EP4377941A1 - Procédé et système de détermination d'un coefficient de friction d'un avion sur une piste d'atterrissage - Google Patents

Procédé et système de détermination d'un coefficient de friction d'un avion sur une piste d'atterrissage

Info

Publication number
EP4377941A1
EP4377941A1 EP22755266.8A EP22755266A EP4377941A1 EP 4377941 A1 EP4377941 A1 EP 4377941A1 EP 22755266 A EP22755266 A EP 22755266A EP 4377941 A1 EP4377941 A1 EP 4377941A1
Authority
EP
European Patent Office
Prior art keywords
data
aircraft
friction
braking
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22755266.8A
Other languages
German (de)
English (en)
Inventor
Laurent Christian Vincent Roger MIRALLES
Christophe BASTIDE
Céline COLONNA CECCALDI
Vincent HUPIN
Benoît MARTY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran SA
Original Assignee
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran SA filed Critical Safran SA
Publication of EP4377941A1 publication Critical patent/EP4377941A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/16Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle
    • B60T7/18Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle operated by wayside apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1703Braking or traction control means specially adapted for particular types of vehicles for aircrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/325Systems specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/36Other airport installations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0091Surveillance aids for monitoring atmospheric conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • G08G5/025Navigation or guidance aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/12Friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/42Arrangement or adaptation of brakes
    • B64C25/426Braking devices providing an automatic sequence of braking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • TITLE Method and system for determining the coefficient of friction of an airplane on a landing strip
  • the present invention relates, in general, to the optimization of airport traffic and the reduction in the number of runway closures which can have very significant financial consequences for airport operators.
  • the invention relates to the determination of the conditions of the landing strips of an airport in order to optimize the use of the strips, while satisfying the safety requirements.
  • the object of the invention is therefore to overcome these drawbacks and to provide a state of the conditions of landing strips for aircraft which is of increased reliability and relevance and which can be used for the optimization of the use of runways by airport operators.
  • the subject of the invention is therefore a method for determining a coefficient of friction of an aircraft on a landing strip which comprises the steps of:
  • the data used to determine the landing runway conditions is the coefficient of friction extracted from a database in which are stored coefficients of friction simulated from various braking scenarios using representative models of the braking of the aircraft on the runway, the coefficient of friction of the aircraft landing on a runway being predicted from the actual data of the aircraft downloaded and from the data stored in the database.
  • the actual data recorded in the aircraft's onboard computers is retrieved, decoded and filtered.
  • the data is filtered by comparing the geolocation of the aircraft with corresponding runway geolocation data
  • a weighting is assigned to the data according to the type of airplane and/or the frequency of acquisition of the data.
  • the filtered data comprises geolocated and weighted data relating to the dynamics of the airplane, the type of airplane and braking, and a runway segment.
  • the coefficients of friction are normalized in pressure, in braking energy and in speed.
  • the method may further comprise a step of storing data relating to predicted coefficients of friction affected by a coefficient of friction.
  • the invention also relates to a system for determining a coefficient of friction of an airplane on a landing strip, comprising a set of models representative of the braking of airplanes, during their landing, a database of simulated friction coefficients for various types of aircraft and various runway conditions and a model for predicting a braking coefficient from real data of the aircraft for which the friction coefficient is determined and from data stored in the database of simulated friction coefficients.
  • FIG 1 is a diagram showing an airport landing strip equipped with a system for determining a coefficient of friction of the aircraft on the runway;
  • FIG 2 illustrates the main phases of a method for determining a coefficient of friction of an airplane on a landing strip according to the invention;
  • FIG 3 shows the simulation architecture of the system of figure 2
  • FIG 4 is a diagram showing the different training phases of the models.
  • FIG 5], [Fig 6], [Fig 7], and [Fig 8] illustrate the calculation of normalized friction coefficients used for runway characterization.
  • figure 1 illustrates the general principle of the determination of a coefficient of friction of an airplane A during its landing on an airstrip P.
  • the coefficient of friction is intended to be predicted from real data downloaded from the on-board computer of the airplane in which data are recorded during the flight, and in particular from data representative of the dynamics of the airplane , these data being compared with data from learning models to predict the evolution of the coefficient of friction as a function of time and of the position of the aircraft on the runway.
  • airplanes are equipped with a braking control unit 1 which communicates with on-board maintenance aid systems 2 in order, in particular, to deliver data relating to the operation of the braking system. These data are recorded in the aircraft's on-board computer.
  • the maintenance aid systems 2 communicate with a telecommunications interface 3, in order to transmit remotely, wirelessly, during landing, the data recorded in the on-board computer and supply them to a computing platform 4, comprising a server S in which the coefficient of friction of the aircraft is calculated then is transmitted to a local platform 5 hosted by the airport operator
  • the data recovered from the on-board computers are for example downloaded at the end of the braking phase, in real time and delayed, for example after the plane has reached the arrival gate of the airport.
  • the onboard data stored in the computer of the aircraft are transferred to the airline (step 8) and are stored on a server of the company (step 9).
  • the data retrieved is the data which is recorded in the computer for the purposes of certification.
  • QAR for "Quick Access Recorder”
  • SAR for "Quick Access Recorder”
  • step 12 these data can then be transferred from the airline's server directly to the calculation server 4 dedicated to calculating the runway conditions (step 10) and are stored there (step 11).
  • this data is decoded.
  • the raw data extracted from the server of the airline company can be decoded before their transfer to the calculation platform 4 so as to extract parameters relating to a precise flight phase (step 13) and a file is sent to the server of platform 4 (step 14).
  • step 15 the data decoded during step
  • step 16 After transfer to platform 4 or transferred during step 14 after decoding, are stored in the server of platform 4 then are filtered (step 16).
  • the raw, undecoded data or the decoded data are transmitted to the server S of the platform 4 preferably using an SLTP link.
  • uploaded data may include aircraft weight, aircraft center of gravity, aircraft type, wheel speed, throttle angle, airspeed aircraft, aircraft deceleration, brake system status, reverser status, spoiler status, brake pedal depression, brake system pressure, and brake piston displacement , wheel weight status, inertial data, aircraft GPS geolocation data, brake type, phase of flight, timestamp data, auto-braking status and pressure command of the braking system.
  • the decoding carried out during step 12 includes the temporal cutting of the data frames to include only the phase of flight from touchdown to an aircraft speed of less than 20 knots (37 km/hour).
  • the decoding delivers the landing data as long as the aircraft speed is above 20 knots or in the absence of an indicator indicating that the braking phase is complete.
  • a time file with all of these parameters is stored on the server S of the computing platform 4.
  • the server of the computing platform first proceeds to a sampling of the data, at a frequency for example comprised between 1 hertz and several hundred hertz depending on the different types of aircraft and configurations.
  • the data transferred to the server of the local platform 5 are filtered, during step 16, so as, in particular, to recover the data relating to the dynamics and the geolocation of the aircraft.
  • the decoded GPS data is compared with geolocation data for runway/airport pairs available in the airport operator's database. If the location does not match, the data is discarded.
  • a general weighting is assigned for each set of flight data according to the type of aircraft and the type of frame (QAR, SAR, etc.) using a configurable configuration table and recorded on the calculation platform 4
  • This table assigns a coefficient adjusted according to the type of aircraft and the frequency of acquisition. For example, for a type of aircraft whose data frame includes a limited number of data, for example for an aircraft type whose frame only has data relating to the braking pressure but does not include data relating at wheel speed, the weighting is lower than if the full data set is available.
  • a frame sampled at 1 hertz such as a QAR frame, is assigned a lower coefficient than a SAR frame at 4 hertz.
  • a vector of the various braking segments with their type and their weighting coefficient is generated, discarding the phases before touchdown and after the aircraft has reached a speed less than 20 knots.
  • Filtered_data (runway_ID; aircraft_type; segment n; braking type; weighting coefficient), and Segment n (data for m; time; position) in which
  • Filtered_data is the filtered output data; aircraft_type is the type of aircraft; runway_ID is a runway geolocation identifier; segment n corresponds to a segment of the runway data for m includes the following dynamic data: aircraft deceleration; aircraft speed; wheel speed; braking system pressure; brake pedal control; self-braking (step 10).
  • the platform 4 includes a number of models 18 representative of braking. It is in particular a model of the aircraft representing its dynamics according to its aerodynamic characteristics, simulating its flight controls, its mass, its center of gravity, the thrust of its engine, the effect of the reverse thrust and spoiler, a model of the braking system and its regulation, and a runway model representing the maximum allowable friction and the friction resulting from the braking efforts.
  • models 18 constitute a closed-loop simulation environment.
  • braking simulation scenarios are also developed (step 19) and the simulation data is transmitted to the platform 4 (step 20) to be stored on a database of simulated friction coefficients 35a of the platform calculation server (step 21).
  • the platform 4 thus comprises a simulation database 22 corresponding to various braking scenarios by varying different test conditions linked to the dynamics of the aircraft, to its characteristics, to the pilot's orders, to runway conditions, bearing in particular on the maximum admissible coefficient of friction,
  • These data include, for example, simulation data relating to the type of aircraft, in particular to different aircraft masses or different landing speeds, to braking, in particular to different braking profiles, to different brake pedal controls , autobraking, thrust reverser and spoilers, different maximum allowable friction coefficients. Some of these scenarios are the result of a configuration as close as possible to real flights.
  • the data from the simulation scenarios are used to train models representative of the braking of airplanes during their landing, for various braking scenarios.
  • the trained models are then stored in the platform 4 server (step 24)
  • simulation data relating to runway conditions stored in database 22 is provided to a runway model 25.
  • the simulation data relating to the type of airplane are transmitted to an airplane model 26 while the simulation data relating to the braking are transmitted to a model 27 of the braking system.
  • the models are therefore implemented, trained and tested according to a phase which therefore begins with a simulation data loading phase 30, for various braking scenarios, a flight breakdown phase 31, by decoding for retaining the data from the touch or “touch down” up to a limit speed value fixed for example at 20 knots and a data processing step 32 in which these data are digitized and additional variables are calculated.
  • the next step 33 corresponds to training the models with the simulation data so as to obtain, at the output, simulated friction coefficient values.
  • step 34 the real data of the airplane is recovered, which are decoded then filtered and injected into a prediction module 35 of the platform 4.
  • the prediction compares the real data file to those corresponding to the training model scenario, in time series, to reconstruct the friction value at each time step.
  • the values of the friction coefficients are then stored in memory in a database 35a of simulated friction coefficients, for various types of aircraft and various runway conditions (step 36).
  • the prediction algorithm uses either a random forrest type algorithm, for example with a smoothing effect over a range of 100 to 300 samples depending on the refresh rate of the input data, or on a neural network, for example eight floors.
  • step 33 of training the models is followed by a phase 37 of evaluating the models.
  • model evaluation is implemented, for example by regression, classification or real-time prediction.
  • MAE mean absolute error
  • n number of time steps of the scenario
  • t no time
  • yt value of theoretical m
  • the shape of the resulting friction curve is compared with the result of the scenarios of the training model to define whether or not the maximum friction coefficient admissible by the track has been reached. If this maximum coefficient of friction value is not reached, a characterization of the maximum coefficient of friction seen by the aircraft is defined.
  • the maximum value of the coefficient of friction m Pac is however in practice difficult to obtain without implementing powerful and complex means of calculation on the one hand; and on the other hand actually available in less than 1% of cases. This is in particular the case when the coefficient p max is calculated as a function of the slip.
  • a normalized braking coefficient value m h is thus calculated, in order to make comparisons between aircraft and between braking points.
  • braking energy which is the average of the energy during a given period of time - here experienced at one second (E).
  • the normalization of the coefficient of friction is carried out in braking gain (figure 5), in braking pressure (figure 6), in braking energy (figure 7).
  • the coefficient m is first of all increased by homothety of the average profile of braking gain to pass from the aircraft considered (Aircraft 1 or Aircraft 2) to a reference aircraft (Reference Aircraft).
  • This normalization step thus consists in processing the coefficient of friction so as to characterize it in a reference frame of values of pressure, braking energy and predetermined speeds, so that the frictional effort is only related to the track.
  • This normalized friction coefficient value is then used to make the acquisitions comparable and to implement a characterization of the track or of track segments.
  • the result of the predictions assigned a weighting coefficient is stored in a file and then stored in a server.
  • the method further comprises a step 38 of transferring the results of the calculations of the coefficients of friction.
  • They can thus be used by other applications, such as that which is implemented by the platform 5 for calculating runway conditions of the airport, or other tools for optimizing operational costs, or even for on-board applications for anticipating braking procedures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Regulating Braking Force (AREA)
  • Traffic Control Systems (AREA)
  • Braking Arrangements (AREA)

Abstract

Ce procédé de détermination d'un coefficient de friction d'un avion sur une piste d'atterrissage, comporte les étapes de : -élaboration d'une base de données de coefficients de friction simulés pour divers types d'avions et diverses conditions de pistes en appliquant des données de simulation à des modèles représentatifs du freinage d'avions lors de leur atterrissage, pour divers scénarios de freinage; et -prédiction d'un coefficient de freinage à partir de données réelles de l'avion pour lesquelles le coefficient de friction est déterminé à partir de données stockées dans la base de données

Description

DESCRIPTION
TITRE : Procédé et système de détermination d’un coefficient de friction d’un avion sur une piste d’atterrissage
La présente invention concerne, de manière générale, l’optimisation du trafic des aéroports et la diminution du nombre de fermetures de pistes qui peuvent avoir des conséquences financières très importantes pour les exploitants des aéroports.
Plus particulièrement, l’invention concerne la détermination des conditions des pistes d’atterrissage d’un aéroport afin d’optimiser l’utilisation des pistes, tout en satisfaisant aux exigences de sécurité .
A ce jour, les exploitants des aéroports doivent surveiller les conditions de pistes. Cette surveillance s’effectue soit à partir de rapports radio fournis par les pilotes juste après l’atterrissage, soit à partir de mesures de coefficients de friction réalisées au moyen de camions testeurs qui circulent sur les pistes, ce qui nécessite la fermeture des pistes, soit à partir de capteurs enterrés sur la piste qui déterminent le type et la hauteur de contaminants éventuellement présents sur les pistes, soit à partir de sondes météorologiques, soit à partir d’observations et mesures manuelles par un inspecteur de pistes, soit encore à partir de la combinaison manuelle de toutes ces données.
L’évolution des normes et réglementations en vigueur vise à améliorer la sécurité des opérations sur les plateformes des aéroports et impose la communication des conditions de piste d’un aéroport vers les autorités compétentes, vers les services de contrôle de circulation aérienne (ou ATC) et les pilotes.
Actuellement, les outils disponibles et les méthodes dont disposent les aéroports pour évaluer l’état des pistes restent très subjectifs, peu précis et incomplets. Les services de contrôle de la circulation aérienne des aéroports sont ainsi amenés à prendre plus de marge que nécessaire, ce qui est susceptible d’engendrer des fermetures de pistes infondées, aux conséquences financières très importantes pour les gestionnaires des aéroports. Le but de l’invention est donc de pallier ces inconvénients et de fournir un état des conditions de pistes d’atterrissage pour aéronefs qui soit d’une fiabilité et d’une pertinence accrues et qui puisse être utilisé pour l’optimisation de l’utilisation des pistes par les exploitants des aéroports.
L’invention a donc pour objet un procédé de détermination d’un coefficient de friction d’un avion sur une piste d’atterrissage qui comporte les étapes de :
-élaboration d’une base de données de coefficients de friction simulés pour divers types d’avions et diverses conditions de pistes en appliquant des données de simulation à des modèles représentatifs du freinage d’avions lors de leur atterrissage, pour divers scénarios de freinage ; et
-prédiction d’un coefficient de friction à partir de données réelles de l’avion et à partir de données stockées dans la base de données.
En d’autres termes, les données utilisées pour déterminer les conditions de piste d’atterrissage sont constituées par le coefficient de friction extrait d’une base de données dans laquelle sont stockés des coefficients de friction simulés à partir de divers scénarios de freinage en utilisant des modèles représentatifs du freinage de l’avion sur la piste, le coefficient de friction de l’avion atterrissant sur une piste étant prédit à partir des données réelles de l’avion téléchargées et à partir des données stockées dans la base de données. Les données réelles enregistrées dans les calculateurs de bord de l’avion sont récupérées, décodées et filtrées.
Ces données sont utilisées pour stimuler les modèles pour prédire l’évolution du coefficient de friction.
Lors du filtrage des données récupérées, on filtre les données en comparant la géolocalisation de l’avion avec des données correspondantes de géolocalisation de pistes
De préférence, lors du filtrage, on affecte une pondération aux données en fonction du type d’avion et/ou de la fréquence d’acquisition des données. Dans un mode de mise en œuvre, les données filtrées comportent des données géolocalisées et pondérées relatives à la dynamique de l’avion, au type d’avion et de freinage, et à un segment de piste.
Par exemple, lors de l’étape de prédiction, on utilise un algorithme de type « random forrest », arbre de décision ou réseau de neurones à 8 couches.
On peut prévoir une étape de comparaison des données réelles avec les données de simulation sous forme de séries temporelles pour reconstruire une valeur de friction en fonction du temps. Dans un mode de réalisation, on compare l’évolution du coefficient de friction prédit avec les coefficients de friction simulés pour définir une atteinte d’un coefficient de friction maximum admissible.
Avantageusement, on normalise les coefficients de friction en pression, en énergie de freinage et en vitesse.
Le procédé peut en outre comporter une étape de stockage de données relatives à des coefficients de friction prédits affectées d’un coefficient de friction.
L’invention a également pour objet un système de détermination d’un coefficient de friction d’un avion sur une piste d’atterrissage, comprenant un ensemble de modèles représentatifs du freinage d’avions, lors de leur atterrissage, une base de données de coefficients de friction simulés pour divers types d’avions et diverses conditions de pistes et un modèle de prédiction d’un coefficient de freinage à partir de données réelles de l’avion pour lequel le coefficient de friction est déterminé et à partir de données stockées dans la base de données de coefficients de friction simulés.
D’autres buts, caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d’exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
[Fig 1 ] est un schéma montrant une piste d’atterrissage d’un aéroport équipée d’un système de détermination d’un coefficient de friction de l’avion sur la piste ; [Fig 2] illustre les principales phases d’un procédé de détermination d’un coefficient de friction d’un avion sur une piste d’atterrissage conforme à l’invention ;
[Fig 3] montre l’architecture de simulation du système de la figure 2 ;
[Fig 4] est un schéma montrant les différentes phases d’entraînement des modèles ; et
[Fig 5], [Fig 6], [Fig 7], et [Fig 8] illustrent le calcul de coefficient de friction normalisés utilisés pour la caractérisation des pistes.
On se référera tout d’abord à la figure 1 qui illustre le principe général de la détermination d’un coefficient de friction d’un avion A lors de son atterrissage sur une piste d’atterrissage P.
Le coefficient de friction est destiné à être prédit à partir de données réelles téléchargées à partir du calculateur de bord de l’avion dans lequel sont enregistrées des données lors du vol, et en particulier à partir de données représentatives de la dynamique de l’avion, ces données étant comparées à des données issues de modèles d’apprentissage pour prédire l’évolution du coefficient de friction en fonction du temps et de la position de l’avion sur la piste.
Comme on le voit sur la figure 1 , les avions sont équipés d’une unité 1 de commande de freinage qui communique avec des systèmes embarqués d’aide à la maintenance 2 pour, notamment, délivrer des données relatives au fonctionnement du système de freinage. Ces données sont enregistrées dans le calculateur de bord des avions.
Les systèmes d’aide à la maintenance 2 communiquent avec une interface de télécommunication 3, afin de transmettre à distance, sans fil, lors de l’atterrissage, les données enregistrées dans le calculateur de bord et les fournir à une plateforme de calcul 4, comprenant un serveur S dans lequel le coefficient de friction de l’avion est calculé puis est transmis à une plateforme locale 5 hébergée chez l’exploitant de l’aéroport
Les données récupérées à partir des calculateurs embarqués sont par exemple déchargées à l’issue de la phase de freinage, en temps réel et en différé, par exemple après que l’avion ait atteint la porte d’arrivée de l’aéroport.
En référence à la figure 2, en premier lieu, après stockage dans le calculateur de bord (étape 7) les données de bord stockées dans le calculateur de l’avion sont transférées vers la compagnie aérienne (étape 8) et sont stockées sur un serveur de la compagnie (étape 9). Les données récupérées sont les données qui sont enregistrées dans le calculateur au titre de la certification. Il s’agit au minimum des trames QAR (pour « Quick Access Recorder », en anglais) et de préférence les trames SAR, au format de fichier binaire.
Ces données peuvent être ensuite transférées du serveur de la compagnie aérienne directement vers le serveur de calcul 4 dédié au calcul des conditions de pistes (étape 10) et y sont stockées (étape 11). Lors de l’étape 12 suivante, ces données sont décodées. En variante, les données brutes extraites du serveur de la compagnie aérienne peuvent être décodées avant leur transfert vers la plateforme de calcul 4 de manière à extraire des paramètres concernant une phase de vol précise (étape 13) et un fichier est envoyé vers le serveur de la plateforme 4 (étape 14). Lors de l’étape 15 suivante, les données décodées lors de l’étape
12 après transfert vers la plateforme 4 ou transférées lors de l’étape 14 après décodage, sont stockées dans le serveur de la plateforme 4 puis sont filtrées (étape 16).
Dans tous les cas, les données brutes, non décodées ou les données décodées sont transmises au serveur S de la plateforme 4 de préférence en utilisant un lien SLTP.
Selon le type de l’avion, en fonction de la compagnie et de l’aéroport de destination, les informations téléchargées à partir du calculateur de l’avion sont envoyées vers le serveur au sol de la compagnie lors de l’étape 8 en utilisant un réseau de communication ou manuellement, lors de la phase de roulage ou à l’arrivée à une porte de débarquement. Ces opérations peuvent être manuelles ou être automatisées en utilisant des scripts. Par exemple, les données téléchargées peuvent comprendre la masse de l’avion, le centre de gravité de l’avion, le type d’avion, la vitesse de rotation des roues, l’angle de commande des papillons, la vitesse de l’avion, la décélération de l’avion, le statut du système de freinage, le statut de l’inverseur, le statut du spoiler, l’enfoncement de la pédale de frein, la pression du système de freinage et le déplacement du piston de frein, le statut de la masse sur les roues, des données inertielles, des données de géolocalisation GPS de l’avion, le type de freins, la phase de vol, des données d’horodatage, le statut de l’autofreinage et la pression commandée du système de freinage.
Pour certains types d’avions, il est possible d’obtenir en outre les paramètres suivants : le statut de l’antipatinage, le courant de l’antipatinage, l’état de l’automate, la vitesse des roues consolidée, l’effort vertical. Le décodage réalisé lors de l’étape 12 comprend la découpe temporelle des trames de données pour inclure uniquement la phase de vol depuis le toucher jusqu’à une vitesse d’avion inférieure à 20 nœuds (37 km/heure).
En d’autres termes, le décodage délivre les données d’atterrissage tant que la vitesse de l’avion est supérieure à 20 nœuds ou en l’absence d’indicateur indiquant que la phase de freinage est terminée.
Un fichier temporel avec l’ensemble de ces paramètres est stocké sur le serveur S de la plateforme de calcul 4. Le serveur de la plateforme de calcul procède en premier lieu à un échantillonnage des données, à une fréquence par exemple comprise entre 1 hertz et plusieurs centaines de hertz en fonction des différents types d’avions et de configurations.
Les données transférées vers le serveur de la plateforme locale 5 sont filtrées, lors de l’étape 16, de manière à, notamment, récupérer les données relatives à la dynamique et à la géolocalisation de l’avion.
Il s’agit en particulier de la vitesse de l’avion, du statut du système de freinage, du statut de l’inverseur, du statut du spoiler, de l’état de l’autofrein (« autobrake » en anglais), de l’enfoncement de la pédale de frein, de la phase de vol, de données relatives à la masse de l’avion sur la roue et de données extraites d’un système GPS de positionnement global.
En premier lieu, les données GPS décodées sont comparées avec des données de géolocalisation de couples piste/aéroport disponibles dans la base de données de l’exploitant de l’aéroport. Si la localisation ne correspond pas, la donnée est abandonnée.
Par ailleurs, on affecte une pondération générale pour chaque ensemble de données de vol selon le type d’avion et le type de trame (QAR, SAR, ...) en utilisant une table de configuration paramétrable et enregistrée sur la plateforme de calcul 4. Cette table affecte un coefficient ajusté en fonction du type d’avion et de la fréquence d’acquisition. Par exemple, pour un type d’avion dont la trame de données comporte un nombre restreint de données, par exemple pour un type d’avion dont la trame ne dispose que de données relatives à la pression de freinage mais ne comporte pas de données relatives à la vitesse de la roue, la pondération est plus faible que si l’ensemble des données sont disponibles.
De même, une trame échantillonnée à 1 hertz, telle qu’une trame QAR, est affectée d’un coefficient plus faible qu’une trame SAR à 4 hertz.
En fonction des divers paramètres partiels d’entrée, pour les données considérées comme valides, un vecteur des différents segments de freinage avec leur type et leur coefficient de pondération est généré, en écartant les phases avant toucher et après que l’avion ait atteint une vitesse inférieure à 20 nœuds.
On obtient ainsi, en sortie, les vecteurs suivants :
Filtered_data :(runway_ID ; type_avion ; segment n; type de freinage; coefficient de pondération), et Segment n ( data for m; time; position) dans lesquels
Filtered_data désigne les données de sortie filtrées ; type_avion désigne le type d’avion ; runway_ID est un identifiant de géolocalisation de la piste ; segment n correspond à un segment de la piste data for m comprend les données dynamiques suivantes : décélération de l’avion ; vitesse de l’avion ; vitesse des roues ; pression du système de freinage ; commande de la pédale de frein ; autofreinage (étape 10).
Par ailleurs, en se référant à nouveau à la figure 1 , la plateforme 4 comprend un certain nombre de modèles 18 représentatifs du freinage. Il s’agit en particulier d’un modèle de l’avion représentant sa dynamique en fonction de ses caractéristiques aérodynamiques, simulant ses commandes de vol, sa masse, son centre de gravité, la poussée de son moteur, l’effet de l’inversion de poussée et du spoiler, d’un modèle du système de freinage et de sa régulation, et d’un modèle de piste représentant la friction maximale admissible et la friction résultante des efforts de freinage. Ces modèles 18 constituent un environnement de simulation en boucle fermée.
En référence à la figure 2, des scénarios de simulation de freinage sont par ailleurs élaborés (étape 19) et les données de simulation sont transmises vers la plateforme 4 (étape 20) pour être stockées sur une base de données de coefficients de friction simulés 35a du serveur de calcul de la plateforme (étape 21).
La plateforme 4 comporte ainsi une base de données de simulation 22 correspondant à divers scénarios de freinage en faisant varier différentes conditions de test liées à la dynamique de l’avion, à ses caractéristiques, aux ordres du pilote, à des conditions de piste, portant en particulier sur le coefficient de friction maximum admissible,
Ces données comprennent par exemple de données de simulation portant sur le type d’avion, en particulier sur différentes masses d’avion ou différentes vitesses d’atterrissage, sur le freinage, en particulier différents profils de freinage, différentes commandes de la pédale de frein, d’autofreinage, de l’inverseur de poussée et des spoilers, différents coefficients de friction maximum admissibles. Certains de ces scénarios sont issus d’un paramétrage au plus proche de vols réels. Lors de l’étape 23 suivante, les données des scénarios de simulation sont utilisées pour entraîner des modèles représentatifs du freinage d’avions lors de leur atterrissage, pour divers scénarios de freinage. Les modèles entraînés sont ensuite stockés dans le serveur de la plateforme 4 (étape 24)
Comme illustré à la figure 3, les données de simulation portant sur les conditions de piste stockées dans la base de données 22 sont fournies à un modèle de piste 25.
En référence à la figure 3 , les données de simulation portant sur le type d’avion sont transmises à un modèle d’avion 26 tandis que les données de simulation portant sur le freinage sont transmises à un modèle 27 du système de freinage.
Pour chaque scénario, plusieurs vitesses de simulation sont réalisées entre plusieurs centaines de hertz jusqu’à 1 hertz. En référence à la figure 4, les modèles sont donc implémentés, entraînés et testés selon une phase qui débute donc par une phase 30 de chargement de données de simulation, pour divers scénarios de freinage, une phase 31 de découpe des vols, par décodage pour retenir les données du toucher ou « touch down » jusqu’à une valeur de vitesse limite fixée par exemple à 20 nœuds et une étape de traitement 32 des données dans laquelle ces données sont numérisées et des variables additionnelles sont calculées.
L’étape suivante 33 correspond à un entraînement des modèles avec les données de simulation de manière à obtenir, en sortie, des valeurs de coefficient de friction simulées.
Par ailleurs, lors de l’étape 34 suivante (figure 2), on récupère les données réelles de l’avion qui sont décodées puis filtrées et injectées dans un module de prédiction 35 de la plateforme 4. La prédiction compare le fichier de données réel à celles correspondant au scénario du modèle d’entraînement, en série temporelle, pour reconstruire la valeur de friction à chaque pas de temps. Les valeurs des coefficients de friction sont ensuite stockées en mémoire dans une base de données 35a de coefficients de friction simulés, pour divers types d’avions et diverses conditions de pistes (étape 36) . L’algorithme de prédiction utilise soit un algorithme de type random forrest, par exemple avec un effet de lissage sur une plage de 100 à 300 échantillons en fonction du taux de rafraîchissement des données d’entrée, soit sur un réseau de neurones, par exemple à huit étages.
Enfin, l’étape 33 d’entrainement des modèles est suivie d’une phase 37 d’évaluation des modèles.
Diverses méthodes d’évaluation des modèles sont mises en œuvre, par exemple par régression, par classification ou prédiction en temps réel.
En particulier, pour évaluer les modèles sur les données de stimulation, on évalue l’erreur moyenne sur chaque vol et chaque roue, pour chaque scénario. Pour avoir l’erreur globale de l’ensemble des modèles, on moyenne les résultats pour l’ensemble des données. On utilise en outre l’erreur maximale MAE et la déviation standard de l’efficacité du modèle à partir de la relation suivante : Avec :
MAE : erreur absolue moyenne ; n : nombre de pas du temps du scénario ; t : pas de temps ; y · valeur du coefficient de friction m prédit ; yt : valeur de m théorique ;
Par ailleurs, l’allure de la courbe de friction résultante est comparée au résultat des scénarios du modèle d’entraînement pour définir l’atteinte ou non du coefficient de friction maximum admissible par la piste. A défaut de l’atteinte de cette valeur de coefficient de friction maximum, une caractérisation du maximum de coefficient de friction vue par l’avion est définie. La valeur maximale du coefficient de friction mPac est toutefois en pratique difficile à obtenir sans mettre en œuvre des moyens de calcul puissants et complexes d’une part ; et d’autre part effectivement disponible dans moins de 1 % des cas. Tel est en particulier le cas lorsque le coefficient pmax est calculé en fonction du glissement.
Une valeur de coefficient de freinage normalisée mh est ainsi calculée, afin d’effectuer des comparaisons entre avions et entre points de freinage.
Pour ce faire, pour chaque point de freinage l’algorithme de prédiction fournit un coefficient de friction m associé à :
- une pression dans le système de freinage (p),
- une vitesse de l’avion par rapport à la piste (v),
- une énergie de freinage qui est la moyenne de l’énergie durant une période de temps données - ici expérimenté à une seconde (E).
La normalisation du coefficient de friction s’effectue en gain de freinage (figure 5), en pression de freinage (figure 6), en énergie de freinage (figure7).
En référence à la figure 5, le coefficient m est tout d’abord augmenté par homothétie du profil moyen de gain de freinage pour passer de l’avion considéré (Avion 1 ou Avion 2) à un avion de référence (Avion Référence).
Le coefficient pnh ainsi obtenu est ensuite projeté selon la courbe de tendance sur une droite à une pression de freinage p égale à 1450 psi pour obtenir un coefficinet mhr de friction équivalent à pression de référence (Figure 6).
Dans le plan (m,E) le coefficient mhr est projeté selon une droite à la valeur E=5MJ (pour une seconde) pour obtenir mhe friction équivalente à pression et énergie de référence (Figure 7) Dans le plan (m,n) le coefficient pne est projeté selon une droite à la valeur v=25,6m/s pour obtenir mh friction normalisée à pression, énergie et vitesse de référence (Figure 8).
Cette étape de normalisation consiste ainsi à traiter le coefficient de friction de manière à le caractériser dans un référentiel de valeurs de pression, d’énergie de freinage et de vitesses prédéterminées, de sorte que l’effort de friction soit uniquement lié à la piste.
Cette valeur normalisée de coefficient de friction est alors utilisée pour rendre les acquisitions comparables et pour mettre en œuvre une caractérisation de la piste ou de segments de piste.
Le résultat des prédictions affectées d’un coefficient de pondération est stocké dans un fichier puis est stocké dans un serveur.
Enfin, le procédé comporte en outre une étape 38 de transfert des résultats des calculs des coefficients de friction. Ils pourront ainsi être utilisés par d’autres applications, telles que celle qui est mise en œuvre par la plateforme 5 de calcul de conditions de pistes de l’aéroport, ou d’autres outils d’optimisation de coûts opérationnels, ou encore à des applications embarquées pour l’anticipation des procédures de freinage.

Claims

REVENDICATIONS
1. Procédé de détermination d’un coefficient de friction d’un avion sur une piste d’atterrissage, caractérisé en ce qu’il comporte les étapes de :
-élaboration d’une base de données de coefficients de friction simulés pour divers types d’avions et diverses conditions de pistes en appliquant des données de simulation à des modèles représentatifs du freinage d’avions lors de leur atterrissage, pour divers scénarios de freinage ; et
-prédiction d’un coefficient de freinage à partir de données réelles de l’avion pour lesquelles le coefficient de friction est déterminé à partir de données stockées dans la base de données.
2. Procédé selon la revendication 1 , dans lequel on récupère les données réelles enregistrées dans le calculateur de bord de l’avion, on décode les données récupérées et on filtre les données décodées.
3. Procédé selon la revendication 2, dans lequel, lors du filtrage des données récupérées, on filtre les données en comparant la géolocalisation de l’avion avec des données correspondantes de géolocalisation de pistes.
4. Procédé selon la revendication 3, dans lequel, lors du filtrage, on affecte une pondération aux données en fonction du type d’avion et/ou de la fréquence d’acquisition des données.
5. Procédé selon la revendication 4, dans lequel les données filtrées comportent des données géolocalisées et pondérées relatives à la dynamique de l’avion, au type d’avion et de freinage, et à un segment de piste.
6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel, lors de l’étape de prédiction, on utilise un algorithme de type random forrest, un arbre de décision ou un réseau de neurones à 8 couches.
7. Procédé selon la revendication 6, dans lequel on compare les données réelles avec les données de simulation sous forme de séries temporelles pour reconstruire une valeur de coefficient de friction en fonction du temps.
8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel on compare l’évolution des coefficients de friction prédits avec les coefficients de friction simulés pour définir une atteinte de coefficient de friction maximum admissible.
9. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel on normalise les coefficients de friction en pression, en énergie de freinage et en vitesse.
10. Procédé selon la revendication 8 ou 9, comprenant en outre une étape de stockage de données relatives à des coefficients de friction prédits affectées d’un coefficient de pondération.
11. Système de détermination d’un coefficient de friction d’un avion sur une piste d’atterrissage, caractérisé en ce qu’il comprend un ensemble de modèles (18) représentatifs du freinage d’avions, lors de leur atterrissage, une base de données (35a) de coefficients de friction simulés pour divers types d’avions et diverses conditions de pistes et un module (35) de prédiction d’un coefficient de freinage à partir de données réelles de l’avion et à partir des données extraites de la base de données de coefficients de friction simulés.
EP22755266.8A 2021-07-27 2022-07-25 Procédé et système de détermination d'un coefficient de friction d'un avion sur une piste d'atterrissage Pending EP4377941A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2108133A FR3125800A1 (fr) 2021-07-27 2021-07-27 Procédé et système de détermination d’un coefficient de friction d’un avion sur une piste d’atterrissage
PCT/FR2022/051492 WO2023007083A1 (fr) 2021-07-27 2022-07-25 Procédé et système de détermination d'un coefficient de friction d'un avion sur une piste d'atterrissage

Publications (1)

Publication Number Publication Date
EP4377941A1 true EP4377941A1 (fr) 2024-06-05

Family

ID=78536315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22755266.8A Pending EP4377941A1 (fr) 2021-07-27 2022-07-25 Procédé et système de détermination d'un coefficient de friction d'un avion sur une piste d'atterrissage

Country Status (4)

Country Link
EP (1) EP4377941A1 (fr)
CN (1) CN117716407A (fr)
FR (1) FR3125800A1 (fr)
WO (1) WO2023007083A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116901911B (zh) * 2023-09-11 2023-12-22 四川腾盾科技有限公司 一种前三点式无人机刹车自主压力控制逻辑设计方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8346455B2 (en) * 2005-02-23 2013-01-01 Zoltan Ivan Rado Method and device for communicating true runway braking performance using data from the flight data management systems of landed aircraft
US8773289B2 (en) * 2010-03-24 2014-07-08 The Boeing Company Runway condition monitoring
FR2978736B1 (fr) * 2011-08-01 2013-09-27 Airbus Operations Sas Dispositif et procede de determination d'un etat de piste, aeronef comprenant un tel dispositif et systeme d'aide au pilotage exploitant cet etat de piste
US10202204B1 (en) * 2016-03-25 2019-02-12 AAR Aerospace Consulting, LLC Aircraft-runway total energy measurement, monitoring, managing, safety, and control system and method
US20180225976A1 (en) * 2017-02-06 2018-08-09 Architecture Technology Corporation Automated real-time clearance analysis for air traffic
US10921826B2 (en) * 2017-07-27 2021-02-16 SkyRyse, Inc. Method for vehicle contingency planning
JP2022511941A (ja) * 2018-12-11 2022-02-01 イーグル エアロスペース,リミテッド 航空機の着陸および地表面移動性能を評価するための方法およびシステム

Also Published As

Publication number Publication date
WO2023007083A1 (fr) 2023-02-02
CN117716407A (zh) 2024-03-15
FR3125800A1 (fr) 2023-02-03

Similar Documents

Publication Publication Date Title
US11745876B2 (en) Method for adaptive mission execution on an unmanned aerial vehicle
EP3308232B1 (fr) Système et procédé d'inspection automatique de surface
EP2554443B1 (fr) Dispositif et procédé de détermination d'un état de piste, aéronef comprenant un tel dispositif et système d'aide au pilotage exploitant cet état de piste
FR2930669A1 (fr) Dispositif et procede de determination d'un etat de piste, aeronef comprenant un tel dispositif et systeme d'aide au pilotage exploitant ce etat de piste
US9811950B2 (en) Aircraft electric taxi system diagnostic and prognostic evaluation system and method
EP3517442B1 (fr) Méthode de détection de conditions givrantes pour un aéronef par apprentissage automatique supervisé
US20080040152A1 (en) Systems and Methods for Health Management of Single or Multi-Platform Systems
FR2894045A1 (fr) Procede de controle de parametres de decollage ou d'atterrissage et dispositif associe
FR2963448A1 (fr) Procede et systeme d'analyse de donnees de vol enregistrees au cours d'un vol d'un avion.
FR2935521A1 (fr) Procede de verification de la coherence des parametres de decollage d'un aeronef avec une longueur de piste disponible
EP4377941A1 (fr) Procédé et système de détermination d'un coefficient de friction d'un avion sur une piste d'atterrissage
FR3038750A1 (fr) Procede d'integration d'un nouveau service de navigation dans un systeme avionique embarque a architecture ouverte de type client-serveur, en particulier d'un service de manoeuvre fim
EP1892170B1 (fr) Dispositif de commande régulée de véhicule à précision recentrée
FR2905778A1 (fr) Procede de verification de pertinence d'une valeur de masse d'un aeronef
FR3040371A1 (fr) Procede et dispositif de determination automatique d'un etat de piste.
FR3026533A1 (fr) Systeme et procede de gestion d'aeroport a l'aide de la duree de turbulence de sillage.
WO2021069824A1 (fr) Dispositif, procédé et programme d'ordinateur de suivi de moteur d'aéronef
EP2330474B1 (fr) Procédé et dispositif pour déterminer une trajectoire de décollage permettant de maximiser la masse au décollage d'un aéronef.
FR3020477A1 (fr) Procede et systeme d'ajustement d'une trajectoire de descente d'un aeronef.
FR3037170A1 (fr) Procede et systeme de prediction du fonctionnement d'un aeronef par analyse de similarite utilisant des capacites de stockage et de calcul reparties
EP3923104B1 (fr) Procédé et système de contrôle d'un niveau d'endommagement d'au moins une pièce d'aéronef, aéronef associé
WO2022049135A1 (fr) Système électronique pour la mise en œuvre d'une fonction critique et procédé associé
WO2022123147A1 (fr) Procede et systeme de determination de conditions de piste d'atterrissage pour aeronefs
FR3030096A1 (fr) Procede et systeme d'estimation d'un indicateur de glissance d'une piste d'un aeroport
FR2968437A1 (fr) Procede et dispositif pour diminuer la gene occasionnee par la pollution atmospherique et sonore d'un aeronef

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR