EP4402220A1 - Dispersion of water-soluble polymer for hydraulic fracturing - Google Patents

Dispersion of water-soluble polymer for hydraulic fracturing

Info

Publication number
EP4402220A1
EP4402220A1 EP22789177.7A EP22789177A EP4402220A1 EP 4402220 A1 EP4402220 A1 EP 4402220A1 EP 22789177 A EP22789177 A EP 22789177A EP 4402220 A1 EP4402220 A1 EP 4402220A1
Authority
EP
European Patent Office
Prior art keywords
weight
dispersion
water
salts
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22789177.7A
Other languages
German (de)
French (fr)
Inventor
Cédrick FAVERO
Bruno Tavernier
Sebastien Coccolo
Siham TELILEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SNF Group
Original Assignee
SNF Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNF Group filed Critical SNF Group
Publication of EP4402220A1 publication Critical patent/EP4402220A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/28Friction or drag reducing additives

Definitions

  • TITLE WATER SOLUBLE POLYMER DISPERSION FOR HYDRAULIC FRACTURING
  • the invention relates to an injection fluid for hydraulic fracturing comprising at least one synthetic water-soluble polymer, said fluid being a dispersion prepared by diluting a previously distilled inverse emulsion of said polymer with brine.
  • the invention also relates to a method for the hydraulic fracturing of underground reservoirs of unconventional oil and gas using said injection fluid.
  • Production techniques have in fact evolved from vertical wells to horizontal wells, reducing the number of production wells required and their footprint in ground and allowing better coverage of the volume of the tank to recover as much gas or oil as possible.
  • the permeabilities are insufficient for the hydrocarbon to migrate easily from the source rock to the well, and thus allow the gas or oil to be produced economically and in quantity. It is therefore necessary to increase the permeability and the production surfaces by stimulation operations and in particular by hydraulic fracturing of the rock in contact with the well.
  • Hydraulic fracturing aims to create additional permeability and generate larger gas or oil production surfaces. Indeed, the low permeability, the natural barriers of compact layers and the waterproofing by drilling operations strongly limit production. The gas or oil contained in the unconventional reservoir cannot easily migrate from the rock to the well without stimulation.
  • a propping agent for example sand, plastic materials or calibrated ceramics
  • Water alone is not sufficient to achieve good proppant placement efficiency due to its low viscosity. This limits its ability to hold the proppant in place in the fractures.
  • fracturing fluids containing viscosifying compounds have been developed.
  • a compound is said to be viscosifying when it increases the viscosity of the solutions in which it is dissolved.
  • the compound In addition to having viscosifying properties, the compound must have a particular rheological profile. Indeed, the compound must be able to generate a low viscosity so as not to interfere with the transport and pumping of the fluid containing the proppant during the strong shears undergone during the injection of the fracturing fluid. Once injected, this same compound must be able to generate sufficient viscosity when the shear decreases to support the proppant in order to maintain it in the fractures.
  • Fracturing fluids generally include a polymer which must therefore provide shear-thinning properties to the solution in order to have a relatively low viscosity during injection (at high shear) and a high viscosity in order to maintain the proppant in suspension at the level of the fracture when the shear decreases.
  • viscosifying compounds of aqueous solutions belonging to the state of the art, mention may be made of natural substances such as guar gums and their derivatives such as hydroxypropylguar (H PG), or carboxymethylhydroxypropyl guar (CMHPG); cellulose derivatives such as carboxymethyl cellulose or hydroxyethyl cellulose.
  • H PG hydroxypropylguar
  • CMHPG carboxymethylhydroxypropyl guar
  • cellulose derivatives such as carboxymethyl cellulose or hydroxyethyl cellulose.
  • petrochemical compounds can have viscosifying properties. Mention may be made of synthetic polymers. Poly(meth)acrylamides, optionally partially hydrolyzed, and poly(meth)acrylates and their copolymers are particularly known. These polymers develop viscosity thanks to their molar mass and the inter-chain ionic repulsions. These polymers are described in patents GB951 147, US3727689, US3841402 or even US3938594. The mechanism governing viscosity is related to an increase in hydrodynamic volume through intra-chain repulsions, inter-chain entanglements, etc.
  • these polymers do not develop strong entanglements and repulsions, which results in a strong reduction in their viscosifying power, especially after having undergone the shearing of the step pumping. Furthermore, these polymers generally do not have sufficient viscoelastic properties to support the proppant in the fracture. The dosage of these polymers must be increased to levels too high to achieve the suspending properties of the proppant. However, the necessary dosage levels are not economically viable.
  • the polymers used to have viscosifying properties can advantageously also be friction reducers making it possible to reduce the pressure drop in a turbulent medium and greatly increase the flow rate at identical power and pipe diameter.
  • Synthetic polymers based on 2-acrylamido-2-methylpropane sulfonic acid and/or its salts have interesting friction reduction properties in aqueous solution. These polymers are also known for their resistance to shear and thermal degradation, especially in salt solutions. However, obtaining very high molecular weight polymer based on 2-acrylamido-2-methylpropane sulfonic acid is difficult, not to mention that these polymers have solubility problems when their molecular weight increases. However, to have an optimal phenomenon of friction reduction and a strong generation of viscosity, it is essential that the polymer is dissolved quickly in particular in saline solution and that it has a very high molecular weight.
  • the preferred physical form of these polymers is the powder because it makes it possible to have a high percentage by weight of active material.
  • the physical powder form of these polymers can be obtained by drying, thermo-drying, spraying (spray drying in English) and drum drying (drum drying in English).
  • spraying spraying in English
  • drum drying drum drying in English.
  • suitable equipment for example a wet grinding unit for powders such as a PSU (Polymer Slicing Unit).
  • Inverse polymer emulsions are also interesting, but they require rigorous optimization of their formulation so that their inversion in an aqueous medium is the fastest and their stability (during storage and transport) is guaranteed (especially during freeze/thaw cycles) .
  • the Applicant has found and developed an injection fluid for hydraulic fracturing which makes it possible to have high friction reduction and viscosifying effects.
  • This injection fluid is in the form of a water-soluble polymer dispersion and it is prepared by diluting a previously distilled inverse polymer emulsion with brine.
  • the prior dilution of the distilled polymer emulsion (polymer dispersion) with a brine significantly increases its ability to subsequently invert in the injection salt waters (during injection into Training underground), which implies effective (rapid and almost total) dissolving of the polymer to maximize its application effect.
  • a first aspect of the invention therefore relates to an injection fluid F for hydraulic fracturing comprising at least one synthetic water-soluble polymer P with a weight-average molecular weight greater than or equal to 1 million daltons, said fluid being prepared according to a process comprising the following successive steps: a) An inverse emulsion E comprising between 15% and 40% by weight of polymer P, between 20 and 60% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the emulsion E, b) the inverse emulsion E is distilled to obtain a dispersion D comprising between 40 and 60% by weight of polymer particles P, less than 10% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the dispersion D, c) the dispersion D is diluted with 1% to 15% by weight of an aqueous solution S comprising between 20 and 60% by weight of salts, the s percentages being expressed by weight relative to the weight of dispersion D.
  • a second aspect of the invention relates to a process for the hydraulic fracturing of an underground oil or unconventional gas reservoir using the injection fluid F according to the invention.
  • a third aspect of the invention relates to a method of reducing friction using an injection fluid F in a hydraulic fracturing operation of an underground reservoir of unconventional oil or gas using the injection fluid F according to the invention.
  • water-soluble polymer means a polymer which yields an aqueous solution without insoluble particles when dissolved with stirring for 4 hours at 25°C and with a concentration of 20 gL -1 in water .
  • the "weight average molecular weight" of the synthetic water-soluble polymer P is determined by measuring the intrinsic viscosity.
  • the intrinsic viscosity can be measured by methods known to those skilled in the art and can in particular be calculated from the reduced viscosity values for different concentrations by a graphical method consisting in plotting the reduced viscosity values (on the ordinate axis) as a function of the concentrations (on the abscissa axis) and by extrapolating the curve at zero concentration.
  • the intrinsic viscosity value is read on the ordinate axis or using the least squares method. Then the weight average molecular weight can be determined by the famous Mark-Houwink equation:
  • [q] represents the intrinsic viscosity of the polymer determined by the solution viscosity measurement method
  • M represents the molecular weight of the polymer
  • a represents the Mark-Houwink coefficient
  • K depend on the particular polymer-solvent system. Tables known to those skilled in the art give the values of a and K according to the polymer-solvent system.
  • the synthetic water-soluble polymer P of the invention has an average molecular weight advantageously greater than or equal to 1 million daltons, even more advantageously greater than or equal to 1.5 million daltons and even more advantageously greater than or equal to 2 million daltons. It is advantageously less than or equal to 20 million daltons.
  • the synthetic water-soluble polymer P of the invention has an average molecular weight advantageously comprised between 1 million daltons and 20 million daltons, even more advantageously comprised between 1.5 million daltons and 20 million daltons, even more advantageously comprised between 2 million daltons and 20 million daltons.
  • the inverse emulsion E comprising the synthetic water-soluble polymer P obtained by radical polymerization during step a) of the process for obtaining the fluid F contains:
  • hydrophilic phase comprising at least one water-soluble structured polymer
  • the lipophilic phase can be a mineral oil, a vegetable oil, a synthetic oil or a mixture of several of these oils.
  • mineral oil are mineral oils comprising saturated hydrocarbons of the aliphatic, naphthenic, paraffinic, isoparaffinic, cycloparaffinic or naphthyl type.
  • synthetic oil are hydrogenated polydecene or hydrogenated polyisobutene, esters such as octyl stearate or butyl oleate. Exxon's Exxsol® product line is a perfect fit.
  • the weight ratio of the hydrophilic phase to the lipophilic phase in the inverse emulsion is preferably from 50/50 to 90/10.
  • the term "emulsifying agent” means an agent capable of emulsifying water in an oil and an "inverting agent” is an agent capable of emulsifying an oil in water.
  • an inverting agent is considered to be a surfactant with an HLB greater than or equal to 10
  • an emulsifying agent is a surfactant with an HLB strictly less than 10.
  • the hydrophilic-lipophilic balance (HLB) of a chemical compound is a measure of its degree of hydrophilicity or lipophilicity, determined by calculating the values of different regions of the molecule, as described by Griffin in 1949 (Griffin WC, Classification of Surface-Active Agents by HLB, Journal of the Society of Cosmetic Chemists, 1949, 1, pages 311-326).
  • Griffin's method based on calculating a value based on the chemical groups of the molecule.
  • Griffin assigned a dimensionless number between 0 and 20 to give information about water and oil solubility.
  • Substances with an HLB value of 10 are distributed between the two phases, so that the hydrophilic group (molecular mass Mh) projects completely into the water while the hydrophobic hydrocarbon group (molecular mass Mp) is adsorbed in the non-phase. watery.
  • HLB 20 (Mh / M)
  • the inverse emulsion E according to the invention is prepared by radical polymerization.
  • An aqueous solution comprising the monomer(s) making it possible to obtain the polymer P is emulsified in an oily phase comprising the emulsifying agent(s).
  • the polymerization is carried out by adding a free radical initiator.
  • a free radical initiator Reference may be made, as initiator, to redox couples, with cumene hydroperoxide, tertiary butylhydroxyperoxide or persulfates among the oxidizing agents, sodium sulfite, sodium metabisulfite and Mohr's salt among the agents reducers.
  • Azo compounds such as 2,2'-azobis (isobutyronitrile) and 2,2'-azobis (2-amidinopropane) hydrochloride can also be used.
  • the polymerization is generally carried out in an isothermal, adiabatic or temperature-controlled manner. That is, the temperature is kept constant, usually between 10 and 60°C (isothermal), or the temperature is allowed to rise naturally (adiabatic) and in this case the reaction is usually started at a lower temperature at 10°C and the final temperature is usually above 50°C or, finally, the temperature increase is controlled so as to have a temperature curve between the isothermal curve and the adiabatic curve (controlled temperature).
  • the polymerization can be carried out under a pressure below atmospheric pressure, optionally under conditions making it possible to evaporate part of the water and of the hydrocarbon solvent from the reaction medium and to preconcentrate the emulsion.
  • the synthetic water-soluble polymer P preferably results from the polymerization of monounsaturated ethylenic monomers which may be nonionic and/or anionic and/or cationic and/or zwiterrionic. These monomers are preferably the following:
  • - nonionic monomers chosen from the group comprising acrylamide, methacrylamide, N-alkylacrylamides, N-alkylmethacrylamides, N,N-dialkylacrylamides, N,N-dialkylmethacrylamides, alkoxylated esters of acrylic acid , alkoxylated esters of methacrylic acid, N-vinylpyridine, N-vinylpyrrolidone, hydroxyalkylacrylates, hydroxyalkyl methacrylates,
  • - anionic monomers chosen from the group comprising monomers having a carboxylic function and their salts including acrylic acid, methacrylic acid, itaconic acid, maleic acid; monomers having a sulphonic acid function and their salts, including acrylamido tert-butyl sulphonic acid (ATBS), allyl sulphonic acid and methallyl sulphonic acid and their salts; monomers having a phosphonic acid function and their salts,
  • - cationic monomers chosen from the group comprising quaternized or salified dimethylaminoethyl acrylate (ADAME); dimethylaminoethyl methacrylate (MADAME) quaternized or salified; diallyldimethylammonium chloride (DADMAC); acrylamidopropyltrimethylammonium chloride (APT AC); methacrylamidopropyltrimethylammonium chloride (MAPTAC),
  • - zwitterionic monomers chosen from the group comprising sulfobetaine monomers such as sulfopropyl dimethylammonium ethyl methacrylate, sulfopropyl dimethylammonium propylmethacrylamide, sulfopropyl 2-vinylpyridinium; THE phosphobetaine monomers, such as phosphato ethyl trimethylammonium ethyl methacrylate; carboxybetaine monomers.
  • the water-soluble polymer P can comprise at least one LCST or UCST group.
  • an LCST group corresponds to a group whose solubility in water for a given concentration is modified beyond a certain temperature and according to salinity.
  • This is a group with a transition temperature by heating defining its lack of affinity with the solvent medium.
  • the lack of affinity with the solvent results in an opacification or a loss of transparency which may be due to precipitation, aggregation, gelling or viscosification of the medium.
  • the minimum transition temperature is called “LCST” (lower critical solubility temperature, from the acronym “Lower Critical Solution Temperature”).
  • LCST lower critical solubility temperature
  • a UCST group corresponds to a group whose solubility in water for a given concentration is modified below a certain temperature and according to salinity.
  • This is a group with a cooling transition temperature defining its lack of affinity with the solvent medium.
  • the lack of affinity with the solvent results in an opacification or a loss of transparency which may be due to precipitation, aggregation, gelling or viscosification of the medium.
  • the maximum transition temperature is called “UCST” (upper critical solubility temperature, from the acronym “Upper Critical Solution Temperature”).
  • UCST upper critical solubility temperature, from the acronym “Upper Critical Solution Temperature”.
  • the water-soluble polymer P in the inverse emulsion E can be linear or structured by at least one structural agent, which can be chosen from the group comprising polyethylenically unsaturated monomers (having at least two unsaturated functions), such as, for example, vinyl functions , allylics, acrylics and epoxies and one can cite for example methylene bis acrylamide (MBA), diallylamine, triallylamine, tetraallylammonium chloride, polyethylene glycol dimethacrylate or even by macroinitiators such as polyperoxides, polyazos and polytransfer agents such as polymercaptants polymers or even hydroxyalkylacrylates, epoxyvinyls.
  • MVA methylene bis acrylamide
  • macroinitiators such as polyperoxides, polyazos and polytransfer agents such as polymercaptants polymers or even hydroxyalkylacrylates, epoxyvinyls.
  • the water-soluble polymer P can also be structured using techniques of controlled radical polymerization (CRP) or, and more particularly, of the RAFT (Reversible Addition Fragmentation Chain Transfer) type in inverse emulsion.
  • CRP controlled radical polymerization
  • RAFT Reversible Addition Fragmentation Chain Transfer
  • the inverse emulsion E of water-soluble polymer P may comprise: a hydrophilic phase comprising at least one water-soluble (co)polymer P, a lipophilic phase, at least one interfacial polymer composed of at least one monomer of formula ( I): [Chem 1]
  • Ri, R 2 , R3 are independently selected from the group consisting of a hydrogen atom, a methyl group, a carboxylate group and ZX,
  • X is a group selected from alkanolamides, sorbitan esters, ethoxylated sorbitan esters, glyceryl esters, and polyglycosides; X comprising a hydrocarbon chain preferably comprising from 6 to 24 carbon atoms, saturated or unsaturated, linear, branched or cyclic, optionally aromatic.
  • the interfacial polymer obtained by polymerization of at least one monomer of formula (I) forms an envelope at the interface of the hydrophilic phase and the lipophilic phase.
  • the hydrophilic phase is in the form of micrometric droplets dispersed, advantageously emulsified, in the lipophilic phase.
  • the average size of these droplets is advantageously between 0.01 and 30 ⁇ m, more advantageously between 0.05 and 3 ⁇ m.
  • the interfacial polymer therefore comes to be placed at the interface between the hydrophilic phase and the lipophilic phase at the level of each droplet.
  • the interfacial polymer partially or totally envelopes each of these droplets.
  • the average size of the droplets is advantageously measured with a laser measuring device using conventional techniques which form part of the general knowledge of those skilled in the art. A Mastersizer type device from the Malvern company can be used for this purpose.
  • the interfacial polymer comprises between 0.0001 and 10%, more advantageously between 0.0001 and 5% even more advantageously from 0.0001 to 1%, by number of monomer of formula (I), relative to the number total monomers.
  • the interfacial polymer forms an envelope around the droplets forming the hydrophilic phase.
  • the interfacial polymer can comprise at least one structural agent.
  • the structural agent is advantageously chosen from diamine diacrylamides or methacrylamides; acrylic esters of di, tri, or tetrahydroxy compounds; methacrylic esters of di, tri, or tetrahydroxy compounds; divinyl compounds preferentially separated by an azo group; diallylic compounds preferentially separated by an azo group; vinyl esters of di or trifunctional acids; allyl esters of di or trifunctional acids; methylenebisacrylamide; diallylamine; triallylamine; tetraallylammonium chloride; divinylsulfone; polyethylene glycol dimethacrylate and diethylene glycol diallyl ether.
  • the inverse emulsion E comprises from 0.5% to 5.0% by weight, the percentages being expressed by weight relative to the weight of the emulsion E, of at least one emulsifying agent preferably chosen from esters of sorbitan, polyethoxylated sorbitan esters, polyethoxylated fatty acids, polyethoxylated fatty alcohols, polyesters having an average molecular weight between 1000 and 3000 daltons resulting from the condensation between a poly(isobutenyl) succinic acid or its anhydride and a polyethylene glycol , block copolymers with an average molecular weight of between 2500 and 3500 daltons resulting from the condensation between hydroxystearic acid and a polyethylene glycol, ethoxylated fatty amines, derivatives of di-alkanol amides, stearyl methacrylate copolymers, and mixtures of these emulsifying agents.
  • This emulsifying agent is added to the lipophilic
  • a natural or synthetic polymer (described in particular in US Pat. No. 10,647,908) can be added at the end of the radical polymerization reaction of step a) of the process for obtaining the fluid F.
  • the natural polymers there are, for example, the guar gums, and their derivatives such as hydroxypropylguar (HPG), or carboxymethylhydroxypropyl guar (CMHPG); cellulose derivatives such as carboxymethyl cellulose, hydroxyethyl cellulose or hydroxypropyl cellulose.
  • the polymer P predominates with respect to the natural polymer, preferably the polymer P represents from 50 to 100% by weight, preferably from 70 to 100%, more preferably from 90 to 100%, relative to the total weight of the polymer P + natural polymer.
  • Step b) of the process for obtaining the injection fluid F consists in distilling the inverse emulsion E to obtain a dispersion D, the polymer P is therefore, after distillation, in the form of (solid) particles, comprising between 40 and 60% by weight of polymer particles P, less than 10% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the dispersion D.
  • the distillation is carried out under reduced pressure , preferably at a pressure of between 20 and 250 mbar and at a temperature of between 10 and 110°C.
  • the polymer P is in the form of (solid) particles.
  • the particles of synthetic water-soluble polymer P in dispersion D have an average size of between 0.01 ⁇ m and 100 ⁇ m, even more preferably between 0.1 ⁇ m and 5 ⁇ m.
  • average size is meant in the present invention the average diameter of the particles.
  • the particle size analysis is carried out according to conventional techniques known to those skilled in the art.
  • An example of a device for measuring mean particle diameter is the Mastersizer from Malvern Instruments.
  • step c) of the process for obtaining the injection fluid F of the invention preferably added to the dispersion (D) between 0.2 and 10% by weight, the percentages being expressed by weight relative to the weight of the dispersion D, of at least one reversing agent.
  • the reversing agent is preferably chosen from ethoxylated nonylphenol, preferably having 4 to 10 ethoxylations; ethoxylated/propoxylated alcohols preferably having an ethoxylation/propoxylation comprising between 12 and 25 carbon atoms; ethoxylated tridecyl alcohols; polyethoxylated fatty acids, poly(ethoxylated/propoxylated) fatty alcohols; ethoxylated sorbitan esters; polyethoxylated sorbitan laurate; polyethoxylated castor oil; heptaoxyethyl lauryl alcohol; polyethoxylated sorbitan monostearate; polyethoxylated alkyl phenol cetyl ether; polyethylene oxide alkyl aryl ether; N-cetyl-N-ethyl morpholinium ethosulfate; sodium lauryl sulphate; condensation products of fatty alcohols with ethylene oxide; condensation products
  • Step c) of the process for obtaining the injection fluid F consists in diluting the dispersion D with 1% to 15% by weight of an aqueous solution S containing between 20 and 60% salts, preferably between 25 and 45 %, the percentages being expressed by weight relative to the weight of dispersion D.
  • Solution S is preferably a brine solution.
  • At least a portion of the water of the solution S is extracted from the distillate of the emulsion E.
  • the salts of the aqueous solution S are alkaline or alkaline-earth or ammonium salts or organic salts or a mixture of these salts. More preferentially, the salts are chosen from sodium chloride, ammonium sulphate, ammonium thiosulphate, ammonium chloride, choline chloride, monosaccharide salts or a mixture of these salts.
  • step c) of the process for obtaining fluid F other compounds known to those skilled in the art can be added, such as those mentioned in document SPE 152596, for example:
  • Biocides to prevent the development of bacteria in particular sulphate-reducing bacteria, which can form viscous masses that reduce passage surfaces. Mention may be made, for example, of glutaraldehyde, which is the most widely used, or else formaldehyde or isothiazolinones, and/or
  • Oxygen scavengers such as ammonium bisulphite to prevent the destruction of other components by oxidation and corrosion of the injection tubes, and/or
  • Anti-corrosion additives to protect the tubes against oxidation by residual quantities of oxygen such as N,N-dimethylformamide, and/or
  • Lubricants such as oil distillates, and/or
  • Iron chelators such as citric acid, EDTA (ethylene diamine tetraacetic acid), phosphonates, and/or
  • Scale inhibitors such as phosphates, phosphonates, polyacrylates or ethylene glycol.
  • the present invention therefore also relates to a process for the preparation of an injection fluid F comprising the following steps: a) An inverse emulsion E comprising between 15% and 40% by weight of a synthetic water-soluble polymer P of weight-average molecular weight greater than or equal to 1 million daltons, between 20 and 60% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the emulsion E, b) The inverse emulsion E is distilled to obtain a dispersion D comprising between 40 and 60% by weight of polymer particles P, less than 10% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the dispersion D, c) the dispersion D is diluted with 1% to 15% by weight of an aqueous solution S comprising between 20 and 60% by weight of salts, the percentages being expressed by weight relative to the weight of scatter d.
  • a second aspect of the invention also relates to a process for the hydraulic fracturing of an underground reservoir of unconventional oil or gas, comprising the preparation of an injection fluid F as described previously, the dissolving in a salt water and injecting said fracturing fluid F into a subterranean formation.
  • the injection is carried out under pressure so as to create fractures distributed all along the production well.
  • the injection fluid F obtained by the method of the invention is dissolved in salt water to have a polymer concentration of between 0.01 and 10 g/L in this water. salty.
  • the salt waters are sea waters or can advantageously be prepared with monovalent and/or polyvalent salts or combinations thereof.
  • salts include, without limitation, sodium, lithium, potassium, aluminum, ammonium, phosphate, sulfate, magnesium, barium, nitrate and other inorganic salts and mixtures thereof.
  • Salt waters preferably contain at least one of the following elements: sodium chloride, calcium chloride, sodium bromide, calcium bromide, barium chloride, magnesium chloride, zinc bromide, sodium formate and potassium formate .
  • the salt water used for dissolving the injection fluid F contains more than 70,000 ppm of salts and preferably more than 100,000 ppm of salts, preferably the brine contains from 70,000 to 350,000 ppm of salts , preferably from 100,000 to 350,000 ppm.
  • the divalent ratio R+ mass ratio: divalent salts/total salts of the salt water is greater than or equal to 0.20 and even more preferably R+ > 0.25.
  • At least one proppant is added before or after it is dissolved in salt water.
  • the proppant can be chosen without limitation from sand, ceramic, bauxite, glass beads, and sand impregnated with resin. It advantageously represents from 0.5 to 40%, more preferentially from 1 to 25% and even more preferentially from 1.5 to 20%, by weight relative to the total weight of the injection fluid F for hydraulic fracturing.
  • At least one oxidizing compound and/or at least one surfactant compound is injected into the reservoir.
  • the injection of surfactant makes it possible to eliminate the wettability with the rock, while the injection of the oxidizing compound destroys the copolymer. In both cases, the injection restores a fluid viscosity close to that of water.
  • bleach aqueous solution of a hypochlorite salt
  • hydrogen peroxide aqueous solution of a hypochlorite salt
  • ozone aqueous solution of a hypochlorite salt
  • chloramines aqueous solution of a hypochlorite salt
  • persulphates permanganates or perchlorates.
  • the chemical nature of the surfactant compound(s) is not critical. They can be anionic, nonionic, amphoteric, zwitterionic and/or cationic. Preferably, the surfactant compound(s) of the invention carry(s) anionic charges.
  • the surfactant compounds used are chosen from anionic surfactants and their zwitterions chosen from the group comprising derivatives of alkyl sulphates, alkyl ether sulphates, arylalkyl sulphates, arylalkyl ether sulphates, alkyl sulphonates, alkyl ether sulphonates, d arylalkyl ether carboxylates, alkyl polyethers, arylalkyl polyethers...
  • alkyl chain is defined as a chain of 6 to 24 carbons, branched or not, with or without several units, possibly comprising one or more heteroatoms, for example O, N or S, preferably 1, 2 or 3 heteroatoms.
  • Arylalkyl chain is defined as a chain of 6 to 24 carbons, branched or not, comprising one or more aromatic rings and possibly comprising one or more heteroatoms, for example 1, 2 or 3 heteroatoms, preferably O, N or S.
  • surfactants for reasons of cost, stability, and availability, are of the sulphonate or sulphate type, presented in the form of alkali metal or ammonium salts.
  • a last aspect of the invention relates to a method for reducing friction during a hydraulic fracturing operation of an underground reservoir of oil or untreated gas. conventional, comprising the preparation of a fluid F as described previously, the dissolving in salt water and the injection of said fracturing fluid into an underground formation.
  • Friction reduction makes it possible to reduce or eliminate friction-related losses during the injection of fracturing fluid.
  • An aqueous phase is prepared with 42.1 g of an acrylamide solution (50% by weight in water), 9.1 g of acrylic acid, 10.1 g of a sodium hydroxide solution ( at 50% by weight in water), 0.49 g of a solution of diethylenetriaminepentaacetic acid (at 40% by weight in water), 0.02 g of a solution of tert-butyl hydroperoxide (at 70% by weight in water), 0.006 g of sodium hypophosphite and 9.134 g of water.
  • An organic phase is prepared by mixing 20.1 g of an oil (Exxsol® D120 S) with 2.3 g of sorbitan monooleate, 0.5 g of 5-fold ethoxylated sorbitan monooleate and 5 g of a surfactant polymer .
  • the aqueous phase is added to the organic phase under shear to form an emulsion.
  • the emulsion is then degassed with a stream of nitrogen for 30 minutes while maintaining the temperature at 20°C.
  • 0.75 g of sodium metabisulphite in solution (at 0.01% by weight in water) is injected for 90 minutes.
  • the polymerization temperature is maintained between 40 and 55°C.
  • the residual monomers are reacted by adding 0.4 g of a sodium bisulphite solution (at 40% by mass concentration).
  • An inverting agent ethoxylated fatty alcohol (Lutensol TO89®) is added at 10% by weight to dispersion D1.
  • An injection fluid F1 containing 50% by weight of polymer P1 is thus obtained.
  • Dispersion D1 obtained in Example 2 is diluted by adding 18% of a saturated aqueous solution of sodium chloride and 10% of inverting agent (Lutensol TO89®).
  • An injection fluid F2 containing 40% by weight of polymer P1 is thus obtained.
  • Dispersion D1 obtained in example 2 is diluted by adding 18% by weight of a saturated aqueous solution of ammonium chloride and 10% of inverting agent (Lutensol TO89®). An injection fluid F3 containing 40% by weight of polymer P1 is thus obtained.
  • Dispersion D1 obtained in example 2 is diluted by adding 18% by weight of a saturated aqueous solution of ammonium thiocyanate and 10% of inverting agent (Lutensol
  • Dispersion D1 obtained in Example 2 is diluted by adding 18% by weight of a saturated aqueous solution of ammonium sulphate and 10% of inverting agent (Lutensol TO89®). An injection fluid F5 containing 40% by weight of polymer P1 is thus obtained.
  • Dispersion D1 obtained in example 2 is diluted by adding 18% by weight of a saturated aqueous solution of ammonium thiosulfate and 10% of inverting agent (Lutensol TO89®). An injection fluid F6 containing 40% by weight of polymer P1 is thus obtained. Reversal tests
  • injection fluids F1 (comparative) and F2 to F6 (according to the invention) are dissolved by following two different protocols.
  • Protocol 1 direct addition of injection fluids in brine
  • Protocol 2 (addition of injection fluids in water then addition of salts)
  • injection fluids F2 to F6 By using injection fluids F2 to F6, the viscosity of polymer solutions P1 in seawater is higher. The polymer P1 in these injection fluids is released more easily into the seawater.
  • the process for preparing the injection fluids according to the invention therefore makes it possible to improve the release of the polymer into the brine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The present application relates to an injection fluid F for hydraulic fracturing comprising at least one synthetic water-soluble polymer P with a weight-average molecular weight greater than or equal to 1 million daltons, said fluid being prepared according to a method comprising the following successive steps: a) preparing, by radical polymerization, an inverse emulsion E comprising between 15% and 40% by weight of polymer P, between 20% and 60% by weight of water and at least one hydrocarbon-based solvent, the percentages being expressed by weight relative to the weight of the emulsion E, b) distilling the inverse emulsion E to obtain a dispersion D comprising between 40% and 60% by weight of particles of polymer P, less than 10% by weight of water and at least one hydrocarbon-based solvent, the percentages being expressed by weight relative to the weight of the dispersion D, c) diluting the dispersion D with 1% to 15% by weight of an aqueous solution S comprising between 20% and 60% by weight of salts, the percentages being expressed by weight relative to the weight of the dispersion D.

Description

TITRE : DISPERSION DE POLYMERE HYDROSOLUBLE POUR LA FRACTURATION HYDRAULIQUE TITLE: WATER SOLUBLE POLYMER DISPERSION FOR HYDRAULIC FRACTURING
L’invention concerne un fluide d’injection pour la fracturation hydraulique comprenant au moins un polymère hydrosoluble synthétique, ledit fluide étant une dispersion préparée par dilution par une saumure d’une émulsion inverse dudit polymère préalablement distillée. L’invention concerne également un procédé de fracturation hydraulique des réservoirs souterrains d’huile et de gaz non conventionnels utilisant ledit fluide d’injection. The invention relates to an injection fluid for hydraulic fracturing comprising at least one synthetic water-soluble polymer, said fluid being a dispersion prepared by diluting a previously distilled inverse emulsion of said polymer with brine. The invention also relates to a method for the hydraulic fracturing of underground reservoirs of unconventional oil and gas using said injection fluid.
ART ANTERIEUR DE LA TECHNIQUE PRIOR ART OF THE TECHNIQUE
La production de pétrole (huiles, hydrocarbures) et de gaz contenus dans des réservoirs souterrains non conventionnels se développe depuis plusieurs années et nécessite d’ouvrir des fractures dans le réservoir pour une production économique de l’huile et du gaz. The production of petroleum (oils, hydrocarbons) and gas contained in unconventional underground reservoirs has been developing for several years and requires the opening of fractures in the reservoir for the economic production of oil and gas.
Dans la suite de la description de l’art antérieur et de l’invention, par « réservoirs souterrains non conventionnels », on désigne des gisements nécessitant des technologies particulières d’extractions car n’existant pas sous forme d’une accumulation dans une roche poreuse et perméable (voir Les hydrocarbures de roche-mère en France Rapport provisoire - CGIET n° 2011-04-G - Ministère de l’écologie, du développement durable, des transports et du logement - Avril 2011). Pour le gaz non conventionnel, on peut citer les gaz de schiste (shale gas en anglais), les gaz de houille (coal bed methane en anglais) ou les gaz de réservoirs compacts (tight gas en anglais). Pour l’huile non conventionnelle, on peut citer les huiles lourdes (heavy oil en anglais), les huiles de schiste (shale oil en anglais) ou les huiles de réservoirs compacts (tight oil en anglais). In the rest of the description of the prior art and of the invention, by “unconventional underground reservoirs”, we designate deposits requiring particular extraction technologies because they do not exist in the form of an accumulation in a rock. porous and permeable (see Source rock hydrocarbons in France Provisional report - CGIET n° 2011-04-G - Ministry of ecology, sustainable development, transport and housing - April 2011). For unconventional gas, mention may be made of shale gas, coal bed methane or tight gas. For unconventional oil, we can cite heavy oil, shale oil or tight oil.
Les réserves contenues dans les réservoirs non conventionnels sont énormes et extrêmement étendues dans des zones autrefois inexploitables comme les hydrocarbures de roche-mère tels que les schistes argileux, les gaz de réservoir compact, et les gaz de houille. Aux Etats-Unis, les gaz de schiste sont largement exploités et représentent aujourd’hui 46% du total du gaz naturel produit aux Etats-Unis alors qu’ils ne représentaient que 28% en 1998. Les bassins très étendus sont connus sous le nom de Barnett Shale, Ville Fayette Shale, Mowry Shale, Marcellus Shale, Utica Shale... L’exploitation des réservoirs compacts a été rendue possible par une évolution des techniques de forages. The reserves contained in unconventional reservoirs are enormous and extremely extensive in areas that were once unexploitable as source rock hydrocarbons such as shale, tight gas, and coal gas. In the United States, shale gas is widely exploited and today represents 46% of the total natural gas produced in the United States, whereas it represented only 28% in 1998. The very extensive basins are known as Barnett Shale, Ville Fayette Shale, Mowry Shale, Marcellus Shale, Utica Shale... The exploitation of compact reservoirs has been made possible by an evolution in drilling techniques.
Les techniques de production ont en effet évolué des puits verticaux vers des puits horizontaux, réduisant le nombre de puits de production nécessaires et leur empreinte au sol et permettant de mieux couvrir le volume du réservoir pour en récupérer au maximum le gaz ou l’huile. Cependant, les perméabilités sont insuffisantes pour que l’hydrocarbure migre facilement de la roche mère vers le puits, et ainsi permettre de produire économiquement et en quantité le gaz ou l’huile. Il est donc nécessaire d’augmenter la perméabilité et les surfaces de production par des opérations de stimulation et en particulier par fracturation hydraulique de la roche en contact avec le puits. Production techniques have in fact evolved from vertical wells to horizontal wells, reducing the number of production wells required and their footprint in ground and allowing better coverage of the volume of the tank to recover as much gas or oil as possible. However, the permeabilities are insufficient for the hydrocarbon to migrate easily from the source rock to the well, and thus allow the gas or oil to be produced economically and in quantity. It is therefore necessary to increase the permeability and the production surfaces by stimulation operations and in particular by hydraulic fracturing of the rock in contact with the well.
Fracturation Fracturing
La fracturation hydraulique a pour but de créer une perméabilité supplémentaire et engendrer des surfaces de production de gaz ou d’huile plus importantes. En effet, la faible perméabilité, les barrières naturelles de couches compactes et l’imperméabilisation par les opérations de forage limitent fortement la production. Le gaz ou l’huile contenu dans le réservoir non conventionnel ne peut migrer facilement de la roche vers le puits sans stimulation. Hydraulic fracturing aims to create additional permeability and generate larger gas or oil production surfaces. Indeed, the low permeability, the natural barriers of compact layers and the waterproofing by drilling operations strongly limit production. The gas or oil contained in the unconventional reservoir cannot easily migrate from the rock to the well without stimulation.
Ces opérations de fracturation hydraulique sur les puits horizontaux ont commencé en 1960 dans les Appalaches et, aujourd’hui, plusieurs dizaines de milliers d’opérations ont eu lieues aux Etats-Unis. These hydraulic fracturing operations on horizontal wells began in 1960 in the Appalachians and, today, several tens of thousands of operations have taken place in the United States.
Les technologies d’étude, de modélisation du réservoir, de forage, de cimentation et de stimulation sont devenues de plus en plus sophistiquées et mettent en œuvre des équipements permettant d’effectuer ces opérations dans des temps de plus en plus courts avec une analyse précise des résultats. Reservoir study, modeling, drilling, cementing and stimulation technologies have become more and more sophisticated and implement equipment allowing these operations to be carried out in increasingly shorter times with precise analysis. results.
La stimulation du réservoir par fracturation Reservoir stimulation by fracturing
Ces opérations consistent à injecter de l’eau à haute pression et à très fort débit de manière à créer des fractures réparties perpendiculairement aux puits de production. On procède généralement en plusieurs étapes afin de créer des fractures sur toute la longueur du puits horizontal, ce qui permet de couvrir un volume maximal du réservoir. These operations consist of injecting water at high pressure and at a very high rate so as to create fractures distributed perpendicular to the production wells. One generally proceeds in several stages in order to create fractures along the entire length of the horizontal well, which makes it possible to cover a maximum volume of the reservoir.
Afin de garder ces fractures ouvertes, on ajoute un agent de soutènement (par exemple du sable, des matières plastiques ou des céramiques calibrées) de manière à empêcher la fermeture de ces fractures et à maintenir la capillarité créée une fois l’injection stoppée. L’eau seule ne suffit pas à obtenir une bonne efficacité de placement de l’agent de soutènement du fait de sa faible viscosité. Ceci limite sa capacité à maintenir en place l’agent de soutènement dans les fractures. Pour contrer ce problème, on a développé des fluides de fracturation contenant des composés viscosifiants. In order to keep these fractures open, a propping agent is added (for example sand, plastic materials or calibrated ceramics) so as to prevent these fractures from closing and to maintain the capillarity created once the injection has stopped. Water alone is not sufficient to achieve good proppant placement efficiency due to its low viscosity. This limits its ability to hold the proppant in place in the fractures. To counter this problem, fracturing fluids containing viscosifying compounds have been developed.
Par définition, on dira qu’un composé est viscosifiant lorsqu’il augmente la viscosité des solutions dans lesquelles il est dissous. By definition, a compound is said to be viscosifying when it increases the viscosity of the solutions in which it is dissolved.
En plus d’avoir des propriétés viscosifiantes, le composé doit avoir un profil rhéologique particulier. En effet, le composé doit pouvoir générer une viscosité faible afin de ne pas gêner au transport et au pompage du fluide contenant l’agent de soutènement pendant les forts cisaillements subis lors de l’injection du fluide de fracturation. Une fois injecté, ce même composé doit pouvoir engendrer une viscosité suffisante lorsque le cisaillement diminue pour supporter l’agent de soutènement afin de le maintenir dans les fractures. In addition to having viscosifying properties, the compound must have a particular rheological profile. Indeed, the compound must be able to generate a low viscosity so as not to interfere with the transport and pumping of the fluid containing the proppant during the strong shears undergone during the injection of the fracturing fluid. Once injected, this same compound must be able to generate sufficient viscosity when the shear decreases to support the proppant in order to maintain it in the fractures.
Les fluides de fracturation comprennent généralement un polymère qui doit donc apporter des propriétés rhéofluidifiantes à la solution afin d’avoir une viscosité relativement faible lors de l’injection (à cisaillement élevé) et une viscosité forte afin de maintenir l’agent de soutènement en suspension au niveau de la fracture lorsque le cisaillement diminue. Fracturing fluids generally include a polymer which must therefore provide shear-thinning properties to the solution in order to have a relatively low viscosity during injection (at high shear) and a high viscosity in order to maintain the proppant in suspension at the level of the fracture when the shear decreases.
Les propriétés viscoélastiques des polymères en solution sont également à prendre en considération. Cette viscoélasticité, et son importance dans l’application, est décrite dans le document SPE 147206 (Fracturing Fluid Comprised of Components Sourced Solely from the Food Industry Provides Superior Proppant Transport - David Loveless, Jeremy Holtsclaw, Rajesh Saini, Phil Harris, and Jeff Fleming, SPE, Halliburton ) à travers des observations visuelles dans des expériences statiques ou dynamiques, ou encore par des mesures de rhéologie, telle que la mesure des modules visqueux et élastiques (G’ et G”), ou la mesure sur rhéomètre de la viscosité en fonction du cisaillement. Ainsi, des propriétés élastiques seront avantageuses pour assurer le transport et la suspension de l’agent de soutènement de la fracture. The viscoelastic properties of polymers in solution are also to be considered. This viscoelasticity, and its importance in application, is described in SPE 147206 (Fracturing Fluid Comprised of Components Sourced Solely from the Food Industry Provides Superior Proppant Transport - David Loveless, Jeremy Holtsclaw, Rajesh Saini, Phil Harris, and Jeff Fleming , SPE, Halliburton ) through visual observations in static or dynamic experiments, or even by rheology measurements, such as the measurement of the viscous and elastic moduli (G' and G"), or the measurement on a rheometer of the viscosity depending on the shear. Thus, elastic properties will be advantageous to ensure the transport and suspension of the fracture proppant.
Le choix du polymère n’est donc pas évident et nécessite une étude rhéologique approfondie afin d’obtenir des résultats satisfaisants. The choice of polymer is therefore not obvious and requires an in-depth rheological study in order to obtain satisfactory results.
Parmi les composés viscosifiants de solutions aqueuses appartenant à l’état de la technique, on peut citer les substances naturelles telle que les gommes guars et leurs dérivés tel que l’hydroxypropylguar (H PG), ou la carboxyméthylhydroxypropyl guar (CMHPG) ; les dérivés cellulosiques tels que la carboxyméthyl cellulose ou l’hydroxyéthyl cellulose. Ces composés sont notamment décrits dans les brevets US4033415, US3888312 et US4801389. Dans le document SPE 152596 (Hydraulic Fracturing 101: What Every Representative, Environmentalist, Regulator, Reporter, Investor, University Researcher, Neighbor and Engineer Should Know About Estimating Frac Risk and Improving Frac Performance in Unconventional Gas and Oil Wells - George E. King, Apache Corporation), les dernières avancées relatives aux performances des fluides de fracturation sont discutées en détail. Among the viscosifying compounds of aqueous solutions belonging to the state of the art, mention may be made of natural substances such as guar gums and their derivatives such as hydroxypropylguar (H PG), or carboxymethylhydroxypropyl guar (CMHPG); cellulose derivatives such as carboxymethyl cellulose or hydroxyethyl cellulose. These compounds are described in particular in patents US4033415, US3888312 and US4801389. In SPE 152596 (Hydraulic Fracturing 101: What Every Representative, Environmentalist, Regulator, Reporter, Investor, University Researcher, Neighbor and Engineer Should Know About Estimating Frac Risk and Improving Frac Performance in Unconventional Gas and Oil Wells - George E. King, Apache Corporation), the latest advancements in fracturing fluid performance are discussed in detail.
Cependant ces substances naturelles, et en particulier les dérivés de guar, sont aussi utiles dans d’autres applications, comme l’industrie alimentaire ou le textile, et l’essor de l’exploitation des ressources d’huile et de gaz non conventionnels concurrencent ces autres applications. Ceci crée une pression sur la disponibilité de ces produits et engendrent des problèmes de prix. However, these natural substances, and in particular guar derivatives, are also useful in other applications, such as the food industry or the textile industry, and the development of the exploitation of unconventional oil and gas resources competes these other applications. This creates pressure on the availability of these products and causes price problems.
D’autres composés issus de la pétrochimie peuvent avoir des propriétés viscosifiantes. On peut citer les polymères synthétiques. Les poly(méth)acrylamides, éventuellement partiellement hydrolysés, et les poly(méth)acrylates et leurs copolymères sont particulièrement connus. Ces polymères développent une viscosité grâce à leur masse molaire et aux répulsions ioniques inter-chaînes. Ces polymères sont décrits dans les brevets GB951 147, US3727689, US3841402 ou encore US3938594. Le mécanisme régissant la viscosité est lié à une hausse du volume hydrodynamique grâce à des répulsions intra-chaînes, des enchevêtrements inter-chaînes, etc. Other petrochemical compounds can have viscosifying properties. Mention may be made of synthetic polymers. Poly(meth)acrylamides, optionally partially hydrolyzed, and poly(meth)acrylates and their copolymers are particularly known. These polymers develop viscosity thanks to their molar mass and the inter-chain ionic repulsions. These polymers are described in patents GB951 147, US3727689, US3841402 or even US3938594. The mechanism governing viscosity is related to an increase in hydrodynamic volume through intra-chain repulsions, inter-chain entanglements, etc.
Cependant, en présence de forte salinité ou d’une température d’utilisation élevée, ces polymères ne développent pas de forts enchevêtrements et répulsions, ce qui se traduit par une diminution forte de leur pouvoir viscosifiant surtout après avoir subi le cisaillement de l’étape de pompage. Par ailleurs, ces polymères ne présentent généralement pas de propriétés viscoélastiques suffisantes pour supporter l’agent de soutènement dans la fracture. Il faut augmenter le dosage de ces polymères à des niveaux trop élevés pour obtenir les propriétés de suspension de l’agent de soutènement. Les niveaux de dosages nécessaires ne sont cependant pas viables économiquement. Les polymères utilisés pour avoir des propriétés viscosifiantes peuvent avantageusement être aussi des réducteurs de frottement permettant de réduire la perte de charge en milieu turbulent et augmenter fortement le débit à puissance et diamètre de tuyau identique. However, in the presence of high salinity or a high temperature of use, these polymers do not develop strong entanglements and repulsions, which results in a strong reduction in their viscosifying power, especially after having undergone the shearing of the step pumping. Furthermore, these polymers generally do not have sufficient viscoelastic properties to support the proppant in the fracture. The dosage of these polymers must be increased to levels too high to achieve the suspending properties of the proppant. However, the necessary dosage levels are not economically viable. The polymers used to have viscosifying properties can advantageously also be friction reducers making it possible to reduce the pressure drop in a turbulent medium and greatly increase the flow rate at identical power and pipe diameter.
Les polymères synthétiques à base d’acide 2-acrylamido-2-méthylpropane sulfonique et/ou de ses sels présentent des propriétés de réduction de friction en solution aqueuse intéressantes. Ces polymères sont aussi connus pour leur résistance au cisaillement et à la dégradation thermique, notamment en solutions salées. Toutefois, l’obtention de polymère de très haut poids moléculaire à base d’acide 2-acrylamido-2-méthylpropane sulfonique est difficile sans compter que ces polymères présentent des problèmes de solubilité lorsque leur poids moléculaire augmente. Or, pour avoir un phénomène de réduction de friction optimal et une forte génération de viscosité, il est primordial que le polymère soit dissous rapidement en particulier en solution saline et qu’il ait un très haut poids moléculaire. Synthetic polymers based on 2-acrylamido-2-methylpropane sulfonic acid and/or its salts have interesting friction reduction properties in aqueous solution. These polymers are also known for their resistance to shear and thermal degradation, especially in salt solutions. However, obtaining very high molecular weight polymer based on 2-acrylamido-2-methylpropane sulfonic acid is difficult, not to mention that these polymers have solubility problems when their molecular weight increases. However, to have an optimal phenomenon of friction reduction and a strong generation of viscosity, it is essential that the polymer is dissolved quickly in particular in saline solution and that it has a very high molecular weight.
Pour des questions de logistique, de transport et d’approvisionnement en polymère hydrosoluble synthétique pour la fracturation hydraulique, la forme physique préférée de ces polymères est la poudre car elle permet de disposer d’un pourcentage en poids de matière active élevé. La forme physique poudre de ces polymères peut être obtenue par séchage, thermo-séchage, pulvérisation (spray drying en anglais) et séchage en tambour (drum drying en anglais). Toutefois, leur remise en solution nécessite des équipements adaptés, par exemple une unité de broyage en milieu humide pour les poudres telle qu’un PSU (Unité de découpe de polymère ou « Polymer Slicing Unit » en anglais). For questions of logistics, transport and supply of synthetic water-soluble polymer for hydraulic fracturing, the preferred physical form of these polymers is the powder because it makes it possible to have a high percentage by weight of active material. The physical powder form of these polymers can be obtained by drying, thermo-drying, spraying (spray drying in English) and drum drying (drum drying in English). However, their re-dissolution requires suitable equipment, for example a wet grinding unit for powders such as a PSU (Polymer Slicing Unit).
Les émulsions inverses de polymère sont intéressantes aussi mais elles demandent une optimisation rigoureuse de leur formulation afin que leur inversion en milieu aqueux soit des plus rapides et que leur stabilité (pendant stockage et transport) soit garantie (notamment pendant des cycles de gel/dégel). Inverse polymer emulsions are also interesting, but they require rigorous optimization of their formulation so that their inversion in an aqueous medium is the fastest and their stability (during storage and transport) is guaranteed (especially during freeze/thaw cycles) .
EXPOSE DE L’INVENTION DISCLOSURE OF THE INVENTION
La Demanderesse a trouvé et mis au point un fluide d’injection pour la fracturation hydraulique qui permet d’avoir des effets de réduction de friction et viscosifiant élevés. Ce fluide d’injection est sous forme d’une dispersion de polymère hydrosoluble et il est préparé par dilution par une saumure d’une émulsion inverse de polymère préalablement distillée. De manière surprenante, la dilution préalable de l’émulsion distillée de polymère (dispersion de polymère) par une saumure permet d’augmenter de manière significative sa capacité à s’inverser ensuite dans les eaux salées d’injection (lors de l’injection dans la formation souterraine), ce qui implique une mise en solution efficace (rapide et quasi-totale) du polymère pour maximiser son effet applicatif. The Applicant has found and developed an injection fluid for hydraulic fracturing which makes it possible to have high friction reduction and viscosifying effects. This injection fluid is in the form of a water-soluble polymer dispersion and it is prepared by diluting a previously distilled inverse polymer emulsion with brine. Surprisingly, the prior dilution of the distilled polymer emulsion (polymer dispersion) with a brine significantly increases its ability to subsequently invert in the injection salt waters (during injection into Training underground), which implies effective (rapid and almost total) dissolving of the polymer to maximize its application effect.
L’empreinte carbone de ce fluide est réduite car sa forme concentrée en polymère implique moins de coûts de transport, sans oublier l’absence d’équipement spécifique de dissolution pour son utilisation. The carbon footprint of this fluid is reduced because its concentrated form in polymer implies less transport costs, not to mention the absence of specific dissolution equipment for its use.
Un premier aspect de l’invention concerne donc un fluide d’injection F pour la fracturation hydraulique comprenant au moins un polymère hydrosoluble synthétique P de poids moléculaire moyen en poids supérieur ou égal à 1 million de daltons, ledit fluide étant préparé selon un procédé comprenant les étapes successives suivantes : a) On prépare par polymérisation radicalaire une émulsion inverse E comprenant entre 15% et 40 % en poids de polymère P, entre 20 et 60% en poids d’eau et au moins un solvant hydrocarboné, les pourcentages étant exprimés en poids par rapport au poids de l’émulsion E, b) On distille l’émulsion inverse E pour obtenir une dispersion D comprenant entre 40 et 60% en poids de particules de polymère P, moins de 10% en poids d’eau et au moins un solvant hydrocarboné, les pourcentages étant exprimés en poids par rapport au poids de la dispersion D, c) On dilue la dispersion D avec 1% à 15% en poids d’une solution aqueuse S comprenant entre 20 et 60% en poids de sels, les pourcentages étant exprimés en poids par rapport au poids de la dispersion D. A first aspect of the invention therefore relates to an injection fluid F for hydraulic fracturing comprising at least one synthetic water-soluble polymer P with a weight-average molecular weight greater than or equal to 1 million daltons, said fluid being prepared according to a process comprising the following successive steps: a) An inverse emulsion E comprising between 15% and 40% by weight of polymer P, between 20 and 60% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the emulsion E, b) the inverse emulsion E is distilled to obtain a dispersion D comprising between 40 and 60% by weight of polymer particles P, less than 10% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the dispersion D, c) the dispersion D is diluted with 1% to 15% by weight of an aqueous solution S comprising between 20 and 60% by weight of salts, the s percentages being expressed by weight relative to the weight of dispersion D.
Un deuxième aspect de l’invention concerne un procédé de fracturation hydraulique d’un réservoir souterrain d’huile ou de gaz non conventionnel utilisant le fluide d’injection F selon l’invention. A second aspect of the invention relates to a process for the hydraulic fracturing of an underground oil or unconventional gas reservoir using the injection fluid F according to the invention.
Un troisième aspect de l’invention concerne un procédé de réduction de friction utilisant un fluide d’injection F dans une opération de fracturation hydraulique d’un réservoir souterrain d’huile ou de gaz non conventionnel utilisant le fluide d’injection F selon l’invention. A third aspect of the invention relates to a method of reducing friction using an injection fluid F in a hydraulic fracturing operation of an underground reservoir of unconventional oil or gas using the injection fluid F according to the invention.
Tel qu’utilisé ici, le terme "polymère hydrosoluble" désigne un polymère qui donne une solution aqueuse sans particule insoluble lorsqu’il est dissous sous agitation pendant 4 heures à 25°C et avec une concentration de 20 g.L-1 dans l’eau. As used herein, the term "water-soluble polymer" means a polymer which yields an aqueous solution without insoluble particles when dissolved with stirring for 4 hours at 25°C and with a concentration of 20 gL -1 in water .
Selon la présente invention, le "poids moléculaire moyen en poids " du polymère hydrosoluble synthétique P est déterminé par mesure de la viscosité intrinsèque. La viscosité intrinsèque peut être mesurée par des méthodes connues de l’homme du métier et peut notamment être calculée à partir des valeurs de viscosité réduite pour différentes concentrations par une méthode graphique consistant à tracer les valeurs de viscosité réduite (sur l’axe des ordonnées) en fonction des concentrations (sur l’axe des abscisses) et en extrapolant la courbe à une concentration nulle. La valeur de viscosité intrinsèque est lue sur l’axe des ordonnées ou à l’aide de la méthode des moindres carrés. Ensuite, le poids moléculaire moyen en poids peut être déterminé par la célèbre équation de Mark- Houwink : According to the present invention, the "weight average molecular weight" of the synthetic water-soluble polymer P is determined by measuring the intrinsic viscosity. The intrinsic viscosity can be measured by methods known to those skilled in the art and can in particular be calculated from the reduced viscosity values for different concentrations by a graphical method consisting in plotting the reduced viscosity values (on the ordinate axis) as a function of the concentrations (on the abscissa axis) and by extrapolating the curve at zero concentration. The intrinsic viscosity value is read on the ordinate axis or using the least squares method. Then the weight average molecular weight can be determined by the famous Mark-Houwink equation:
[q] = K Ma [q] = KM a
[q] représente la viscosité intrinsèque du polymère déterminée par la méthode de mesure de la viscosité en solution, [q] represents the intrinsic viscosity of the polymer determined by the solution viscosity measurement method,
K représente une constante empirique, K represents an empirical constant,
M représente le poids moléculaire du polymère, a représente le coefficient de Mark-Houwink, a et K dépendent du système particulier polymère-solvant. Des tableaux connus de l’homme du métier donnent les valeurs de a et K selon le système polymère-solvant.M represents the molecular weight of the polymer, a represents the Mark-Houwink coefficient, a and K depend on the particular polymer-solvent system. Tables known to those skilled in the art give the values of a and K according to the polymer-solvent system.
Le polymère hydrosoluble synthétique P de l’invention a un poids moléculaire moyen avantageusement supérieur ou égal à 1 million de daltons encore plus avantageusement supérieur ou égal à 1 ,5 millions de daltons et encore plus avantageusement supérieur ou égal à 2 millions de daltons. Il est avantageusement inférieur ou égal à 20 millions daltons. De préférence, le polymère hydrosoluble synthétique P de l’invention a un poids moléculaire moyen avantageusement compris entre 1 million de daltons et 20 millions de daltons encore plus avantageusement compris entre 1 ,5 millions de daltons et 20 millions de daltons, encore plus avantageusement compris entre 2 millions de daltons et 20 millions de daltons. The synthetic water-soluble polymer P of the invention has an average molecular weight advantageously greater than or equal to 1 million daltons, even more advantageously greater than or equal to 1.5 million daltons and even more advantageously greater than or equal to 2 million daltons. It is advantageously less than or equal to 20 million daltons. Preferably, the synthetic water-soluble polymer P of the invention has an average molecular weight advantageously comprised between 1 million daltons and 20 million daltons, even more advantageously comprised between 1.5 million daltons and 20 million daltons, even more advantageously comprised between 2 million daltons and 20 million daltons.
L’émulsion inverse E comprenant le polymère hydrosoluble synthétique P obtenue par polymérisation radicalaire lors de l’étape a) du procédé d’obtention du fluide F contient : The inverse emulsion E comprising the synthetic water-soluble polymer P obtained by radical polymerization during step a) of the process for obtaining the fluid F contains:
- une phase hydrophile comprenant au moins un polymère structuré hydrosoluble- a hydrophilic phase comprising at least one water-soluble structured polymer
- une phase lipophile ; - a lipophilic phase;
- au moins un agent émulsifiant ; - at least one emulsifying agent;
La phase lipophile peut être une huile minérale, une huile végétale, une huile synthétique ou un mélange de plusieurs de ces huiles. Des exemples d’huile minérale sont les huiles minérales comprenant des hydrocarbures saturés de type aliphatique, naphténique, paraffinique, isoparaffinique, cycloparaffinique ou naphtyle. Des exemples d’huile synthétique sont le polydécène hydrogéné ou le polyisobutène hydrogéné, les esters tel que le stéarate d’octyle ou l’oléate de butyle. La gamme de produits Exxsol® d’Exxon convient parfaitement. The lipophilic phase can be a mineral oil, a vegetable oil, a synthetic oil or a mixture of several of these oils. Examples of mineral oil are mineral oils comprising saturated hydrocarbons of the aliphatic, naphthenic, paraffinic, isoparaffinic, cycloparaffinic or naphthyl type. Examples of synthetic oil are hydrogenated polydecene or hydrogenated polyisobutene, esters such as octyl stearate or butyl oleate. Exxon's Exxsol® product line is a perfect fit.
En général, le rapport pondéral de la phase hydrophile à la phase lipophile dans l’émulsion inverse est de préférence de 50/50 à 90/10. In general, the weight ratio of the hydrophilic phase to the lipophilic phase in the inverse emulsion is preferably from 50/50 to 90/10.
Dans la présente invention, le terme "agent émulsifiant" désigne un agent capable d’émulsifier de l’eau dans une huile et un "agent inverseur" est un agent capable d’émulsionner une huile dans de l’eau. Généralement, on considère qu’un agent inverseur est un tensioactif ayant un HLB supérieur ou égal à 10, et un agent émulsifiant est un tensioactif ayant un HLB strictement inférieur à 10. In the present invention, the term "emulsifying agent" means an agent capable of emulsifying water in an oil and an "inverting agent" is an agent capable of emulsifying an oil in water. Generally, an inverting agent is considered to be a surfactant with an HLB greater than or equal to 10, and an emulsifying agent is a surfactant with an HLB strictly less than 10.
L’équilibre hydrophile-lipophile (HLB) d’un composé chimique est une mesure de son degré d’hydrophilie ou lipophile, déterminé en calculant les valeurs des différentes régions de la molécule, comme décrit par Griffin en 1949 (Griffin WC, Classification of Surface-Active Agents by HLB, Journal of the Society of Cosmetic Chemists, 1949, 1 , pages 311 -326). The hydrophilic-lipophilic balance (HLB) of a chemical compound is a measure of its degree of hydrophilicity or lipophilicity, determined by calculating the values of different regions of the molecule, as described by Griffin in 1949 (Griffin WC, Classification of Surface-Active Agents by HLB, Journal of the Society of Cosmetic Chemists, 1949, 1, pages 311-326).
Dans la présente invention, nous avons adopté le procédé de Griffin basé sur le calcul d'une valeur basée sur les groupes chimiques de la molécule. Griffin a attribué un nombre sans dimension compris entre 0 et 20 pour donner des informations sur la solubilité dans l'eau et dans l'huile. Les substances ayant une valeur HLB de 10 sont réparties entre les deux phases, de sorte que le groupe hydrophile (masse moléculaire Mh) se projette complètement dans l'eau tandis que le groupe hydrocarboné hydrophobe (masse moléculaire Mp) est adsorbé dans la phase non aqueuse. In the present invention, we have adopted Griffin's method based on calculating a value based on the chemical groups of the molecule. Griffin assigned a dimensionless number between 0 and 20 to give information about water and oil solubility. Substances with an HLB value of 10 are distributed between the two phases, so that the hydrophilic group (molecular mass Mh) projects completely into the water while the hydrophobic hydrocarbon group (molecular mass Mp) is adsorbed in the non-phase. watery.
La valeur HLB d'une substance de masse moléculaire totale M dont la partie hydrophile a une masse moléculaire Mh, est : HLB = 20 (Mh / M) The HLB value of a substance of total molecular mass M whose hydrophilic part has a molecular mass Mh, is: HLB = 20 (Mh / M)
L'émulsion inverse E selon l’invention est préparée par polymérisation radicalaire. Une solution aqueuse comprenant le ou les monomères permettant d’obtenir le polymère P est émulsionnée dans une phase huileuse comprenant le ou les agents émulsifiants. Ensuite, la polymérisation est réalisée en ajoutant un initiateur de radicaux libres. On peut faire référence, en tant qu’initiateur, aux couples rédox, avec l'hydroperoxyde de cumène, le butylhydroxyperoxyde tertiaire ou les persulfates parmi les agents oxydants, le sulfite de sodium, le métabisulfite de sodium et le sel de Mohr parmi les agents réducteurs. Des composés azoïques tels que le chlorhydrate de 2,2’-azobis (isobutyronitrile) et de 2,2’- azobis (2-amidinopropane) peuvent également être utilisés. Classiquement, la polymérisation est généralement effectuée de manière isotherme, adiabatique ou à température contrôlée. C'est-à-dire que la température est maintenue constante, généralement entre 10 et 60 ° C (isotherme), ou bien on laisse la température augmenter naturellement (adiabatique) et dans ce cas, la réaction est généralement commencée à une température inférieure à 10°C et la température finale est généralement supérieure à 50 ° C ou, enfin, l'augmentation de la température est contrôlée de manière à avoir une courbe de température entre la courbe isotherme et la courbe adiabatique (température contrôlée). The inverse emulsion E according to the invention is prepared by radical polymerization. An aqueous solution comprising the monomer(s) making it possible to obtain the polymer P is emulsified in an oily phase comprising the emulsifying agent(s). Then, the polymerization is carried out by adding a free radical initiator. Reference may be made, as initiator, to redox couples, with cumene hydroperoxide, tertiary butylhydroxyperoxide or persulfates among the oxidizing agents, sodium sulfite, sodium metabisulfite and Mohr's salt among the agents reducers. Azo compounds such as 2,2'-azobis (isobutyronitrile) and 2,2'-azobis (2-amidinopropane) hydrochloride can also be used. Conventionally, the polymerization is generally carried out in an isothermal, adiabatic or temperature-controlled manner. That is, the temperature is kept constant, usually between 10 and 60°C (isothermal), or the temperature is allowed to rise naturally (adiabatic) and in this case the reaction is usually started at a lower temperature at 10°C and the final temperature is usually above 50°C or, finally, the temperature increase is controlled so as to have a temperature curve between the isothermal curve and the adiabatic curve (controlled temperature).
La polymérisation peut être conduite sous une pression inférieure à la pression atmosphérique, optionnellement dans des conditions permettant d’évaporer une partie de l’eau et du solvant hydrocarboné du milieu réactionnel et de préconcentrer l’émulsion. The polymerization can be carried out under a pressure below atmospheric pressure, optionally under conditions making it possible to evaporate part of the water and of the hydrocarbon solvent from the reaction medium and to preconcentrate the emulsion.
Le polymère hydrosoluble synthétique P est préférentiellement issu de la polymérisation de monomères éthyléniques monoinsaturés qui peuvent être non ioniques et/ou anioniques et/ou cationiques et/ou zwiterrioniques. Ces monomères sont de préférence les suivants :The synthetic water-soluble polymer P preferably results from the polymerization of monounsaturated ethylenic monomers which may be nonionic and/or anionic and/or cationic and/or zwiterrionic. These monomers are preferably the following:
- les monomères non ioniques choisis dans le groupe comprenant l’acrylamide, le méthacrylamide, les N-alkylacrylamides, les N-alkylméthacrylamides, les N,N-dialkyl acrylamides, les N,N-dialkylméthacrylamides, les esters alkoxylés de l’acide acrylique, les esters alkoxylés de l’acide méthacrylique, la N-vinylpyridine, la N-vinylpyrrolidone, les hydroxyalkylacrylates, les hydroxyalkyl méthacrylates, - nonionic monomers chosen from the group comprising acrylamide, methacrylamide, N-alkylacrylamides, N-alkylmethacrylamides, N,N-dialkylacrylamides, N,N-dialkylmethacrylamides, alkoxylated esters of acrylic acid , alkoxylated esters of methacrylic acid, N-vinylpyridine, N-vinylpyrrolidone, hydroxyalkylacrylates, hydroxyalkyl methacrylates,
- les monomères anioniques choisis dans le groupe comprenant les monomères possédant une fonction carboxylique et leurs sels dont l’acide acrylique, l’acide méthacrylique, l’acide itaconique, l’acide maléique ; les monomères possédant une fonction acide sulfonique et leurs sels, dont l’acide acrylamido tertio butyl sulfonique (ATBS), l’acide allyl sulfonique et l’acide methallyl sulfonique et leurs sels ; les monomères ayant une fonction acide phosphonique et leurs sels, - anionic monomers chosen from the group comprising monomers having a carboxylic function and their salts including acrylic acid, methacrylic acid, itaconic acid, maleic acid; monomers having a sulphonic acid function and their salts, including acrylamido tert-butyl sulphonic acid (ATBS), allyl sulphonic acid and methallyl sulphonic acid and their salts; monomers having a phosphonic acid function and their salts,
- les monomères cationiques choisis dans le groupe comprenant l’acrylate de diméthylaminoéthyle (ADAME) quaternisé ou salifié ; le méthacrylate de diméthylaminoéthyle (MADAME) quaternisé ou salifié ; le chlorure de diallyldiméthylammonium (DADMAC) ; le chlorure d’acrylamidopropyltriméthylammonium (APT AC) ; le chlorure de méthacrylamidopropyltriméthylammonium (MAPTAC), - cationic monomers chosen from the group comprising quaternized or salified dimethylaminoethyl acrylate (ADAME); dimethylaminoethyl methacrylate (MADAME) quaternized or salified; diallyldimethylammonium chloride (DADMAC); acrylamidopropyltrimethylammonium chloride (APT AC); methacrylamidopropyltrimethylammonium chloride (MAPTAC),
- les monomères zwitterioniques choisis dans le groupe comprenant les monomères sulfobétaïnes comme le sulfopropyl diméthylammonium éthyl méthacrylate, le sulfopropyl diméthylammonium propylméthacrylamide, le sulfopropyl 2-vinylpyridinium ; les monomères phosphobétaïnes, comme le phosphato éthyl triméthylammonium éthyl méthacrylate ; les monomères carboxybétaïnes. - zwitterionic monomers chosen from the group comprising sulfobetaine monomers such as sulfopropyl dimethylammonium ethyl methacrylate, sulfopropyl dimethylammonium propylmethacrylamide, sulfopropyl 2-vinylpyridinium; THE phosphobetaine monomers, such as phosphato ethyl trimethylammonium ethyl methacrylate; carboxybetaine monomers.
Optionnellement, le polymère hydrosoluble P peut comprendre au moins un groupe à LCST ou à UCST. Optionally, the water-soluble polymer P can comprise at least one LCST or UCST group.
Selon les connaissances générales de l’homme du métier, un groupe à LCST correspond à un groupe dont la solubilité dans l’eau pour une concentration déterminée, est modifiée au-delà d’une certaine température et en fonction de la salinité. Il s’agit d’un groupe présentant une température de transition par chauffage définissant son manque d’affinité avec le milieu solvant. Le manque d’affinité avec le solvant se traduit par une opacification ou une perte de transparence qui peut être due à une précipitation, une agrégation, une gélification ou une viscosification du milieu. La température de transition minimale est appelée « LCST » (température critique inférieure de solubilité, de l’acronyme anglais « Lower Critical Solution Température »). Pour chaque concentration de groupe à LCST, une température de transition par chauffage est observée. Elle est supérieure à la LCST qui est le point minimum de la courbe. En dessous de cette température, le (co)polymère est soluble dans l’eau, au-dessus de cette température, le (co)polymère perd sa solubilité dans l’eau. According to the general knowledge of those skilled in the art, an LCST group corresponds to a group whose solubility in water for a given concentration is modified beyond a certain temperature and according to salinity. This is a group with a transition temperature by heating defining its lack of affinity with the solvent medium. The lack of affinity with the solvent results in an opacification or a loss of transparency which may be due to precipitation, aggregation, gelling or viscosification of the medium. The minimum transition temperature is called "LCST" (lower critical solubility temperature, from the acronym "Lower Critical Solution Temperature"). For each group concentration at LCST, a heating transition temperature is observed. It is greater than the LCST which is the minimum point of the curve. Below this temperature, the (co)polymer is soluble in water, above this temperature, the (co)polymer loses its solubility in water.
Selon les connaissances générales de l’homme du métier, un groupe à UCST correspond à un groupe dont la solubilité dans l’eau pour une concentration déterminée, est modifiée en dessous d’une certaine température et en fonction de la salinité. Il s’agit d’un groupe présentant une température de transition par refroidissement définissant son manque d’affinité avec le milieu solvant. Le manque d’affinité avec le solvant se traduit par une opacification ou une perte de transparence qui peut être due à une précipitation, une agrégation, une gélification ou une viscosification du milieu. La température de transition maximale est appelée « UCST » (température critique supérieure de solubilité, de l’acronyme anglais « Upper Critical Solution Température »). Pour chaque concentration de groupe à UCST, une température de transition par refroidissement est observée. Elle est supérieure à la LCST qui est le point minimum de la courbe. Au-dessus de cette température, le (co)polymère est soluble dans l’eau, en-dessous de cette température, le (co)polymère perd sa solubilité dans l’eau. According to the general knowledge of those skilled in the art, a UCST group corresponds to a group whose solubility in water for a given concentration is modified below a certain temperature and according to salinity. This is a group with a cooling transition temperature defining its lack of affinity with the solvent medium. The lack of affinity with the solvent results in an opacification or a loss of transparency which may be due to precipitation, aggregation, gelling or viscosification of the medium. The maximum transition temperature is called “UCST” (upper critical solubility temperature, from the acronym “Upper Critical Solution Temperature”). For each group concentration at UCST, a cooling transition temperature is observed. It is greater than the LCST which is the minimum point of the curve. Above this temperature, the (co)polymer is soluble in water, below this temperature, the (co)polymer loses its solubility in water.
Le polymère hydrosoluble P dans l’émulsion inverse E peut être linéaire ou structuré par au moins un agent de structure, pouvant être choisi dans le groupe comprenant des monomères à insaturation polyéthylénique (ayant au minimum deux fonctions insaturées), comme par exemples les fonctions vinyliques, allyliques, acryliques et époxy et l’on peut citer par exemple le méthylène bis acrylamide (MBA), la diallylamine, la triallylamine, le chlorure de tétraallylammonium, le diméthacrylate de polyéthylène glycol ou encore par des macroamorceurs tels que les polypéroxydes, polyazoiques et les polyagents de transfert tels que les polymères polymercaptants ou encore les hydroxyalkylacrylates, les époxyvinyliques. The water-soluble polymer P in the inverse emulsion E can be linear or structured by at least one structural agent, which can be chosen from the group comprising polyethylenically unsaturated monomers (having at least two unsaturated functions), such as, for example, vinyl functions , allylics, acrylics and epoxies and one can cite for example methylene bis acrylamide (MBA), diallylamine, triallylamine, tetraallylammonium chloride, polyethylene glycol dimethacrylate or even by macroinitiators such as polyperoxides, polyazos and polytransfer agents such as polymercaptants polymers or even hydroxyalkylacrylates, epoxyvinyls.
Le polymère hydrosoluble P peut aussi être structuré en utilisant les techniques de polymérisation radicalaire contrôlée (CRP) ou, et plus particulièrement, de type RAFT (Reversible Addition Fragmentation Chain Transfer en anglais) en émulsion inverse. The water-soluble polymer P can also be structured using techniques of controlled radical polymerization (CRP) or, and more particularly, of the RAFT (Reversible Addition Fragmentation Chain Transfer) type in inverse emulsion.
Selon une autre préférence, l’émulsion inverse E de polymère hydrosoluble P peut comprendre : une phase hydrophile comprenant au moins un (co)polymère hydrosoluble P, une phase lipophile, au moins un polymère interfacial composé d’au moins un monomère de formule (I) : [Chem 1] According to another preference, the inverse emulsion E of water-soluble polymer P may comprise: a hydrophilic phase comprising at least one water-soluble (co)polymer P, a lipophilic phase, at least one interfacial polymer composed of at least one monomer of formula ( I): [Chem 1]
Formule (I) dans laquelle, Formula (I) in which,
Ri, R2, R3 sont indépendamment choisis dans le groupe constitué de un atome d’hydrogène, un groupe méthyle, un groupement carboxylate et Z-X, Ri, R 2 , R3 are independently selected from the group consisting of a hydrogen atom, a methyl group, a carboxylate group and ZX,
Z est choisi dans le groupe constitué de C(=0)-0 ; C(=O)-NH ; O-C(=O) ; NH- C(=O)-NH ; NH-C(=0)-0 ; et une chaine carbonée comprenant de 1 à 20 atomes de carbone insaturée ou non, substituée ou non pouvant comprendre un ou plusieurs hétéroatomes, de préférence 1 , 2 ou 3 hétéroatomes, choisis parmi l’azote et l’oxygène,Z is selected from the group consisting of C(=0)-0; C(=O)-NH; O-C(=O); NH-C(=O)-NH; NH-C(=0)-0; and a carbon chain comprising from 1 to 20 unsaturated or unsaturated, substituted or unsubstituted carbon atoms which may comprise one or more heteroatoms, preferably 1, 2 or 3 heteroatoms, chosen from nitrogen and oxygen,
X est un groupe choisi parmi les alcanolamides, les esters de sorbitan, les esters de sorbitan éthoxylés, les esters de glyceryle, et les polyglycosides ; X comprenant une chaine hydrocarbonée de préférence comprenant de 6 à 24 atomes de carbone, saturée ou insaturée, linéaire, ramifiée ou cyclique, éventuellement aromatique. X is a group selected from alkanolamides, sorbitan esters, ethoxylated sorbitan esters, glyceryl esters, and polyglycosides; X comprising a hydrocarbon chain preferably comprising from 6 to 24 carbon atoms, saturated or unsaturated, linear, branched or cyclic, optionally aromatic.
Sans vouloir être lié par une quelconque théorie, le polymère interfacial obtenu par polymérisation d’au moins un monomère de formule (I) forme une enveloppe à l’interface de la phase hydrophile et de la phase lipophile. De manière générale, la phase hydrophile se présente sous la forme de gouttelettes micrométriques dispersées, avantageusement émulsionnées, dans la phase lipophile. La taille moyenne de ces gouttelettes est avantageusement comprise entre 0,01 et 30 pm, plus avantageusement entre 0,05 et 3 pm. Le polymère interfacial vient donc se placer à l’interface entre la phase hydrophile et la phase lipophile au niveau de chaque gouttelette. Le polymère interfacial enveloppe partiellement ou totalement chacune de ces gouttelettes. La taille moyenne des gouttelettes est avantageusement mesurée avec un appareil de mesure laser utilisant les techniques conventionnelles qui font partie des connaissances générales de l’homme de métier. Un appareil de type Mastersizer de la société Malvern pourra être utilisé à cet effet. Without wishing to be bound by any theory, the interfacial polymer obtained by polymerization of at least one monomer of formula (I) forms an envelope at the interface of the hydrophilic phase and the lipophilic phase. In general, the hydrophilic phase is in the form of micrometric droplets dispersed, advantageously emulsified, in the lipophilic phase. The average size of these droplets is advantageously between 0.01 and 30 μm, more advantageously between 0.05 and 3 μm. The interfacial polymer therefore comes to be placed at the interface between the hydrophilic phase and the lipophilic phase at the level of each droplet. The interfacial polymer partially or totally envelopes each of these droplets. The average size of the droplets is advantageously measured with a laser measuring device using conventional techniques which form part of the general knowledge of those skilled in the art. A Mastersizer type device from the Malvern company can be used for this purpose.
De manière avantageuse, le polymère interfacial comprend entre 0,0001 et 10 %, plus avantageusement entre 0,0001 et 5 % encore plus avantageusement de 0,0001 à 1%, en nombre de monomère de formule (I), par rapport au nombre total de monomères. Advantageously, the interfacial polymer comprises between 0.0001 and 10%, more advantageously between 0.0001 and 5% even more advantageously from 0.0001 to 1%, by number of monomer of formula (I), relative to the number total monomers.
Le polymère interfacial forme une enveloppe autour des gouttelettes formant la phase hydrophile. Outre les monomères mentionnés ci-dessus, le polymère interfacial peut comprendre au moins un agent de structure. L’agent de structure est avantageusement choisi parmi les diacrylamides ou méthacrylamides de diamines ; les esters acryliques de composés di, tri, ou tétrahydroxy ; les esters méthacryliques de composés di, tri, ou tétrahydroxy ; les composés divinyliques préférentiellement séparés par un groupement azo ; les composés diallyliques préférentiellement séparés par un groupement azo ; les esters vinyliques d’acides di ou trifonctionnels ; les esters allyliques d’acides di ou trifonctionnels ; la méthylènebisacrylamide ; la diallylamine ; la triallylami ne ; le chlorure de tétraallylammonium ; la divinylsulfone ; le diméthacrylate de polyéthylène glycol et l’éther diallylique de diéthylèneglycol. The interfacial polymer forms an envelope around the droplets forming the hydrophilic phase. In addition to the monomers mentioned above, the interfacial polymer can comprise at least one structural agent. The structural agent is advantageously chosen from diamine diacrylamides or methacrylamides; acrylic esters of di, tri, or tetrahydroxy compounds; methacrylic esters of di, tri, or tetrahydroxy compounds; divinyl compounds preferentially separated by an azo group; diallylic compounds preferentially separated by an azo group; vinyl esters of di or trifunctional acids; allyl esters of di or trifunctional acids; methylenebisacrylamide; diallylamine; triallylamine; tetraallylammonium chloride; divinylsulfone; polyethylene glycol dimethacrylate and diethylene glycol diallyl ether.
Préférentiellement l’émulsion inverse E comprend de 0,5 % à 5,0 % en poids, les pourcentages étant exprimés en poids par rapport au poids de l’émulsion E, d’au moins un agent émulsifiant de préférence choisi parmi les esters de sorbitan, les esters de sorbitan polyéthoxylés, les acides gras polyéthoxylés, les alcools gras polyéthoxylés, les polyesters ayant un poids moléculaire moyen compris entre 1000 et 3000 daltons résultant de la condensation entre un acide poly(isobutényl) succinique ou son anhydride et un polyéthylène glycol, les copolymères blocs de poids moléculaire moyen compris entre 2500 et 3500 daltons résultant de la condensation entre l’acide hydroxystéarique et un polyéthylène glycol, les amines grasses éthoxylées, les dérivés des di-alcanol amides, les copolymères du méthacrylate de stéaryle, et les mélanges de ces agents émulsifiants. Cet agent émulsifiant est ajouté dans la phase lipophile préalablement à la réaction de polymérisation radicalaire. Preferably, the inverse emulsion E comprises from 0.5% to 5.0% by weight, the percentages being expressed by weight relative to the weight of the emulsion E, of at least one emulsifying agent preferably chosen from esters of sorbitan, polyethoxylated sorbitan esters, polyethoxylated fatty acids, polyethoxylated fatty alcohols, polyesters having an average molecular weight between 1000 and 3000 daltons resulting from the condensation between a poly(isobutenyl) succinic acid or its anhydride and a polyethylene glycol , block copolymers with an average molecular weight of between 2500 and 3500 daltons resulting from the condensation between hydroxystearic acid and a polyethylene glycol, ethoxylated fatty amines, derivatives of di-alkanol amides, stearyl methacrylate copolymers, and mixtures of these emulsifying agents. This emulsifying agent is added to the lipophilic phase prior to the radical polymerization reaction.
Optionnellement, un polymère naturel ou synthétique (notamment décrit dans US 10,647,908), peut être ajouté au terme de la réaction de polymérisation radicalaire de l’étape a) du procédé d’obtention du fluide F. Parmi les polymères naturels on retrouve par exemple les gommes guar, et leurs dérivés tel que l’hydroxypropylguar (H PG), ou la carboxyméthylhydroxypropyl guar (CMHPG) ; les dérivés cellulosiques tels que la carboxyméthyl cellulose, l’hydroxyéthyl cellulose ou l’hydroxypropylcélullose. Avantageusement le polymère P est majoritaire par rapport au polymère naturel, de préférence le polymère P représente de 50 à 100% en poids, de préférence de 70 à 100%, plus préférentiellement de 90 à 100%, par rapport au poids total polymère P + polymère naturel. Optionally, a natural or synthetic polymer (described in particular in US Pat. No. 10,647,908) can be added at the end of the radical polymerization reaction of step a) of the process for obtaining the fluid F. Among the natural polymers there are, for example, the guar gums, and their derivatives such as hydroxypropylguar (HPG), or carboxymethylhydroxypropyl guar (CMHPG); cellulose derivatives such as carboxymethyl cellulose, hydroxyethyl cellulose or hydroxypropyl cellulose. Advantageously, the polymer P predominates with respect to the natural polymer, preferably the polymer P represents from 50 to 100% by weight, preferably from 70 to 100%, more preferably from 90 to 100%, relative to the total weight of the polymer P + natural polymer.
L’étape b) du procédé d’obtention du fluide d’injection F consiste à distiller l’émulsion inverse E pour obtenir une dispersion D, le polymère P se trouve donc, après distillation, sous forme de particules (solides), comprenant entre 40 et 60% en poids de particules de polymère P, moins de 10% en poids d’eau et au moins un solvant hydrocarboné, les pourcentages étant exprimés en poids par rapport au poids de la dispersion D. La distillation est effectuée sous pression réduite, préférentiellement à une pression comprise entre 20 et 250 mbars et à une température comprise entre 10 et 1 10°C. Step b) of the process for obtaining the injection fluid F consists in distilling the inverse emulsion E to obtain a dispersion D, the polymer P is therefore, after distillation, in the form of (solid) particles, comprising between 40 and 60% by weight of polymer particles P, less than 10% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the dispersion D. The distillation is carried out under reduced pressure , preferably at a pressure of between 20 and 250 mbar and at a temperature of between 10 and 110°C.
De préférence, dans le fluide d’injection de l’invention, le polymère P se trouve sous la forme de particules (solides). Preferably, in the injection fluid of the invention, the polymer P is in the form of (solid) particles.
Préférentiellement les particules de polymère hydrosoluble synthétique P dans la dispersion D ont une taille moyenne comprise entre 0,01 pm et 100 pm, encore plus préférentiellement entre 0,1 pm et 5 pm. Par taille moyenne on entend dans la présente invention le diamètre moyen des particules. L’analyse de la taille des particules est effectuée selon les techniques conventionnelles connues de l’homme du métier. Un exemple d’appareil pour mesurer le diamètre moyen des particules est le Mastersizer de Malvern Instruments. Preferably, the particles of synthetic water-soluble polymer P in dispersion D have an average size of between 0.01 μm and 100 μm, even more preferably between 0.1 μm and 5 μm. By average size is meant in the present invention the average diameter of the particles. The particle size analysis is carried out according to conventional techniques known to those skilled in the art. An example of a device for measuring mean particle diameter is the Mastersizer from Malvern Instruments.
Au terme de la distillation et donc avant l’étape c) du procédé d’obtention du fluide d’injection F de l’invention, on ajoute préférentiellement à la dispersion (D) entre 0,2 et 10% en poids, les pourcentages étant exprimés en poids par rapport au poids de la dispersion D, d’au moins un agent inverseur. L’agent inverseur est de préférénce choisi parmi les nonylphénol éthoxylés, ayant de préférence 4 à 10 éthoxylations ; les alcools éthoxylés / propoxylés ayant de préférence une éthoxylation / propoxylation comprenant entre 12 et 25 atomes de carbone ; les alcools tridécyliques éthoxylés ; les acides gras polyéthoxylés, les alcool gras poly (éthoxylés / propoxylés); les esters de sorbitan éthoxylés ; le laurate de sorbitan polyéthoxylé ; l’huile de castor polyéthoxylée ; l’alcool laurique heptaoxyéthylé ; le monostéarate de sorbitan polyéthoxylé ; les alkyls phénol polyéthoxylés cétyl éther ; les polyoxyde d’éthylène alkyl aryl éther ; le N-cétyl-N-éthyl morpholinium éthosulfate ; le lauryl sulfate de sodium ; les produits de condensation d’alcools gras avec l’oxyde d’éthylène ; les produits de condensation des alkylphénols et de l’oxyde d’éthylène ; les produits de condensation d’amines grasses avec 5 équivalents molaire ou plus d’oxyde d’éthylène ; les tristyryl phénol éthoxylés ; les condensais de l’oxyde d’éthylène avec les alcools polyhydriques partiellement estérifiés avec des chaines grasses ainsi que leur formes anhydres ; les oxydes d’amine ; les alkyl polyglucosides ; le glucamide ; les esters de phosphate ; les acides alkylbenzene sulfonique et leurs sels ; les polymères hydrosolubles surfactant ; et les mélanges de plusieurs de ces agents inverseurs. At the end of the distillation and therefore before step c) of the process for obtaining the injection fluid F of the invention, preferably added to the dispersion (D) between 0.2 and 10% by weight, the percentages being expressed by weight relative to the weight of the dispersion D, of at least one reversing agent. The reversing agent is preferably chosen from ethoxylated nonylphenol, preferably having 4 to 10 ethoxylations; ethoxylated/propoxylated alcohols preferably having an ethoxylation/propoxylation comprising between 12 and 25 carbon atoms; ethoxylated tridecyl alcohols; polyethoxylated fatty acids, poly(ethoxylated/propoxylated) fatty alcohols; ethoxylated sorbitan esters; polyethoxylated sorbitan laurate; polyethoxylated castor oil; heptaoxyethyl lauryl alcohol; polyethoxylated sorbitan monostearate; polyethoxylated alkyl phenol cetyl ether; polyethylene oxide alkyl aryl ether; N-cetyl-N-ethyl morpholinium ethosulfate; sodium lauryl sulphate; condensation products of fatty alcohols with ethylene oxide; condensation products of alkylphenols and ethylene oxide; condensation products of fatty amines with 5 or more molar equivalents of ethylene oxide; ethoxylated tristyryl phenols; condensates of ethylene oxide with partially esterified polyhydric alcohols with fatty chains as well as their anhydrous forms; amine oxides; alkyl polyglucosides; glucamide; phosphate esters; alkylbenzene sulfonic acids and their salts; surfactant water-soluble polymers; and mixtures of several of these reversing agents.
L’étape c) du procédé d’obtention du fluide d’injection F consiste à diluer la dispersion D avec 1 % à 15% en poids d’une solution aqueuse S contenant entre 20 et 60 % de sels, préférentiellement entre 25 et 45%, les pourcentages étant exprimés en poids par rapport au poids de la dispersion D. La solution S est, de préférence, une solution de saumure. Step c) of the process for obtaining the injection fluid F consists in diluting the dispersion D with 1% to 15% by weight of an aqueous solution S containing between 20 and 60% salts, preferably between 25 and 45 %, the percentages being expressed by weight relative to the weight of dispersion D. Solution S is preferably a brine solution.
Préférentiellement au moins une portion de l’eau de la solution S est extraite du distillât de l’émulsion E. Preferably at least a portion of the water of the solution S is extracted from the distillate of the emulsion E.
Avantageusement, les sels de la solution aqueuse S sont des sels alcalins ou alcalino- terreux ou d’ammonium ou des sels organiques ou un mélange de ces sels. Plus préférentiellement, les sels sont choisis parmi le chlorure de sodium, le sulfate d’ammonium, le thiosulfate d’ammonium, le chlorure d’ammonium, le chlorure de choline, les sels de monosaccharides ou un mélange de ces sels. Advantageously, the salts of the aqueous solution S are alkaline or alkaline-earth or ammonium salts or organic salts or a mixture of these salts. More preferentially, the salts are chosen from sodium chloride, ammonium sulphate, ammonium thiosulphate, ammonium chloride, choline chloride, monosaccharide salts or a mixture of these salts.
Après l’étape c) du procédé d’obtention du fluide F d’autres composés connus de l’homme de l’art, peuvent être ajoutés comme ceux cités dans le document SPE 152596, par exemple : After step c) of the process for obtaining fluid F, other compounds known to those skilled in the art can be added, such as those mentioned in document SPE 152596, for example:
Des biocides pour éviter le développement de bactéries en particulier sulfato réductrices pouvant former des masses visqueuses réduisant les surfaces de passage. On peut citer, par exemple, le glutaraldéhyde, qui est le plus utilisé, ou encore le formaldéhyde ou les isothiazolinones, et/ou Biocides to prevent the development of bacteria, in particular sulphate-reducing bacteria, which can form viscous masses that reduce passage surfaces. Mention may be made, for example, of glutaraldehyde, which is the most widely used, or else formaldehyde or isothiazolinones, and/or
Des réducteurs d’oxygène comme le bisulfite d’ammonium pour éviter la destruction des autres composants par oxydation et la corrosion des tubes d’injection, et/ouOxygen scavengers such as ammonium bisulphite to prevent the destruction of other components by oxidation and corrosion of the injection tubes, and/or
Des additifs anticorrosion pour protéger les tubes contre l’oxydation par les quantités résiduelles d’oxygène, tel que le N,N-diméthylformamide, et/ou Anti-corrosion additives to protect the tubes against oxidation by residual quantities of oxygen, such as N,N-dimethylformamide, and/or
Des lubrifiants comme les distillats d’huile, et/ou Lubricants such as oil distillates, and/or
Des chélatants pour le fer comme l’acide citrique, l’EDTA (éthylène diamine tétraacétique), les phosphonates, et/ou Iron chelators such as citric acid, EDTA (ethylene diamine tetraacetic acid), phosphonates, and/or
Des produits antitartres comme les phosphates, les phosphonates, les polyacrylates ou l’éthylène glycol. Scale inhibitors such as phosphates, phosphonates, polyacrylates or ethylene glycol.
La présente invention concerne donc également un procédé de préparation d’un fluide d’injection F comprenant les étapes suivantes : a) On prépare par polymérisation radicalaire une émulsion inverse E comprenant entre 15% et 40 % en poids d’un polymère hydrosoluble synthétique P de poids moléculaire moyen en poids supérieur ou égal à 1 million de daltons, entre 20 et 60% en poids d’eau et au moins un solvant hydrocarboné, les pourcentages étant exprimés en poids par rapport au poids de l’émulsion E, b) On distille l’émulsion inverse E pour obtenir une dispersion D comprenant entre 40 et 60% en poids de particules de polymère P, moins de 10% en poids d’eau et au moins un solvant hydrocarboné, les pourcentages étant exprimés en poids par rapport au poids de la dispersion D, c) On dilue la dispersion D avec 1% à 15% en poids d’une solution aqueuse S comprenant entre 20 et 60% en poids de sels, les pourcentages étant exprimés en poids par rapport au poids de la dispersion D. The present invention therefore also relates to a process for the preparation of an injection fluid F comprising the following steps: a) An inverse emulsion E comprising between 15% and 40% by weight of a synthetic water-soluble polymer P of weight-average molecular weight greater than or equal to 1 million daltons, between 20 and 60% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the emulsion E, b) The inverse emulsion E is distilled to obtain a dispersion D comprising between 40 and 60% by weight of polymer particles P, less than 10% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the dispersion D, c) the dispersion D is diluted with 1% to 15% by weight of an aqueous solution S comprising between 20 and 60% by weight of salts, the percentages being expressed by weight relative to the weight of scatter d.
Les étapes du procédé sont telles que décrites ci-dessus. The process steps are as described above.
Un deuxième aspect de l’invention concerne aussi un procédé de fracturation hydraulique d’un réservoir souterrain d’huile ou de gaz non conventionnel, comprenant la préparation d’un fluide d’injection F tel que décrit précédemment, la mise en solution dans une eau salée et l’injection dudit fluide de fracturation F dans une formation souterraine. A second aspect of the invention also relates to a process for the hydraulic fracturing of an underground reservoir of unconventional oil or gas, comprising the preparation of an injection fluid F as described previously, the dissolving in a salt water and injecting said fracturing fluid F into a subterranean formation.
L’injection est réalisée sous pression de manière à créer des fractures réparties tout le long du puits de production. Préalablement à son injection dans la formation souterraine, le fluide d’injection F obtenu par le procédé de l’invention est mis en solution dans une eau salée pour avoir une concentration en polymère comprise entre 0,01 et 10 g/L dans cette eau salée. The injection is carried out under pressure so as to create fractures distributed all along the production well. Prior to its injection into the underground formation, the injection fluid F obtained by the method of the invention is dissolved in salt water to have a polymer concentration of between 0.01 and 10 g/L in this water. salty.
Les eaux salées sont des eaux de mers ou peuvent être préparées avantageusement avec des sels monovalents et / ou polyvalents ou leurs combinaisons. The salt waters are sea waters or can advantageously be prepared with monovalent and/or polyvalent salts or combinations thereof.
Les exemples de sels incluent, sans limitation, les sels de sodium, de lithium, de potassium, d'aluminium, d'ammonium, de phosphate, de sulfate, de magnésium, de baryum, de nitrate et autres sels inorganiques et leurs mélanges. Examples of salts include, without limitation, sodium, lithium, potassium, aluminum, ammonium, phosphate, sulfate, magnesium, barium, nitrate and other inorganic salts and mixtures thereof.
Les eaux salées contiennent de préférence au moins l'un des éléments suivants : chlorure de sodium, chlorure de calcium, bromure de sodium, bromure de calcium, chlorure de baryum, chlorure de magnésium, bromure de zinc, formiate de sodium et formiate de potassium. Salt waters preferably contain at least one of the following elements: sodium chloride, calcium chloride, sodium bromide, calcium bromide, barium chloride, magnesium chloride, zinc bromide, sodium formate and potassium formate .
Préférentiellement l’eau salée utilisée pour la mise en solution du fluide d’injection F contient plus de 70 000 ppm de sels et préférentiellement plus de 100 000 ppm de sels, de préférence, la saumure contient de 70 000 à 350 000 ppm de sels, de préférence de 100 000 à 350 000 ppm. Preferably the salt water used for dissolving the injection fluid F contains more than 70,000 ppm of salts and preferably more than 100,000 ppm of salts, preferably the brine contains from 70,000 to 350,000 ppm of salts , preferably from 100,000 to 350,000 ppm.
Préférentiellement le ratio divalent R+= ratio massique : sels divalents/ sels totaux de l’eau salée est supérieur ou égal à 0,20 et encore plus préférentiellement R+ > 0,25. Preferably the divalent ratio R+= mass ratio: divalent salts/total salts of the salt water is greater than or equal to 0.20 and even more preferably R+ > 0.25.
Préférentiellement, pour l’injection du fluide d’injection F dans la formation souterraine au moins un agent de soutènement est ajouté avant ou après sa mise en solution dans l’eau salée. Preferably, for the injection of the injection fluid F into the underground formation, at least one proppant is added before or after it is dissolved in salt water.
L’agent de soutènement peut être choisi de façon non restrictive parmi le sable, la céramique, la bauxite, les billes de verre, et le sable imprégné de résine. Il représente avantageusement de 0,5 à 40%, plus préférentiellement de 1 à 25% et encore plus préférentiellement de 1 ,5 à 20%, en poids par rapport au poids total du fluide d’injection F pour la fracturation hydraulique. The proppant can be chosen without limitation from sand, ceramic, bauxite, glass beads, and sand impregnated with resin. It advantageously represents from 0.5 to 40%, more preferentially from 1 to 25% and even more preferentially from 1.5 to 20%, by weight relative to the total weight of the injection fluid F for hydraulic fracturing.
Optionnellement, avant, durant ou après la création des fractures, on injecte dans le réservoir au moins un composé oxydant et/ou au moins un composé tensioactif. L’injection de tensioactif permet d’éliminer la mouillabilité avec la roche, tandis que l’injection du composé oxydant détruit le copolymère. Dans les deux cas, l’injection permet de rétablir une viscosité de fluide proche de celle de l’eau. Optionally, before, during or after the creation of the fractures, at least one oxidizing compound and/or at least one surfactant compound is injected into the reservoir. The injection of surfactant makes it possible to eliminate the wettability with the rock, while the injection of the oxidizing compound destroys the copolymer. In both cases, the injection restores a fluid viscosity close to that of water.
Comme composé oxydant, on peut citer la javel (solution aqueuse d’un sel d’hypochlorite), l’eau oxygénée, l’ozone, les chloramines, les persulfates, les permanganates ou les perchlorates. As oxidizing compound, mention may be made of bleach (aqueous solution of a hypochlorite salt), hydrogen peroxide, ozone, chloramines, persulphates, permanganates or perchlorates.
La nature chimique du (ou des) composé(s) tensio-actif(s) n’est pas critique. Ils peuvent être anioniques, non ioniques, amphotères, zwitterioniques et/ou cationiques. De préférence, le(s) composé(s) tensio-actif(s) de l’invention porte(nt) des charges anioniques. The chemical nature of the surfactant compound(s) is not critical. They can be anionic, nonionic, amphoteric, zwitterionic and/or cationic. Preferably, the surfactant compound(s) of the invention carry(s) anionic charges.
De préférence, les composés tensioactifs utilisés sont choisis parmi les tensio-actifs anioniques et leurs zwitterions choisis dans le groupe comprenant les dérivés d’alkylsulfates, d’alkyléthersulfates, d’arylalkylsulfates, d’arylalkyléthersulfates, d’alkylsulfonates, d’alkyléthersulfonates, d’arylalkylsulfonates, d’arylalkyléthersulfonates, d’alkylphosphates, d’alkylétherphosphates, d’arylalkylphosphates, d’arylalkylétherphosphates, d’alkylphosphonates, d’alkylétherphosphonates, arylalkylphosphonates, d’arylalkylétherphosphonates, d’alkylcarboxylates, d’alkyléthercarboxylates, d’arylalkylcarboxylates, d’arylalkyléthercarboxylates, de polyethers alkyles, de polyethers arylalkyles... Preferably, the surfactant compounds used are chosen from anionic surfactants and their zwitterions chosen from the group comprising derivatives of alkyl sulphates, alkyl ether sulphates, arylalkyl sulphates, arylalkyl ether sulphates, alkyl sulphonates, alkyl ether sulphonates, d arylalkyl ether carboxylates, alkyl polyethers, arylalkyl polyethers...
On définit par chaine alkyle, une chaine de 6 à 24 carbones, ramifiée ou non, avec plusieurs motifs ou non, pouvant éventuellement comprendre un ou plusieurs hétéroatomes, par exemple O, N ou S, de préférence 1 , 2 ou 3 hétéroatomes. On définit par chaine arylalkyle, une chaine de 6 à 24 carbones, ramifiée ou non, comportant un ou plusieurs noyaux aromatiques et pouvant éventuellement comporter un ou plusieurs hétéroatomes, par exemple 1 , 2 ou 3 hétéroatomes, de préférence O, N ou S. The term alkyl chain is defined as a chain of 6 to 24 carbons, branched or not, with or without several units, possibly comprising one or more heteroatoms, for example O, N or S, preferably 1, 2 or 3 heteroatoms. Arylalkyl chain is defined as a chain of 6 to 24 carbons, branched or not, comprising one or more aromatic rings and possibly comprising one or more heteroatoms, for example 1, 2 or 3 heteroatoms, preferably O, N or S.
Les agents tensio-actifs les plus couramment utilisés, pour des raisons de coût, de stabilité, et de disponibilité, sont du type sulfonate ou sulfate, présentés sous la forme de sels de métaux alcalins ou d’ammonium. The most commonly used surfactants, for reasons of cost, stability, and availability, are of the sulphonate or sulphate type, presented in the form of alkali metal or ammonium salts.
Enfin un dernier aspect de l’invention concerne un procédé de réduction de friction lors d’opération de fracturation hydraulique d’un réservoir souterrain d’huile ou de gaz non conventionnel, comprenant la préparation d’un fluide F tel que décrit précédemment, la mise en solution dans une eau salée et l’injection dudit fluide de fracturation dans une formation souterraine. Finally, a last aspect of the invention relates to a method for reducing friction during a hydraulic fracturing operation of an underground reservoir of oil or untreated gas. conventional, comprising the preparation of a fluid F as described previously, the dissolving in salt water and the injection of said fracturing fluid into an underground formation.
La réduction de friction permet de diminuer ou de supprimer les pertes liées aux frottements lors de l’injection du fluide de fracturation. Friction reduction makes it possible to reduce or eliminate friction-related losses during the injection of fracturing fluid.
EXEMPLES DE REALISATION DE L’INVENTION EXAMPLES OF REALIZATION OF THE INVENTION
Les exemples suivants illustrent l’invention sans toutefois en limiter la portée. The following examples illustrate the invention without however limiting its scope.
Les proportions des différents composés sont données en pourcentage en poids par rapport au poids final des émulsions. - Préparation d’une émulsion inverse E1 de polymère P1 The proportions of the various compounds are given in percentage by weight relative to the final weight of the emulsions. - Preparation of an inverse emulsion E1 of polymer P1
Une phase aqueuse est préparée avec 42,1 g d’une solution d’acrylamide (à 50% en en poids dans l’eau), 9,1 g d’acide acrylique, 10,1 g d’une solution de soude (à 50% en poids dans l’eau), 0,49 g d’une solution d’acide diéthylènetriaminepentaacétique (à 40% en poids dans l’eau), 0,02 g d’une solution d’hydroperoxyde de tertiobutyle (à 70% en poids dans l’eau), 0,006 g d’hypophosphite de sodium et 9,134 g d’eau. An aqueous phase is prepared with 42.1 g of an acrylamide solution (50% by weight in water), 9.1 g of acrylic acid, 10.1 g of a sodium hydroxide solution ( at 50% by weight in water), 0.49 g of a solution of diethylenetriaminepentaacetic acid (at 40% by weight in water), 0.02 g of a solution of tert-butyl hydroperoxide (at 70% by weight in water), 0.006 g of sodium hypophosphite and 9.134 g of water.
Une phase organique est préparée en mélangeant 20,1 g d’une huile (Exxsol® D120 S) avec 2,3 g de monooléate de sorbitan, 0,5 g de monooléate de sorbitan éthoxylé 5 fois et 5 g d’un polymère surfactant. An organic phase is prepared by mixing 20.1 g of an oil (Exxsol® D120 S) with 2.3 g of sorbitan monooleate, 0.5 g of 5-fold ethoxylated sorbitan monooleate and 5 g of a surfactant polymer .
La phase aqueuse est ajoutée à la phase organique sous cisaillement pour former une émulsion. L’émulsion est alors dégazée avec un flux d’azote pendant 30 minutes tout en maintenant la température à 20°C. A l’issue de ce temps, 0,75 g de métabisulfite de sodium en solution (à 0,01 % en en poids dans l’eau) est injecté pendant 90 minutes. La température de polymérisation est maintenue entre 40 et 55°C. Les monomères résiduels sont mis en réaction en ajoutant 0,4 g d’une solution de bisulfite de sodium (à 40% en concentration massique). The aqueous phase is added to the organic phase under shear to form an emulsion. The emulsion is then degassed with a stream of nitrogen for 30 minutes while maintaining the temperature at 20°C. At the end of this time, 0.75 g of sodium metabisulphite in solution (at 0.01% by weight in water) is injected for 90 minutes. The polymerization temperature is maintained between 40 and 55°C. The residual monomers are reacted by adding 0.4 g of a sodium bisulphite solution (at 40% by mass concentration).
Une émulsion inverse E1 contenant 33% en poids d’un copolymère P1 d’acrylamide et d’acrylate de sodium est ainsi obtenue. - Préparation d’une dispersion D1 de polymère P1 An inverse emulsion E1 containing 33% by weight of a copolymer P1 of acrylamide and sodium acrylate is thus obtained. - Preparation of a dispersion D1 of polymer P1
L’émulsion inverse E1 de polymère P1 obtenue dans l’exemple 1 est chauffée à 90°C dans une atmosphère à pression réduite (100 millibars) afin d’évaporer l’eau et les fractions les plus légères de l’huile. Une dispersion D1 contenant 55,5% en poids de polymère P1 est ainsi obtenue. Cette dispersion contient moins de 10% d’eau. - Préparation d’un fluide d’injection F1 de polymère P1The inverse emulsion E1 of polymer P1 obtained in Example 1 is heated to 90° C. in an atmosphere at reduced pressure (100 millibars) in order to evaporate the water and the lighter fractions of the oil. A dispersion D1 containing 55.5% by weight of polymer P1 is thus obtained. This dispersion contains less than 10% water. - Preparation of an injection fluid F1 of polymer P1
Un agent inverseur, alcool gras éthoxylé (Lutensol TO89®) est ajouté à hauteur de 10% en poids à la dispersion D1. Un fluide d’injection F1 contenant 50% en poids de polymère P1 est ainsi obtenu. An inverting agent, ethoxylated fatty alcohol (Lutensol TO89®) is added at 10% by weight to dispersion D1. An injection fluid F1 containing 50% by weight of polymer P1 is thus obtained.
4 Préparation d’un fluide d’injection F2 de polymère P1 4 Preparation of an injection fluid F2 of polymer P1
La dispersion D1 obtenue dans l’exemple 2 est diluée en ajoutant 18% d’une solution aqueuse saturée en chlorure de sodium et 10% d’agent inverseur (Lutensol TO89®). Un fluide d’injection F2 contenant 40% en poids de polymère P1 est ainsi obtenu. Préparation d’un fluide d’injection F3 de polymère P1 Dispersion D1 obtained in Example 2 is diluted by adding 18% of a saturated aqueous solution of sodium chloride and 10% of inverting agent (Lutensol TO89®). An injection fluid F2 containing 40% by weight of polymer P1 is thus obtained. Preparation of an F3 injection fluid of polymer P1
La dispersion D1 obtenue dans l’exemple 2 est diluée en ajoutant 18% en poids d’une solution aqueuse saturée en chlorure d’ammonium et 10% d’agent inverseur (Lutensol TO89®). Un fluide d’injection F3 contenant 40% en poids de polymère P1 est ainsi obtenu. Dispersion D1 obtained in example 2 is diluted by adding 18% by weight of a saturated aqueous solution of ammonium chloride and 10% of inverting agent (Lutensol TO89®). An injection fluid F3 containing 40% by weight of polymer P1 is thus obtained.
6 Préparation d’un fluide d’injection F4 de polymère P1 6 Preparation of an F4 injection fluid of polymer P1
La dispersion D1 obtenue dans l’exemple 2 est diluée en ajoutant 18% en poids d’une solution aqueuse saturée en thiocyanate d’ammonium et 10% d’agent inverseur (LutensolDispersion D1 obtained in example 2 is diluted by adding 18% by weight of a saturated aqueous solution of ammonium thiocyanate and 10% of inverting agent (Lutensol
TO89®). Un fluide d’injection F4 contenant 40% en poids de polymère P1 est ainsi obtenu. TO89®). An injection fluid F4 containing 40% by weight of polymer P1 is thus obtained.
7 Préparation d’un fluide d’injection F5 de polymère P1 7 Preparation of an F5 injection fluid of polymer P1
La dispersion D1 obtenue dans l’exemple 2 est diluée en ajoutant 18% en poids d’une solution aqueuse saturée en sulfate d’ammonium et 10% d’agent inverseur (Lutensol TO89®). Un fluide d’injection F5 contenant 40% en poids de polymère P1 est ainsi obtenu. Dispersion D1 obtained in Example 2 is diluted by adding 18% by weight of a saturated aqueous solution of ammonium sulphate and 10% of inverting agent (Lutensol TO89®). An injection fluid F5 containing 40% by weight of polymer P1 is thus obtained.
8 Préparation d’un fluide d’injection F6 de polymère P1 8 Preparation of an F6 injection fluid of polymer P1
La dispersion D1 obtenue dans l’exemple 2 est diluée en ajoutant 18% en poids d’une solution aqueuse saturée en thiosulfate d’ammonium et 10% d’agent inverseur (Lutensol TO89 ®). Un fluide d’injection F6 contenant 40% en poids de polymère P1 est ainsi obtenu. Tests d’inversion Dispersion D1 obtained in example 2 is diluted by adding 18% by weight of a saturated aqueous solution of ammonium thiosulfate and 10% of inverting agent (Lutensol TO89®). An injection fluid F6 containing 40% by weight of polymer P1 is thus obtained. Reversal tests
Les fluides d’injection F1 (comparatif) et F2 à F6 (selon l’invention) sont mis en solution en suivant deux protocoles différents. The injection fluids F1 (comparative) and F2 to F6 (according to the invention) are dissolved by following two different protocols.
Protocole 1 (ajout direct des fluides d’injection dans une saumure) Protocol 1 (direct addition of injection fluids in brine)
Préparer une eau de mer synthétique en dissolvant 30 g de NaCI et 3 g CaCIs dans 1000 mL d’eau. Prepare a synthetic seawater by dissolving 30 g of NaCl and 3 g CaCls in 1000 mL of water.
Sous agitation (à l’aide de tripales) - 500 t/min - injecter X g de dispersion dans Y mL de l’eau de mer synthétique à 20°C. With stirring (using three blades) - 500 rpm - inject X g of dispersion into Y mL of synthetic seawater at 20°C.
Où X vaut 5 et Y vaut 495 pour la dispersion F1. Where X is 5 and Y is 495 for dispersion F1.
Où X vaut 6,25 et Y vaut 493,75 pour les dispersions F2 à F6. Where X is 6.25 and Y is 493.75 for dispersions F2 to F6.
Laisser agiter pendant 20 minutes, on obtient alors une solution à 5 g/L en polymère P1. Leave to stir for 20 minutes, a 5 g/L solution of polymer P1 is then obtained.
On mesure alors la viscosité de cette solution à l’aide d’un viscosimètre Brookfield à 25°C avec un module de type LVT à 30 t/min. The viscosity of this solution is then measured using a Brookfield viscometer at 25° C. with an LVT type module at 30 rpm.
Protocole 2 (ajout des fluides d’injection dans de l’eau puis ajout de sels) Protocol 2 (addition of injection fluids in water then addition of salts)
Sous agitation - 500 t/min - injecter X g de dispersion dans Y mL d’eau déionisée à 20°C.With stirring - 500 rpm - inject X g of dispersion into Y mL of deionized water at 20°C.
Où X vaut 5 et Y vaut 478,5 pour la dispersion F1. Where X is 5 and Y is 478.5 for dispersion F1.
Où X vaut 6,25 et Y vaut 477,25 pour les dispersions F2 à F6. Where X is 6.25 and Y is 477.25 for dispersions F2 to F6.
Laisser agiter pendant 20 minutes, puis ajouter 15 g de NaCI et 1 ,5 g de CaCIs dans la solution. Leave to stir for 20 minutes, then add 15 g of NaCl and 1.5 g of CaCls to the solution.
Laisser agiter pendant 10 minutes, on obtient alors une solution à 5 g/L en polymère P1. Leave to stir for 10 minutes, a 5 g/L solution of polymer P1 is then obtained.
On mesure alors la viscosité de cette solution à l’aide d’un viscosimètre Brookfield à 25°C avec un module de type LVT à 30 t/min. The viscosity of this solution is then measured using a Brookfield viscometer at 25° C. with an LVT type module at 30 rpm.
Résultats expérimentaux Table 1 : Viscosité de solutions à 5 g/L de polymère P1 dans l’eau de mer synthétique Experimental results Table 1: Viscosity of solutions at 5 g/L of polymer P1 in synthetic seawater
En suivant le protocole 2, quel que soit le fluide d’injection, la viscosité obtenue est de 240 centipoises +/-5. Le polymère P1 se libère rapidement dans de l’eau désionisée. L’ajout ultérieure de sels n’induit plus de différences entre les différentes viscosités. Cependant ce protocole 2 ne s’applique pas sur champs car la mise en solution de polymère se fait directement dans des saumures. By following protocol 2, whatever the injection fluid, the viscosity obtained is 240 centipoise +/-5. Polymer P1 releases rapidly in deionized water. The subsequent addition of salts no longer induces differences between the different viscosities. However, this protocol 2 does not apply to fields because the polymer solution is done directly in brines.
En suivant le protocole 1, on observe que le fluide d’injection F1 (contre-exemple) génère très peu de viscosité (89 cP). By following protocol 1, we observe that the injection fluid F1 (counterexample) generates very little viscosity (89 cP).
En utilisant les fluides d’injection F2 à F6, la viscosité des solutions de polymère P1 dans l’eau de mer est plus élevée. Le polymère P1 dans ces fluides d’injection se libère plus facilement dans l’eau de mer. Le procédé de préparation des fluides d’injection selon l’invention permet donc d’améliorer la libération du polymère dans la saumure. By using injection fluids F2 to F6, the viscosity of polymer solutions P1 in seawater is higher. The polymer P1 in these injection fluids is released more easily into the seawater. The process for preparing the injection fluids according to the invention therefore makes it possible to improve the release of the polymer into the brine.

Claims

22 REVENDICATIONS 22 CLAIMS
1 . Fluide d’injection F pour la fracturation hydraulique comprenant au moins un polymère hydrosoluble synthétique P de poids moléculaire moyen en poids supérieur ou égal à 1 million de daltons, préparé selon un procédé comprenant les étapes successives suivantes : a) On prépare par polymérisation radicalaire une émulsion inverse E comprenant entre 15% et 40 % en poids de polymère P, entre 20 et 60% en poids d’eau et au moins un solvant hydrocarboné, les pourcentages étant exprimés en poids par rapport au poids de l’émulsion E, b) On distille l’émulsion inverse E pour obtenir une dispersion D comprenant entre 40 et 60% en poids de particules de polymère P, moins de 10% en poids d’eau et au moins un solvant hydrocarboné, les pourcentages étant exprimés en poids par rapport au poids de la dispersion D, c) On dilue la dispersion D avec 1% à 15% en poids d’une solution aqueuse S comprenant entre 20 et 60 % de sels, les pourcentages étant exprimés en poids par rapport au poids de la dispersion D. 1 . Injection fluid F for hydraulic fracturing comprising at least one synthetic water-soluble polymer P with a weight-average molecular weight greater than or equal to 1 million daltons, prepared according to a process comprising the following successive steps: a) A inverse emulsion E comprising between 15% and 40% by weight of polymer P, between 20 and 60% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the emulsion E, b ) The inverse emulsion E is distilled to obtain a dispersion D comprising between 40 and 60% by weight of polymer particles P, less than 10% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight per relative to the weight of the dispersion D, c) the dispersion D is diluted with 1% to 15% by weight of an aqueous solution S comprising between 20 and 60% of salts, the percentages being expressed by weight relative to the weight of the dispersion D.
2. Fluide d’injection F selon la revendication 1 , caractérisé en ce que le polymère hydrosoluble synthétique P est obtenu à partir de monomères monoéthyléniquement insaturés hydrosolubles non ioniques et/ou anioniques et/ou cationiques et/ou zwiterrioniques suivants : 2. Injection fluid F according to claim 1, characterized in that the synthetic water-soluble polymer P is obtained from the following nonionic and/or anionic and/or cationic and/or zwiterrionic water-soluble monoethylenically unsaturated monomers:
- les monomères non ioniques étant choisis dans le groupe comprenant l’acrylamide, le méthacrylamide, les N-alkylacrylamides, les N- alkylméthacrylamides, les N,N-dialkyl acrylamides, les N,N-dialkylméthacrylamides, les esters alkoxylés de l’acide acrylique, les esters alkoxylés de l’acide méthacrylique, la N-vinylpyridine, la N-vinylpyrrolidone, les hydroxyalkylacrylates, les hydroxyalkyl méthacrylates, - the nonionic monomers being chosen from the group comprising acrylamide, methacrylamide, N-alkylacrylamides, N-alkylmethacrylamides, N,N-dialkylacrylamides, N,N-dialkylmethacrylamides, alkoxylated esters of acid acrylic, alkoxylated esters of methacrylic acid, N-vinylpyridine, N-vinylpyrrolidone, hydroxyalkylacrylates, hydroxyalkyl methacrylates,
- les monomères anioniques étant choisis dans le groupe comprenant les monomères possédant une fonction carboxylique et leurs sels dont l’acide acrylique, l’acide méthacrylique, l’acide itaconique, l’acide maléique ; les monomères possédant une fonction acide sulfonique et leurs sels, dont l’acide acrylamido tertio butyl sulfonique (ATBS), l’acide allyl sulfonique et l’acide methallyl sulfonique et leurs sels ; les monomères ayant une fonction acide phosphonique et leurs sels,- the anionic monomers being chosen from the group comprising monomers having a carboxylic function and their salts including acrylic acid, methacrylic acid, itaconic acid, maleic acid; monomers having a sulphonic acid function and their salts, including acrylamido tert-butyl sulphonic acid (ATBS), allyl sulphonic acid and methallyl sulphonic acid and their salts; monomers having a phosphonic acid function and their salts,
- les monomères cationiques étant choisis dans le groupe comprenant l’acrylate de diméthylaminoéthyle (ADAME) quaternisé ou salifié ; le méthacrylate de diméthylaminoéthyle (MADAME) quaternisé ou salifié ; le chlorure de diallyldiméthylammonium (DADMAC) ; le chlorure d’acrylamidopropyltriméthylammonium (APTAC) ; le chlorure de méthacrylamidopropyltriméthylammonium (MAPTAC), - the cationic monomers being chosen from the group comprising quaternized or salified dimethylaminoethyl acrylate (ADAME); the methacrylate of dimethylaminoethyl (MADAME) quaternized or salified; diallyldimethylammonium chloride (DADMAC); acrylamidopropyltrimethylammonium chloride (APTAC); methacrylamidopropyltrimethylammonium chloride (MAPTAC),
- les monomères zwitterioniques étant choisis dans le groupe comprenant les monomères sulfobétaïnes comme le sulfopropyl diméthylammonium éthyl méthacrylate, le sulfopropyl diméthylammonium propylméthacrylamide, le sulfopropyl 2-vinylpyridinium ; les monomères phosphobétaïnes, comme le phosphato éthyl triméthylammonium éthyl méthacrylate ; les monomères carboxybétaïnes. - the zwitterionic monomers being chosen from the group comprising sulfobetaine monomers such as sulfopropyl dimethylammonium ethyl methacrylate, sulfopropyl dimethylammonium propylmethacrylamide, sulfopropyl 2-vinylpyridinium; phosphobetaine monomers, such as phosphato ethyl trimethylammonium ethyl methacrylate; carboxybetaine monomers.
3. Fluide d’injection F selon la revendication 1 , caractérisé en ce que l’émulsion inverse E comprend de 0,5 % à 5,0 % en poids, les pourcentages étant exprimés en poids par rapport au poids de l’émulsion E, d’au moins un agent émulsifiant choisi parmi les esters de sorbitan, les esters de sorbitan polyéthoxylés, les acides gras polyéthoxylés, les alcools gras polyéthoxylés, les polyesters ayant un poids moléculaire moyen compris entre 1000 et 3000 daltons résultant de la condensation entre un acide poly(isobutényl) succinique ou son anhydride et un polyéthylène glycol, les copolymères blocs de poids moléculaire moyen compris entre 2500 et 3500 daltons résultant de la condensation entre l’acide hydroxystéarique et un polyéthylène glycol, les amines grasses éthoxylées, les dérivés des di-alcanol amides, les copolymères du méthacrylate de stéaryle, et les mélanges de ces agents émulsifiants. 3. Injection fluid F according to claim 1, characterized in that the inverse emulsion E comprises from 0.5% to 5.0% by weight, the percentages being expressed by weight relative to the weight of the emulsion E , at least one emulsifying agent chosen from sorbitan esters, polyethoxylated sorbitan esters, polyethoxylated fatty acids, polyethoxylated fatty alcohols, polyesters having an average molecular weight of between 1000 and 3000 daltons resulting from the condensation between a poly(isobutenyl) succinic acid or its anhydride and a polyethylene glycol, block copolymers with an average molecular weight of between 2500 and 3500 daltons resulting from the condensation between hydroxystearic acid and a polyethylene glycol, ethoxylated fatty amines, derivatives of di -alkanol amides, copolymers of stearyl methacrylate, and mixtures of these emulsifying agents.
4. Fluide d’injection F selon la revendication 1 , caractérisé en ce que les particules de polymère hydrosoluble synthétique P dans la dispersion D ont une taille moyenne comprise entre 0,01 pm et 100 pm. 4. Injection fluid F according to claim 1, characterized in that the particles of synthetic water-soluble polymer P in the dispersion D have an average size of between 0.01 μm and 100 μm.
5. Fluide d’injection selon la revendication 1 , caractérisé en ce qu’on ajoute à la dispersion D avant l’étape c) entre 0,2 et 10 % en poids, les pourcentages étant exprimés en poids par rapport au poids de la dispersion D, d’au moins un agent inverseur, choisi parmi les nonylphénol éthoxylés, ayant de préférence 4 à 10 éthoxylations ; les alcools éthoxylés / propoxylés ayant de préférence une éthoxylation / propoxylation comprenant entre 12 et 25 atomes de carbone ; les alcools tridécyliques éthoxylés ; les acides gras polyéthoxylés, les alcool gras poly (éthoxylés / propoxylés); les esters de sorbitan éthoxylés ; le laurate de sorbitan polyéthoxylé ; l’huile de castor polyéthoxylée; l’alcool laurique heptaoxyéthylé ; le monostéarate de sorbitan polyéthoxylé ; les alkyls phénol polyéthoxylés cétyl éther ; les polyoxyde d’éthylène alkyl aryl éther ; le N-cétyl-N- éthyl morpholinium éthosulfate ; le lauryl sulfate de sodium ; les produits de condensation d’alcools gras avec l’oxyde d’éthylène ; les produits de condensation des alkylphenols et de l’oxyde d’éthylène ; les produits de condensation d’amines grasses avec 5 équivalents molaire ou plus d’oxyde d’éthylène ; les tristyryl phénol éthoxylés ; les condensais de l’oxyde d’éthylène avec les alcools polyhydriques partiellement estérifiés avec des chaines grasses ainsi que leur formes anhydres ; les oxydes d’amine ; les alkyl polyglucosides ; le glucamide ; les esters de phosphate ; les acides alkylbenzene sulfonique et leurs sels ; les polymères hydrosolubles surfactant ; et les mélanges de plusieurs de ces agents inverseurs. 5. Injection fluid according to claim 1, characterized in that there is added to the dispersion D before step c) between 0.2 and 10% by weight, the percentages being expressed by weight relative to the weight of the dispersion D, of at least one reversing agent, chosen from ethoxylated nonylphenols, preferably having 4 to 10 ethoxylations; ethoxylated/propoxylated alcohols preferably having an ethoxylation/propoxylation comprising between 12 and 25 carbon atoms; ethoxylated tridecyl alcohols; polyethoxylated fatty acids, poly(ethoxylated/propoxylated) fatty alcohols; ethoxylated sorbitan esters; polyethoxylated sorbitan laurate; polyethoxylated castor oil; heptaoxyethyl lauryl alcohol; polyethoxylated sorbitan monostearate; alkyls polyethoxylated phenol cetyl ether; polyethylene oxide alkyl aryl ether; N-cetyl-N-ethyl morpholinium ethosulfate; sodium lauryl sulphate; condensation products of fatty alcohols with ethylene oxide; condensation products of alkylphenols and ethylene oxide; condensation products of fatty amines with 5 or more molar equivalents of ethylene oxide; ethoxylated tristyryl phenols; condensates of ethylene oxide with partially esterified polyhydric alcohols with fatty chains as well as their anhydrous forms; amine oxides; alkyl polyglucosides; glucamide; phosphate esters; alkylbenzene sulfonic acids and their salts; surfactant water-soluble polymers; and mixtures of several of these reversing agents.
6. Fluide d’injection F selon la revendication 1 , caractérisé en ce qu’au moins une portion de l’eau de la solution S est extraite du distillât l’émulsion E. 6. Injection fluid F according to claim 1, characterized in that at least a portion of the water of the solution S is extracted from the distillate of the emulsion E.
7. Fluide d’injection F selon la revendication 1 , caractérisé en ce que les sels de la solution aqueuse S sont des sels alcalins ou alcalino-terreux ou d’ammonium ou organiques ou un mélange de ces sels. 7. Injection fluid F according to claim 1, characterized in that the salts of the aqueous solution S are alkaline or alkaline-earth or ammonium or organic salts or a mixture of these salts.
8. Fluide d’injection F selon la revendication 7, caractérisé en ce que les sels sont choisis parmi le chlorure de sodium, le sulfate d’ammonium, le thiosulfate d’ammonium, le chlorure d’ammonium, le chlorure de choline, les monosaccharides ou un mélange de ces sels. 8. Injection fluid F according to claim 7, characterized in that the salts are chosen from sodium chloride, ammonium sulphate, ammonium thiosulphate, ammonium chloride, choline chloride, monosaccharides or a mixture of these salts.
9. Fluide d’injection F selon la revendication 1 , caractérisé en ce qu’au moins un agent de soutènement est ajouté avant l’étape a), et/ou entre l’étape a) et l’étape b), et/ou entre l’étape b) et l’étape c), et/ou après l’étape c) de son procédé de préparation. 9. Injection fluid F according to claim 1, characterized in that at least one propping agent is added before step a), and/or between step a) and step b), and/ or between step b) and step c), and/or after step c) of its preparation process.
10. Procédé de préparation d’un fluide d’injection F comprenant les étapes suivantes : a) On prépare par polymérisation radicalaire une émulsion inverse E comprenant entre 15% et 40 % en poids d’un polymère hydrosoluble synthétique P de poids moléculaire moyen en poids supérieur ou égal à 1 million de daltons, entre 20 et 60% en poids d’eau et au moins un solvant hydrocarboné, les pourcentages étant exprimés en poids par rapport au poids de l’émulsion E, b) On distille l’émulsion inverse E pour obtenir une dispersion D comprenant entre 40 et 60% en poids de particules de polymère P, moins de 10% en poids d’eau et au moins un 25 solvant hydrocarboné, les pourcentages étant exprimés en poids par rapport au poids de la dispersion D, c) On dilue la dispersion D avec 1% à 15% en poids d’une solution aqueuse S comprenant entre 20 et 60% en poids de sels, les pourcentages étant exprimés en poids par rapport au poids de la dispersion D. 10. Process for the preparation of an injection fluid F comprising the following steps: a) An inverse emulsion E comprising between 15% and 40% by weight of a synthetic water-soluble polymer P of average molecular weight in weight greater than or equal to 1 million daltons, between 20 and 60% by weight of water and at least one hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the emulsion E, b) The emulsion is distilled inverse E to obtain a dispersion D comprising between 40 and 60% by weight of polymer particles P, less than 10% by weight of water and at least one 25 hydrocarbon solvent, the percentages being expressed by weight relative to the weight of the dispersion D, c) the dispersion D is diluted with 1% to 15% by weight of an aqueous solution S comprising between 20 and 60% by weight of salts , the percentages being expressed by weight relative to the weight of dispersion D.
11. Procédé de fracturation hydraulique d’un réservoir souterrain d’huile ou de gaz non conventionnel, comprenant la préparation d’un fluide d’injection F selon l’une des revendications 1 à 6, la mise en solution dans une eau salée et l’injection dudit fluide de fracturation dans une formation souterraine. 11. Process for the hydraulic fracturing of an underground oil or unconventional gas reservoir, comprising the preparation of an injection fluid F according to one of claims 1 to 6, the dissolving in salt water and injecting said fracturing fluid into a subterranean formation.
12. Procédé de réduction de friction dans une opération de fracturation hydraulique d’un réservoir souterrain d’huile ou de gaz non conventionnel, comprenant la préparation d’un fluide F selon l’une des revendications 1 à 6, la mise en solution dans une eau salée et l’injection dudit fluide de fracturation dans une formation souterraine. 12. Method for reducing friction in a hydraulic fracturing operation of an underground reservoir of unconventional oil or gas, comprising the preparation of a fluid F according to one of claims 1 to 6, the dissolution in salt water and injecting said fracturing fluid into a subterranean formation.
EP22789177.7A 2021-09-15 2022-09-13 Dispersion of water-soluble polymer for hydraulic fracturing Pending EP4402220A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2109669A FR3126988A1 (en) 2021-09-15 2021-09-15 WATER SOLUBLE POLYMER DISPERSION FOR HYDRAULIC FRACTURING
PCT/EP2022/075444 WO2023041539A1 (en) 2021-09-15 2022-09-13 Dispersion of water-soluble polymer for hydraulic fracturing

Publications (1)

Publication Number Publication Date
EP4402220A1 true EP4402220A1 (en) 2024-07-24

Family

ID=78827671

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22789177.7A Pending EP4402220A1 (en) 2021-09-15 2022-09-13 Dispersion of water-soluble polymer for hydraulic fracturing

Country Status (6)

Country Link
EP (1) EP4402220A1 (en)
CN (1) CN118043430A (en)
AR (1) AR127048A1 (en)
CA (1) CA3230987A1 (en)
FR (1) FR3126988A1 (en)
WO (1) WO2023041539A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB951147A (en) 1960-10-26 1964-03-04 Dow Chemical Co Well fracturing
US3727689A (en) 1972-02-09 1973-04-17 Phillips Petroleum Co Hydraulic fracturing
US3841402A (en) 1972-11-06 1974-10-15 Ici America Inc Fracturing with radiation-induced polymers
US4033415A (en) 1973-03-30 1977-07-05 Halliburton Company Methods for fracturing well formations
US3938594A (en) 1974-04-08 1976-02-17 Marathon Oil Company Fracturing fluid
US3888312A (en) 1974-04-29 1975-06-10 Halliburton Co Method and compositions for fracturing well formations
US4801389A (en) 1987-08-03 1989-01-31 Dowell Schlumberger Incorporated High temperature guar-based fracturing fluid
CN109072063A (en) * 2016-04-26 2018-12-21 独立油田化学制品有限责任公司 preparation and method
FR3064004B1 (en) * 2017-03-20 2019-03-29 S.P.C.M. Sa HYDRATED CRYSTALLINE FORM OF 2-ACRYLAMIDO-2-METHYLPROPANE SULFONIC ACID
FR3094373B1 (en) * 2019-03-29 2022-01-07 S N F Sa Inverse emulsion for hydraulic fracturing
US10647908B2 (en) 2019-07-26 2020-05-12 S.P.C.M. Sa Composition for oil and gas recovery
WO2021094174A1 (en) * 2019-11-13 2021-05-20 S.P.C.M. Sa Composition for oil and gas recovery

Also Published As

Publication number Publication date
CN118043430A (en) 2024-05-14
FR3126988A1 (en) 2023-03-17
WO2023041539A1 (en) 2023-03-23
AR127048A1 (en) 2023-12-13
CA3230987A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
EP3601222B1 (en) Fracturing fluid comprising a (co)polymer of a hydrated crystalline form of 2-acrylamido-2-methylpropane sulphonic acid and hydraulic fracturing method
EP2834320B1 (en) New aqueous fracturing fluid composition and fracturing method implementing the fluid
EP3947558A1 (en) Reverse emulsion for hydraulic fracturing
CA2907962A1 (en) Fracturing fluids based on associative polymers and on labile surfactants
CA2927071C (en) Fluid composition for stimulation in the field of oil or gas production
EP3816228B1 (en) Reverse emulsion for hydraulic fracturing
USRE32114E (en) Oil recovery process
EP3724295B1 (en) Method for preparing a composition comprising a hydrosoluble (co)polymer encapsulated in a shell and use of this composition in assisted oil and gas recovery
FR3059039A1 (en) NANOEMULSIONS FOR USE IN SUBTERRANEAN FRACTURING TREATMENTS
FR3088068A1 (en) AUTO INVERSIBLE POLYMERIC REVERSE EMULSION
FR3088071A1 (en) ASSISTED OIL RECOVERY PROCESS BY INJECTION OF AN AQUEOUS POLYMERIC COMPOSITION
EP4402220A1 (en) Dispersion of water-soluble polymer for hydraulic fracturing
WO2023281233A1 (en) Polymer of 2-acrylamido-2-methylpropane sulphonic acid and use thereof
FR2595752A1 (en) PROCESS FOR IMPROVING VISCOUS RAW PETROLEUM PRODUCTION
FR3122656A1 (en) WATER-SOLUBLE ASSOCIATIVE AMPHOTERIC POLYMER AS A RHEOLOGY MODIFIER FOR UNDERGROUND TREATMENT
WO2021248305A1 (en) Inverting surfactants for inverse emulsions
FR3146690A1 (en) Fracturing fluid comprising a polymer of a crystalline form of the sodium salt of 2-acrylamido-2-methylpropanesulfonic acid and method of hydraulic fracturing
WO2020157430A1 (en) Method for modifying the water permeability of a subterranean formation
CN113583653A (en) Novel aqueous fracturing fluid composition and fracturing method using the same
EA043668B1 (en) METHOD FOR OBTAINING A COMPOSITION CONTAINING A WATER-SOLUBLE (CO)POLYMER ENCAPSULATED IN A SHELL AND APPLICATION OF SUCH COMPOSITION IN OIL AND GAS PRODUCTION WITH AUXILIARY MEANS

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR