EP4375232B1 - Verfahren zum bonden einer mikroelektromechanischen vorrichtung - Google Patents

Verfahren zum bonden einer mikroelektromechanischen vorrichtung

Info

Publication number
EP4375232B1
EP4375232B1 EP22208689.4A EP22208689A EP4375232B1 EP 4375232 B1 EP4375232 B1 EP 4375232B1 EP 22208689 A EP22208689 A EP 22208689A EP 4375232 B1 EP4375232 B1 EP 4375232B1
Authority
EP
European Patent Office
Prior art keywords
wafer
sealing region
cavity
cap wafer
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22208689.4A
Other languages
English (en)
French (fr)
Other versions
EP4375232A1 (de
Inventor
Mikko Partanen
Petteri Kilpinen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to EP22208689.4A priority Critical patent/EP4375232B1/de
Priority to US18/513,787 priority patent/US20240166499A1/en
Publication of EP4375232A1 publication Critical patent/EP4375232A1/de
Application granted granted Critical
Publication of EP4375232B1 publication Critical patent/EP4375232B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/094Feed-through, via
    • B81B2207/095Feed-through, via through the lid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0118Bonding a wafer on the substrate, i.e. where the cap consists of another wafer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/031Anodic bondings

Definitions

  • This disclosure relates to electronic devices and more particularly to Microelectromechanical device components.
  • the present disclosure further concerns bonding of microelectromechanical device components with a plurality of element cavities.
  • MEMS microelectromechanical systems
  • MEMS devices usually combine mechanical and electrical parts. They can have either simple or complex structures with various moving parts.
  • MEMS devices which are also called elements, include different types of sensors such as accelerometers, gyroscopes, or magnetometers.
  • each die It is costly to manufacture each die separately. Additionally, a large surface area is required in a component when each MEMS element is built on a separate die. Significant cost and area reduction can be made when several MEMS elements are built on the same die. Once the MEMS elements are built, they need to be sealed in a surrounding gas. This poses a challenge for building multiple elements on the same die, considering that a gas atmosphere which is ideal for the functioning of one element may not be ideal for another element which is intended to be included in the same die. For example, it is important to surround an accelerometer by relatively high gas pressure which reduces excessive movement and therefore damage caused by external shocks, whereas a gyroscope requires the surrounding gas pressure to be close to vacuum in order to operate accurately.
  • Wafer bonding is a semiconductor bonding technology that creates mechanically robust hermetic seals.
  • Anodic bonding is a wafer bonding process that involves joining a semiconductor with glass or ceramics through an electric field. Usually, glass with high concentration of alkali ions, such as borosilicate glass is used. When silicon and glass are in contact in the presence of an electric field, chemical reactions take place at the interface resulting in the oxidation of the silicon surface. This leads to bonding between the glass and the silicon wafer.
  • Anodic bonding is widely used for sealing MEMS dies with cap wafers that comprise glass. However, it can be challenging to anodically bond a cap wafer to a die comprising two or more cavities that need to be sealed at different gas pressures, or in different surrounding gases.
  • MEMS microelectromechanical
  • the method comprises: (1) Forming a metal layer on the bottom surface of the cap wafer in the first cap wafer sealing region, or on the top surface of the structure wafer in the first structure wafer sealing region, or on the bottom surface of the cap wafer in the first cap wafer sealing region and on the top surface of the structure wafer in the first structure wafer sealing region, (2) Placing the cap wafer on top of the structure wafer so that the first cap wafer sealing region is aligned with the first structure wafer sealing region along the z-axis, and the second cap wafer sealing region is aligned with the second structure wafer sealing region along the z-axis, (3) Fixing the cap wafer to the structure wafer in a surrounding first gas atmosphere so that the metal layer and the cap wafer form a hermetically sealing enclosure around the outer edges of the first cavity, (4) Changing the surrounding first gas atmosphere to a surrounding second gas atmosphere, and (5) Anodically bonding the second cap wafer sealing region to the second structure wafer sealing region in the surrounding second gas atmosphere so that the second
  • the structure wafer may be a semiconductor device layer which has been attached to a support layer.
  • the device layer may be a layer of silicon.
  • the device layer and the support layer may for example be parts of a silicon-on-insulator (SOI) substrate where MEMS elements can be formed by patterning the top silicon layer (the device layer).
  • SOI silicon-on-insulator
  • the cap wafer may be a glass layer, or a wafer comprising semiconductor regions and glass regions wherein the glass regions may be located on the bottom surface of the cap wafer, or on the bottom surface of the cap wafer and between the semiconductor regions.
  • the semiconductor regions may be silicon regions.
  • the glass may be but is not limited to borosilicate glass.
  • any direction or plane which is parallel to the xy-plane defined by the cap wafer can be called horizontal.
  • the direction which is perpendicular to the xy-plane can be called the vertical direction.
  • Expressions such as “top”, “bottom”, “above”, “below”, “up” and “down” refer in this disclosure to differences in the vertical z-coordinate. These expressions do not imply anything about how the device should be oriented with respect to the Earth's gravitational field when the component is in use or when it is being manufactured.
  • Figure 1 illustrates an example of a bottom view of a cap wafer 100 and a top view of a structure wafer 101.
  • the cap wafer comprises a first cap wafer sealing region 102 and a second cap wafer sealing region 103.
  • the second cap wafer sealing region 103 surrounds the first cap wafer sealing region 102.
  • the structure wafer 101 comprises a first cavity 104, a second cavity 105, a first microelectromechanical device structure 106 in the first cavity 104 and a second microelectromechanical device structure 107 in the second cavity 105.
  • the structure wafer 101 further comprises a first structure wafer sealing region 108 which surrounds the outer edges 1010 of the first cavity 104 and a second structure wafer sealing region 109.
  • the second structure wafer sealing region 109 surrounds the first cavity 104 and the second cavity 105.
  • the first structure wafer sealing region 108 and the first cap wafer sealing region 102 can be made at least partly congruent and aligned with each other along the z-axis when the cap wafer 100 is placed on top of the structure wafer 101.
  • Figures 2a - 2d illustrate some of the of the steps of the method for bonding a cap wafer to a structure wafer in a microelectromechanical component with at least two cavities that need be sealed at different pressures.
  • Figure 2a illustrates the stage of the method where a metal layer 2011 is formed for example on the bottom surface of the cap wafer 200 in the first cap wafer sealing region 202.
  • the metal layer may be made of a variety of metals that include but are not limited to Al, Cu, Ag, Au, Pt, Pd, Mo or metal alloys.
  • the metal layer may be formed by a variety of deposition methods such as sputtering, chemical vapor deposition, molecular beam epitaxy, electron beam physical vapor evaporation, or laser metal deposition. These options apply to all embodiments in this disclosure.
  • Reference numbers 200 and 202 in figure 2a correspond to reference numbers 100 and 102, respectively, in figure 1 .
  • Figure 2b illustrates the stage of the method where the cap wafer is placed on top of a structure wafer so that the first cap wafer sealing region is aligned with the first structure sealing region along the z-axis, and the second cap wafer sealing region is aligned with the second structure wafer sealing region along the z-axis.
  • the cap wafer 210 comprises the metal layer 2111 which was formed on the bottom surface of the glass region 2112.
  • the cap wafer 210 may further comprise a semiconductor region 2113 on top of the glass region 2112.
  • the semiconductor region may be a silicon region.
  • the structure wafer 211 comprises a first cavity 214, a second cavity 215, a first microelectromechanical device structure 216 located in the first cavity 214 and a second microelectromechanical device structure 217 located in the second cavity 215.
  • the metal layer 2111 surrounds the outer edges 2110 of the first cavity 214.
  • Reference numbers 210, 211, 214, 215, 216, and 217 in figure 2b correspond to reference numbers 100, 101, 104, 105, 106, and 107, respectively, in figure 1 .
  • Reference numbers 230, 231, 234, 235, 236, 237, 2311, 2312 and 2313 in figure 2d correspond to reference numbers 210, 211, 214, 215, 216, 217, 2111, 2112 and 2113, respectively, in figure 2b .
  • the metal layer may be formed on the bottom surface of the cap wafer. Alternatively, or complementarily, it may be formed on the top surface of the structure wafer.
  • Figures 3a - 3b illustrate an example of an embodiment wherein the metal layer is formed on the top surface of the structure wafer in the first structure wafer sealing region.
  • Figure 3a illustrates a top view of the structure wafer 301 which comprises a metal layer 3011 formed in the first structure wafer sealing region 308.
  • the metal layer 3011 surrounds the outer edges 3010 of the first cavity 304.
  • Reference numbers 301, 304, 305, 306, 307, 308, and 3010 in figure 3a correspond to 101, 104, 105, 106, 107, 108, and 1010, respectively, in figure 1 .
  • Figure 3b illustrates the stage of the method where a cap wafer 310 is placed on top of the structure wafer 311 so that the first cap wafer sealing region is aligned with the first structure sealing region along the z-axis, and the second cap wafer sealing region is aligned with the second structure wafer sealing region along the z-axis.
  • the metal layer 3111 is on the top surface of the structure wafer 311 and surrounds the outer edges 3110 of the first cavity 314. When the cap wafer 310 is pressed against the structure wafer 311 at a temperature allowing the metal layer 3111 to soften or melt, the metal layer 3111 may immerse into the semiconductor/glass interface and the first cavity 314 is hermetically sealed.
  • Figures 4a - 4b illustrate an example of an embodiment wherein the metal layer is formed on the bottom surface of the cap wafer and on the top surface of the structure wafer.
  • Figure 4a illustrates a bottom view of the cap wafer 400 and a top view of the structure wafer 401, wherein the metal layer 4011 is formed in both the first cap wafer sealing region 402 and the first structure wafer sealing region 408.
  • the metal layer 4011 which is formed on the top surface of the structure wafer surrounds the outer edges 4010 of the first cavity 404.
  • Reference numbers 400, 401, 402, 404, 405, 406, 407, 408, and 4010, in figure 4a correspond to 100, 101, 102, 104, 105, 106, 107, 108, and 1010, respectively, in figure 1 .
  • Figure 4b illustrates the stage of the method where the cap wafer 410 is placed on top of a structure wafer 411 so that the first cap wafer sealing region is aligned with the first structure sealing region along the z-axis, and the second cap wafer sealing region is aligned with the second structure wafer sealing region along the z-axis.
  • the metal layer 4111 is formed on the bottom surface of the cap wafer 410 and on the top surface of the structure wafer 411.
  • the metal layer 4111 on the cap wafer 410 merges with the metal layer 4111 on the structure wafer 411.
  • Reference numbers 410, 411, 414, 415, 416, 417, 4110, 4111, 4112 and 4113 in figure 4b correspond to 310, 311, 314, 315, 316, 317, 3110, 3111, 3112 and 3113, respectively, in figure 3b .
  • Figures 5a - 5b illustrate and example of such embodiment.
  • Figure 5a illustrates a top view of the structure wafer 501.
  • the inner edges of the first structure wafer sealing region 508 extend beyond the outer edges 5010 of the first cavity 504.
  • Reference numbers 501, 504, 505, 506, 507, 508, and 5010 in figure 5a correspond to reference numbers 101, 104, 105, 106, 107, 108, and 1010, respectively, in figure 1 .
  • the cap wafer 700 comprises a metal layer 7011, a glass region 7012 and a semiconductor region 7013.
  • the metal layer 7011 is formed in the first cap wafer sealing region on the bottom surface of the glass region 7012.
  • the glass region 7012 may extend along the z-axis from the bottom side of the cap wafer to the top side of the cap wafer to separate two or more sections of the semiconductor region from each other forming thereby one or more insulating channels 7015 through the semiconductor region.
  • the semiconductor region 7013 may alternatively or complementarily extend from the top side of the cap wafer to the bottom side of the cap wafer to separate two or more sections of the glass region from each other forming thereby one or more electrically conductive channels 7016 through the glass region.
  • Figure 7b illustrates the microelectromechanical component presented in figure 7a after anodically bonding the gyroscope and the acceleration sensor at different gas pressures.
  • the gyroscope may be sealed at a gas pressure close to vacuum level, whereas the acceleration sensor may be sealed in a high-pressure gas.
  • Reference numbers 710, 711, 714, 715, 716, 717, 7110, 7111, 7112, 7113, 7115, 7116, 7117, 7118, 7119 and 7120 in figure 7b correspond to reference numbers 700, 701, 704, 705, 706, 707, 7010, 7011, 7012, 7013, 7015, 7016, 7017, 7018, 7019 and 7020, respectively, in figure 7a .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)

Claims (5)

  1. Verfahren zur Herstellung eines mikroelektromechanischen Bauteils, wobei das mikroelektromechanische Bauteil einen Deckwafer (100, 200, 210, 220, 230, 310, 400, 410, 510, 600, 610, 700) und einen Strukturwafer (101, 211, 221, 231, 301, 311, 401, 411, 501, 511, 601, 611, 701) umfasst, und wobei der Deckwafer (100, 200, 210, 220, 230, 310, 400, 410, 510, 600, 610, 700) eine horizontale xy-Ebene und eine vertikale z-Richtung, die rechtwinklig zur xy-Ebene ist, definiert,
    und wobei der Deckwafer (100, 200, 210, 220, 230, 310, 400, 410, 510, 600, 610, 700) eine oberseitige Fläche und eine unterseitige Fläche aufweist und die unterseitige Fläche Glasregionen (2112, 6012, 7012) umfasst, und wobei der Deckwafer (100, 200, 210, 220, 230, 310, 400, 410, 510, 600, 610, 700) ferner eine erste Deckwafer-Dichtungsregion (102, 202, 402) und eine zweite Deckwafer-Dichtungsregion (103) umfasst, und wobei die zweite Deckwafer-Dichtungsregion (103) mindestens eine der Glasregionen (2112, 6012, 7012) umfasst,
    und wobei der Strukturwafer (101, 211, 221, 231, 301, 311, 401, 411, 501, 511, 601, 611, 701) eine oberseitige Fläche und eine unterseitige Fläche aufweist, und der Strukturwafer (101, 211, 221, 231, 301, 311, 401, 411, 501, 511, 601, 611, 701) eine erste Vertiefung (104, 214, 224, 304, 314, 404, 414, 504, 514, 604, 704) und eine zweite Vertiefung (105, 215, 605, 705) sowie eine erste mikroelektromechanische Bauelementstruktur (106, 216, 606, 706) in der ersten Vertiefung (104, 214, 224, 304, 314, 404, 414, 504, 514, 604, 704) und eine zweite mikroelektromechanische Bauelementstruktur (107, 217, 607, 707) in der zweiten Vertiefung (105, 215, 605, 705) umfasst, und wobei der Strukturwafer (101, 211, 221, 231, 301, 311, 401, 411, 501, 511, 601, 611, 701) ferner eine erste Strukturwafer-Dichtungsregion (108, 308, 408, 508) und eine zweite Strukturwafer-Dichtungsregion (109) umfasst, wobei die erste Vertiefung (104, 214, 224, 304, 314, 404, 414, 504, 514, 604, 704) und die zweite Vertiefung (105, 215, 605, 705) von der zweiten Strukturwafer-Dichtungsregion (109) umgeben sind, und die erste Vertiefung (104, 214, 224, 304, 314, 404, 414, 504, 514, 604, 704) von der ersten Strukturwafer-Dichtungsregion (108, 308, 408, 508) umgeben ist,
    und wobei das Verfahren umfasst:
    (1) Ausbilden einer Metallschicht (2011, 2111, 2211, 3011, 3111, 4011, 4111, 5111, 6011, 6111, 7011) auf der unterseitigen Fläche des Deckwafers in der ersten Deckwafer-Dichtungsregion, oder auf der oberseitigen Fläche des Strukturwafers in der ersten Strukturwafer-Dichtungsregion, oder auf der unterseitigen Fläche des Deckwafers in der ersten Deckwafer-Dichtungsregion und auf der oberseitigen Fläche des Strukturwafers in der ersten Strukturwafer-Dichtungsregion;
    (2) Platzieren des Deckwafers auf der Oberseite des Strukturwafers, so dass die erste Deckwafer-Dichtungsregion entlang der z-Achse mit der ersten Strukturwafer-Dichtungsregion gefluchtet ist, und die zweite Deckwafer-Dichtungsregion entlang der z-Achse mit der zweiten Strukturwafer-Dichtungsregion gefluchtet ist;
    (3) Befestigen des Deckwafers am Strukturwafer in einer umgebenden ersten Gasatmosphäre, so dass die Metallschicht und der Deckwafer ein hermetisch abgedichtetes Gehäuse rund um die Außenränder (1010, 2110, 2210, 3010, 3110, 4010, 5010, 5110, 6010) der ersten Vertiefung ausbilden;
    (4) Ändern der umgebenden ersten Gasatmosphäre zu einer umgebenden zweiten Gasatmosphäre;
    gekennzeichnet dadurch, dass das Verfahren ferner umfasst:
    (5) Anodisches Bonden der zweiten Deckwafer-Dichtungsregion an der zweiten Strukturwafer-Dichtungsregion in der umgebenden zweiten Gasatmosphäre, so dass die zweite Vertiefung hermetisch abgedichtet ist.
  2. Verfahren nach Anspruch 1, wobei der Strukturwafer Gräben (6114) in der ersten Strukturwafer-Dichtungsregion umfasst.
  3. Verfahren nach Anspruch 1, wobei der Deckwafer Gräben (6114) in der ersten Deckwafer-Dichtungsregion umfasst.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die erste mikroelektromechanische Bauelementstruktur ein Gyroskop ist und die zweite mikroelektromechanische Bauelementstruktur ein Beschleunigungssensor ist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Druck der umgebenden ersten Gasatmosphäre sich vom Druck der umgebenden zweiten Gasatmosphäre unterscheidet.
EP22208689.4A 2022-11-22 2022-11-22 Verfahren zum bonden einer mikroelektromechanischen vorrichtung Active EP4375232B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22208689.4A EP4375232B1 (de) 2022-11-22 2022-11-22 Verfahren zum bonden einer mikroelektromechanischen vorrichtung
US18/513,787 US20240166499A1 (en) 2022-11-22 2023-11-20 Method for bonding a microelectromechanical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22208689.4A EP4375232B1 (de) 2022-11-22 2022-11-22 Verfahren zum bonden einer mikroelektromechanischen vorrichtung

Publications (2)

Publication Number Publication Date
EP4375232A1 EP4375232A1 (de) 2024-05-29
EP4375232B1 true EP4375232B1 (de) 2025-08-13

Family

ID=84361068

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22208689.4A Active EP4375232B1 (de) 2022-11-22 2022-11-22 Verfahren zum bonden einer mikroelektromechanischen vorrichtung

Country Status (2)

Country Link
US (1) US20240166499A1 (de)
EP (1) EP4375232B1 (de)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174151B2 (en) * 2019-11-19 2021-11-16 Invensense, Inc. Integrated MEMS cavity seal

Also Published As

Publication number Publication date
EP4375232A1 (de) 2024-05-29
US20240166499A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
CA2663918C (en) Micromechanical component and method for fabricating a micromechanical component
US8258590B2 (en) Method for the production of a component, and component
US8633049B2 (en) Method of fabrication of Al/GE bonding in a wafer packaging environment and a product produced therefrom
US8748998B2 (en) Sensor module
US8279615B2 (en) Encapsulation module method for production and use thereof
EP2282242B1 (de) Matrizeanordnung mit einem alkalimetalgefüllten Hohlraum
JP2006116694A (ja) ゲッターシールドを有する密閉マイクロデバイス
KR20160053935A (ko) 수직형 피드스루들을 이용한 웨이퍼-레벨 허메틱 패키징 방법
US12077429B2 (en) Micromechanical sensor device and corresponding production method
US6867060B2 (en) Wafer-level packaging of electronic devices before singulation
EP4375232B1 (de) Verfahren zum bonden einer mikroelektromechanischen vorrichtung
US20200198966A1 (en) Micromechanical device and method for manufacturing a micromechanical device
JP2014122906A (ja) マイクロメカニカル素子およびマイクロメカニカル素子の製造方法
US9018043B2 (en) Method of encapsulating a micro-device by anodic bonding
EP4530249A1 (de) Mikroelektromechanisches bauelement mit spaltsteuerungsstruktur und verfahren zu seiner herstellung
EP4566986A1 (de) Mikroelektromechanisches bauelement mit einem metallabstandhalter
EP2736071B1 (de) Verkapselung mit Getter auf Waferebene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20241106

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20250319

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602022019327

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20250813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20251213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20251118

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20251113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20251215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250813

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20251114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250813