EP4399815A1 - Capacité de liaison de connexion augmentée pour des communications par satellite géosynchrone - Google Patents
Capacité de liaison de connexion augmentée pour des communications par satellite géosynchroneInfo
- Publication number
- EP4399815A1 EP4399815A1 EP22783655.8A EP22783655A EP4399815A1 EP 4399815 A1 EP4399815 A1 EP 4399815A1 EP 22783655 A EP22783655 A EP 22783655A EP 4399815 A1 EP4399815 A1 EP 4399815A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ghz
- satellite
- feeder link
- link capacity
- gateway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001228 spectrum Methods 0.000 claims abstract description 35
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18517—Transmission equipment in earth stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/19—Earth-synchronous stations
Definitions
- a feeder link capacity of a High Throughput Satellite cannot be exhausted with a conventional number of gateways.
- a single satellite may be used to minimally increase a cost of the satellite system by the use of higher frequency feeder link spectrum to communicate with the satellite.
- a decreased number of gateways with acceptable interference levels among them can be used to exhaust the feeder link capacity of a HTS.
- Each generation of Geosynchronous High Thruput Satellites has realized a significant increase in capacity /beam count. Satellite feeder link capacity has more than tripled between generations. Using Ka-band alone to exhaust the satellite capacity would require more than 60 gateway sites. Such a large number of gateways for a satellite is expensive in time, labor and management. Higher frequency feeder link spectrum has not been used to communicate with the Geosynchronous satellite. The V/Q-band spectrum has not been used for communications between a Geosynchronous satellite and a satellite gateway.
- the present teachings disclose using the V/Q band (50/40 GHz), singly or in combination, with the Ka-band to keep a gateway count for HTS to be less than 20, for example, 18.
- the multibeam satellite system communicates with multiple gateways in the same time-frequency to provide spatially multiplexed signals for uplink and downlink channels on a feeder link side.
- a system to reduce a count of satellite gateways includes: a feeder link capacity of a satellite; a spectrum ranging from 26.5 GHz to 75 GHz; a gateway feeder link capacity that is an aggregate of capacities of channels defined in the spectrum; and RF gateways communicating with the satellite via the channels, wherein the count of the satellite gateways is less than or equal to a rounded-up integer of the feeder link capacity divided by the gateway feeder link capacity, and the satellite is a geosynchronous orbit satellite.
- the system where some of the capacities of the channels are different than capacities of other channels. [0015] The system including a forward error encoder to encode a respective data stream assigned to one of the channels.
- the system including a pre-transmission interference processor of a Tx signal on one of the channels, wherein the spectrum is divided into portions and a compensation by the pre-transmission interference processor is based on portions of the spectrum being transmitted by the Tx signal.
- the system including a post-transmission interference processor to recover an Rx signal on one of the channels.
- FIG. 1 illustrates a satellite feeder link system in one embodiment.
- FIG. 2 lists an exemplary spectrum used by an RF gateway of according to various embodiments.
- the present teachings disclose a multibeam satellite system that can achieve orthogonality between spatially multiplexed signals when operating in line-of-sight (LOS) channels, using satellite links utilizing a large frequency spectrum.
- LOS line-of-sight
- a capacity /bandwidth of satellite links from a gateway to a satellite and satellite to the gateway can be increased.
- the satellite link may operate in a Ka band, Q band, or V band.
- the V and Ka bands may be used on the gateway to satellite feeder link and the Q-band may be used on the satellite to gateway feeder link.
- the Ka band may be used for feeder links in either direction.
- the Ka band is a portion of the electromagnetic spectrum defined as frequencies in the range of 26.5-40 gigahertz (GHz).
- the Q band is a range of frequencies included in the microwave region of the electromagnetic spectrum in a range of 33 to 50 GHz.
- the V band is a band of frequencies in the microwave portion of the electromagnetic spectrum ranging from 40 to 75 GHz.
- the frequency spectrum used for the satellite links may be non-contiguous.
- a downlink frequency spectrum (satellite to gateway) may be disposed between portions of an uplink frequency spectrum (gateway to satellite).
- the present teachings are applicable to a Geosynchronous Earth Orbit (GEO) satellite system, as long as LOS channels, in particular, dominant LOS channels are used.
- GEO Geosynchronous Earth Orbit
- a dominant LOS channel a free space signal from the transmitter to the receiver is stronger than a scattered space signal from the transmitter to the receiver.
- linear pre-processing at the gateways mitigates interference and spatially separates the multiplexed signals without requiring matrix processing onboard the satellite for an uplink (gateway to satellite).
- linear post-processing at the gateways may mitigate interference and spatially separate the multiplexed signals without requiring matrix processing onboard the satellite.
- the gateway -based linear pre and post processing of a signal in LOS may be used with satellite bent-pipe architectures.
- FIG. 1 illustrates a satellite feeder link system in one embodiment.
- FIG. 1 illustrates a system 100 (or satellite feeder link system 100) including a satellite link 102 (wireless), an RFT 104 (Radio Frequency Terminal), an RF gateway 106, an
- Interfacility Link (IFL 110), a fiber link 112 and a data center 108.
- the data center may be connected to the Internet 114.
- the RFT 104 may communicate with a satellite 116 via the satellite link 102.
- the satellite link 102 communicates from the RFT 104 to the satellite 116, it is referred to as an uplink.
- the satellite link 102 communicates from the satellite 116 to the RFT 104, it is referred to as a downlink.
- the RFT 104 includes an antenna system and associated RF electronics (typically housed in a hub located near a reflector). This includes electronics to provide a Tx path (frequency conversion from an Intermediate Frequency (IF) to RF and amplification) and Rx path (Low noise RF amplification followed by frequency conversion from RF to IF) as well as other electronics.
- the RFT 104 includes a reflector, which may collect radio waves from the satellite and convert the collected radio waves to a signal for the Rx path sent through the IFL 110 to the RF gateway 106. This conversion of RF to a lower block of IF-, allows the signal to be carried, e.g., via a wired connection such as the IFL 110, to the RF gateway 106.
- the RF gateway includes baseband modems, data processing, and a networking interface to data center 108 via the fiber link 112.
- the RFT 104 and the RF gateway 106 may be collocated (for example, within an antenna structure), while the data center 108 may be remote, for example, 10, 20, 100 or the like kilometers away.
- the RFT 104 typically includes a sender antenna configured to send radio frequency waves to a satellite.
- the RFT 104 is electrically wired to the RF gateway 106 to receive an outgoing RF signal via the IFL 110 and to send the RF signal via the satellite link 102 to the satellite 116.
- a satellite link is a wireless communication between the RF gateway 106, the RFT 104 and satellite 116.
- Satellite link 102 is typically established upon configuring a modem modulator, demodulator, encoder, and/or decoder.
- the RF gateway 106 may provide pre-interference interference processing for a Tx signal prior to transmitting.
- the RF gateway 106 may provide post-interference interference processing for a Rx signal upon receipt.
- the pre and post interference processing may be
- the data center 108 may be connected to the RF gateway 106 via a fiber link.
- the data center 108 may provide access to the Internet, bandwidth allocation, network address translation, system management, diversity management and the like for terminals (not shown) connected via a wireless link (not shown) from the satellite to the terminals, and the Internet 114.
- the data center 108 may be connected to multiple Points of Presence (POPs) to access the Internet 114.
- POPs Points of Presence
- the data center 108 may service multiple RF gateways.
- the data center 108 may serve all or some of the RF gateways of a system 100.
- the RFGW 106 typically resides in a collocated data center 108. As such, the fiber link 112 would be a cross-connect or short run connection within the data center 108. In some embodiments, the RF gateway 106 may not be collocated with the RF gateway 106 and the fiber link 112 can be significant distance.
- FIG. 2 lists an exemplary spectrum used by an RF gateway of according to various embodiments.
- the spectrum uses portions of the Ka, Q and V bands.
- the spectrum is non-contiguous. Capacity provided by the RF gateway is doubled by using right-hand and left-hand polarizations concurrently.
- the Rx channels are disposed between the Tx channels.
- RF gateway’s Tx feeder link capacity is about 12 GHz
- the RF gateway’s Rx feeder link capacity is about 4 GHz.
- the gateway feeder link capacity is sum of the two, namely, 16 GHz.
- At least the RF gateway’s Tx feeder link capacity is about 3 times greater than typical RF gateway installations. As such, the number of RF gateways needed to exhaust a feeder link capacity of a satellite is reduced by at least a factor of three (3).
- 1 GHz of the RF gateway’s Tx feeder link capacity may be used for system signaling.
- the RF gateway’s Tx feeder link capacity is about 11 GHz, and the gateway feeder capacity is about 15 GHz.
- the gateway feeder link capacity may be greater than or equal to 8 GHz, 10 GHz, 12 GHz, 15 GHz, 25 GHz or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Relay Systems (AREA)
Abstract
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163242450P | 2021-09-09 | 2021-09-09 | |
US17/562,559 US11764863B2 (en) | 2021-09-09 | 2021-12-27 | Increased feeder link capacity for geosynchronous satellite communications |
PCT/US2022/076001 WO2023039385A1 (fr) | 2021-09-09 | 2022-09-07 | Capacité de liaison de connexion augmentée pour des communications par satellite géosynchrone |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4399815A1 true EP4399815A1 (fr) | 2024-07-17 |
Family
ID=83558300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22783655.8A Pending EP4399815A1 (fr) | 2021-09-09 | 2022-09-07 | Capacité de liaison de connexion augmentée pour des communications par satellite géosynchrone |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4399815A1 (fr) |
CA (1) | CA3229797A1 (fr) |
WO (1) | WO2023039385A1 (fr) |
-
2022
- 2022-09-07 WO PCT/US2022/076001 patent/WO2023039385A1/fr active Application Filing
- 2022-09-07 EP EP22783655.8A patent/EP4399815A1/fr active Pending
- 2022-09-07 CA CA3229797A patent/CA3229797A1/fr active Pending
Also Published As
Publication number | Publication date |
---|---|
CA3229797A1 (fr) | 2023-03-16 |
WO2023039385A1 (fr) | 2023-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107251452B (zh) | 从陆地节点和空间节点接收数据的空间网络节点 | |
US5581268A (en) | Method and apparatus for increasing antenna efficiency for hand-held mobile satellite communications terminal | |
JPH09121184A (ja) | 静止通信衛星を経て無線信号を伝送するシステム | |
US10382121B2 (en) | High capacity satellite communications system | |
US6657978B1 (en) | Optimized integrated high capacity digital satellite trunking network | |
JP2001156698A (ja) | 処理通信衛星用ダウンリンク送信および受信技術 | |
CN103563170A (zh) | 用于天线辐射交叉极化抑制的方法和装置 | |
WO2009075463A1 (fr) | Procédé de transmission de signal dans un système de communication par satellite avec composant terrestre | |
US10707954B2 (en) | Dual-band communication satellite system and method | |
US20190020405A1 (en) | System and method for optimizing transmit power management in satellite communications | |
US11764863B2 (en) | Increased feeder link capacity for geosynchronous satellite communications | |
EP4399815A1 (fr) | Capacité de liaison de connexion augmentée pour des communications par satellite géosynchrone | |
CN108282165B (zh) | 一种无线通信系统架构 | |
US8571499B1 (en) | Wireless terrestrial communications systems using a line-of-sight frequency for inbound data and a non-line-of-sight frequency for outbound data | |
US11689281B2 (en) | Cellular enabled IP radio satellite terminal | |
Stallo et al. | Link performance analysis of multi-user detection techniques for W-band multi-beam satellites | |
US9735858B2 (en) | Method for establishing radiofrequency links in a telecommunication network with an optimised ground gateway network | |
Wang et al. | WGS air-interface for AISR missions | |
US11621771B1 (en) | Satellite payload with full downlink spectrum usage | |
Zhang et al. | A satellite communication system transmission scheme based on probabilistic shaping | |
Grafer et al. | Wideband distributed RF photonic frequency converters for satellite communications applications | |
Tani | A Broadband Satellite Communication Technology for a Safe and Secure Society | |
Gao et al. | Distributed ground-based beamforming | |
Kumar et al. | Evaluation of the possibility of increasing the downlink EIRP density limits in the Ku band | |
Ramırez et al. | On the Performance of Advanced Reflectarray Configurations for Multibeam Satellite Communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240409 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Free format text: CASE NUMBER: APP_44178/2024 Effective date: 20240730 |