en particulier d'une instruction initiale sur une condition de charge possible erronée d'un moteur électrique multiphase
EP2856192B1 (fr) Mesure de résistance d'isolation pour onduleurs
DE19930122C1 (de) Verfahren zur Verhinderung des Draufschaltens auf in Abzweigen bestehende elektrische Kurzschlüsse und zugehörige Anordnung
EP2309641B1 (fr) Procédé et dispositif de surveillance sécurisé contre les erreurs d'un entraînement à moteur électrique
EP3059828B1 (fr) Dispositif et procede de detection de courant differentiel
DE102015008831A1 (de) Hochvolt-Netz und Verfahren zum Lokalisieren eines Isolationsfehlers in einem Hochvolt-Netz für ein Kraftfahrzeug
DE102004057694A1 (de) Bordnetz mit höherer Spannung
DE102019130163B4 (de) Ladevorrichtung zum Aufladen einer Traktionsbatterie eines Elektrofahrzeugs
DE102015000576A1 (de) Kraftfahrzeug mit Schaltvorrichtung für eine bordnetzbetriebene Komponente
DE102017211121A1 (de) Brandschutzschalter und Verfahren
DE102016106431A1 (de) Temperaturüberwachung
EP1114752A2 (fr) Dispositif de surveillance de fil de batterie
EP2735066B1 (fr) Dispositif et procédé de protection d'un consommateur
DE102021112934B4 (de) Elektronische Stromverteileranordnung
DE102022201963B3 (de) Verfahren zum Betreiben eines elektronischen Schutzschalters, elektronischer Schutzschalter sowie elektrische Anlage mit einem elektronischen Schutzschalter
DE102010037995B4 (de) Stromversorgungsgerät und Stromversorgungssystem mit ebensolchem
EP2899823B1 (fr) Système de protection électrique pour une installation électrique et procédé correspondant
DE102021200854A1 (de) Fernantrieb, Geräteanordnung mit einem Fernantrieb sowie Verfahren
EP3602774B1 (fr) Démarreur progressif à capacité de diagnostic, procédé de diagnostic et ensemble moteur
DE102022201962B3 (de) Verfahren zum Betreiben eines elektronischen Schutzschalters, elektronischer Schutzschalter sowie elektrische Anlage mit einem elektronischen Schutzschalter
WO2018060179A1 (fr) Système accumulateur d'énergie électrique comprenant une liaison transversale, reliée de manière électriquement conductrice à un moyen de détection de courant par le biais d'une diode, de plusieurs branches d'accumulateurs d'énergie en parallèle, et procédé de détection d'un défaut de ligne
WO2020260674A1 (fr) Dispositif et procédé de contrôle de câbles électriques cc blindés
WO2020011329A1 (fr) Circuit d'entraînement et procédé pour faire fonctionner un circuit d'entraînement
EP3048685A1 (fr) Dispositif de protection de courant de fuite et procédé de commutation de contacts de commutation du dispositif de protection de courant de fuite
DE10155795C1 (de) Verfahren und System zur Lokalisierung eines Lichtbogens

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)