EP4399748A1 - Flexible photovoltaic module - Google Patents

Flexible photovoltaic module

Info

Publication number
EP4399748A1
EP4399748A1 EP22769733.1A EP22769733A EP4399748A1 EP 4399748 A1 EP4399748 A1 EP 4399748A1 EP 22769733 A EP22769733 A EP 22769733A EP 4399748 A1 EP4399748 A1 EP 4399748A1
Authority
EP
European Patent Office
Prior art keywords
module
photovoltaic
equal
slot
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22769733.1A
Other languages
German (de)
French (fr)
Inventor
Bertrand Chambion
Benjamin Commault
Hervé Robin
Julien GAUME
Stéphane GUILLEREZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP4399748A1 publication Critical patent/EP4399748A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells

Definitions

  • the present invention relates to a photo voltaic module, its method of manufacture and its method of use.
  • Photovoltaic modules are usually made flat and remain flat during use. In the case of integration of a photovoltaic module on a curved surface, the photovoltaic module is usually manufactured directly according to the desired curvature. Some modules are flexible in one direction.
  • Patent applications US2010229937 and US20190312164 describe photovoltaic modules comprising a plurality of adjacent photovoltaic structures encapsulated in a transparent substrate between an upper layer and a lower protective layer.
  • Patent application KR 10-2020-0067110 discloses a photovoltaic panel made from flexible materials, the photovoltaic panel itself being flexible and able to be integrated into a module.
  • Patent application KR 10-1775977 describes a photovoltaic module comprising photovoltaic cells encapsulated in a flexible material and covered on either side with flexible films.
  • Patent application CN106299002 relates to a photovoltaic module comprising a plurality of cells interconnected by flexible electrical conduction strips and encapsulated in a flexible material so as to adapt to the curvature of the upper surface of aircraft wings. and the deformations of the latter in flight.
  • Patent applications KR10-2016-0050659 and US20160126380 describe a photovoltaic module having a plurality of chains of juxtaposed cells, the chains being formed by superimposing cells on a flexible support having electrical lines connecting the cells to each other and to the outside. The different chains are electrically connected to each other on the outside.
  • the flexibility is provided by the use of flexible material encapsulating the cells, which makes it possible to have flexibility of the modules for small curvatures and mainly in a single direction.
  • Patent application DE 10356690 relates to a photovoltaic module comprising grooves between the photovoltaic structures forming zones of thickness which offers flexibility.
  • Patent application US4860509 describes a photovoltaic module between the photovoltaic structures of curved recesses to facilitate folding.
  • Such photovoltaic modules cannot be integrated on surfaces with large curvatures, in particular on certain automobile roofs or certain building roofs, in particular because of the thickness of the photovoltaic modules.
  • a photovoltaic module comprising a multilayer stack comprising at least: a transparent upper layer defining an upper surface of the module, a lower layer defining a lower surface of the module, at least two photovoltaic structures encapsulated in a transparent polymer encapsulation layer arranged between the lower and upper layers, the two photovoltaic structures being laterally spaced from each other, and at least one slot in the thickness of the photovoltaic module extending longitudinally at least partially between the two structures photovoltaic cells, the slot being closed at at least one of its longitudinal ends.
  • encapsulated it is understood that the two photovoltaic structures are arranged in the encapsulation layer so that the latter completely surrounds them.
  • Slot means an opening in the thickness of the narrow and elongated photovoltaic module along a longitudinal direction of extension. The presence of the slot in the module makes it possible to integrate, to apply the module to a support of great curvature by allowing the approximation of the photovoltaic structures to each other due to the curvature of the support.
  • the slot is closed at one of its ends means that it has a length less than the dimension of the module in the direction of extension of the slot. This makes it possible to retain a strip of material from the module at the end of the slot, in particular for the passage of the electrical connections between the adjacent photovoltaic structures. This also makes it possible to have a one-piece module, which facilitates handling and integration on a curved surface.
  • the photovoltaic module is configured to have a maximum radius of curvature in at least one direction, better still in two orthogonal directions, less than or equal to 10 m, better still less than or equal to 3 m.
  • the photovoltaic module is configured to have a minimum radius of curvature along at least one direction, better still along two orthogonal directions, greater than or equal to 500 mm, better still greater than or equal to 1 m.
  • the module may comprise several slots in the thickness of the photovoltaic module each extending longitudinally between two adjacent photovoltaic structures, the slots each being closed at at least one of their longitudinal ends.
  • each photovoltaic structure comprises at least one photovoltaic cell, for example based on silicon, better still a plurality of photovoltaic cells electrically connected to each other by flexible conductive elements, in particular wires, conductive strips or in direct connection, and arranged according to at least one row.
  • the photovoltaic cells of each photovoltaic structure can be arranged in at least two rows, in particular parallel to each other, the rows being electrically connected to each other, preferably by flexible conductive elements, in particular wires, conductive strips or in direct connection.
  • the photovoltaic cells of the rows are electrically connected together in series.
  • the rows of the same photovoltaic structure can be electrically connected together in parallel, or preferably in series.
  • the photovoltaic structures are each elongated along a longitudinal axis.
  • the longitudinal axes of the photovoltaic structures are parallel to the direction of extension of the adjacent slot or slots or form an angle less than or equal to 45°, better still less than or equal to 20°, even better less than or equal to 10 to the direction of extension of the slot or slots adjacent slots.
  • the photovoltaic structures are parallel to one another.
  • the adjacent photovoltaic structures in particular the closest edges of the photovoltaic cells of two adjacent photovoltaic structures, are spaced apart from each other by a distance less than or equal to 50 mm, better still less than or equal to 25 mm, even better still less than or equal to 20 mm before deformation of the photovoltaic module, that is to say flat.
  • the adjacent photovoltaic structures in particular the closest edges of the photovoltaic cells of two adjacent photovoltaic structures, are spaced apart from each other by a distance greater than or equal to 5 mm, better still greater than or equal to 10 mm, before deformation of the module photovoltaic, i.e. flat.
  • the photovoltaic structures are electrically interconnected within the encapsulation layer, in particular by one or more conductive elements, in particular flexible elements, encapsulated in the encapsulation layer.
  • the flexible conductive elements extend into an area of the continuous module of material at the closed end of the slot between adjacent photovoltaic structures.
  • the slot(s) are straight.
  • the slot or slots can be of another shape, in particular curved or wavy.
  • the direction of longitudinal extension of the slot(s) corresponds to the length of the module.
  • the slots are parallel to each other.
  • the slots are of substantially identical length.
  • the slots are of substantially identical shapes.
  • the slot or slots have a length greater than or equal to 30%, better still greater than or equal to 40%, better still greater than or equal to 50%, even better still greater than or equal to 60%, preferably greater than or equal to 95%, of the dimension of the photovoltaic module in the direction of extension of the slot.
  • the length of the slot(s) is configured so that the strip of material extending between the closed end of the slot and the edge of the module in the direction of longitudinal extension of the slot is of a dimension in the direction of longitudinal extension of the slot greater than or equal to 10 mm, better still greater than or equal to 20 mm.
  • the slot or slots have a longitudinal end open to the outside on an edge of the module.
  • the slot or slots have two closed longitudinal ends.
  • the open longitudinal ends of the successive slots along an axis perpendicular to the direction of longitudinal extension of the slots can alternately open outwards on opposite edges of the module.
  • the open longitudinal ends of the successive slots along an axis perpendicular to their direction of longitudinal extension extend outwards from the same edge of the module.
  • the maximum width of the slot or slots is less than or equal to 40 mm, preferably between 3 mm and 25 mm, better still between 3 mm and 10 mm, for example of the order of 5 mm.
  • the closed end of the or each of the slots has a rounded shape, in particular an oval or circular shape.
  • a shape makes it possible to reduce the effect of accumulation of mechanical stresses at the level of the closed end of the slots.
  • the closed end of the or each of the slots has a greater dimension transverse to the direction of longitudinal extension of the slot as high as possible while keeping the necessary electrical insulation distances indicated in the IEC 61215 standards. and 61730 vis-à-vis adjacent photovoltaic structures, in particular a diameter greater than or equal to 1 mm.
  • the greatest dimension transverse to the direction of longitudinal extension of the closed end of the slot is substantially equal to its width at the level of its opening towards the outside.
  • the slot or slots have a variable width over at least part of their length.
  • the slot or slots may have a decreasing width over a part of the length of the slot or slots towards the closed end of the corresponding slot.
  • the longitudinal edges of the slot can form between them a non-zero angle less than or equal to 20°, better still less than or equal to 15°, even better less than or equal to 5°.
  • the slot or slots are of decreasing width from an open end outwards on a side edge of the module to the closed end.
  • the slot or slots are of constant width.
  • the longitudinal edges of the slot(s) are spaced from the edge of the nearest photovoltaic cell by a minimum distance greater than or equal to 0.5 mm, better still greater than or equal to 5 mm, even better still greater than or equal to 15 mm, Such a distance makes it possible to maintain good insulation between adjacent photovoltaic structures while having a compact module.
  • the slot can be filled, in particular after curvature on the final surface, with a filling material, in particular based on a polymer.
  • a filling material in particular based on a polymer.
  • the module may comprise at least two adjacent and joined sub-modules each comprising at least two photovoltaic structures as described above and at least one slot as described above extending between the two photovoltaic structures of the sub-module.
  • the photovoltaic structures of the same sub-module are electrically connected in series.
  • the two sub-modules can be connected electrically in parallel or in series with respect to each other.
  • the slot or slots of each sub-module have an open end towards the outside of the same edge of the module.
  • the slots of the two sub-modules open outwards on two opposite side edges of the module.
  • the photovoltaic structures of the two sub-modules extend along the same longitudinal axis two by two and the slot or slots of the two sub-modules extend two by two in the same direction of longitudinal extension.
  • each photovoltaic structure of two sub-modules comprises at least two rows of photovoltaic cells, in particular parallel to each other, the rows of the same photovoltaic structure being electrically connected to each other, in particular in series.
  • the module or each sub-module may comprise at least n photovoltaic structures spaced from each other laterally and separated from each other by at least n-1 slots as described above, n is greater than or equal to 2, better still greater than or equal to 4.
  • the n photovoltaic structures are electrically connected in series with each other.
  • the width of each structure is less than or equal to 220 mm, better still less than or equal to 165 mm, better still less than or equal to 90 mm.
  • the photovoltaic structures are parallel.
  • each photovoltaic structure extends over more than 60%, better still more than 70% of the dimension of the module or of the sub-module along the longitudinal axis of the photovoltaic structure.
  • the slots extend over more than 50% of the dimension of the module or of the sub-module in the direction of extension of said slot, better over more than 60%, even better over more by 95%.
  • each photovoltaic structure has a thickness, in particular corresponding to the thickness of the cells with the flexible conductive elements, of between 100 and 800 ⁇ m.
  • the upper layer is a glass or polymer plate, in particular made of a transparent material, preferably chosen from ethylene chlorotrifluoroethylene (ECTFE), fluorinated ethylene propylene (FEP), ethylene tetrafluoroethylene (ETFE), poly(vinylidene fluoride) (PVDF), polyacrylic methyl methacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), and their mixture or a multilayer of the aforementioned materials.
  • ECTFE ethylene chlorotrifluoroethylene
  • FEP fluorinated ethylene propylene
  • ETFE ethylene tetrafluoroethylene
  • PVDF poly(vinylidene fluoride)
  • PMMA polyacrylic methyl methacrylate
  • PC polycarbonate
  • PET polyethylene terephthalate
  • the top layer may be of a flexible material.
  • the thickness of the upper layer can be between 10 ⁇ m and 3000 ⁇ m.
  • the lower layer is a plate of glass or polymer, in particular made of a prepreg of a polymer impregnating fibers, in particular having a basis weight less than or equal to 600 g/m 2 .
  • the polymer can be made of a material chosen from polyesters, epoxy, silicones, PMMA, PC, rubber, nitriles, acrylics, polyamides, polyurethane.
  • the fibers can include magnetic or mineral fillers, glass, carbon, aramid or natural fibers such as hemp, linen or silk.
  • the lower layer can be made of a polymer material alone.
  • the lower layer can be of a flexible material.
  • the bottom layer can be opaque or transparent.
  • the lower layer is magnetic, in particular it comprises a magnetic material. This facilitates the mechanical holding of the module on the curved surface, in particular when the support of the module has ferromagnetic properties, and thus facilitates its installation and its dismantling.
  • the lower layer can be formed by a composite material formed from a synthetic elastomer, for example a butadiene-acrylonitrile copolymer, filled with a powder of a hard ferromagnetic material, preferably magnetized, for example strontium ferrite grains.
  • a synthetic elastomer for example a butadiene-acrylonitrile copolymer
  • a powder of a hard ferromagnetic material preferably magnetized, for example strontium ferrite grains.
  • the powder of the lower layer has a Curie temperature greater than or equal to the maximum temperature reached by the lower layer during the manufacture of the module, in particular during the step of laminating the layers together.
  • the module may comprise a ferromagnetic plate, in particular made of integrated steel, in particular placed between the photovoltaic structures and a lower face of the module.
  • the plate can be integrated into the polymer encapsulation layer or integrated into the lower layer.
  • the lower layer may be multilayered and comprise an underlayer made of a magnetic material, in particular as described previously, and the ferromagnetic plate, in particular made of steel.
  • the bottom layer may include an encapsulant underlayer or an adhesive between the magnetic underlayer and the ferromagnetic plate.
  • Such a ferromagnetic plate improves the holding of the module on its magnetic support by increasing the force necessary to tear the module from the support.
  • the thickness of the lower layer can be between 10 ⁇ m and 10mm.
  • the encapsulation layer can be formed of at least two sub-layers laminated together, a sub-layer extending between the photovoltaic structures and the upper layer and a sub-layer extending between the photovoltaic structures and the layer lower.
  • the encapsulation layer is made of a flexible material.
  • the encapsulation layer may be made of a material chosen from crosslinked ethylene-vinyl acetate (EVA) elastomers, crosslinked thermoplastic polyolefin (POR)-based elastomers, polyolefin-based thermoplastic elastomers (TPO), silicone , thermoplastic polyurethane, polyvinyl butyral and/or functional polyolefin, ionomers (“ionically cross-linked” thermoplastic copolymer).
  • EVA crosslinked ethylene-vinyl acetate
  • POR crosslinked thermoplastic polyolefin
  • TPO polyolefin-based thermoplastic elastomers
  • silicone silicone
  • thermoplastic polyurethane polyvinyl butyral and/or functional polyolefin
  • ionomers ionically cross-linked” thermoplastic copolymer
  • the thickness of the encapsulation layer may be greater than or equal to 200 ⁇ m, in particular between 400 ⁇ m and 1000 ⁇ m.
  • the upper, lower and encapsulation layers are made of materials each having a Young's modulus of less than 5 GPa.
  • the encapsulation layer is in direct contact with the upper and lower layers.
  • the module and/or the sub-modules can have polygonal contours, in particular rectangular or square, oval or circular.
  • the length of the module can be between 75 mm and 4 m, better still between 1 m and 2 m.
  • the module comprises a junction box electrically connected to the photovoltaic structures for connecting the photovoltaic structures to an electrical source.
  • the module may comprise an adhesive or one or more double-sided adhesive tapes on its lower surface intended to come into contact with the support.
  • the adhesive or tape can be arranged on the periphery of the lower surface of the module, in particular on certain areas only or on the entire periphery of the latter.
  • the invention also relates to a method of manufacturing the module as described previously comprising: the determination of the difference in dimension between the module when it is flat and the same module affixed to a surface having a radius of curvature corresponding to a radius of predetermined maximum curvature, the cutting in the thickness of the multilayer stack of the slot(s) so that the cumulative width of the slots in at least one direction is greater than or equal to the difference in dimension determined.
  • the method may include filling the slot or slots with a filling material, in particular based on a polymer.
  • the method may include laminating the top, encapsulating, and bottom layers together.
  • the process may include the magnetization of the lower layer of the module after the lamination of the different layers together.
  • the method may include adding an adhesive or one or more adhesive tapes to the bottom surface of the module.
  • the invention also relates to a method of using a photovoltaic module as described above comprising the deformation of the module to conform to a surface, in particular a curved surface, with a radius of curvature greater than or equal to 500 mm, better greater than or equal to 1 m.
  • the surface can be the roof of a vehicle or a building, in particular a magnetic surface.
  • the method may include the magnetization of the module by its lower layer on the surface, the surface being magnetic.
  • the process may include bonding the bottom surface of the module to the surface using adhesive or double-sided adhesive tapes.
  • the surface on which the module is positioned has a radius of curvature greater than or equal to 500 mm, better still greater than or equal to 1 m.
  • the method may include positioning the module so that the direction of the module having the smallest radius of curvature is parallel to the direction of the module intercepting the greatest number of slots, in particular perpendicular to the direction of extension of the slots.
  • FIG 1 schematically represents an example of a photovoltaic module
  • FIG 2 is a sectional view along II-II of the photovoltaic module example of Figure 1,
  • FIG 3 is a sectional view along III-III of the photovoltaic module example of Figure 1
  • FIG 4 is a sectional view along IV-IV of the photovoltaic module example of Figure 1
  • FIG 5 is an enlargement of detail V in figure 1,
  • FIG 6 schematically represents a variant of photovoltaic module
  • FIG 7 schematically represents a variant of photovoltaic module
  • FIG 8 schematically represents a variant of photovoltaic module
  • FIG 9 schematically represents a variant of photovoltaic module
  • Fig 10 is a sectional view of a photo voltaic module variant.
  • a photovoltaic module 10 comprising a multilayer stack formed by at least one transparent upper layer 20 and a lower layer 25 defining the opposite surfaces of the module 10 having photovoltaic structures s 30 in a layer of encapsulation 22, as can be seen in FIG. 2.
  • the surfaces of the module have a rectangular outline.
  • the module 10 comprises between 2 and 60 photovoltaic structures 30.
  • the upper layer 20 and the lower layer 25 are made of a flexible material, in particular the upper layer 20 is made of ETFE or PET and the lower layer 25 is for example made of nitrile rubber containing magnetized ferrites.
  • the upper layer 20 and the lower layer 25 have respective thicknesses 5 and z of between 10 ⁇ m and 1 mm for the thickness 5 and between 500 ⁇ m and 10 mm for the thickness z, in particular substantially equal to 500 ⁇ m.
  • the lower layer 25 can be transparent or opaque.
  • the encapsulation layer 22 can be formed during manufacture by laminating together two sub-layers arranged on either side of the photovoltaic structures 30.
  • the encapsulation layer 22 is made of a flexible material, in particular a thermoplastic polymer material such as TPO.
  • the encapsulation layer 22 has a thickness e of between 200 and 1000 ⁇ m, for example substantially equal to 400 ⁇ m.
  • the encapsulation layer 22 is preferably in direct contact with the upper 20 and lower 25 layers.
  • the magnetized ferrites of the lower layer 25 have a Curie temperature higher than the temperature reached by the lower layer 25 during the module manufacturing process, in particular during the lamination of the layers together.
  • the ferrites of the lower layer 25 are magnetized after the step of laminating the layers together, the Curie temperature of the ferrites can then be lower than the maximum temperature of the lower layer 25 reached during the lamination of the layers together. .
  • the photovoltaic structures 30 comprise a single row of photovoltaic cells 32 electrically connected together in series by flexible conductive elements 35, in particular conductive wires or strips. Each row can comprise one or more cells 35, preferably between 2 and 80 cells 35. Preferably, the photovoltaic structures 30 are parallel to each other and extend longitudinally over part of the length of the module.
  • the cells 35 of the row are spaced apart by a distance c, measured between the nearest edges of the adjacent cells, of between ⁇ 2 mm and 200 mm, for example substantially equal to 3 mm.
  • all the cells 35 are of the same substantially square shape when viewed from above and of the same thickness. They each extend in top view over an area less than or equal to 246 cm 2 , in particular between 243 cm 2 and 245 cm 2 , for example substantially equal to 244 cm 2 . They are lined up in row. However, it could be otherwise, the cells could be connected in parallel, be of different shapes and/or dimensions between them and/or not be aligned. The cells could for example be rectangular.
  • the adjacent photovoltaic structures 30 are spaced apart by a distance d, measured between the closest edges of the cells, of between 1 mm and 50 mm, in particular substantially equal to 10 mm.
  • the photovoltaic structures 30 are spaced from each other laterally and are separated by a slot 40 in the thickness of the module.
  • the slot 40 crosses all of the layers 20, 22 and 25 mentioned above over a length / less than the dimension of the module in the direction of longitudinal extension of the slot, here the length D of the module.
  • the adjacent photovoltaic structures 30 are interconnected, in particular in series, by flexible conductive elements 37, in particular conductive wires or strips, connecting together the adjacent end cells of the adjacent photovoltaic structures, the conductive elements 37 pass through the layer encapsulation 22 at the end of slot 40.
  • the slots 40 extend into the space between adjacent photovoltaic structures 30 along the length of the module 10 parallel to the photovoltaic structures 30. Preferably, as shown, the slots 40 extend the full length of the photovoltaic structures 30 In the example illustrated, the slots 40 are open at one end 42 towards the outside and are closed at the other end 45. The successive slots 40 along a direction perpendicular to the direction of longitudinal extension of the slots alternately opens outwards on the opposite edges of the module 10.
  • the module 10 forms a continuous circuit of material which winds between the slots and in which a continuous electric circuit is formed by the series connection of the cells 32 electrically connected by the conductive elements 35 and 37.
  • the slots 40 may extend over a length f greater than or equal to 95% of the length D of the module.
  • the slot 40 is as long as possible while maintaining a mechanical strength of the module, an electrical interconnection of the photovoltaic structures and sufficient electrical insulation between the adjacent cells according to the IEC 61215 and 61730 standards.
  • the strip of material at the closed end 45 of the slot may have a dimension m measured between the closed end 45 of the slot and the opposite edge of the module greater than or equal to 5 mm.
  • the slots 40 have a decreasing width from their open end 42 to their closed end 45 and the closed end is widened by an opening of substantially circular or oval outline.
  • Such a structure allows better conformability to a curved surface.
  • the widened end makes it possible to reduce the mechanical stresses at the end of the slot due to the bringing together of the different parts of the module. This avoids deformation or lifting of the module but also makes it more difficult for a crack to propagate at the closed end 45.
  • the greatest width t of the slot 40 at the opening to the outside can be between 1 mm and 49 mm, for example substantially equal to 5 mm.
  • the greatest width t is defined so as to maintain the necessary electrical insulation distances of the IEC 61215 and 61730 standards between the cells 32.
  • the opposite longitudinal edges of the slot can form between them an angle a less than or equal to 15°, better still less than or equal to 10°, and/or less than or equal to 1°.
  • the widened end 45 of the slot may have a width u substantially equal to the greatest width t of the slot 40.
  • the invention is not limited to this shape of slot, any other shape of slot is envisaged, in particular a slot of rectangular contour, rounded or not at its end, or a slot of variable width over only part of the length of the slot.
  • the slots 40 are made by cutting the module after stacking and assembling the different layers
  • connection circuit extends from a negative terminal 60 to a positive terminal 62 which are connected to a junction box or electronic circuit associated with the module, not shown, which can be adjacent to the module or remote from the module.
  • the junction box is used to electrically connect module 10 to the outside.
  • the module 10 When in use, the module 10 is positioned on a surface. Depending on the curvature of the surface, the photovoltaic structures 30 will be able to approach more or less thanks to the slots 40, which makes it possible to bend the module along the median axis X on a curved surface with a small radius of curvature.
  • the radius of curvature is greater than or equal to 500 mm, better still greater than or equal to 1 m.
  • the module also has some flexibility in length due to the space between the cells of the photovoltaic structures.
  • the module is positioned on the surface so that the direction of greatest curvature of the surface is parallel to the direction of greatest curvature of the module, in particular the transverse median axis X.
  • the surface may be curved and has a maximum radius of curvature greater than or equal to 500 mm, better 1 m.
  • the lower layer 25 is magnetized due to the presence of the magnetized ferrites facilitates its integration on a ferromagnetic surface, in particular sheet metal or steel, such as the roof of a car or a roof of a steel deck building.
  • FIGS 6 to 9 illustrate variant embodiments of module 10.
  • the embodiment of Figure 6 differs from the embodiment of Figures 1 to 5 in that the photovoltaic structures 30 and the slots 40 extend in the width k of the module 10.
  • the embodiment of FIG. 7 differs from the embodiment of FIGS. 1 to 5 in the shape of the slots 40.
  • the slots 40 are all identical and have two closed ends 45 and 47 of the same shape as that described previously.
  • the slots 40 can be of decreasing width from the center of the slot towards the ends 45 and 47.
  • the photovoltaic structures 30 are connected in series by passing conductive elements connecting them alternately in the strip of material on one side or the other. slits.
  • the photovoltaic structures 30 can be connected in parallel by passing conductive elements connecting them in the strips of material on both sides of the slots 40.
  • the embodiments of Figures 8 and 9 differ from the embodiment of Figures 1 to 5 in that the module 10 comprises two sub-modules 10a and 10b juxtaposed along the length of the module 10, the photovoltaic structures 30 of the two sub-modules s also extending in the length of the module 10.
  • the two sub-modules 10a and 10b are symmetrical with respect to each other relative to a median axis of the transverse module X and are electrically connected in parallel with respect to each other. the other.
  • the photovoltaic structures 30a and 30b of the sub-modules 10a and 10b have photovoltaic cells 35 electrically connected together in series by conductive elements arranged in two longitudinal rows.
  • the photovoltaic structures 30a and 30b of each sub-module 10a and 10b are separated from each other by the slots 40a and 40b respectively.
  • the slots 40a of the sub-module 10a are closed at one end 45 close to the central axis X and open towards the exterior on the edge of the opposite sub-module 10a relative to the central axis X.
  • the slots 40b of the sub-module -module 10b are closed at one end 45 close to the central axis X and open outwards on the edge of the opposite sub-module 10b relative to the central axis X.
  • the photovoltaic structures 30a of the sub-module 10a connected electrically between them at the level of the central part of the module. The same is true for the photovoltaic structures 30b of the sub-module 10a.
  • the two sub-modules 10a and 10b can be electrically connected together in parallel, as illustrated in figure 8, or be connected together in series, as illustrated in figure 9.
  • the embodiment of FIG. 10 differs from the embodiment of FIGS. 1 to 5 in the structure of the lower layer 25.
  • the lower layer 25 is multi-layered and comprises a sub-layer 70 having the previously mentioned structure, i.e. being for example nitrile rubber containing magnetized ferrites, and a ferromagnetic plate 72.
  • the ferromagnetic plate 72 may be encapsulated in an underlayer of encapsulant 74 as shown. Alternatively, it is attached to the underlayer 70 by an adhesive or encapsulated in the encapsulation layer 22.
  • the module 10 can also have an adhesive or an adhesive tape 80 on its underside intended to come into contact with the surface to be covered, as can be seen in Fig. 10, adhesive or tape 80 may be positioned on the periphery of the lower face.
  • the module can have any other shape, depending on the surface to be covered.
  • the slots can take other shapes than those described. They may not all be parallel to each other and/or of different shapes.
  • the photovoltaic structures can have more than two rows. Adjacent photovoltaic structures can be tilted relative to each other. The cells of a row can be staggered.
  • the slots can be filled with an elastic material.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention relates to a photovoltaic module (10) having: - a transparent upper layer (20) defining an upper surface, - a lower layer (25) defining a lower surface, - at least two photovoltaic structures (30) encapsulated in a transparent polymer encapsulation layer (22) arranged between the lower layers (25) and the upper layers (20), the two photovoltaic structures (30) being laterally spaced apart, and - at least one slit (40) in the thickness of the photovoltaic module (10) extending longitudinally at least partially between the two photovoltaic structures (30), the slit (40) being closed at at least one of its longitudinal ends (45).

Description

Description Description
Titre : Module photovoltaïque flexible Title: Flexible photovoltaic module
La présente invention concerne un module pho to voltaïque, son procédé de fabrication et son procédé d’ utilisation. The present invention relates to a photo voltaic module, its method of manufacture and its method of use.
Domaine technique Technical area
Les modules photovoltaïques sont habituellement fabriqués plan et restent plan durant leur utilisation. Dans le cas d’une intégration d’un module photovoltaïque sur une surface courbe, le module photovoltaïque est habituellement fabriqué directement selon la courbure souhaitée. Certains modules sont flexibles dans une direction. Photovoltaic modules are usually made flat and remain flat during use. In the case of integration of a photovoltaic module on a curved surface, the photovoltaic module is usually manufactured directly according to the desired curvature. Some modules are flexible in one direction.
Les demandes de brevet US2010229937 et US20190312164 décrivent des modules photo voltaïque s comportant une pluralité de structures photovoltaïques adjacentes encapsulées dans un substrat transparent entre une couche supérieure et une couche inférieure protectrices. Patent applications US2010229937 and US20190312164 describe photovoltaic modules comprising a plurality of adjacent photovoltaic structures encapsulated in a transparent substrate between an upper layer and a lower protective layer.
Il est connu de la demande de brevet KR 10-2020-0067110 un panneau photovoltaïque fabriqué à partir de matériaux flexibles, le panneau photovoltaïque étant lui- même flexible et pouvant être intégré dans un module. Patent application KR 10-2020-0067110 discloses a photovoltaic panel made from flexible materials, the photovoltaic panel itself being flexible and able to be integrated into a module.
Il est également connu de la demande internationale WO2020/173321 la juxtaposition de petites chaînes de cellules photovoltaïques, les chaines de cellules étant espacées entre elles d’une distance non nulle et encapsulées dans un matériau composite flexible et sur une couche de substrat flexible. It is also known from international application WO2020/173321 the juxtaposition of small chains of photovoltaic cells, the chains of cells being spaced apart from each other by a non-zero distance and encapsulated in a flexible composite material and on a layer of flexible substrate.
La demande de brevet KR 10-1775977 décrit un module photo voltaïque comportant des cellules photovoltaïques encapsulées dans un matériau flexible et recouvert de part et d’autre de films flexibles. Patent application KR 10-1775977 describes a photovoltaic module comprising photovoltaic cells encapsulated in a flexible material and covered on either side with flexible films.
La demande de brevet CN106299002 a pour objet un module photovoltaïque comportant une pluralité de cellules reliées entre elles par des rubans de conduction électrique flexibles et encapsulées dans un matériau flexible de sorte à s’adapter à la courbure de la surface supérieure des ailes d’avion et aux déformations de ces dernières en vol. Patent application CN106299002 relates to a photovoltaic module comprising a plurality of cells interconnected by flexible electrical conduction strips and encapsulated in a flexible material so as to adapt to the curvature of the upper surface of aircraft wings. and the deformations of the latter in flight.
Les demandes de brevet KR10-2016-0050659 et US20160126380 décrivent un module photovoltaïque présentant une pluralité de chaines de cellules juxtaposées, les chaines étant formées par superposition de cellules sur un support flexible présentant des lignes électriques de connexion des cellules entre elles et vers l’extérieur. Les différentes chaines sont électriquement reliées entre elles à l’extérieur. Dans l’ensemble des documents ci-dessus, la flexibilité est apportée par l’utilisation de matériau flexible encapsulant les cellules, ce qui permet d’avoir une flexibilité des modules pour de faibles courbures et principalement dans une seule direction. Patent applications KR10-2016-0050659 and US20160126380 describe a photovoltaic module having a plurality of chains of juxtaposed cells, the chains being formed by superimposing cells on a flexible support having electrical lines connecting the cells to each other and to the outside. The different chains are electrically connected to each other on the outside. In all of the above documents, the flexibility is provided by the use of flexible material encapsulating the cells, which makes it possible to have flexibility of the modules for small curvatures and mainly in a single direction.
La demande de brevet DE 10356690 a pour objet un module photovoltaïque comportant des rainures entre les structures photovoltaïques formant des zones d’épaisseur qui offre de la flexibilité. Patent application DE 10356690 relates to a photovoltaic module comprising grooves between the photovoltaic structures forming zones of thickness which offers flexibility.
La demande de brevet US4860509 décrit un module photovoltaïque entre les structures photovoltaïques des renfoncement courbe pour faciliter le pliage. Patent application US4860509 describes a photovoltaic module between the photovoltaic structures of curved recesses to facilitate folding.
Néanmoins, dans ces deux demandes de brevet, la flexibilité est réduite. However, in these two patent applications, the flexibility is reduced.
De tels modules photovoltaïques ne peuvent pas s’intégrer sur des surfaces de grandes courbures, notamment sur certains pavillons automobiles ou certaines toitures de bâtiment, notamment du fait de l’épaisseur des modules photovoltaïques. Such photovoltaic modules cannot be integrated on surfaces with large curvatures, in particular on certain automobile roofs or certain building roofs, in particular because of the thickness of the photovoltaic modules.
H existe donc un besoin pour avoir un module photovoltaïque présentant une meilleure conformabilité à une surface courbe de grande courbure et courbe selon deux directions différentes, par exemple sur un pavillon automobile ou une toiture de bâtiment. There is therefore a need to have a photovoltaic module having better conformability to a curved surface of great curvature and curved in two different directions, for example on an automobile roof or a building roof.
Résumé de l’invention Summary of the invention
L’invention répond à ce besoin à l’aide d’un module photovoltaïque comportant un empilement multicouche comportant au moins : une couche supérieure transparente définissant une surface supérieure du module, une couche inférieure définissant une surface inférieure du module, au moins deux structures photovoltaïques encapsulées dans une couche d’encapsulation polymère transparente agencée entre les couches inférieure et supérieure, les deux structures photovoltaïques étant espacés entre elles latéralement, et au moins une fente dans l’épaisseur du module photovoltaïque s’étendant longitudinalement au moins partiellement entre les deux structures photovoltaïques, la fente étant fermée à au moins une de ses extrémités longitudinales. The invention meets this need with the aid of a photovoltaic module comprising a multilayer stack comprising at least: a transparent upper layer defining an upper surface of the module, a lower layer defining a lower surface of the module, at least two photovoltaic structures encapsulated in a transparent polymer encapsulation layer arranged between the lower and upper layers, the two photovoltaic structures being laterally spaced from each other, and at least one slot in the thickness of the photovoltaic module extending longitudinally at least partially between the two structures photovoltaic cells, the slot being closed at at least one of its longitudinal ends.
Par « encapsulées », on comprend que les deux structures photovoltaïques sont agencées dans la couche d’encapsulation de sorte que cette dernière les entoure totalement. By “encapsulated”, it is understood that the two photovoltaic structures are arranged in the encapsulation layer so that the latter completely surrounds them.
Par «fente », on comprend une ouverture dans l’épaisseur du module photovoltaïque étroite et allongée le long d’une direction d’extension longitudinale. La présence de la fente dans le module permet d’intégrer, d’appliquer le module sur un support de grande courbure en permettant le rapprochement des structures photovoltaïques entre elles dû à la courbure du support. “Slot” means an opening in the thickness of the narrow and elongated photovoltaic module along a longitudinal direction of extension. The presence of the slot in the module makes it possible to integrate, to apply the module to a support of great curvature by allowing the approximation of the photovoltaic structures to each other due to the curvature of the support.
Le fait que la fente soit fermée à une de ses extrémités fait qu’elle présente une longueur inférieure à la dimension du module dans la direction d’extension de la fente. Ceci permet de conserver une bande de matière du module en extrémité de la fente, notamment pour le passage des connexions électriques entre les structures photovoltaïques adjacentes. Cela permet également d’avoir un module d’un seul tenant, ce qui en facilite la manipulation et l’intégration sur une surface courbe. The fact that the slot is closed at one of its ends means that it has a length less than the dimension of the module in the direction of extension of the slot. This makes it possible to retain a strip of material from the module at the end of the slot, in particular for the passage of the electrical connections between the adjacent photovoltaic structures. This also makes it possible to have a one-piece module, which facilitates handling and integration on a curved surface.
De préférence, le module photovoltaïque est configuré pour présenter un rayon de courbure maximale selon au moins une direction, mieux selon deux directions orthogonales, inférieur ou égal à 10 m, mieux inférieur ou égale à 3 m. De préférence, le module photovoltaïque est configuré pour présenter un rayon de courbure minimal selon au moins une direction, mieux selon deux directions orthogonales, supérieur ou égal à 500 mm, mieux supérieur ou égal à 1 m. Preferably, the photovoltaic module is configured to have a maximum radius of curvature in at least one direction, better still in two orthogonal directions, less than or equal to 10 m, better still less than or equal to 3 m. Preferably, the photovoltaic module is configured to have a minimum radius of curvature along at least one direction, better still along two orthogonal directions, greater than or equal to 500 mm, better still greater than or equal to 1 m.
Le module peut comporter plusieurs fentes dans l’épaisseur du module photovoltaïque s’étendant chacune longitudinalement entre deux structures photovoltaïques adjacentes, les fentes étant chacune fermée à au moins une de leurs extrémités longitudinales. The module may comprise several slots in the thickness of the photovoltaic module each extending longitudinally between two adjacent photovoltaic structures, the slots each being closed at at least one of their longitudinal ends.
Structure photo voltaïque Photo voltaic structure
De préférence, chaque structure photovoltaïque comporte au moins une cellule photovoltaïque, par exemple à base de silicium, mieux une pluralité de cellules photovoltaïques reliées électriquement entre elles par des éléments conducteurs flexibles, notamment des fils, rubans conducteurs ou en connexion directe, et agencées selon au moins une rangée. Les cellules photovoltaïques de chaque structure photovoltaïque peuvent être agencées selon au moins deux rangées, notamment parallèles entre elles, les rangées étant reliées électriquement entre elles, de préférence par des éléments conducteurs flexibles, notamment des fils, rubans conducteurs ou en connexion directe. De préférence, les cellules photovoltaïques des rangées sont reliées électriquement entre elles en série. Les rangées d’une même structure photovoltaïque peuvent être reliées électriquement entre elles en parallèle, ou préférentiellement en série. Preferably, each photovoltaic structure comprises at least one photovoltaic cell, for example based on silicon, better still a plurality of photovoltaic cells electrically connected to each other by flexible conductive elements, in particular wires, conductive strips or in direct connection, and arranged according to at least one row. The photovoltaic cells of each photovoltaic structure can be arranged in at least two rows, in particular parallel to each other, the rows being electrically connected to each other, preferably by flexible conductive elements, in particular wires, conductive strips or in direct connection. Preferably, the photovoltaic cells of the rows are electrically connected together in series. The rows of the same photovoltaic structure can be electrically connected together in parallel, or preferably in series.
De préférence, les structures photovoltaïques sont allongées chacune le long d’un axe longitudinal. De préférence, les axes longitudinaux des structures photovoltaïques sont parallèles à la direction d’extension de la ou des fentes adjacentes ou forment un angle inférieur ou égal à 45°, mieux inférieur ou égal à 20°, encore mieux inférieur ou égal à 10 à la direction d’extension de la ou des fentes adjacentes. De préférence, les structures photovoltaïques sont parallèles entre elles. Preferably, the photovoltaic structures are each elongated along a longitudinal axis. Preferably, the longitudinal axes of the photovoltaic structures are parallel to the direction of extension of the adjacent slot or slots or form an angle less than or equal to 45°, better still less than or equal to 20°, even better less than or equal to 10 to the direction of extension of the slot or slots adjacent slots. Preferably, the photovoltaic structures are parallel to one another.
De préférence, les structures photovoltaïques adjacentes, notamment les bords les plus proches des cellules photovoltaïques de deux structures photovoltaïques adjacentes, sont espacés entre elles d’une distance inférieure ou égale à 50 mm, mieux inférieure ou égale à 25 mm, encore mieux inférieure ou égale à 20 mm avant déformation du module photovoltaïque, c’est-à-dire à plat. Preferably, the adjacent photovoltaic structures, in particular the closest edges of the photovoltaic cells of two adjacent photovoltaic structures, are spaced apart from each other by a distance less than or equal to 50 mm, better still less than or equal to 25 mm, even better still less than or equal to 20 mm before deformation of the photovoltaic module, that is to say flat.
De préférence, les structures photovoltaïques adjacentes, notamment les bords les plus proches des cellules photovoltaïques de deux structures photovoltaïques adjacentes, sont espacés entre elles d’une distance supérieure ou égale à 5 mm, mieux supérieure ou égale à 10 mm, avant déformation du module photovoltaïque, c’est-à-dire à plat. Preferably, the adjacent photovoltaic structures, in particular the closest edges of the photovoltaic cells of two adjacent photovoltaic structures, are spaced apart from each other by a distance greater than or equal to 5 mm, better still greater than or equal to 10 mm, before deformation of the module photovoltaic, i.e. flat.
De préférence, les structures photovoltaïques sont électriquement reliées entre elles au sein de la couche d’encapsulation, notamment par un ou plusieurs éléments conducteurs, notamment flexibles, encapsulés dans la couche d’encapsulation. De préférence, les éléments conducteurs flexibles s’étendent dans une zone du module continu de matière à l’extrémité fermée de la fente entre les structures photovoltaïques adjacentes. Preferably, the photovoltaic structures are electrically interconnected within the encapsulation layer, in particular by one or more conductive elements, in particular flexible elements, encapsulated in the encapsulation layer. Preferably, the flexible conductive elements extend into an area of the continuous module of material at the closed end of the slot between adjacent photovoltaic structures.
Fente Slot
De préférence, la ou les fentes sont rectilignes. En variante, la ou les fentes peuvent être d’une autre forme, notamment courbe ou ondulée. Preferably, the slot(s) are straight. As a variant, the slot or slots can be of another shape, in particular curved or wavy.
De préférence la direction d’extension longitudinale de la ou des fentes correspond à la longueur du module. Preferably the direction of longitudinal extension of the slot(s) corresponds to the length of the module.
De préférence, les fentes sont parallèles entre elles. Preferably, the slots are parallel to each other.
De préférence, les fentes sont de longueur sensiblement identiques. De préférence, les fentes sont de formes sensiblement identiques. Preferably, the slots are of substantially identical length. Preferably, the slots are of substantially identical shapes.
De préférence, la ou les fentes présentent une longueur supérieure ou égale à 30%, mieux supérieure ou égale à 40%, mieux supérieure ou égale 50%, encore mieux supérieure ou égale 60%, de préférence supérieure ou égale 95%, de la dimension du module photovoltaïque dans la direction d’extension de la fente. Preferably, the slot or slots have a length greater than or equal to 30%, better still greater than or equal to 40%, better still greater than or equal to 50%, even better still greater than or equal to 60%, preferably greater than or equal to 95%, of the dimension of the photovoltaic module in the direction of extension of the slot.
De préférence, la longueur de la ou des fentes est configurée pour que la bande de matière s’étendant entre l’extrémité fermée de la fente et le bord du module dans la direction d’extension longitudinale de la fente soit d’une dimension dans la direction d’extension longitudinal de la fente supérieure ou égale à 10 mm, mieux supérieure ou égale à 20 mm. Preferably, the length of the slot(s) is configured so that the strip of material extending between the closed end of the slot and the edge of the module in the direction of longitudinal extension of the slot is of a dimension in the direction of longitudinal extension of the slot greater than or equal to 10 mm, better still greater than or equal to 20 mm.
De préférence, la ou les fentes présentent une extrémité longitudinale ouverte vers l’extérieur sur un bord du module. En variante, la ou les fentes présentent deux extrémités longitudinales fermées. Preferably, the slot or slots have a longitudinal end open to the outside on an edge of the module. As a variant, the slot or slots have two closed longitudinal ends.
Les extrémités longitudinales ouvertes des fentes successives selon un axe perpendiculaire à la direction d’extension longitudinale des fentes peuvent s’ouvrir alternativement vers l’extérieur sur des bords opposés du module. En variante, les extrémités longitudinales ouvertes des fentes successives selon un axe perpendiculaire à leur direction d’extension longitudinale s’étendent vers l’extérieur d’un même bord du module. The open longitudinal ends of the successive slots along an axis perpendicular to the direction of longitudinal extension of the slots can alternately open outwards on opposite edges of the module. As a variant, the open longitudinal ends of the successive slots along an axis perpendicular to their direction of longitudinal extension extend outwards from the same edge of the module.
De préférence, la largeur maximale de la ou des fentes, notamment la largeur de l’extrémité ouverte de la ou des fentes, est inférieure ou égale à 40 mm, de préférence comprise entre 3 mm et 25 mm, mieux comprise entre 3 mm et 10 mm, par exemple de l’ordre de 5 mm. Preferably, the maximum width of the slot or slots, in particular the width of the open end of the slot or slots, is less than or equal to 40 mm, preferably between 3 mm and 25 mm, better still between 3 mm and 10 mm, for example of the order of 5 mm.
De préférence, l’extrémité fermée de la ou de chacune des fentes présente une forme arrondie, notamment une forme ovale ou circulaire. Une telle forme permet de réduire l’effet d’accumulation de contraintes mécaniques au niveau de l’extrémité fermée des fentes. De préférence, l’extrémité fermée de la ou de chacune des fentes présente une plus grande dimension transversale à la direction d’extension longitudinale de la fente le plus élevé possible tout en gardant les distances d’isolation électrique nécessaires indiquées dans les normes IEC 61215 et 61730 vis-à-vis des structures photovoltaïques adjacentes, notamment un diamètre supérieur ou égal à 1 mm. Preferably, the closed end of the or each of the slots has a rounded shape, in particular an oval or circular shape. Such a shape makes it possible to reduce the effect of accumulation of mechanical stresses at the level of the closed end of the slots. Preferably, the closed end of the or each of the slots has a greater dimension transverse to the direction of longitudinal extension of the slot as high as possible while keeping the necessary electrical insulation distances indicated in the IEC 61215 standards. and 61730 vis-à-vis adjacent photovoltaic structures, in particular a diameter greater than or equal to 1 mm.
De préférence, la plus grande dimension transversale à la direction d’extension longitudinale de l’extrémité fermée de la fente est sensiblement égale à sa largeur au niveau de son ouverture vers l’extérieur. Le fait que la ou les fentes se termine par un arrondi réduit les contraintes dû au rapprochement des structures photovoltaïques lors de la flexion. Cela permet d’éviter la déformation ou le soulèvement du module mais rend également plus difficile la propagation de fissure en extrémité de la ou des fentes. Preferably, the greatest dimension transverse to the direction of longitudinal extension of the closed end of the slot is substantially equal to its width at the level of its opening towards the outside. The fact that the slot or slots end in a rounding reduces the stresses due to the bringing together of the photovoltaic structures during bending. This prevents deformation or lifting of the module but also makes it more difficult for the crack to propagate at the end of the slot(s).
De préférence, la ou les fentes présentent une largeur variable sur au moins une partie de leur longueur. La ou les fentes peuvent présenter une largeur décroissante sur une partie de longueur de la ou des fentes vers l’extrémité fermée de la fente correspondante. Les bords longitudinaux de la fente peuvent former entre eux un angle non nul inférieur ou égal à 20°, mieux inférieur ou égal à 15°, encore mieux inférieur ou égal à 5°. Preferably, the slot or slots have a variable width over at least part of their length. The slot or slots may have a decreasing width over a part of the length of the slot or slots towards the closed end of the corresponding slot. The longitudinal edges of the slot can form between them a non-zero angle less than or equal to 20°, better still less than or equal to 15°, even better less than or equal to 5°.
De préférence, la ou les fentes sont de largeur décroissante d’une extrémité ouverte vers l’extérieur sur un bord latéral du module à l’extrémité fermée. Preferably, the slot or slots are of decreasing width from an open end outwards on a side edge of the module to the closed end.
En variante, la ou les fentes sont de largeur constante. As a variant, the slot or slots are of constant width.
De préférence, les bords longitudinaux de la ou des fentes sont espacés du bord de la cellule photovoltaïque la plus proche d’une distance minimale supérieure ou égale à 0,5 mm, mieux supérieure ou égale à 5 mm, encore mieux supérieure ou égale à 15 mm, Une telle distance permet de maintenir une bonne isolation entre les structures photovoltaïques adjacentes tout en ayant un module compact. Preferably, the longitudinal edges of the slot(s) are spaced from the edge of the nearest photovoltaic cell by a minimum distance greater than or equal to 0.5 mm, better still greater than or equal to 5 mm, even better still greater than or equal to 15 mm, Such a distance makes it possible to maintain good insulation between adjacent photovoltaic structures while having a compact module.
La fente peut être remplie, notamment après mise en courbure sur la surface finale, avec un matériau de remplissage, notamment en base polymère. Un tel remplissage de la fente permet notamment d’éviter un éventuel décollement, ou infiltration d’impuretés ou eau sur la surface du module. The slot can be filled, in particular after curvature on the final surface, with a filling material, in particular based on a polymer. Such filling of the slot makes it possible in particular to avoid possible detachment, or infiltration of impurities or water on the surface of the module.
Le module peut comporter au moins deux sous-modules adjacents et joints comportant chacun au moins deux structures photovoltaïques telles que décrites précédemment et au moins une fente telle que décrite précédemment s’étendant entre les deux structures photovoltaïques du sous-module. De préférence, les structures photovoltaïques d‘un même sous-module sont reliés électriquement en série. Les deux sous- modules peuvent être reliés électriquement en parallèle ou en série l’un par rapport à l’autre. The module may comprise at least two adjacent and joined sub-modules each comprising at least two photovoltaic structures as described above and at least one slot as described above extending between the two photovoltaic structures of the sub-module. Preferably, the photovoltaic structures of the same sub-module are electrically connected in series. The two sub-modules can be connected electrically in parallel or in series with respect to each other.
De préférence, la ou les fentes de chaque sous-module présentent une extrémité ouverte vers l’extérieur d’un même bord du module. De préférence, les fentes des deux sous- modules s’ouvrent vers l’extérieur sur deux bords latéraux opposées du module. Preferably, the slot or slots of each sub-module have an open end towards the outside of the same edge of the module. Preferably, the slots of the two sub-modules open outwards on two opposite side edges of the module.
De préférence, les structures photovoltaïques des deux sous-modules s’étendent selon un même axe longitudinal deux à deux et la ou les fentes des deux sous-modules s’étendent deux à deux dans une même direction d’extension longitudinale. Preferably, the photovoltaic structures of the two sub-modules extend along the same longitudinal axis two by two and the slot or slots of the two sub-modules extend two by two in the same direction of longitudinal extension.
De préférence, chaque structure photovoltaïque de deux sous-modules comporte au moins deux rangées de cellules photovoltaïques, notamment parallèles entre elles, les rangées d’une même structure photovoltaïque étant reliées électriquement entre elles, notamment en série. Preferably, each photovoltaic structure of two sub-modules comprises at least two rows of photovoltaic cells, in particular parallel to each other, the rows of the same photovoltaic structure being electrically connected to each other, in particular in series.
Le module ou chaque sous-module peut comporter au moins n structures photovoltaïques espacées entre elles latéralement et séparées entre elles par au moins n-1 fentes telles que décrits précédemment, n est supérieur ou égal à 2, mieux supérieur ou égale à 4. De préférence, les n structures photovoltaïques sont électriquement reliées en séries entre elles. De préférence, la largeur de chaque structure est inférieure ou égale à 220 mm, mieux inférieure ou égale à 165 mm, mieux encore inférieure ou égale à 90 mm. De préférence, les structures photovoltaïques sont parallèles. De préférence, chaque structure photovoltaïque s’étend sur plus de 60%, mieux plus de 70% de la dimension du module ou du sous-module le long de l’axe longitudinale de la structure photo voltaïque. The module or each sub-module may comprise at least n photovoltaic structures spaced from each other laterally and separated from each other by at least n-1 slots as described above, n is greater than or equal to 2, better still greater than or equal to 4. Preferably, the n photovoltaic structures are electrically connected in series with each other. Preferably, the width of each structure is less than or equal to 220 mm, better still less than or equal to 165 mm, better still less than or equal to 90 mm. Preferably, the photovoltaic structures are parallel. Preferably, each photovoltaic structure extends over more than 60%, better still more than 70% of the dimension of the module or of the sub-module along the longitudinal axis of the photovoltaic structure.
De préférence, dans ce mode de réalisation, les fentes s’étendent sur plus de 50% de la dimension du module ou du sous-module dans la direction d’extension de ladite fente, mieux sur plus de 60%, encore mieux sur plus de 95%. Preferably, in this embodiment, the slots extend over more than 50% of the dimension of the module or of the sub-module in the direction of extension of said slot, better over more than 60%, even better over more by 95%.
De préférence, chaque structure photovoltaïque présente une épaisseur, notamment correspondant à l’épaisseur des cellules avec les éléments conducteurs flexibles, comprise entre 100 et 800 pm. Preferably, each photovoltaic structure has a thickness, in particular corresponding to the thickness of the cells with the flexible conductive elements, of between 100 and 800 μm.
Couche supérieure top layer
De préférence, la couche supérieure est une plaque de verre ou de polymère, notamment en un matériau transparent, de préférence choisi parmi l’éthylène chlorotrifluoroéthylène (ECTFE), l’éthylène propylène fluoré (FEP), l’éthylène tétrafluoroéthylène (ETFE), le poly(fluorure de vinylidène) (PVDF), le polyméthacrylate de méthyle acrylique (PMMA), le polycarbonate (PC), le polytéréphtalate d'éthylène (PET), et leur mélange ou un multicouche des matériaux précités. Preferably, the upper layer is a glass or polymer plate, in particular made of a transparent material, preferably chosen from ethylene chlorotrifluoroethylene (ECTFE), fluorinated ethylene propylene (FEP), ethylene tetrafluoroethylene (ETFE), poly(vinylidene fluoride) (PVDF), polyacrylic methyl methacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), and their mixture or a multilayer of the aforementioned materials.
La couche supérieure peut être en un matériau flexible. The top layer may be of a flexible material.
L’épaisseur de la couche supérieure peut être comprise entre 10 pm et 3000 pm. The thickness of the upper layer can be between 10 μm and 3000 μm.
Couche inférieure bottom layer
De préférence, la couche inférieure est une plaque de verre ou de polymère, notamment en un préimprégné d’un polymère imprégnant des fibres, notamment ayant un grammage inférieur ou égal à 600 g/m2. Le polymère peut être en un matériau choisi parmi les polyesters, l’époxy, les silicones, le PMMA, le PC, le caoutchouc, les nitriles, les acryliques, les polyamides, le polyuréthane. Les fibres peuvent comporter des charges magnétiques ou minérales, du verre, du carbone, de l’aramide ou des fibres naturelles telles que le chanvre, le lin ou la soie. La couche inférieure peut être en un matériau polymère seul. La couche inférieure peut être en un matériau flexible. La couche inférieure peut être opaque ou transparente. Preferably, the lower layer is a plate of glass or polymer, in particular made of a prepreg of a polymer impregnating fibers, in particular having a basis weight less than or equal to 600 g/m 2 . The polymer can be made of a material chosen from polyesters, epoxy, silicones, PMMA, PC, rubber, nitriles, acrylics, polyamides, polyurethane. The fibers can include magnetic or mineral fillers, glass, carbon, aramid or natural fibers such as hemp, linen or silk. The lower layer can be made of a polymer material alone. The lower layer can be of a flexible material. The bottom layer can be opaque or transparent.
De préférence, la couche inférieure est magnétique, notamment elle comporte un matériau magnétique. Ceci facilite le maintien mécanique du module sur la surface courbe, notamment lorsque le support du module présente des propriétés ferromagnétiques, et facilite ainsi son installation et son démontage. Preferably, the lower layer is magnetic, in particular it comprises a magnetic material. This facilitates the mechanical holding of the module on the curved surface, in particular when the support of the module has ferromagnetic properties, and thus facilitates its installation and its dismantling.
La couche inférieure peut être formée par un matériau composite formé d’un élastomère synthétique, par exemple un copolymères butadiène- acrylonitrile, chargé d’une poudre d’un matériau ferromagnétique dur, de préférence magnétisé, par exemple des grains de ferrites de strontium. The lower layer can be formed by a composite material formed from a synthetic elastomer, for example a butadiene-acrylonitrile copolymer, filled with a powder of a hard ferromagnetic material, preferably magnetized, for example strontium ferrite grains.
De préférence, la poudre de la couche inférieure présente une température de Curie supérieure ou égale à la température maximale atteinte par la couche inférieure durant la fabrication du module, notamment durant l’étape de lamination des couches entre elles. Preferably, the powder of the lower layer has a Curie temperature greater than or equal to the maximum temperature reached by the lower layer during the manufacture of the module, in particular during the step of laminating the layers together.
Le module peut comporter une plaque ferromagnétique, notamment en acier intégrée, notamment disposée entre les structures photovoltaïques et une face inférieure du module. La plaque peut être intégré dans la couche d’encapsulation polymère ou intégrée dans la couche inférieure. The module may comprise a ferromagnetic plate, in particular made of integrated steel, in particular placed between the photovoltaic structures and a lower face of the module. The plate can be integrated into the polymer encapsulation layer or integrated into the lower layer.
Par exemple, la couche inférieure peut être multicouche et comporter une sous- couche en un matériau magnétique, notamment tel que décrit précédemment, et la plaque ferromagnétique, notamment en acier. La couche inférieure peut comporter une sous-couche d’encapsulant ou un adhésif entre la sous-couche magnétique et la plaque ferromagnétique. For example, the lower layer may be multilayered and comprise an underlayer made of a magnetic material, in particular as described previously, and the ferromagnetic plate, in particular made of steel. The bottom layer may include an encapsulant underlayer or an adhesive between the magnetic underlayer and the ferromagnetic plate.
Une telle plaque ferromagnétique améliore le maintien du module sur son support magnétique en augmentant la force nécessaire pour arracher le module du support. Such a ferromagnetic plate improves the holding of the module on its magnetic support by increasing the force necessary to tear the module from the support.
L’épaisseur de la couche inférieure peut être comprise entre 10pm et 10 mm. The thickness of the lower layer can be between 10µm and 10mm.
Couche d’encapsulation Wrapping layer
La couche d’encapsulation peut être formée d’au moins deux sous-couches laminées entre elles, une sous-couche s’étendant entre les structures photovoltaïques et la couche supérieure et une sous-couche s’étendant entre les structures photovoltaïques et la couche inférieure. The encapsulation layer can be formed of at least two sub-layers laminated together, a sub-layer extending between the photovoltaic structures and the upper layer and a sub-layer extending between the photovoltaic structures and the layer lower.
De préférence, la couche d’encapsulation est en un matériau flexible. La couche d’encapsulation peut être en un matériau choisi parmi les élastomères réticulés d’éthylène-acétate de vinyle (EVA), les élastomères à base de polyoléfine thermoplastique réticulée (POR), les élastomères thermoplastiques à base de polyoléfine (TPO), silicone, polyuréthane thermoplastique, polyvinyl butyral et/ou polyoléfine fonctionnelle, les ionomères (copolymère thermoplastique « réticulé ioniquement »). Preferably, the encapsulation layer is made of a flexible material. The encapsulation layer may be made of a material chosen from crosslinked ethylene-vinyl acetate (EVA) elastomers, crosslinked thermoplastic polyolefin (POR)-based elastomers, polyolefin-based thermoplastic elastomers (TPO), silicone , thermoplastic polyurethane, polyvinyl butyral and/or functional polyolefin, ionomers (“ionically cross-linked” thermoplastic copolymer).
L’épaisseur de la couche d’encapsulation peut être supérieure ou égale à 200 pm, notamment comprise entre 400pmet 1000pm. The thickness of the encapsulation layer may be greater than or equal to 200 μm, in particular between 400 μm and 1000 μm.
De préférence, les couches supérieure, inférieure et d’encapsulation sont en des matériaux présentant chacun un module de Young inférieurs à 5 GPa. Preferably, the upper, lower and encapsulation layers are made of materials each having a Young's modulus of less than 5 GPa.
De préférence, la couche d’encapsulation est en contact direct avec les couches supérieure et inférieure. Preferably, the encapsulation layer is in direct contact with the upper and lower layers.
Module Module
Le module et/ou les sous-modules peuvent être de contours polygonaux, notamment rectangulaire ou carré, ovale ou circulaire. The module and/or the sub-modules can have polygonal contours, in particular rectangular or square, oval or circular.
La longueur du module peut être comprise entre 75 mm et 4 m, mieux entre 1 m et 2 m. The length of the module can be between 75 mm and 4 m, better still between 1 m and 2 m.
De préférence, le module comporte un boitier de jonction relié électriquement aux structures photovoltaïques pour le raccordement des structures photovoltaïques à une source électrique. Preferably, the module comprises a junction box electrically connected to the photovoltaic structures for connecting the photovoltaic structures to an electrical source.
Le module peut comporter un adhésif ou un ou plusieurs rubans adhésifs double- face sur sa surface inférieure destiné à venir en contact avec le support. L’adhésif ou le ruban peut être agencé sur la périphérie de la surface inférieure du module, notamment sur certaines zones seulement ou sur toute la périphérie de cette dernière. The module may comprise an adhesive or one or more double-sided adhesive tapes on its lower surface intended to come into contact with the support. The adhesive or tape can be arranged on the periphery of the lower surface of the module, in particular on certain areas only or on the entire periphery of the latter.
Procédé de fabrication Manufacturing process
L’invention concerne également un procédé de fabrication du module tel que décrit précédemment comportant : la détermination de la différence de dimension entre le module lorsqu’il est plan et le même module apposée sur une surface présentant un rayon de courbure correspondant à un rayon de courbure maximale prédéterminée, la découpe dans l’épaisseur de l’empilement multicouches de la ou des fentes de sorte que la largeur cumulée des fentes selon au moins une direction soit supérieure ou égale à la différence de dimension déterminée. Le procédé peut comporter le remplissage de la ou des fentes avec un matériau de remplissage, notamment en base polymère. The invention also relates to a method of manufacturing the module as described previously comprising: the determination of the difference in dimension between the module when it is flat and the same module affixed to a surface having a radius of curvature corresponding to a radius of predetermined maximum curvature, the cutting in the thickness of the multilayer stack of the slot(s) so that the cumulative width of the slots in at least one direction is greater than or equal to the difference in dimension determined. The method may include filling the slot or slots with a filling material, in particular based on a polymer.
Le procédé peut comporter la lamination des couches supérieure, d’encapsulation et inférieure entre elles. The method may include laminating the top, encapsulating, and bottom layers together.
Le procédé peut comporter l’aimantation de la couche inférieure du module après la lamination des différentes couches entre elles. The process may include the magnetization of the lower layer of the module after the lamination of the different layers together.
Le procédé peut comporter l’ajout d’un adhésif ou d’un ou plusieurs rubans adhésifs sur la surface inférieure du module. The method may include adding an adhesive or one or more adhesive tapes to the bottom surface of the module.
Procédé d’utilisation Method of use
L’invention a également trait à un procédé d’utilisation d’un module photovoltaïque telle que décrit précédemment comportant la déformation du module pour se conformer à une surface, notamment une surface courbe, avec un rayon de courbure supérieur ou égal à 500 mm, mieux supérieur ou égale à 1 m. The invention also relates to a method of using a photovoltaic module as described above comprising the deformation of the module to conform to a surface, in particular a curved surface, with a radius of curvature greater than or equal to 500 mm, better greater than or equal to 1 m.
La surface peut être la toiture d’un véhicule ou d’un bâtiment, notamment une surface magnétique. The surface can be the roof of a vehicle or a building, in particular a magnetic surface.
Le procédé peut comporter l’aimantation du module par sa couche inférieure sur la surface, la surface étant magnétique. The method may include the magnetization of the module by its lower layer on the surface, the surface being magnetic.
Le procédé peut comporter le collage de la surface inférieure du module sur la surface à l’aide d’un adhésif ou de rubans adhésifs double-face. The process may include bonding the bottom surface of the module to the surface using adhesive or double-sided adhesive tapes.
De préférence, la surface sur laquelle est positionnée le module présente un rayon de courbure supérieur ou égal à 500 mm, mieux supérieur ou égale à 1 m. Preferably, the surface on which the module is positioned has a radius of curvature greater than or equal to 500 mm, better still greater than or equal to 1 m.
Le procédé peut comporter le positionnement du module de sorte que la direction du module ayant le plus petit rayon de courbure soit parallèle à la direction du module interceptant le plus grand nombre de fente, notamment perpendiculaire à la direction d’extension des fentes. The method may include positioning the module so that the direction of the module having the smallest radius of curvature is parallel to the direction of the module intercepting the greatest number of slots, in particular perpendicular to the direction of extension of the slots.
Brève description des dessins Brief description of the drawings
[Fig 1] représente schématiquement un exemple de module photovoltaïque,[Fig 1] schematically represents an example of a photovoltaic module,
[Fig 2] est une vue en coupe selon II-II de l’exemple de module photovoltaïque de la figure 1, [Fig 2] is a sectional view along II-II of the photovoltaic module example of Figure 1,
[Fig 3] est une vue en coupe selon III-III de l’exemple de module photovoltaïque de la figure 1, [Fig 4] est une vue en coupe selon IV-IV de l’exemple de module photovoltaïque de la figure 1, [Fig 3] is a sectional view along III-III of the photovoltaic module example of Figure 1, [Fig 4] is a sectional view along IV-IV of the photovoltaic module example of Figure 1,
[Fig 5] est un grossissement du détail V de la figure 1, [Fig 5] is an enlargement of detail V in figure 1,
[Fig 6] représente schématiquement une variante de module photovoltaïque, [Fig 7] représente schématiquement une variante de module photovoltaïque, [Fig 8] représente schématiquement une variante de module photovoltaïque, [Fig 9] représente schématiquement une variante de module photovoltaïque, et [Fig 10] est une vue en coupe d’une variante de module photo voltaïque. [Fig 6] schematically represents a variant of photovoltaic module, [Fig 7] schematically represents a variant of photovoltaic module, [Fig 8] schematically represents a variant of photovoltaic module, [Fig 9] schematically represents a variant of photovoltaic module, and [ Fig 10] is a sectional view of a photo voltaic module variant.
Description détaillée detailed description
On a illustré sur les figures 1 à 4 un module photovoltaïque 10 comportant un empilement multicouche formé par au moins une couche supérieure transparente 20 et une couche inférieure 25 définissant les surfaces opposées du module 10 présentant des structures photo voltaïque s 30 dans une couche d’encapsulation 22, comme cela est visible sur la figure 2. Les surfaces du module sont de contour rectangulaire. Le module 10 comporte entre 2 et 60 structures photovoltaïques 30. There is illustrated in Figures 1 to 4 a photovoltaic module 10 comprising a multilayer stack formed by at least one transparent upper layer 20 and a lower layer 25 defining the opposite surfaces of the module 10 having photovoltaic structures s 30 in a layer of encapsulation 22, as can be seen in FIG. 2. The surfaces of the module have a rectangular outline. The module 10 comprises between 2 and 60 photovoltaic structures 30.
De préférence, la couche supérieure 20 et la couche inférieure 25 sont en un matériau flexible, notamment la couche supérieure 20 est en ETFE ou PET et la couche inférieure 25 est par exemple en caoutchouc nitrile contenant des ferrites magnétisées. De préférence, la couche supérieure 20 et la couche inférieure 25 présentent des épaisseurs respectives 5 et z comprise entre 10 pm et 1 mm pour l’épaisseur 5 et entre 500 pm et 10 mm pour l’épaisseur z, notamment sensiblement égales à 500pm. La couche inférieure 25 peut être transparente ou opaque. Preferably, the upper layer 20 and the lower layer 25 are made of a flexible material, in particular the upper layer 20 is made of ETFE or PET and the lower layer 25 is for example made of nitrile rubber containing magnetized ferrites. Preferably, the upper layer 20 and the lower layer 25 have respective thicknesses 5 and z of between 10 μm and 1 mm for the thickness 5 and between 500 μm and 10 mm for the thickness z, in particular substantially equal to 500 μm. The lower layer 25 can be transparent or opaque.
La couche d’encapsulation 22 peut être formée durant la fabrication par lamination entre elles de deux sous-couches disposées de part et d’autre des structures photo voltaïque s 30. De préférence, la couche d’encapsulation 22 est en un matériau flexible, notamment en un matériau polymère thermoplastique tel que le TPO. De préférence, la couche d’encapsulation 22 présente une épaisseur e comprise entre 200 et 1000 pm, par exemple sensiblement égale à 400 pm. The encapsulation layer 22 can be formed during manufacture by laminating together two sub-layers arranged on either side of the photovoltaic structures 30. Preferably, the encapsulation layer 22 is made of a flexible material, in particular a thermoplastic polymer material such as TPO. Preferably, the encapsulation layer 22 has a thickness e of between 200 and 1000 μm, for example substantially equal to 400 μm.
Comme illustré sur les figures 1 à 4, la couche d’encapsulation 22 est, de préférence, en contact direct avec les couches supérieure 20 et inférieure 25. As illustrated in Figures 1 to 4, the encapsulation layer 22 is preferably in direct contact with the upper 20 and lower 25 layers.
De préférence, les ferrites magnétisées de la couche inférieure 25 présentent une température de Curie supérieure à la température atteinte par la couche inférieure 25 durant le procédé de fabrication du module, notamment au cours de la lamination des couches entre elles. En variante, les ferrites de la couche inférieure 25 sont magnétisés après l’étape de lamination des couches entre elles, la température de Curie des ferrites peut alors être inférieure à la température maximale de la couche inférieure 25 atteinte durant la lamination des couches entre elles. Preferably, the magnetized ferrites of the lower layer 25 have a Curie temperature higher than the temperature reached by the lower layer 25 during the module manufacturing process, in particular during the lamination of the layers together. As a variant, the ferrites of the lower layer 25 are magnetized after the step of laminating the layers together, the Curie temperature of the ferrites can then be lower than the maximum temperature of the lower layer 25 reached during the lamination of the layers together. .
Dans l’exemple illustré sur les figures 1 à 4, les structures photovoltaïques 30 comportent une unique rangée de cellules photovoltaïques 32 reliées électriquement entre elles en série par des éléments conducteur 35 flexibles, notamment des fils ou rubans conducteurs. Chaque rangée peut comporter une ou plusieurs cellules 35, de préférence entre 2 et 80 cellules 35. De préférence, les structures photovoltaïques 30 sont parallèles entre elles et s’étendent longitudinalement sur une partie de la longueur du module. In the example illustrated in FIGS. 1 to 4, the photovoltaic structures 30 comprise a single row of photovoltaic cells 32 electrically connected together in series by flexible conductive elements 35, in particular conductive wires or strips. Each row can comprise one or more cells 35, preferably between 2 and 80 cells 35. Preferably, the photovoltaic structures 30 are parallel to each other and extend longitudinally over part of the length of the module.
Les cellules 35 de la rangée sont espacées entre elles d’une distance c, mesurée entre les bords les plus proches des cellules adjacentes, comprise entre -2 mm et 200 mm, par exemple sensiblement égale à 3 mm. Dans l’exemple illustré, toutes les cellules 35 sont de même forme sensiblement carrée en vue du dessus et de même épaisseur. Elles s’étendent chacune en vue du dessus sur une surface inférieure ou égale à 246 cm2, notamment comprise entre 243 cm2 et 245 cm2, par exemple sensiblement égale à 244 cm2. Elles sont alignées dans la rangée. Cependant, il pourrait en être autrement, les cellules pourraient être reliées en parallèles, être de formes et/ou dimensions différentes entre elles et/ou ne pas être alignées. Les cellules pourraient par exemple être rectangulaires. The cells 35 of the row are spaced apart by a distance c, measured between the nearest edges of the adjacent cells, of between −2 mm and 200 mm, for example substantially equal to 3 mm. In the example illustrated, all the cells 35 are of the same substantially square shape when viewed from above and of the same thickness. They each extend in top view over an area less than or equal to 246 cm 2 , in particular between 243 cm 2 and 245 cm 2 , for example substantially equal to 244 cm 2 . They are lined up in row. However, it could be otherwise, the cells could be connected in parallel, be of different shapes and/or dimensions between them and/or not be aligned. The cells could for example be rectangular.
Les structures photovoltaïques 30 adjacentes sont espacées entre elles d’une distance d, mesurée entre les bords les plus proches des cellules, comprise entre 1 mm et 50 mm, notamment sensiblement égale à 10 mm. The adjacent photovoltaic structures 30 are spaced apart by a distance d, measured between the closest edges of the cells, of between 1 mm and 50 mm, in particular substantially equal to 10 mm.
Les structures photovoltaïques 30 sont espacées entre elles latéralement et sont séparées par une fente 40 dans l’épaisseur du module. La fente 40 traverse l’ensemble des couches 20, 22 et 25 précédemment citées sur une longueur /inférieure à la dimension du module selon la direction d’extension longitudinale de la fente, ici la longueur D du module. The photovoltaic structures 30 are spaced from each other laterally and are separated by a slot 40 in the thickness of the module. The slot 40 crosses all of the layers 20, 22 and 25 mentioned above over a length / less than the dimension of the module in the direction of longitudinal extension of the slot, here the length D of the module.
Les structures photovoltaïques 30 adjacentes sont reliées entre elles, notamment en série, par des éléments conducteurs flexibles 37, notamment des fils ou rubans conducteurs, reliant entre elles les cellules d’extrémité adjacentes des structures photovoltaïques adjacentes, les éléments conducteurs 37 passent dans la couche d’encapsulation 22 à l’extrémité de la fente 40. Les fentes 40 s’étendent dans l’espace entre les structures photovoltaïques 30 adjacentes sur la longueur du module 10 parallèlement aux structures photovoltaïques 30. De préférence, comme cela est illustré, les fentes 40 s’étendent sur toute la longueur des structures photovoltaïques 30. Dans l’exemple illustré, les fentes 40 sont ouvertes à une extrémité 42 vers l’extérieur et sont fermées à l’autre extrémité 45. Les fentes 40 successives le long d’une direction perpendiculaire à la direction d’extension longitudinale des fentes s’ouvre alternativement vers l’extérieur sur les bords opposés du module 10. De la sorte, le module 10 forme un circuit de matière continu qui serpente entre les fentes et dans lequel un circuit électrique continu est formé par le montage en série des cellules 32 reliées électriquement par les éléments conducteurs 35 et 37. Les fentes 40 peuvent s’étendre sur une longueur f supérieure ou égale à 95% de la longueur D du module. De préférence, la fente 40 est la plus longue possible tout en gardant une tenue mécanique du module, une interconnexion électrique des structures photovoltaïques et une isolation électrique entre les cellules adjacentes suffisante selon les normes IEC 61215 et 61730. Par exemple, la bande de matière en extrémité fermée 45 de la fente peut présenter une dimension m mesurée entre l’extrémité fermée 45 de la fente et le bord opposé du module supérieure ou égale à 5 mm. The adjacent photovoltaic structures 30 are interconnected, in particular in series, by flexible conductive elements 37, in particular conductive wires or strips, connecting together the adjacent end cells of the adjacent photovoltaic structures, the conductive elements 37 pass through the layer encapsulation 22 at the end of slot 40. The slots 40 extend into the space between adjacent photovoltaic structures 30 along the length of the module 10 parallel to the photovoltaic structures 30. Preferably, as shown, the slots 40 extend the full length of the photovoltaic structures 30 In the example illustrated, the slots 40 are open at one end 42 towards the outside and are closed at the other end 45. The successive slots 40 along a direction perpendicular to the direction of longitudinal extension of the slots alternately opens outwards on the opposite edges of the module 10. In this way, the module 10 forms a continuous circuit of material which winds between the slots and in which a continuous electric circuit is formed by the series connection of the cells 32 electrically connected by the conductive elements 35 and 37. The slots 40 may extend over a length f greater than or equal to 95% of the length D of the module. Preferably, the slot 40 is as long as possible while maintaining a mechanical strength of the module, an electrical interconnection of the photovoltaic structures and sufficient electrical insulation between the adjacent cells according to the IEC 61215 and 61730 standards. For example, the strip of material at the closed end 45 of the slot may have a dimension m measured between the closed end 45 of the slot and the opposite edge of the module greater than or equal to 5 mm.
Comme cela est illustré sur les figures 3 à 5, les fentes 40 présentent une largeur décroissante de leur extrémité ouverte 42 jusqu’à leur extrémité fermée 45 et l’extrémité fermée est élargie par une ouverture de contour sensiblement circulaire ou ovale. Une telle structure permet une meilleure conformabilité à une surface courbe. L’extrémité élargie permet de réduire les contraintes mécaniques en extrémité de la fente dû au rapprochement des différentes parties du module. Cela évite la déformation ou le soulèvement du module mais rend également plus difficile la propagation d’une fissure à l’extrémité fermée 45. La plus grande largeur t de la fente 40 au niveau de l’ouverture vers l’extérieur peut être comprise entre 1 mm et 49 mm, par exemple sensiblement égal à 5 mm. De préférence, la plus grande largeur t est définie de sorte à conserver les distances d’isolation électrique nécessaires des normes IEC 61215 et 61730 entre les cellules 32. Les bords longitudinaux opposées de la fente peuvent former entre eux un angle a inférieur ou égale à 15°, mieux inférieur ou égale à 10°, et/ou inférieur ou égal à 1°. L’extrémité élargie 45 de la fente peut présenter une largeur u sensiblement égale à la plus grande largeur t de la fente 40. L’invention n’est pas limitée à cette forme de fente, toute autre forme de fente est envisagée, notamment une fente de contour rectangle arrondie ou non à son extrémité ou une fente de largeur variable sur une partie seulement de la longueur de la fente. As illustrated in Figures 3 to 5, the slots 40 have a decreasing width from their open end 42 to their closed end 45 and the closed end is widened by an opening of substantially circular or oval outline. Such a structure allows better conformability to a curved surface. The widened end makes it possible to reduce the mechanical stresses at the end of the slot due to the bringing together of the different parts of the module. This avoids deformation or lifting of the module but also makes it more difficult for a crack to propagate at the closed end 45. The greatest width t of the slot 40 at the opening to the outside can be between 1 mm and 49 mm, for example substantially equal to 5 mm. Preferably, the greatest width t is defined so as to maintain the necessary electrical insulation distances of the IEC 61215 and 61730 standards between the cells 32. The opposite longitudinal edges of the slot can form between them an angle a less than or equal to 15°, better still less than or equal to 10°, and/or less than or equal to 1°. The widened end 45 of the slot may have a width u substantially equal to the greatest width t of the slot 40. The invention is not limited to this shape of slot, any other shape of slot is envisaged, in particular a slot of rectangular contour, rounded or not at its end, or a slot of variable width over only part of the length of the slot.
De préférence, les fentes 40 sont réalisées par découpe du module après l’empilement et assemblage des différentes couches Preferably, the slots 40 are made by cutting the module after stacking and assembling the different layers
Le circuit de connexion s’étend d’une borne négative 60 à une borne positive 62 qui sont reliés à une boite de jonction ou circuit électronique associé au module non représenté qui peut être attenante au module ou déportée hors du module. La boite de jonction permet de relier électriquement le module 10 à l’extérieur. The connection circuit extends from a negative terminal 60 to a positive terminal 62 which are connected to a junction box or electronic circuit associated with the module, not shown, which can be adjacent to the module or remote from the module. The junction box is used to electrically connect module 10 to the outside.
Lors de son utilisation, le module 10 est positionné sur une surface. Selon la courbure de la surface, les structures photovoltaïques 30 vont pouvoir se rapprocher plus ou moins grâce aux fentes 40, ce qui permet de courber le module selon l’axe médian X sur une surface courbe de faible rayon de courbure. Le rayon de courbure est supérieur ou égal à 500 mm, mieux supérieur ou égal à 1 m. Le module présente également une certaine flexibilité dans la longueur du fait de l’espace entre les cellules des structures photovoltaïques. De préférence, le module est positionné sur la surface de sorte que la direction de plus grande courbure de la surface soit parallèle à la direction de plus grande courbure du module, notamment l’axe médian transversal X. La surface peut être courbe et présente un rayon de courbure maximal supérieur ou égal à 500 mm, mieux 1 m. When in use, the module 10 is positioned on a surface. Depending on the curvature of the surface, the photovoltaic structures 30 will be able to approach more or less thanks to the slots 40, which makes it possible to bend the module along the median axis X on a curved surface with a small radius of curvature. The radius of curvature is greater than or equal to 500 mm, better still greater than or equal to 1 m. The module also has some flexibility in length due to the space between the cells of the photovoltaic structures. Preferably, the module is positioned on the surface so that the direction of greatest curvature of the surface is parallel to the direction of greatest curvature of the module, in particular the transverse median axis X. The surface may be curved and has a maximum radius of curvature greater than or equal to 500 mm, better 1 m.
Le fait que la couche inférieure 25 soit magnétisée de part la présence des ferrites magnétisées facilite son intégration sur une surface ferromagnétique, notamment en tôle ou acier, tel que la toiture d’une voiture ou une toiture d’immeuble en bac acier. The fact that the lower layer 25 is magnetized due to the presence of the magnetized ferrites facilitates its integration on a ferromagnetic surface, in particular sheet metal or steel, such as the roof of a car or a roof of a steel deck building.
Les figures 6 à 9 illustrent des variantes de réalisation du module 10.Figures 6 to 9 illustrate variant embodiments of module 10.
Le mode de réalisation de la figure 6 diffère du mode de réalisation des figures 1 à 5 par le fait que les structures photovoltaïques 30 et les fentes 40 s’étendent dans la largeur k du module 10. The embodiment of Figure 6 differs from the embodiment of Figures 1 to 5 in that the photovoltaic structures 30 and the slots 40 extend in the width k of the module 10.
Le mode de réalisation de la figure 7 diffère du mode de réalisation des figures 1 à 5 en la forme des fentes 40. Les fentes 40 sont toutes identiques et présentent deux extrémités fermées 45 et 47 de la même forme que celle décrite précédemment. Les fentes 40 peuvent être de largeur décroissante du centre de la fente vers les extrémités 45 et 47. Les structures photovoltaïques 30 sont reliées en série par passage des éléments conducteurs les reliant alternativement dans la bande de matière d’un côté ou de l’autre des fentes. En variante, les structures photovoltaïques 30 peuvent être reliées en parallèles par passage des éléments conducteurs les reliant dans les bandes de matière des deux côtés des fentes 40. The embodiment of FIG. 7 differs from the embodiment of FIGS. 1 to 5 in the shape of the slots 40. The slots 40 are all identical and have two closed ends 45 and 47 of the same shape as that described previously. The slots 40 can be of decreasing width from the center of the slot towards the ends 45 and 47. The photovoltaic structures 30 are connected in series by passing conductive elements connecting them alternately in the strip of material on one side or the other. slits. In As a variant, the photovoltaic structures 30 can be connected in parallel by passing conductive elements connecting them in the strips of material on both sides of the slots 40.
Les modes de réalisation des figures 8 et 9 diffèrent du mode de réalisation des figures 1 à 5 en ce que le module 10 comporte deux sous-modules 10a et 10b juxtaposées dans la longueur du module 10, les structures photovoltaïques 30 des deux sous modules s’étendant également dans la longueur du module 10. Les deux sous-modules 10a et 10b sont symétriques l’un par rapport à l'autre relativement à un axe médian du module X transversal et sont reliés électriquement en parallèle l'un par rapport à l'autre. Les structures photovoltaïques 30a et 30b des sous-modules 10a et 10b présentent des cellules photovoltaïques 35 reliées électriquement entre elles en séries par des éléments conducteurs agencées selon deux rangées longitudinales. Les structures photo voltaïque s 30a et 30b de chaque sous-module 10a et 10b sont séparées entre elles par les fentes 40a et 40b respectivement. Les fentes 40a du sous-module 10a sont fermées à une extrémité 45 à proximité de l’axe médian X et ouvertes vers l’extérieur sur le bord du sous-module 10a opposé relativement à l’axe médian X. Les fentes 40b du sous-module 10b sont fermées à une extrémité 45 à proximité de l’axe médian X et ouvertes vers l’extérieur sur le bord du sous-module 10b opposé relativement à l’axe médian X. Les structures photovoltaïques 30a du sous-module 10a reliées électriquement entre elles au niveau de la partie centrale du module. Il en est de même pour les structures photovoltaïques 30b du sous-module 10a. Les deux sous-modules 10a et 10b peuvent être reliées électriquement entre eux en parallèle, comme illustré sur la figure 8, ou être reliées entre eux en série, comme illustré sur la figure 9. The embodiments of Figures 8 and 9 differ from the embodiment of Figures 1 to 5 in that the module 10 comprises two sub-modules 10a and 10b juxtaposed along the length of the module 10, the photovoltaic structures 30 of the two sub-modules s also extending in the length of the module 10. The two sub-modules 10a and 10b are symmetrical with respect to each other relative to a median axis of the transverse module X and are electrically connected in parallel with respect to each other. the other. The photovoltaic structures 30a and 30b of the sub-modules 10a and 10b have photovoltaic cells 35 electrically connected together in series by conductive elements arranged in two longitudinal rows. The photovoltaic structures 30a and 30b of each sub-module 10a and 10b are separated from each other by the slots 40a and 40b respectively. The slots 40a of the sub-module 10a are closed at one end 45 close to the central axis X and open towards the exterior on the edge of the opposite sub-module 10a relative to the central axis X. The slots 40b of the sub-module -module 10b are closed at one end 45 close to the central axis X and open outwards on the edge of the opposite sub-module 10b relative to the central axis X. The photovoltaic structures 30a of the sub-module 10a connected electrically between them at the level of the central part of the module. The same is true for the photovoltaic structures 30b of the sub-module 10a. The two sub-modules 10a and 10b can be electrically connected together in parallel, as illustrated in figure 8, or be connected together in series, as illustrated in figure 9.
Le mode de réalisation de la figure 10 diffère du mode de réalisation des figures 1 à 5 en la structure de la couche inférieure 25. La couche inférieure 25 est multicouche est comporte une sous-couche 70 ayant la structure précédemment mentionnée, i.e. étant par exemple en caoutchouc nitrile contenant des ferrites magnétisées, et une plaque ferromagnétique 72. La plaque ferromagnétique 72 peut être encapsulée dans une sous- couche d’encapsulant 74 comme cela est illustré. En variante, elle est fixée à la sous-couche 70 par un adhésif ou encapsulée dans la couche d’encapsulation 22. The embodiment of FIG. 10 differs from the embodiment of FIGS. 1 to 5 in the structure of the lower layer 25. The lower layer 25 is multi-layered and comprises a sub-layer 70 having the previously mentioned structure, i.e. being for example nitrile rubber containing magnetized ferrites, and a ferromagnetic plate 72. The ferromagnetic plate 72 may be encapsulated in an underlayer of encapsulant 74 as shown. Alternatively, it is attached to the underlayer 70 by an adhesive or encapsulated in the encapsulation layer 22.
Le module 10 peut également compoter un adhésif ou un ruban adhésif 80 sur sa face inférieure destinée à venir en contact avec la surface à couvrir, comme cela est visible sur la figure 10, l’adhésif ou le ruban adhésif 80 peut être positionné sur la périphérie de la fac inférieure. The module 10 can also have an adhesive or an adhesive tape 80 on its underside intended to come into contact with the surface to be covered, as can be seen in Fig. 10, adhesive or tape 80 may be positioned on the periphery of the lower face.
L’invention n’est pas limitée aux modes de réalisation qui viennent d’être décrit.The invention is not limited to the embodiments which have just been described.
Les caractéristiques des différents modes de réalisation peuvent être combinées entre elles indépendamment les unes des autres lorsqu’elles sont compatibles. The characteristics of the different embodiments can be combined with each other independently of each other when they are compatible.
Par exemple, le module peut avoir toute autre forme, en fonction de la surface à couvrir. Les fentes peuvent prendre d’autres formes que celles décrites. Elles peuvent ne pas être toutes parallèles entre elles et/ou de de forme différentes. Les structures photovoltaïques peuvent présenter plus de deux rangées. Les structures photovoltaïques adjacentes peuvent être inclinées l’une par rapport à l’autre. Les cellules d’une rangée peuvent être agencées en quinconce. Les fentes peuvent être remplies d’un matériau élastique. For example, the module can have any other shape, depending on the surface to be covered. The slots can take other shapes than those described. They may not all be parallel to each other and/or of different shapes. The photovoltaic structures can have more than two rows. Adjacent photovoltaic structures can be tilted relative to each other. The cells of a row can be staggered. The slots can be filled with an elastic material.

Claims

Revendications Claims
1. Module pho to voltaïque (10) comportant un empilement multicouche comportant au moins : une couche supérieure (20) transparente définissant une surface supérieure du module, une couche inférieure (25) définissant une surface inférieure du module, au moins deux structures photovoltaïques (30) encapsulées dans une couche d’encapsulation polymère (22) transparente agencée entre les couches inférieure (25) et supérieure (20), les deux structures photovoltaïques (30) étant espacés entre elles latéralement, et au moins une fente (40) dans l’épaisseur du module photovoltaïque (10) s’étendant longitudinalement au moins partiellement entre les deux structures photovoltaïques (30), la fente (40) étant fermée à au moins une de ses extrémités longitudinales (45). 1. Photovoltaic module (10) comprising a multilayer stack comprising at least: a transparent upper layer (20) defining an upper surface of the module, a lower layer (25) defining a lower surface of the module, at least two photovoltaic structures ( 30) encapsulated in a transparent polymer encapsulation layer (22) arranged between the lower (25) and upper (20) layers, the two photovoltaic structures (30) being laterally spaced between them, and at least one slot (40) in the thickness of the photovoltaic module (10) extending longitudinally at least partially between the two photovoltaic structures (30), the slot (40) being closed at at least one of its longitudinal ends (45).
2. Module selon la revendication 1, comportant plusieurs fentes (40) dans l’épaisseur du module photovoltaïque (10), notamment rectiligne et parallèles entre elles, s’étendant chacune longitudinalement entre deux structures photovoltaïques (30) adjacentes, les fentes (40) étant chacune fermées à au moins une de leurs extrémités longitudinales (45). 2. Module according to claim 1, comprising several slots (40) in the thickness of the photovoltaic module (10), in particular rectilinear and parallel to each other, each extending longitudinally between two adjacent photovoltaic structures (30), the slots (40 ) each being closed at at least one of their longitudinal ends (45).
3. Module selon l’une quelconque des revendications précédentes, dans lequel chaque structure photovoltaïque (30) comporte au moins une cellule photovoltaïque (32), mieux une pluralité de cellules photovoltaïques (32) reliées électriquement entre elles par des éléments conducteurs flexibles (35), notamment des fils, des rubans conducteurs ou en connexion directe, et agencées selon au moins une rangée. 3. Module according to any one of the preceding claims, in which each photovoltaic structure (30) comprises at least one photovoltaic cell (32), better still a plurality of photovoltaic cells (32) electrically connected together by flexible conductive elements (35 ), in particular wires, conductive strips or in direct connection, and arranged in at least one row.
4. Module selon l’une quelconque des revendications précédentes, dans lequel chaque structure photovoltaïque (30) comporte une pluralité de cellules photovoltaïques (32) reliées électriquement entre elles par des éléments conducteurs flexibles (35), notamment des fils, rubans conducteurs ou connexion directe, et agencées selon au moins deux rangées, notamment parallèles entre elles, les rangées étant reliées électriquement entre elles, de préférence par des éléments conducteurs flexibles, notamment des fils, des rubans conducteurs ou en connexion directe. 4. Module according to any one of the preceding claims, in which each photovoltaic structure (30) comprises a plurality of photovoltaic cells (32) electrically interconnected by flexible conductive elements (35), in particular wires, conductive strips or connection direct, and arranged in at least two rows, in particular parallel to each other, the rows being connected electrically between them, preferably by flexible conductive elements, in particular wires, conductive strips or in direct connection.
5. Module selon l’une quelconque des revendications précédentes, dans lequel les structures photovoltaïques (30) adjacentes sont espacées entre elles d’une distance d inférieure ou égale à 50 mm. 5. Module according to any one of the preceding claims, in which the adjacent photovoltaic structures (30) are spaced apart by a distance d less than or equal to 50 mm.
6. Module selon l’une quelconque des revendications précédentes, dans lequel les structure photovoltaïques (30) sont électriquement reliées entre elles au sein de la couche d’encapsulation (22), notamment par un ou plusieurs éléments conducteurs (37) encapsulées dans la couche d’encapsulation (22) s’étendant dans une zone du module continue de matière à l’extrémité fermée (45) de la fente (40) entre les structures photovoltaïques (30) adjacentes. 6. Module according to any one of the preceding claims, in which the photovoltaic structures (30) are electrically interconnected within the encapsulation layer (22), in particular by one or more conductive elements (37) encapsulated in the encapsulation layer (22) extending in a zone of the continuous module of material at the closed end (45) of the slot (40) between the photovoltaic structures (30) adjacent.
7. Module selon l’une quelconque des revendications précédentes, dans lequel la ou les fentes (40) présentent une longueur supérieure ou égale à 30%, mieux supérieure ou égale à 40%, mieux supérieure ou égale 50%, encore mieux supérieure ou égale 60%, de préférence supérieure ou égale à 95%, de la dimension du module photovoltaïque dans la direction d’extension de la fente. 7. Module according to any one of the preceding claims, in which the slot or slots (40) have a length greater than or equal to 30%, better still greater than or equal to 40%, better still greater than or equal to 50%, even better still greater than or equal to equal to 60%, preferably greater than or equal to 95%, of the dimension of the photovoltaic module in the direction of extension of the slot.
8. Module selon l’une quelconque des revendications précédentes, dans lequel la ou les fentes (40) présentent une extrémité longitudinale (42) ouverte vers l’extérieur sur un bord du module. 8. Module according to any one of the preceding claims, in which the slot or slots (40) have a longitudinal end (42) open to the outside on one edge of the module.
9. Module selon l’une quelconque des revendications précédentes, dans lequel les extrémités longitudinales ouvertes (42) des fentes successives selon un axe perpendiculaire à la direction d’extension longitudinale des fentes peuvent s’ouvrir alternativement vers l’extérieur sur des bords opposés du module. 9. Module according to any one of the preceding claims, in which the open longitudinal ends (42) of the successive slots along an axis perpendicular to the direction of longitudinal extension of the slots can alternately open outwards on opposite edges. of the module.
10. Module selon l’une quelconque des revendications précédentes, dans lequel l’extrémité fermée (45) de la ou de chacune des fentes (40) présente une forme arrondie, notamment une forme ovale ou circulaire. 10. Module according to any one of the preceding claims, in which the closed end (45) of the or each of the slots (40) has a rounded shape, in particular an oval or circular shape.
11. Module selon l’une quelconque des revendications précédentes, dans lequel la ou les fentes (40) présentent une largeur décroissante sur une partie de longueur f de la ou des fentes (40) vers l’extrémité fermée (45) de la fente (40) correspondante, notamment d’une extrémité ouverte vers l’extérieur (42) sur un bord latéral du module à l’extrémité fermée (45), les bords longitudinaux de la fente formant entre eux un angle a non nul inférieur ou égal à 20°, mieux inférieur ou égal à 15°, encore mieux inférieur ou égal à 5°. 11. Module according to any one of the preceding claims, in which the slot or slots (40) have a decreasing width over a part of length f of the slot or slots (40) towards the closed end (45) of the slot. (40) corresponding, in particular from an open end towards the outside (42) on a lateral edge of the module to the closed end (45), the longitudinal edges of the slot forming between them an angle a non-zero less than or equal to 20°, better still less than or equal to 15°, even better still less than or equal to 5°.
12. Module selon l’une quelconque des revendications précédentes, comportant au moins n structures photovoltaïques (30) espacées entre elles latéralement et séparées entre elles par au moins n-1 fentes (40), n étant supérieur ou égal à 2, mieux supérieur ou égale à 4, les fentes (40) s’étendant préférentiellement sur plus de 50% de la de la dimension du module photovoltaïque dans la direction d’extension de ladite fente, mieux sur plus de 60%, encore mieux sur plus de 95%. 12. Module according to any one of the preceding claims, comprising at least n photovoltaic structures (30) spaced apart laterally and separated from each other by at least n-1 slots (40), n being greater than or equal to 2, better still greater or equal to 4, the slots (40) preferably extending over more than 50% of the dimension of the photovoltaic module in the direction of extension of said slot, better over more than 60%, even better over more than 95 %.
13. Module selon l’une quelconque des revendications précédentes, comportant au moins deux sous-modules (10a, 10b) adjacents et joints comportant chacun au moins deux structures photovoltaïques (30a, 30b) et au moins une fente (40a, 40b) s’étendant entre les deux structures photovoltaïques (30a, 30b) du sous-module (10a, 10b), les fentes (40a, 40b) des deux sous-modules (10a, 10b) s’ouvrent vers l’extérieur sur deux bords latéraux opposées du module (10), chaque structure photovoltaïque (30a, 30b) de deux sous-modules comportant de préférence au moins deux rangées de cellules photovoltaïques (35), notamment parallèles entre elles, les rangées d’une même structure photovoltaïque (30a, 30b) étant reliées électriquement entre elles, notamment en série. 13. Module according to any one of the preceding claims, comprising at least two adjacent and joined sub-modules (10a, 10b) each comprising at least two photovoltaic structures (30a, 30b) and at least one slot (40a, 40b) s extending between the two photovoltaic structures (30a, 30b) of the sub-module (10a, 10b), the slots (40a, 40b) of the two sub-modules (10a, 10b) open outwards on two lateral edges of the module (10), each photovoltaic structure (30a, 30b) of two sub-modules preferably comprising at least two rows of photovoltaic cells (35), in particular parallel to each other, the rows of the same photovoltaic structure (30a, 30b) being electrically interconnected, in particular in series.
14. Module selon l’une quelconque des revendications précédentes, dans lequel la couche inférieure (25) est magnétique. 14. Module according to any one of the preceding claims, in which the lower layer (25) is magnetic.
15. Procédé de fabrication du module (10) selon l’une quelconque des revendications précédentes, comportant : la détermination de la différence de dimension entre le module (10) lorsqu’il est plan et le même module apposée sur une surface présentant un rayon de courbure correspondant à un rayon de courbure maximale prédéterminée, la découpe dans l’épaisseur de l’empilement multicouches de la ou des fentes (30) de sorte que la largeur cumulée des fentes (40) selon au moins une direction soit supérieure ou égale à la différence de dimension déterminée. 15. A method of manufacturing the module (10) according to any one of the preceding claims, comprising: determining the difference in dimension between the module (10) when it is flat and the same module affixed to a surface having a radius of curvature corresponding to a predetermined maximum radius of curvature, the cutting in the thickness of the multilayer stack of the slot(s) (30) so that the cumulative width of the slots (40) in at least one direction is greater than or equal to the determined dimension difference.
16. Procédé d’utilisation d’un module photovoltaïque (10) selon l’une quelconque des revendications 1 à 14, comportant la déformation du module (10) pour se conformer à une surface, notamment une surface courbe avec un rayon de courbure supérieur ou égal à 500 mm, mieux supérieur ou égale à 1 m. 16. Method of using a photovoltaic module (10) according to any one of claims 1 to 14, comprising deforming the module (10) to conform to a surface, in particular a curved surface with a greater radius of curvature or equal to 500 mm, better still greater than or equal to 1 m.
EP22769733.1A 2021-09-07 2022-08-31 Flexible photovoltaic module Pending EP4399748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2109356A FR3126810A1 (en) 2021-09-07 2021-09-07 Flexible photovoltaic module
PCT/EP2022/074182 WO2023036663A1 (en) 2021-09-07 2022-08-31 Flexible photovoltaic module

Publications (1)

Publication Number Publication Date
EP4399748A1 true EP4399748A1 (en) 2024-07-17

Family

ID=78827919

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22769733.1A Pending EP4399748A1 (en) 2021-09-07 2022-08-31 Flexible photovoltaic module

Country Status (3)

Country Link
EP (1) EP4399748A1 (en)
FR (1) FR3126810A1 (en)
WO (1) WO2023036663A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860509A (en) * 1987-05-18 1989-08-29 Laaly Heshmat O Photovoltaic cells in combination with single ply roofing membranes
DE10356690B4 (en) * 2003-07-05 2008-07-03 Pvflex Solar Gmbh Flexible solar module for roof integration with crystalline silicon cells
JP5300538B2 (en) * 2009-03-13 2013-09-25 三洋電機株式会社 Solar cell module
US20160126380A1 (en) 2014-10-30 2016-05-05 Sung Un CHANG Flexible solar panel and method of fabricating the same
KR20160050659A (en) 2014-10-30 2016-05-11 장성은 Process of flexible solar panel and its solar panel system
KR101775977B1 (en) 2016-03-30 2017-09-20 (재)한국나노기술원 Manufacturing method of flexible solar cell module and flexible solar cell module thereby
CN106299002B (en) 2016-09-14 2017-07-14 中国电子科技集团公司第四十八研究所 Flexible solar cell component and its preparation method and application
CN110073501A (en) * 2016-12-15 2019-07-30 松下知识产权经营株式会社 Solar cell module
KR102407847B1 (en) 2018-12-03 2022-06-10 박은주 A Manufacturing Method of Flexible Solar Panel and Flexible Solar Panel Thereof
CN109920878B (en) 2019-02-28 2021-05-07 苏州携创新能源科技有限公司 Manufacturing method of flexible photovoltaic module

Also Published As

Publication number Publication date
WO2023036663A1 (en) 2023-03-16
FR3126810A1 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
EP4002491B1 (en) Improved light and flexible photovoltaic module
EP3776668A1 (en) Lightweight and flexible photovoltaic module comprising a front layer consisting of a polymer and a rear layer consisting of a composite material
FR3043840A1 (en) LIGHT PHOTOVOLTAIC MODULE COMPRISING A FRONT GLASS OR POLYMER LAYER AND AN ALVEOLAR REAR LAYER
JP2013501660A (en) Multilayer laminated structure and manufacturing method
FR3024281A1 (en) PHOTOVOLTAIC MODULE FOR RIGID SUPPORT
EP3378102B1 (en) Lightweight photovoltaic module including a front layer made from glass or polymer and a rear layer comprising raised portions
EP3469634B1 (en) Method for manufacturing a photovoltaic module
EP3238273B1 (en) Photovoltaic module comprising a polymer layer provided with recesses forming expansion joints
EP2532038B1 (en) Electrochemical accumulator with packaging comprising at least one polyaryletherketone (paek), and associated film and methods
EP4399748A1 (en) Flexible photovoltaic module
FR3081614A1 (en) PHOTOVOLTAIC MODULE COMPRISING ONE OR MORE BYPASS DIODES ON THE BACK SIDE OF A MODULE PHOTOVOLTAIC CELL
FR3107990A1 (en) LIGHTWEIGHT PHOTOVOLTAIC MODULE FEATURING FRONT AND BACK POLYMER LAYERS AND FIBER REINFORCEMENTS
EP3721482B1 (en) Production of a concentrating sub-module using photovoltaic assembly methods
EP2459404A1 (en) Jointed glass panel comprising comb-shaped insert, and method for manufacturing said glass panel
EP3721481B1 (en) Manufacturing a concentrating sub-module comprising a heat-dissipating material
EP3244456B1 (en) Photovoltaic module including photovoltaic cells arranged with different orientations and associated photovoltaic system
EP4402727A1 (en) Lightweight photovoltaic module comprising a glass and polymer front layer
EP4310924A1 (en) Lightweight photovoltaic module with composite reinforcement frame
EP3175489A1 (en) Electrical and/or electronic device comprising at least two electrical and/or electronic components each employing two systems for mechanical protection.
FR3116651A1 (en) Method for manufacturing a light and flexible photovoltaic module incorporating thermal protection
FR3058832B1 (en) PHOTOVOLTAIC MODULE HAVING AN ADHESION LAYER BETWEEN A PROTECTIVE LAYER AND AN ENCAPSULANT ASSEMBLY
WO2023203289A1 (en) Lightweight, impact-resistant photovoltaic module
WO2024165558A1 (en) Photovoltaic module with a recessed space incorporating a bypass diode
FR3013508A1 (en) PHOTOVOLTAIC MODULE, AND METHOD OF MOUNTING AND REPAIRING
WO2023199005A1 (en) Lightweight photovoltaic module having an integrated composite frame

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240408

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR