EP4366864A1 - Procédé de fabrication d'un garnissage multicapillaire - Google Patents

Procédé de fabrication d'un garnissage multicapillaire

Info

Publication number
EP4366864A1
EP4366864A1 EP22754462.4A EP22754462A EP4366864A1 EP 4366864 A1 EP4366864 A1 EP 4366864A1 EP 22754462 A EP22754462 A EP 22754462A EP 4366864 A1 EP4366864 A1 EP 4366864A1
Authority
EP
European Patent Office
Prior art keywords
preforms
nanoparticles
gel
poly
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22754462.4A
Other languages
German (de)
English (en)
Inventor
François Parmentier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Separative SAS
Original Assignee
Separative SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Separative SAS filed Critical Separative SAS
Publication of EP4366864A1 publication Critical patent/EP4366864A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3238Inorganic material layers containing any type of zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3289Coatings involving more than one layer of same or different nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J2220/82Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds

Definitions

  • the invention relates to a method for manufacturing a multicapillary packing suitable for forming a chromatography column.
  • Chromatography involves the passage of a fluid through a column comprising a stationary phase adapted to selectively retain species contained in the fluid.
  • Chromatographic materials have been proposed based on bundles of capillary tubes comprising on their wall thicknesses of chromatographic material, liquid or porous solid stationary phase.
  • An object of the invention is to design a method for manufacturing a multicapillary packing which has improved efficiency for chromatography.
  • the invention proposes a method for manufacturing a multicapillary packing comprising a plurality of channels adapted for the convection of a fluid between an inlet face and an outlet face of said packing, said method comprising the steps of :
  • each preform with a plurality of porous layers by deposition of alternating layers of a polyelectrolyte and nanoparticles or colloidal nanoparticles or by deposition of alternating layers of said nanoparticles and a polymer adhesive,
  • the poly electrolyte is selected from poly diallyl methyl ammonium chloride, poly diethylaminoethyl methacrylate acetate, poly-8-methacrylyloxyethyldiethylmethyl ammonium methyl sulfate (poly-g-MEMAMS), or poly methacrylic acid.
  • the nanoparticles advantageously comprise a silica sol, an activated alumina sol, or an aluminosilicate, such as a zeolite.
  • the bonding of the coated preforms is achieved by sintering.
  • the bonding of the coated preforms is carried out by adding a binder between said preforms.
  • Said binder can be obtained by a sol-gel process or by drying a sol.
  • said binder comprises a silica gel.
  • the ablation of the preforms comprises at least one of the following techniques: dissolution, chemical reaction, oxidation, pyrolysis, hydrolysis, vaporization, depolymerization.
  • the preforms have a diameter or, when the preforms have a non-circular section, the diameter of a preform of circular section having an identical area, less than 10 ⁇ m, preferably less than 5 ⁇ m.
  • the preforms include polyamide fibers.
  • the preforms include carbon fibers.
  • the nanoparticles or colloidal nanoparticles have at least one dimension of width, length, thickness or diameter which is less than 0.2 ⁇ m.
  • the nanoparticles or colloidal nanoparticles are porous.
  • the polyelectrolyte or the polymeric adhesive has a molecular weight adapted to prevent the penetration of said polyelectrolyte or of said adhesive into the pores of said nanoparticles.
  • FIG. 1 represents, in section, a synthetic intermediate of the multicapillary packing according to the invention.
  • FIG. 2 represents a synthesis intermediate of the multicapillary packing according to the invention.
  • the invention proposes the formation of a multicapillary packing comprising, in a first step, the manufacture of a monolith surrounding preforms adapted to each form, after ablation, a capillary channel of the packing, and in a second step, the ablation preforms to release each respective channel within the monolith.
  • the monolith is formed by coating each preform with a plurality of porous layers. As described in detail below, this coating can be carried out by a so-called “layer by layer” process or by an alternating deposition of layers of nanoparticles and of a polymer adhesive so as to form a film around each preform.
  • This layer-by-layer deposition makes it possible in particular to precisely control the thickness of the final layer.
  • nanoparticles are defined as being particles which have at least one of their dimensions (width, height, length or diameter) less than 1 ⁇ m, preferably less than 0.2 ⁇ m. According to the invention, the dimensions of the nanoparticles are measured by scanning electron microscopy.
  • a polyelectrolyte as a glue also allows an additional advantage: it makes it possible to work on bundles of preforms like fibers, and to simultaneously cover all the preforms of the bundle with a layer of a uniformly deposited substance. by adsorption, chemisorption or physisorption on all of the preforms by immersing them in a bath in which this substance is in solution. In this way, a large number of fibers can be treated simultaneously by immersing the entire bundle, and therefore advantageously treat, and in particular, very fine fibers that it would be difficult and not very productive to handle and treat individually.
  • this technique can assemble materials that do not have any affinity by themselves, such as silica colloids on polymeric fibers or carbon fibers.
  • a first layer of polyelectrolyte will be easily adsorbed on a preform, in the form of a monolayer, and by subsequent treatment in another bath, nanoparticles or colloidal nanoparticles will be adsorbed uniformly on this prelayer of polyelectrolyte, with which they have affinity, in the form of a monolayer of colloidal particles or of nanoparticles agglutinated uniformly on the preform so as to cover it. It is thus possible to deposit very thin layers on a multiplicity of fibers simultaneously, uniformly, completely and precisely at all points of the bundle.
  • This operation can be repeated so as to stack "layer by layer” a deposit of increasing thickness by alternating the layers of polyelectrolyte, which serves as glue between the layers, which is adsorbed again but this time on the nanoparticles or deposited colloidal particles, and deposits of colloids or nanoparticles which will stick together again.
  • These operations will be carried out easily by successive and repeated contacting in liquids containing alternately the polyelectrolyte and the nanoparticles or colloidal particles.
  • the nanoparticles are porous.
  • their porosity is greater than 10% by volume, preferably greater than 20% by volume, even more preferably greater than 40% by volume.
  • the pore size of these nanoparticles is less than 200 nanometers and preferably less than 70 nanometers.
  • the nanoparticles are made of silica gel, activated alumina or an aluminosilicate.
  • the nanoparticles consist of a zeolite.
  • the polyelectrolyte serving as a binding agent has a molecular weight or a molecular volume such that it is rejected by the pores and cannot penetrate them.
  • said polymeric adhesive serving as a bonding agent has a molecular weight or a molecular volume such that it is rejected by the pores and cannot penetrate them.
  • Preforms are threads or fibers whose external shape defines the shape of the channel resulting from the ablation of the corresponding thread or fiber.
  • the preforms can typically have a circular section; however, the use of preforms with a non-circular section is not excluded.
  • the term "diameter” will be used to designate the dimension of the section of the preforms. In the case of non-circular preforms, the “diameter” must be understood as being the diameter of a preform of circular section having the same area.
  • the diameter of the preforms which is equal to the internal diameter of the channels after ablation of the preforms, is chosen according to the diameter desired for the channels.
  • the preforms have a diameter of less than 10 ⁇ m, and more advantageously less than 5 ⁇ m.
  • the preforms are microfibers with a diameter of less than 0.5 ⁇ m.
  • Such fibers can be made of a polymeric material.
  • the ablation of the preforms generally leads to channels extending continuously over the entire length of the packing.
  • the preforms have a smaller diameter (for example less than 0.5 ⁇ m)
  • such an interruption of the channels is not detrimental to the performance of the packing, insofar as the monolithic material surrounding the channels is porous and makes it possible to ensure the convection of fluid along the packing.
  • the preforms are preferably formed of a material having good regularity of their diameter over their entire length, as well as good dimensional stability, that is to say an ability not to deform or change diameter during the packing manufacturing process.
  • the preforms are preferably in a non-porous material.
  • the preforms are polyamide yarns.
  • the preforms are carbon fibers.
  • Carbon fibers have a number of advantages:
  • Preforms based on carbon fibers will therefore advantageously be used for carrying out the method according to the invention.
  • preforms in particular polyester, polysulfone, polyglycolic acid, polydioxanone, polymethyl methacrylate, polyamide, polyolefin, polyimide yarns, etc.
  • Each preform is coated with a plurality of porous layers.
  • the ablative preforms have dimensions that are as uniform as possible.
  • the preforms can be characterized by at least two dimensions:
  • the diameter or hydraulic diameter exhibits a variability characterized by its relative standard deviation of less than 30%, preferably less than 10%, even more preferably less than 2% of the mean diameter of the preforms.
  • the coating is carried out by a process called “layer by layer” (“layer by layer” according to the English terminology).
  • core-shell products which are spherical particles of small diameter (2 to 3 ⁇ m), consisting of a dense core surrounded by a film of silica gel. These particles are obtained by depositing a layer of gel on the core, which is non-porous.
  • layers by layer surfaces to be covered are exposed to alternating layers of binder and of small-size particles.
  • This approach uses electrostatic interactions (and also Van der Waals forces, hydrogen bonds, covalent bonds, etc.) between positively charged (cationic) and negatively charged (anionic) species to deposit successive and multiple layers of material on a substrate.
  • a batch of preforms is subjected to the successive action of polyelectrolyte solutions and silica sols, activated alumina sols (boehmite), or aluminosilicates (for example zeolites), negatively charged .
  • the poly electrolyte can for example be a poly diallyl methyl ammonium chloride, poly diethylaminoethyl methacrylate acetate, poly-8-methacrylyloxyethyldiethylmethyl ammonium methyl sulfate (poly-g-MEMAMS), or poly methacrylic acid.
  • Silica, alumina or aluminosilicate sols can preferably consist of particles with a diameter between 4 and 100 nm.
  • the cationic poly electrolyte in solution is brought into contact with the preforms, is deposited on each preform, and its excess is drained and washed.
  • the preforms thus covered are then placed in an adsorbed layer of polyelectrolyte with the silica (or alumina or aluminosilicate) sol in an aqueous solution which is itself adsorbed on the polyelectrolyte. This operation is repeated as many times as necessary until the desired layer thickness around each preform is obtained. Said thickness is typically between 20 and 10,000 nm.
  • the preforms are dried, then pyrolyzed and sintered to ensure the elimination of organic compounds, the release of porosity and the mechanical cohesion of the assembly.
  • the coating is carried out by depositing, on each preform, successive layers of a silica gel and a polymer glue.
  • a sol-gel film, which is porous, is thus formed around each preform.
  • the thickness of such a film can typically be between 20 and 10,000 nm.
  • this coating process has the advantage of being particularly well suited to small diameter preforms, i.e. typically less than 50 ⁇ m.
  • the preforms are assembled in a bundle (before or after the implementation of the coating), and linked together by a binder so as to form a monolithic structure.
  • This binder advantageously comprises a sol of colloid or of nanoscopic particles.
  • the bundle is successively impregnated with a polyelectrolyte solution then with binder sols so as to build up a thickness of colloidal material filling the interstices between the preforms, to create the monolith.
  • the binder can be, as for the coating material of the preforms, a sol of silica, alumina or an aluminosilicate.
  • it may be a porous material or one intended to become porous in the final material.
  • the performance of the packing is favored with respect to a material transfer operation by allowing the diffusion of the species traversing the packing with respect to the molecules traversing the channels between the adjoining channels, phenomenon known as diffusional bridging and necessary for the correct operation of a separation by chromatography in particular.
  • This last diffusional bridging operation is particularly desirable with respect to the molecules of interest, and particularly the molecule(s) to be separated by chromatography.
  • the material of the binder can be identical to or different from that of the material for encapsulating the preforms.
  • the binder of the preforms covered “layer by layer” is obtained by a sol-gel process. This amounts to the creation of a gel between the ablative preforms of the bundle, essentially by hydrolysis of an organometallic precursor.
  • Hydrolysis of an organometallic precursor means the hydrolysis of the organometallic precursor into M-O-M bonds (M denotes the metal of the organometallic precursor).
  • the MOR, MNR, MSR, MOB bonds, where R is an organic group, of the organometallic precursor are considered to be hydrolysable.
  • the bonds, MC- are generally considered to be non-hydrolysable. It will however be noted that the addition of substituents or heteroatoms such as O, N, S, etc. on carbon C can make these MC bonds fragile. In the latter case, the bonds will be considered as hydrolyzable.
  • R′ and R′′ can advantageously also be Dodecyl, Octadecyl, n-Octyl, n-Propyl, n-Butyl, Vinyl, 3-Chloropropyl, 3-Aminopropyl, 2-Aminoethyl-3-aminopropyl, 3-Aminopropyl, 3 -Ureidopropyl, 3-Glycidoxypropyl, 3-Glycidoxypropyl, 3-Methacryloxypropyl, Bis(propyl)tetrasulfide, Bis(propyl)disulfide, 3-Mercaptopropyl, Trifluoropropyl, contain epoxy bonds, etc.O-R can advantageously be an alkoxy radical (ex.
  • the gel can be based on any mineral compound bringing cohesion to the monolith.
  • the gel can be a gel based on aluminum oxide, silicon oxide, zirconium oxide, titanium oxide, rare earth oxide such as yttrium, cerium or lanthanum, boron oxide, iron, magnesium oxide, calcium oxide, strontium oxide, barium oxide, germanium oxide, phosphorus oxide, lithium oxide, potassium oxide, sodium oxide, niobium oxide, copper oxide or a mixture thereof .
  • the gel is a gel based on silicon oxide (silica gel) or aluminum oxide (alumina gel).
  • the gel is a gel based on zirconium oxide or titanium oxide.
  • the gel is a multi-component oxide gel.
  • the gel may consist of binaries of zirconium and yttrium oxides, zirconium and cerium, zirconium and calcium, barium and titanium, lithium and niobium, phosphorus and sodium or boron and lithium.
  • the gel can be a gel consisting of silicate, for example binary silicates based on silica and boron oxide, aluminum oxide, germanium oxide, titanium oxide, zirconium oxide, strontium oxide or iron oxide, ternary silicates, multi-component silicates comprising more than three constituents.
  • the gel is a multi-component oxide gel, for example an aluminosilicate gel, for example a clay.
  • the gel is prepared in situ by the well-known route known as sol-gel (“solution-gelling”).
  • solution-gelling the gel is created between the preforms by hydrolysis of an organometallic precursor.
  • the organometallic precursor comprises at least one, in particular at least two hydroxyl groups or hydrolysable groups to form metal oxides during their hydrolysis.
  • the organometallic precursor is typically an organometallic alkoxide, an organometallic acetate, an organometallic carboxylate, an organometallic halide, an organometallic nitrate, an organometallic alkanoate or an organometallic acyloxide.
  • organometallic precursors include, without limitation, tetrachlorosilane, aluminum nitrate (which can be hydrolyzed in the presence of urea), tetramethoxysilane, tetraethoxysilane, diiethyl(dimethoxy)silane, triethyl(methoxy)silane.
  • the organometallic precursor is preferably an organometallic alkoxide.
  • the hydrolysis step is usually catalyzed by an acid or a base.
  • the choice of acid or base catalysis typically depends on the precursor(s) used.
  • the creation of a gel can advantageously be formulated as follows:
  • the gel is dried. Drying is carried out under conditions that best guarantee its structural and mechanical integrity, in particular so as to minimize the formation of cracks and macroscopic or microscopic shrinkage.
  • the drying can be carried out under vacuum or at atmospheric pressure, preferably at ambient temperature. Drying is typically carried out slowly under controlled temperature and partial pressure.
  • the drying time is typically at least one hour, even more than ten hours, more than 24 hours and can last up to several days. In some embodiments, the drying time is 48 hours. The drying time will be all the longer as the volume of the material to be dried will be important, in particular all the more so as the material will be thick. In some embodiments, the drying is carried out at room temperature (20-25°C) under vacuum at a pressure of 1 to 50 kPa for about 48 hours.
  • the drying is carried out after a ripening allowing the structure of the gel to be reinforced and the diameter of its pores to be increased. Curing is typically achieved by holding the gel at room temperature for about 24 hours or more.
  • the “layer by layer” deposit comprises a silica sol.
  • a possible binder is obtained by a sol-gel process based on organic silico precursors.
  • a silica gel typically has a specific surface area ranging from 20 to 1200 m 2 /g, preferably ranging from 20 to 700 m 2 /g, even more preferably between 70 and 450 m 2 /g .
  • the silica gel typically has a porous volume ranging from 20% to 90% by volume of the gel, more advantageously ranging from 40% to 70% or even 65% by volume of the gel.
  • volume of the gel is meant the volume of gel comprised between the ducts of the monolith delimited by its outer contour, distinct from any spacers intended to maintain a passage open to the fluid by maintaining a space between different masses or portions of gel of silica, and outside the volume delimiting the contours of the spacers, i.e., the volume of the gel located between the ducts of the monolith. Any spacers are not taken into account in determining the volume of the gel; in other words, in the case where spacers are present, the gel situated outside the spacers is considered.
  • Silica gel is generally produced in such a way as to obtain large diameter pores. It is known that the capillary tension forces leading to shrinkage and cracking of the gel during its drying vary as the inverse of this diameter.
  • the pore diameter of the gel before drying is typically greater than 4 nm, preferably greater than 10 nm and generally does not exceed 1000 nm.
  • the pore diameter of the gel after drying is typically greater than 2 nm, preferably greater than 10 nm and generally does not exceed 1000 nm.
  • the silica gel precursor sol comprises additives conventionally used for the preparation of packings.
  • the soil may include surfactants or chemical drying control additives such as formamide. This will reduce cracking during drying.
  • a solid filler can be added to the gel.
  • the solid filler can make it possible to mechanically reinforce the gel obtained, to limit its shrinkage, and possibly to provide the final gel with additional functionality such as additional specific surface area or catalytic functionality.
  • the solid filler can be silica gel or alumina gel powder.
  • this powder has a high specific surface, advantageously greater than 250 m 2 /g, more advantageously greater than 450 m 2 /g, even more advantageously greater than 700 m 2 /g.
  • this powder has a very fine particle size, less than 25 ⁇ m, preferably less than 3 ⁇ m, more preferably less than 0.5 ⁇ m.
  • the solid filler may consist of fibers, microfibers or nanofibers, such as "whiskers” such as potassium titanate fibers. These are in particular marketed under the TISMO D brand. They give greater rigidity to the final material.
  • the ablation of the preforms can be carried out by any suitable process, such as for example dissolution, chemical reaction, oxidation, pyrolysis, hydrolysis, vaporization, depolymerization, in soluble or volatile monomers, among other methods, or by a combination of these methods, according to the material of the preforms.
  • the ablation is advantageously carried out by pyrolysis.
  • the ablation is advantageously also carried out by pyrolysis.
  • the method according to the invention is completed by a sintering operation of the material deposited layer by layer and of its optional binder.
  • This operation can be carried out at a variable temperature depending on the nature of the material deposited.
  • this temperature is typically between 500 and 1000°C, and more advantageously between 700 and 900°C.
  • the monolith can receive a final surface treatment such as a silane, an alcohol, a carboxylic acid or any functionality chemisorbed or physisorbed by the material of the monolith.
  • a final surface treatment such as a silane, an alcohol, a carboxylic acid or any functionality chemisorbed or physisorbed by the material of the monolith.
  • a silica gel packing according to the invention can be grafted using a functional silane, in order to modify its adsorption and retention properties for a chromatographic application.
  • 3-Methacryloxypropyltrimethoxysilane 3-Methacryloxypropylmethyldimethoxysilane, Bis(3-triethoxysilylpropyl)tetrasulfide, Bis(3-triethoxysilylpropyl)disulfide,
  • the material obtained i.e., the gel
  • the gel is mesoporous and preferably does not exhibit any macroporosity.
  • the gel differs in particular from the multimodal silica gels marketed by Merck under the trade name Chromolith, and derived from the research of K Nakanishi [3], [4], and N. Ishizuka [5]. Such gels are obtained by a standard sol gel process not involving spinodal decomposition.
  • the material obtained i.e., the gel
  • the gel is macroporous and involves spinodal decomposition.
  • these will be multimodal silica gels, of the type marketed by Merck under the trade name Chromolith, and derived from the research of Mr Takanishi and Ishizuka [3] [4] [5] in Japan.
  • FIG. 1 represents a preform 1 covered, by a “Layer by Layer” process, with three successive layers 2 of colloidal silica particles.
  • FIG. 2 represents a monolith consisting of a bundle of such successive layers 2 for which each preform 1 has been eliminated and gives way to a channel 3.
  • the interstices 4 between the preforms are filled by additional particles 5 identical to the particles constituting the layers 2 or different, and in the latter case advantageously inert vis-à-vis the chromatographic separation.
  • a bundle of carbon fibers containing 12,000 filaments 7 ⁇ m in diameter supplied by the company GOODFELLOW is successively treated with baths of aqueous solution containing 0.5% by weight of poly (diethylaminoethylmethacrylate) with a molecular weight of 10,000 g Sigma Aldrich reference 910104 , as acetate, rinsed with water demineralised, then treated with a 10% solution of silica sol with a particle size of 200 nm, and rinsed again with distilled water. The operation is repeated four times.
  • a porous film of silica 0.5 to 1 ⁇ m thick is obtained on the fibres.
  • the whole is heated to 700°C for twelve hours in the air to improve its mechanical resistance and eliminate the carbon fibers by pyrolysis.
  • Example 1 The operating conditions of Example 1 above are repeated.
  • the whole is treated four times successively with baths of aqueous solution at 0.5% by weight of poly (diethylaminoethylmethacrylate) of molecular weight 10000 g Sigma Aldrich reference 910104, in the form of acetate, rinsed with demineralized water, then treated with a 10% solution of silica sol of 70 nm particle size, and rinsed again with distilled water, and the carbon fiber bundle is further compacted into a 2 mm x2 mm interior passage and 300 mm long before pyrolysis.
  • the whole is heated to 700°C for twelve hours in the air to improve its mechanical resistance and eliminate the carbon filaments by pyrolysis.
  • a multicapillary porous silica monolith suitable for chromatography is thus obtained.
  • Example 1 The operating conditions of Example 1 above are repeated, and the bundle of fibers is compacted in a U-shaped quartz profile of 2 mm x 2 mm internal passage and 300 mm long before pyrolysis.
  • the whole is treated with a 50% solution of silica sol with a particle size of 22 nm, and drained.
  • the whole is heated to 700°C for twelve hours in the air to improve its mechanical resistance and eliminate the carbon filaments by pyrolysis.
  • a multicapillary porous silica monolith suitable for chromatography is thus obtained.
  • a bundle of carbon fibers containing 12,000 filaments 7 ⁇ m in diameter supplied by the company GOODFELLOW is successively treated with baths of aqueous solution containing 0.5% by weight of poly (diethylaminoethylmethacrylate) with a molecular weight of 10,000 g Sigma Aldrich reference 910104 , in the form of acetate, rinsed with demineralised water, then treated with a 10% solution of silica sol with a particle size of 70 nm, and rinsed again with distilled water. The operation is repeated four times.
  • the carbon fibers thus covered are assembled into a bundle, the bundle is immersed in a precursor solution of a silica gel, a solution which is caused to freeze around the fibers, then the fibers are eliminated by pyrolysis and combustion.
  • a bundle is made by assembling these filaments into a bundle of rectangular section 1700 ⁇ m wide, 250 ⁇ m deep and 100 mm long. This beam is created by insertion into such a precisely machined conduit in a titanium sheet (ASTM grade 2) of 100 mm x 20 mm x 10 mm.
  • the bundle of carbon fibers is impregnated with a mixture of 1.6 g of Brij 56
  • the mixture is left to polymerize and freeze for 24 hours at 20°C.
  • the two ends of the packing are cut flush with the titanium sheet so as to release the section of the packing.
  • the filling has a length of 100 mm.
  • the lid is removed and the filling is dried under vacuum.
  • the resulting product is heated up to 700°C in an air atmosphere to convert it into a multi-capillary packing by burning the carbon fibers.
  • the packing is closed again on its upper part by a flat sheet of titanium (ASTM grade 2) of the same dimensions, or lid, screwed onto that containing the packing.
  • EXAMPLE 5 A bundle of carbon fibers containing 12000 filaments 7 ⁇ m in diameter supplied by the company GOODFELLOW is successively treated with baths of aqueous solution at 0.5% by weight of poly(diethylaminoethylmethacrylate) of molecular weight 10000 g Sigma Aldrich of reference 910104, in the form of acetate, rinsed with demineralised water, then treated with a 10% solution of silica sol with a particle size of 70 nm, and rinsed again with distilled water. The operation is repeated four times.
  • the carbon fibers thus covered are assembled into a bundle, the bundle is immersed in a precursor solution of a silica gel, a solution which is caused to freeze around the fibers, then the fibers are eliminated by pyrolysis and combustion.
  • a bundle is made by assembling these filaments into a bundle of rectangular section 1700 ⁇ m wide, 250 ⁇ m deep and 100 mm long. This beam is created by insertion into such a precisely machined conduit in a titanium sheet (ASTM grade 2) of 100 mm x 20 mm x 10 mm.
  • the bundle of carbon fibers is impregnated with a mixture of 1.6 g of Brij 56 (commercial surfactant), 1 g of dodecane, 4 g of tetramethoxysilane, and 2 g of 0.05 N HCl in water. deionized. TEOS, dodecane and Brij are mixed at 50° C. until the mixture is homogeneous. The 0.5 N acid (HCl) is then added with vigorous stirring. The mixture is poured into the pipe carrying the fibres.
  • Brij 56 commercial surfactant
  • the packing is closed by an upper cover consisting of a flat titanium sheet (ASTM grade 2) of dimensions identical to those of the base titanium sheet, screwed onto it, on which is previously deposited a thickness of 5 micrometers. about a paraffin melting at 90°C. The mixture is left to polymerize and freeze for 24 hours at 20°C.
  • the two ends of the packing are cut flush with the titanium sheet so as to release the section of the packing.
  • the filling has a length of 100 mm.
  • the lid is removed and the filling is dried under vacuum.
  • the resulting product is heated up to 700°C in an air atmosphere to convert it into a multi-capillary packing by burning the carbon fibers.
  • a bundle of carbon fibers containing 12,000 filaments 7 ⁇ m in diameter supplied by the company GOODFELLOW is treated successively with baths of aqueous solution at 0.5% by weight of poly(diethylaminoethylmethacrylate) acetate, rinsed with demineralised water, then treated with a 10% solution of silica sol of 20 nm particle size, and rinsed again with distilled water. The operation is repeated four times.
  • the carbon fibers thus covered are assembled into a bundle, the bundle is immersed in a precursor solution of a macroporous silica gel obtained by spinodal decomposition, a solution which is caused to freeze around the fibers, then the fibers are removed by pyrolysis and combustion.
  • a bundle is made by assembling these filaments into a bundle of rectangular section 1700 ⁇ m wide, 250 ⁇ m deep and 100 mm long. This beam is created by insertion into such a precisely machined conduit in a titanium sheet (ASTM grade 2) of 100 mm x 20 mm x 10 mm.
  • the beam is made with a length of 75 mm long.
  • a silicic monolith is synthesized from tetraethoxysilane (TEOS, Aldrich).
  • PEO polyethylene oxide
  • nitric acid 68%, Aldrich
  • NH40H analytical purity, Aldrich
  • the TEOS (37.70 g, 0.18 mol) is then added and the mixture is stirred for one hour.
  • the transparent solution obtained is then poured using a 10 mL pipette into the center of the bundle of sections obtained previously, kept beforehand in a dry environment at 0° C. before filling.
  • the packing is closed by an upper cover consisting of a flat titanium sheet (ASTM grade 2) of dimensions identical to those of the base titanium sheet, screwed onto it, on which is previously deposited a thickness of 5 micrometers. about a paraffin melting at 90°C.
  • the bar is then placed in an oven under an atmosphere saturated with water vapor at 40°C for 72 hours.
  • the titanium cover is removed.
  • the bar is immersed in a 2 L beaker with 1500 mL of deionized water at room temperature for 1 h.
  • the monolith is then washed in the same way four times by immersion in deionized water (500 mL, 1 h) until a neutral pH is obtained.
  • the monolith is then subjected to a basic treatment. It is then immersed in 400 mL of an ammonia solution (0.1 M) in a polypropylene bottle (500 mL). The bottle is then placed in an oven at 40° C. for 24 hours.
  • the recovered monolith is rinsed using a wash bottle with distilled water, dried at room temperature for 48 h and at 40°C for 24 h on a flat surface.
  • a flat cover in a 20x10x75 mm sheet of titanium (figures 19 and 20) is prepared.
  • the lid is repositioned with a PEEK seal at 340°C and cooled.
  • a bundle of carbon fibers containing 12,000 filaments 7 ⁇ m in diameter supplied by the company GOODFELLOW is successively treated with baths of aqueous solution containing 0.5% by weight of poly (diethylaminoethylmethacrylate) with a molecular weight of 10,000 g Sigma Aldrich reference 910104 , in the form of acetate, rinsed with demineralized water, then treated with a 10% solution of porous silica gel nanoparticles with a pore size of 4 nanometers and a pore volume greater than 50% by volume marketed by the firm Sigma Aldrich under the reference 748161 of 200 nm particle size, and rinsed again with distilled water. The operation is repeated four times.
  • the carbon fibers thus covered are assembled into a bundle, the bundle is immersed in a solution precursor of a silica gel, solution which is caused to freeze around the fibers, then the fibers are eliminated by pyrolysis and combustion.
  • a bundle is made by assembling these filaments into a bundle of rectangular section 1700 ⁇ m wide, 250 ⁇ m deep and 100 mm long. This beam is created by insertion into such a precisely machined conduit in a titanium sheet (ASTM grade 2) of 100 mm x 20 mm x 10 mm.
  • the bundle of carbon fibers is impregnated with a mixture of 1.6 g of Brij 56 (commercial surfactant), 1 g of dodecane, 4 g of tetramethoxysilane, and 2 g of 0.05 N HCl in water. deionized. TEOS, dodecane and Brij are mixed at 50° C. until the mixture is homogeneous. The 0.5 N acid (HCl) is then added with vigorous stirring. The mixture is poured into the pipe carrying the fibres.
  • Brij 56 commercial surfactant
  • the packing is closed by an upper cover consisting of a flat titanium sheet (ASTM grade 2) of dimensions identical to those of the base titanium sheet, screwed onto it, on which is previously deposited a thickness of 5 micrometers. about a paraffin melting at 90°C.
  • ASTM grade 2 a flat titanium sheet of dimensions identical to those of the base titanium sheet, screwed onto it, on which is previously deposited a thickness of 5 micrometers. about a paraffin melting at 90°C.
  • the mixture is left to polymerize and freeze for 24 hours at 20°C.
  • the two ends of the packing are cut flush with the titanium sheet so as to release the section of the packing.
  • the filling has a length of 100 mm.
  • the lid is removed and the filling is dried under vacuum.
  • the resulting product is heated up to 700°C in an air atmosphere to convert it into a multi-capillary packing by burning the carbon fibers.
  • the packing is closed again on its upper part by a flat sheet of titanium (ASTM grade 2) of the same dimensions, or lid, screwed onto that containing the packing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Buffer Packaging (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un garnissage multicapillaire comprenant une pluralité de canaux adaptés pour la convection d'un fluide entre une face d'entrée et une face de sortie dudit garnissage, ledit procédé comprenant les étapes de : - fourniture d'au moins une préforme (1) adaptée pour former, après ablation, un canal capillaire (3) du garnissage, - assemblage desdites préformes en un faisceau, - enrobage de chaque préforme (1) d'une pluralité de couches poreuses (2) par dépôt de couches alternées d'un poly électrolyte et de nanoparticules ou de nanoparticules colloïdales ou par dépôt de couches alternées desdites nanoparticules et d'une colle polymère, - liaison des préformes enrobées pour former un monolithe poreux, - ablation des préformes pour former les canaux dans ledit monolithe poreux.

Description

PROCEDE DE FABRICATION D’UN GARNISSAGE MULTICAPILLAIRE
DOMAINE DE L'INVENTION
L’invention concerne un procédé de fabrication d’un garnissage multicapillaire adapté pour former une colonne de chromatographie.
ARRIERE PLAN DE L'INVENTION
La chromatographie implique le passage d’un fluide au travers d’une colonne comprenant une phase stationnaire adaptée pour retenir sélectivement des espèces contenues dans le fluide.
On a proposé des matériaux chromatographiques basés sur des faisceaux de tubes capillaires comportant sur leur paroi des épaisseurs de matériau chromatographique, liquide ou phase stationnaire solide poreuses.
On a de plus proposé des matériaux multicapillaires monolithiques parcourus de canaux ouverts et contigus, matériaux monolithiques éventuellement poreux.
Ces dispositifs sont de synthèse difficile du fait de la finesse des canaux exigés pour certaines applications.
Ils sont d’autre part peu efficaces du fait de l’épaisseur variable de phase stationnaire déposée sur leur paroi.
BREVE DESCRIPTION DE L'INVENTION
Un but de l’invention est de concevoir un procédé de fabrication d’un garnissage multicapillaire qui présente une efficacité améliorée pour la chromatographie.
A cet effet, l’invention propose un procédé de fabrication d’un garnissage multicapillaire comprenant une pluralité de canaux adaptés pour la convection d’un fluide entre une face d’entrée et une face de sortie dudit garnissage, ledit procédé comprenant les étapes de :
- fourniture d’au moins une préforme adaptée pour former, après ablation, un canal capillaire du garnissage,
- assemblage desdites préformes en un faisceau,
- enrobage de chaque préforme d’une pluralité de couches poreuses par dépôt de couches alternées d’un poly électrolyte et de nanoparticules ou de nanoparticules colloïdales ou par dépôt de couches alternées desdites nanoparticules et d’une colle polymère,
- liaison des préformes enrobées pour former un monolithe poreux,
- ablation des préformes pour former les canaux dans ledit monolithe poreux.
De préférence, au moins une dimension parmi la longueur, la largeur, l’épaisseur ou le diamètre des nanoparticules est inférieure à 1 pm. Dans certains modes de réalisation, le poly électrolyte est choisi parmi du chlorure de poly diallyl methyl ammonium, du poly diethylaminoethylmethacrylate acétate, du poly-8- methacrylyloxyethyldiethylmethyl ammonium méthyl sulfate (poly-g-MEMAMS), ou de l’acide poly méthacrylique. Les nanoparticules comprennent avantageusement un sol de silice, un sol d’alumine activée, ou un aluminosilicate, tel qu’une zéolithe.
Dans certains modes de réalisation, la liaison des préformes enrobées est réalisée par frittage.
Dans certains modes de réalisation, la iaison des préformes enrobées est réalisée par ajout d’un liant entre lesdites préformes.
Ledit liant peut être obtenu par un procédé sol gel ou par séchage d’un sol.
Dans certains modes de réalisation, ledit liant comprend un gel de silice.
De manière particulièrement avantageuse, l’ablation des préformes comprend au moins l’une des techniques suivantes : dissolution, réaction chimique, oxydation, pyrolyse, hydrolyse, vaporisation, dépolymérisation.
Les préformes présentent un diamètre ou, lorsque les préformes ont une section non circulaire, le diamètre d’une préforme de section circulaire présentant une aire identique, inférieur à 10 pm, de préférence inférieur à 5 pm.
Dans certains modes de réalisation, les préformes comprennent des fibres de polyamide.
Dans d’autres modes de réalisation, les préformes comprennent des fibres de carbone.
De manière particulièrement avantageuse, les nanoparticules ou nanoparticules colloïdales présentent au moins une dimension de largeur, de longueur, d’épaisseur ou de diamètre qui est inférieure à 0,2 pm.
Dans certains modes de réalisation, les nanoparticules ou nanoparticules colloïdales sont poreuses.
De manière particulièrement avantageuse, le poly électrolyte ou la colle polymérique présente un poids moléculaire adapté pour empêcher la pénétration dudit poly électrolyte ou de ladite colle dans les pores desdites nanoparticules.
BREVE DESCRIPTION DES DESSINS
La figure 1 représente vu en coupe un intermédiaire de synthèse du garnissage multicapillaire suivant l’invention. La figure 2 représente un intermédiaire de synthèse du garnissage multicapillaire suivant l’invention.
DESCRIPTION DETAILLEE DE L'INVENTION L’invention propose la formation d’un garnissage multicapillaire comprenant, dans un premier temps, la fabrication d’un monolithe entourant des préformes adaptées pour former chacune, après ablation, un canal capillaire du garnissage, et dans un second temps, l’ablation des préformes pour libérer chaque canal respectif au sein du monolithe. Le monolithe est formé par enrobage de chaque préforme par une pluralité de couches poreuses. Comme décrit en détail plus bas, cet enrobage peut être réalisé par un procédé dit « couche par couche » ou par un dépôt alterné de couches de nanoparticules et d’une colle polymère de sorte à former un film autour de chaque préforme.
Ce dépôt couche par couche permet en particulier de maîtriser précisément l’épaisseur de la couche finale.
On utilisera de préférence des particules fines comme des nanoparticules. Dans le présent texte, on définit les nanoparticules comme étant des particules qui présentent au moins une de leurs dimensions (largeur, hauteur, longueur ou diamètre) inférieure à 1 pm, de préférence inférieure à 0,2 pm. Suivant l’invention, les dimensions des nanoparticules sont mesurées par microscopie électronique en balayage.
L’utilisation d’un poly électrolyte en guise de colle permet de plus un avantage additionnel : elle permet de travailler sur des faisceaux de préformes comme des fibres, et de recouvrir simultanément toutes les préformes du faisceau par une couche d’une substance déposée uniformément par adsorption, chimisorption ou physisorption sur la totalité des préformes en les immergeant dans un bain dans laquelle cette substance se trouve en solution. On peut de cette façon traiter un grand nombre de fibres simultanément en immergeant tout le faisceau, et donc traiter avantageusement, et en particulier, des fibres très fines qu’il serait difficile et peu productif de manipuler et de traiter individuellement. De plus, on peut par cette technique assembler des matériaux ne présentant pas par eux même d’affinité, comme des colloïdes de silice sur des fibres polymériques ou des fibres de carbone.
Ainsi une première couche de poly électrolyte s’adsorbera aisément sur une préforme, sous forme d’une monocouche, et par un traitement ultérieur dans un autre bain des nanoparticules ou des nanoparticules colloïdales viendront s’adsorber uniformément sur cette pré couche de poly électrolyte, avec laquelle elles ont de l’affinité, sous forme d’une monocouche de particules colloïdales ou de nanoparticules agglutinées uniformément sur la préforme de façon à la recouvrir. On peut ainsi déposer des couches très fines sur une multiplicité de fibres simultanément, uniformément, totalement et précisément en tous les points du faisceau. Cette opération peut être répétée de façon à empiler « couche par couche » un dépôt d’épaisseur croissante en alternant les couches de poly électrolyte, qui sert de colle entre les couches, qui vient s’adsorber de nouveau mais cette fois sur les nanoparticules ou particules colloïdales déposées, et des dépôts de colloïdes ou de nanoparticules qui viendront s’y agglutiner de nouveau. Ces opérations s’effectuerons facilement par des mises en contact successives et répétées dans des liquide contenant alternativement le poly électrolyte et les nanoparticules ou particules colloïdales. Avantageusement suivant l’invention les nanoparticules sont poreuses.
Avantageusement leur porosité (ou taux de vide) est supérieure à 10% en volume, de préférence supérieure à 20% en volume, encore plus préférentiellement supérieure à 40 % en volume.
Avantageusement, la taille des pores de ces nanoparticules est inférieure à 200 nanomètres et de préférence inférieure à 70 nanomètres.
Avantageusement les nanoparticules sont en gel de silice, en alumine activée ou en un aluminosilicate.
Avantageusement les nanoparticules sont constituées d’une zéolithe.
Avantageusement le poly électrolyte servant d’agent de liaison présente un poids moléculaire ou un volume moléculaire tel qu’il est rejeté par les pores et ne peut y pénétrer.
De même, dans le cas d’utilisation d’une colle polymérique, ladite colle polymérique servant d’agent de liaison présente un poids moléculaire ou un volume moléculaire tel qu’elle est rejetée par les pores et ne peut y pénétrer.
Préformes Les préformes sont des fils ou fibres dont la forme extérieure définit la forme du canal résultant de l’ablation du fil ou de la fibre correspondant(e).
Les préformes peuvent typiquement présenter une section circulaire ; cependant, l’utilisation de préformes présentant une section non circulaire n’est pas exclue.
Dans la suite du texte, on emploiera le terme de « diamètre » pour désigner la dimension de la section des préformes. Dans le cas de préformes non circulaires, le « diamètre » doit être compris comme étant le diamètre d’une préforme de section circulaire présentant une aire identique.
Le diamètre des préformes, qui est égal au diamètre intérieur des canaux après ablation des préformes, est choisi en fonction du diamètre souhaité pour les canaux. Avantageusement, les préformes ont un diamètre inférieur à 10 pm, et plus avantageusement inférieur à 5 pm.
Dans certains modes de réalisation, les préformes sont des microfibres de diamètre inférieur à 0,5 pm. De telles fibres peuvent être en un matériau polymérique.
Lorsque les préformes présentent un diamètre suffisamment grand (par exemple supérieur à 1 pm), l’ablation des préformes conduit généralement à des canaux s’étendant continûment sur toute la longueur du garnissage. Lorsque les préformes présentent un diamètre plus faible (par exemple inférieur à 0,5 pm), il est possible que les canaux créés par l’ablation desdites microfibres s’étendent sur une fraction seulement de la longueur totale du garnissage. Cependant, une telle interruption des canaux n’est pas pénalisante pour les performances du garnissage, dans la mesure où le matériau monolithique entourant les canaux est poreux et permet d’assurer la convection de fluide le long du garnissage.
Les préformes sont de préférence formées d’un matériau présentant une bonne régularité de leur diamètre sur toute leur longueur, ainsi qu’une bonne stabilité dimensionnelle, c’est-à-dire une capacité à ne pas se déformer ou changer de diamètre au cours du procédé de fabrication du garnissage.
Les préformes sont de préférence dans un matériau non poreux.
Dans certains modes de réalisation, les préformes sont des fils de polyamide.
D’autre part, suivant un mode de réalisation privilégié d’un monolithe multicapillaire par ablation de préformes, les préformes sont des fibres de carbone. Les fibres de carbone présentent en effet une multiplicité d’avantages :
1. Elles ont la particularité d’être d’une stabilité dimensionnelle excellente entre leur mise en oeuvre à froid et leur comportement à chaud. Elles ne génèrent donc aucun retrait, et la stabilité du matériau est mieux assurée.
2. Leur pyrolyse ne s’accompagne d’aucun dégagement de goudrons ou de molécules organiques toxiques, et ne laisse aucune cendre.
3. Leur très faible coefficient de dilatation thermique assure une excellente compatibilité avec une matrice céramique les enrobant.
4. Leur pyrolyse se produit sous atmosphère d’air et ne produit que des produits de réaction gazeux, monoxyde de carbone et dioxyde de carbone.
5. Elles sont disponibles commercialement sous forme de fibres de très petits diamètres, de 10 pm jusqu’à 4 pm ou moins à très bas coût, permettant ainsi de réaliser des garnissages efficaces.
On utilisera donc avantageusement des préformes basées sur des fibres de carbone pour la réalisation du procédé suivant l’invention.
D’autres matériaux sont envisageables pour les préformes, notamment les fils de polyesters, poly sulfone, d’acide polyglycolique, de polydioxanone, de polymethacrylate de methyle, de polyamides, de polyolefines, de polyimides etc...
Enrobage des préformes
Chaque préforme est enrobée d’une pluralité de couches poreuses.
Différents procédés d’enrobage peuvent être utilisés. Ces procédés peuvent être appliqués sur un lot de préformes qui sont ensuite assemblées en faisceau, ou sur un faisceau de préforme déjà constitué. Par « faisceau », on entend l’assemblage des préformes adapté pour l’obtention des canaux souhaités. Avantageusement les préformes ablatives présentent des dimensions aussi uniformes que possibles. Les préformes peuvent être caractérisées par au moins deux dimensions :
- le diamètre ou diamètre hydraulique des préformes ; et - la longueur des préformes.
Avantageusement, le diamètre ou diamètre hydraulique présente une variabilité caractérisée par son écart type relatif inférieur à 30%, de préférence inférieur à 10%, encore plus préférentiellement inférieur à 2% du diamètre moyen des préformes.
Dans un premier mode de réalisation, l’enrobage est réalisé par un procédé dit « couche par couche » (« layer by layer » selon la terminologie anglo-saxonne).
Un tel procédé est connu pour la fabrication de produits dits « core-shell » qui sont des particules sphériques de faible diamètre (2 à 3 pm), constituées d’un cœur dense entouré d’une pellicule de gel de silice. Ces particules sont obtenues par le dépôt d’une couche de gel sur le cœur qui est non poreux. Selon un tel procédé « Layer by layer », des surfaces à recouvrir sont exposées à des couches alternées de liant et de particules de petites tailles. Cette approche utilise les interactions électrostatiques (et également des forces de Van der Waals, liaisons hydrogène, liaisons covalentes, etc...) entre des espèces positivement chargées (cationiques) et négativement chargées (anioniques) pour déposer des couches successives et multiples de matériau sur un substrat.
On trouvera une description de cette technique dans la référence suivante [1], ainsi que dans le brevet [2]
Dans la présente invention, un lot de préformes est soumis à l’action successive de solutions de poly électrolyte et de sols de silice, de sols d’alumine activée (boehmite), ou d’aluminosilicates (par exemple des zéolithes), négativement chargés.
Le poly électrolyte peut par exemple être un chlorure de poly diallyl methyl ammonium, du poly diethylaminoethylmethacrylate acétate, du poly-8- methacrylyloxyethyldiethylmethyl ammonium méthyl sulfate (poly-g-MEMAMS), ou de l’acide poly méthacrylique. Les sols de silice, d’alumine ou les aluminosilicates peuvent de préférence être constitués de particules de diamètre compris entre 4 et 100 nm.
Le poly électrolyte cationique en solution est mis en contact avec les préformes, se dépose sur chaque préforme, et son excès est drainé et lavé. On met ensuite les préformes ainsi recouvertes d’une couche adsorbée de poly électrolyte avec le sol de silice (ou d’alumine ou l’aluminosilicate) en solution aqueuse qui est lui-même adsorbé sur le poly électrolyte. Cette opération est reconduite autant de fois que nécessaire jusqu’à obtenir l’épaisseur de couche voulue autour de chaque préforme. Ladite épaisseur est typiquement comprise entre 20 et 10 000 nm. Les préformes sont séchées, puis pyrolysées et frittées pour assurer l’élimination des composés organiques, le dégagement de la porosité et la cohésion mécanique de l’ensemble.
Dans un second mode de réalisation, l’enrobage est réalisé par le dépôt, sur chaque préforme, de couches successives d’un gel de silice et d’une colle polymère.
On forme ainsi un film sol-gel, qui est poreux, autour de chaque préforme. L’épaisseur d’un tel film peut être typiquement compris entre 20 et 10 000 nm.
Par rapport au procédé « couche par couche », ce procédé d’enrobage présente l’avantage d’être particulièrement bien adapté à des préformes de faible diamètre, c’est-à- dire typiquement inférieur à 50 pm.
Quel que soit le procédé d’enrobage mis en oeuvre, les préformes sont assemblées en faisceau (avant ou après la mise en oeuvre de l’enrobage), et liées entre elles par un liant de façon à former une structure monolithique.
Ce liant comprend avantageusement un sol de colloïde ou de particules nanoscopiques.
Par exemple, une fois les préformes enrobées assemblées en faisceau et avant l’ablation des préformes, le faisceau est imprégné successivement par une solution de poly électrolyte puis par des sols de liant de façon à construire une épaisseur de matériau colloïdal remplissant les interstices entre les préformes, pour créer le monolithe. Le liant peut être, comme pour le matériau d’enrobage des préformes, un sol de silice, d’alumine ou un aluminosilicate. Avantageusement ce peut être un matériau poreux ou destiné à devenir poreux dans le matériau final. En effet on sait que l’on favorise la performance du garnissage vis-à-vis d’une opération de transfert de matière en permettant la diffusion des espèces parcourant le garnissage vis-à-vis des molécules parcourant les canaux entre les canaux jointifs, phénomène dit pontage diffusionnel et nécessaire à la bonne opération d’une séparation par chromatographie en particulier. Cette dernière opération de pontage diffusionnel est particulièrement souhaitable vis-à-vis des molécules d’intérêt, et particulièrement de la ou des molécules à séparer par chromatographie. Le matériau du liant peut être identique à ou différent de celui du matériau d’enrobage des préformes.
Avantageusement le liant des préformes recouvertes « couche par couche » est obtenu par un procédé sol gel. Ceci revient à la création d’un gel entre les préformes ablatives du faisceau, essentiellement par hydrolyse d’un précurseur organométallique.
Par hydrolyse d’un précurseur organométallique, on entend l’hydrolyse du précurseur organométallique en liaisons M-O-M (M désigne le métal du précurseur organométallique).
Dans le cas où M est un atome de silicium, en particulier et de façon non limitative, les liaisons M-O-R, M-N-R, M-S-R, M-O-B, où R est un groupement organique, du précurseur organométallique sont considérées comme hydrolysables. Dans le cas ou M est un atome de silicium, en particulier et de façon non limitative, les liaison, M-C-, sont généralement considérées comme non hydrolysables. On notera cependant que l’ajout de substituants ou hétéroatomes tels que O, N, S, etc... sur le carbone C peut rendre ces liaisons M-C fragiles. Dans ce dernier cas les liaisons seront considérées comme hydrolysables.
Ainsi par exemple, pour une mole de tétraalkoxysilane de formule M(OR)4 avec M = Si, OR étant le radical alkoxy, R étant un alkyle, par exemple un groupement méthyle ou éthyle, la réaction s’écrit : Si(OR)4 + 2 H2O -> S1O2 + 4 ROH
Ainsi par exemple, pour une mole de trialkoxysilane de formule R’M (OR)3 avec M = Si, OR étant le radical alkoxy, R étant un alkyle, par exemple un groupement méthyle ou éthyle, R’ étant un alkyle, par exemple un groupement méthyle ou éthyle, la quantité stoechiométrique d’eau requise est de 1,5 moles/mole de trialkoxysilane.
Ainsi par exemple, pour une mole de dialkoxysilane de formule R’R”M (OR)2 avec M = Si, OR étant le radical alkoxy, R étant un alkyle, par exemple un groupement méthyle ou éthyle, R’ étant un alkyle, par exemple un groupement méthyle ou éthyle, R” étant un alkyle, par exemple un groupement méthyle ou éthyle, la quantité stoechiométrique d’eau requise est d’une mole/mole de dialkoxysilane.
R’ et R” peuvent avantageusement également être des radicaux Dodécyl, Octadécyl, n-Octyl, n-Propyl, n-Butyl, Vinyl, 3-Chloropropyl, 3-Aminopropyl, 2-Aminoéthyl-3-aminopropyl, 3-Aminopropyl, 3-Ureidopropyl, 3-Glycidoxypropyl, 3-Glycidoxypropyl, 3-Méthacryloxypropyl, Bis(propyl)tétrasulfide, Bis(propyl)disulfide, 3-Mercaptopropyl, Trifluoropropyl, contenir des liaisons époxy, etc.O-R peut avantageusement être un radical alkoxy (ex. méthoxy , éthoxy), acyloxy, acétoxy, kétoxime, méthyléthylkétoxime, Oximino, etc..., (0-R)4, (0-R)3, (0-R)2, pouvant eux-mêmes représenter 4, 3, ou 2 respectivement groupements R précédemment listés tous identiques ou différents.
Le gel peut être basé sur tout composé minéral amenant une cohésion du monolithe. Ainsi, le gel peut être un gel à base d’oxyde d’aluminium, oxyde de silicium, oxyde de zirconium, oxyde de titane, oxyde de terre rare comme l’yttrium, le cérium ou le lanthane, oxyde de bore, oxyde de fer, oxyde de magnésium, oxyde de calcium, oxyde de strontium, oxyde de baryum, oxyde de germanium, oxyde de phosphore, oxyde de lithium, oxyde de potassium, oxyde de sodium, oxyde de niobium, oxyde de cuivre ou un de leurs mélanges. Dans certains modes de réalisation, le gel est un gel à base d’oxyde de silicium (gel de silice) ou d’oxyde d’aluminium (gel d’alumine). Dans certains modes de réalisation, le gel est un gel à base d’oxyde de zirconium ou d’oxyde de titane.
Dans certains modes de réalisation, le gel est un gel d’oxyde multi-composants. Par exemple, le gel peut être constitué de binaires d’oxydes de zirconium et d’yttrium, de zirconium et de cérium, de zirconium et de calcium, de baryum et de titane, de lithium et de niobium, de phosphore et de sodium ou de bore et de lithium. Le gel peut être un gel constitué de silicate, par exemple des silicates binaires basés sur de la silice et de l’oxyde de bore, de l’oxyde d’aluminium, de l’oxyde de germanium, de l’oxyde de titane, de l’oxyde de zirconium, de l’oxyde de strontium ou de l’oxyde de fer, des silicates ternaires, des silicates multi-composants comportant plus de trois constituants. Dans certains modes de réalisation, le gel est un gel d’oxyde multi-composants, par exemple un gel d’aluminosilicate, par exemple une argile.
Le gel est préparé in situ par la voie bien connue dite sol-gel (« solution-gélification »). Dans le cadre de la présente invention, le gel est créé entre les préformes par hydrolyse d’un précurseur organométallique. Le précurseur organométallique comprend au moins un, notamment au moins deux groupements hydroxyles ou groupements hydrolysables pour former des oxydes métalliques lors de leur hydrolyse. Ainsi, le précurseur organométallique est typiquement un alkoxide organométallique, un acétate organométallique, un carboxylate organométallique, un halogénure organométallique, un nitrate organométallique, un alcanoate organométallique ou un acyloxyde organométallique.
Des exemples de précurseurs organométalliques incluent de manière non limitative le tétrachlorosilane, le nitrate d’aluminium (qui peut être hydrolysé en présence d’urée), le tétraméthoxysilane, le tétraéthoxysilane, le diiéthyl(diméthoxy)silane le triéthyl(méthoxy)silane.
Le précurseur organométallique est de préférence un alkoxide organométallique.
L’étape d’hydrolyse est généralement catalysée par un acide ou une base. Le choix d’une catalyse acide ou basique dépend typiquement du ou des précurseurs utilisés. Ainsi, en d’autres termes la création d’un gel peut être avantageusement formulée de la manière suivante :
(b1) préparation d’un produit d’hydrolyse, ou sol, comprenant un précurseur organométallique tel que décrit ci-dessus;
(b2) immersion des préformes ablatives du faisceau dans le sol ; (c2) hydrolyse du précurseur organométallique.
Avant ou après ablation des préformes, le gel est séché. Le séchage est réalisé dans des conditions permettant de garantir au mieux son intégrité structurelle et mécanique, en particulier de manière à limiter au maximum la formation de fissures et de retraits macroscopiques ou microscopiques. Le séchage peut être réalisé sous vide ou à pression atmosphérique, préférentiellement à température ambiante. Le séchage est typiquement réalisé de manière lente sous température et pression partielle contrôlée. La durée de séchage est typiquement d’au moins une heure, voire supérieure à dix heures, supérieure à 24 heures et peut aller jusqu’à plusieurs jours. Dans certains modes de réalisation, la durée de séchage est de 48 heures. La durée de séchage sera d’autant plus grande que le volume du matériau à sécher sera important, notamment d’autant plus que le matériau sera épais. Dans certains modes de réalisation, le séchage est réalisé à température ambiante (20- 25°C) sous vide à une pression de 1 à 50 kPa pendant environ 48 heures.
Dans certains modes de réalisation, le séchage est réalisé après un mûrissement permettant de renforcer la structure du gel et d’augmenter le diamètre de ses pores. Le mûrissement est typiquement réalisé en maintenant le gel à température ambiante pendant une durée d’environ 24 heures ou supérieure à 24 heures. De préférence suivant la présente invention, le dépôt « couche par couche » comprend un sol de silice. Avantageusement dans ce cas, un liant éventuel est obtenu par un procédé sol gel à base de précurseurs silico organiques.
De façon générale, un gel de silice a typiquement une surface spécifique allant de 20 à 1200 m2/g, de manière préférée allant de 20 à 700 m2/g, de manière encore plus préférée comprise entre 70 et 450 m2/g.
Le gel de silice a typiquement un volume poreux allant de 20 % à 90% en volume du gel, plus avantageusement allant de 40 % à 70% voire 65% en volume du gel. Par « volume du gel », on entend le volume de gel compris entre les conduits du monolithe délimité par son contour extérieur, distincts d’espaceurs éventuels destinés à maintenir un passage ouvert au fluide en maintenant un espace entre différentes masses ou portions de gel de silice, et hors du volume délimitant les contours des espaceurs, i.e., le volume du gel situé entre les conduits du monolithe. Les éventuels espaceurs ne sont pas pris en compte dans la détermination de volume du gel ; autrement dit, dans le cas où des espaceurs sont présents, on considère le gel situé à l'extérieur des espaceurs. Le gel de silice est généralement réalisé de manière à obtenir des pores de grands diamètres. Il est connu que les forces de tension capillaire menant aux retraits et aux fissurations du gel lors de son séchage varient comme l’inverse de ce diamètre. Le diamètre des pores du gel avant séchage est typiquement supérieur à 4 nm, de préférence supérieur à 10 nm et n’excède généralement pas 1000 nm. Le diamètre des pores du gel après séchage est typiquement supérieur à 2 nm, de préférence supérieur à 10 nm et n’excède généralement pas 1000 nm.
Dans certains modes de réalisation, le sol précurseur du gel de silice comprend des additifs conventionnellement utilisés pour la préparation de garnissages. Ainsi, le sol peut comprendre des agents tensioactifs ou des additifs chimiques de contrôle de séchage comme le formamide. Celui-ci permettra de réduire les fissurations au séchage.
Dans certains modes de réalisation, une charge solide peut être ajoutée au gel. La charge solide peut permettre de renforcer mécaniquement le gel obtenu, de limiter son retrait, et éventuellement d’apporter au gel final une fonctionnalité supplémentaire comme de la surface spécifique additionnelle ou une fonctionnalité catalytique.
La charge solide peut être de la poudre de gel de silice ou de gel d’alumine. Avantageusement cette poudre présente une surface spécifique élevée, avantageusement supérieure à 250 m2/g, plus avantageusement supérieure à 450 m2/g, encore plus avantageusement supérieure à 700 m2/g. Avantageusement cette poudre présente une très fine granulométrie, inférieure à 25 pm, préférentiellement inférieure à 3 pm, plus préférentiellement inférieure à 0,5 pm.
La charge solide peut être constituée de fibres, microfibres ou nanofibres, comme des « whiskers » comme les fibres de titanates de potassium. Celles-ci sont en particulier commercialisées sous la marque TISMO D. Elle confèrent une plus grande rigidité au matériau final.
Les surfaces spécifiques, tailles de pores et volumes poreux mentionnés dans ce texte sont mesurés par adsorption d’azote suivant la méthode BET (Brunauer, Emmett et Teller). Ablation des préformes
L’ablation des préformes peut être conduite par tout procédé adapté, comme par exemple dissolution, réaction chimique, oxydation, pyrolyse, hydrolyse, vaporisation, dépolymérisation, en monomères solubles ou volatils, entre autres méthodes, ou par une combinaison de ces méthodes, selon le matériau des préformes. Par exemple, pour des préformes sous la forme de fils de polyamide, l’ablation est avantageusement réalisée par pyrolyse. Pour des préformes sous la forme de fibres de carbone, l’ablation est avantageusement réalisée également par pyrolyse.
Avantageusement, et de préférence mais non exclusivement, le procédé suivant l’invention est complété par une opération de frittage du matériau déposé couche par couche et de son éventuel liant. Cette opération peut être conduite à une température variable selon la nature du matériau déposé. Avantageusement pour un matériau de type sol de silice ou gel de silice, cette température est typiquement comprise entre 500 et 1000 °C, et plus avantageusement entre 700 et 900 °C.
Traitement final du monolithe Le monolithe peut recevoir un traitement de surface final comme par un silane, un alcool, un acide carboxylique ou toute fonctionnalité chimisorbée ou physisorbée par le matériau du monolithe. On se référera à l’état de l’art pour exécuter le traitement de surface en fonction de l’application souhaitée.
Eventuellement, un garnissage de gel de silice suivant l’invention peut être greffé à l’aide d’un silane fonctionnel, afin de modifier ses propriétés d’adsorption et de rétention pour une application chromatographique.
Parmi les silanes fonctionnels utilisables, peuvent être cités de manière non limitative les dodécyltrimethoxysilane, Octadécyltriméthoxysilane, Hexadecyltriméthoxysilane, Méthyltriméthoxysilane, n-Octyltriéthoxysilane, n-Octyltriméthoxysilane, n-Propyltriméthoxysilane, n-Propyltriéthoxysilane, Méthyltriacétoxysilane,
Ethyltriacétoxysilane, Vinyltriacétoxysilane, Vinyltri(2-méthoxyéthoxy)silane,
3-Chloropropyltriéthoxysilane, 3-Chloropropyltriméthoxysilane, 3-Chloropropylméthyldiméthoxysilane, 3-Aminopropyltriéthoxysilane,
2-Aminoéthyl-3-aminopropyltriméthoxysilane, 3-Aminopropyltriméthoxysilane,
Bis(triméthoxysilypropyl)amine, 3-Ureidopropyltriméthoxysilane,
3-Glycidoxypropyltriméthoxysilane, 3-Glycidoxypropylméthyldiméthoxysilane,
3-Méthacryloxypropyltriméthoxysilane, 3-Méthacryloxypropylméthyldiméthoxysilane, Bis(3-triéthoxysilylpropyl)tétrasulfide, Bis(3-triéthoxysilylpropyl)disulfide,
3-Mercaptopropyltriméthoxysilane, 3-Mercaptopropylméthyldiméthoxysilane,
Vinyltris(méthyléthylketoxime)silane, vinyl Oximino Silane,
Méthyltris(methylethylketoxime)silane, Méthyl Oximino Silane,
Tétra(methylethylketoxime)silane, Trifluoropropylméthyldiméthoxylsilane, des silanes contenant des liaisons époxy, etc...
Dans certains modes de réalisation, le matériau obtenu, i.e., le gel, est mésoporeux et ne présente de préférence pas de macroporosité. Le gel diffère en particulier des gels de silice multimodaux commercialisés par la société Merck sous le nom commercial de Chromolith, et dérivés des recherches de K Nakanishi [3], [4], et N. Ishizuka [5]. De tels gels sont obtenus par un procédé sol gel standard ne faisant pas intervenir de décomposition spinodale.
Dans certains modes de réalisation, le matériau obtenu, i.e., le gel, est macroporeux et fait intervenir une décomposition spinodale. En particulier il s’agira de gels de silice multimodaux, du type commercialisés par la société Merck sous le nom commercial de Chromolith, et dérivés des recherches de Mr Takanishi et Ishizuka [3] [4] [5] au Japon.
La figure 1 représente une préforme 1 recouverte, par un procédé « Layer by Layer », de trois couches successives 2 de particules de silice colloïdale.
La figure 2 représente un monolithe constitué d’un faisceau de telles couches successives 2 pour lesquelles chaque préforme 1 a été éliminée et laisse la place à un canal 3. Les interstices 4 entre les préformes sont comblés par des particules additionnelles 5 identiques aux particules constituant les couches 2 ou différentes, et dans ce dernier cas avantageusement inertes vis-à-vis de la séparation chromatographique.
Exemple 1
Un faisceau de fibres de carbone contenant 12000 filaments de 7 pm de diamètre fourni par la société GOODFELLOW est traité successivement par des bains de solution aqueuse à 0,5 % en poids de poly (diethylaminoethylmethacrylate) de poids moléculaire 10000 g Sigma Aldrich de référence 910104, sous forme d’acétate, rincé à l’eau déminéralisée, puis traité par une solution à 10% de sol de silice de 200 nm de taille de particules, et rincé de nouveau à l’eau distillée. L’opération est répétée quatre fois.
On obtient une pellicule poreuse de silice de 0,5 à 1 pm d’épaisseur sur les fibres. L’ensemble est porté à 700 °C douze heures dans l’air pour en améliorer la résistance mécanique et éliminer les fibres de carbone par pyrolyse.
Exemple 2
Les conditions opératoires de l’exemple 1 précédent sont reprises.
L’ensemble est traité quatre fois successivement par des bains de solution aqueuse à 0,5 % en poids de poly (diethylaminoethylmethacrylate) de poids moléculaire 10000 g Sigma Aldrich de référence 910104, sous forme d’acétate, rincé à l’eau déminéralisée, puis traité par une solution à 10% de sol de silice de 70 nm de taille de particules, et rincé de nouveau à l’eau distillée, et le faisceau de fibres de carbone est en outre compacté dans un profilé de quartz en U de 2 mm x2 mm de passage intérieur et de 300 mm de long avant pyrolyse. L’ensemble est porté à 700 °C douze heures dans l’air pour en améliorer la résistance mécanique et éliminer les filaments de carbone par pyrolyse.
On obtient ainsi un monolithe de silice poreuse multicapillaire adapté pour la chromatographie.
Exemple 3
Les conditions opératoires de l’exemple 1 précédent sont reprises, et le faisceau de fibres est compacté dans un profilé de quartz en U de 2 mm x 2 mm de passage intérieur et de 300 mm de long avant pyrolyse.
L’ensemble est traité par une solution à 50% de sol de silice de 22 nm de taille de particules, et drainé. L’ensemble est porté à 700 °C douze heures dans l’air pour en améliorer la résistance mécanique et éliminer les filaments de carbone par pyrolyse. On obtient ainsi un monolithe de silice poreuse multicapillaire adapté pour la chromatographie.
Exemple 4
Un faisceau de fibres de carbone contenant 12000 filaments de 7 pm de diamètre fourni par la société GOODFELLOW est traité successivement par des bains de solution aqueuse à 0,5 % en poids de poly (diethylaminoethylmethacrylate) de poids moléculaire 10000 g Sigma Aldrich de référence 910104, sous forme d’acétate, rincé à l’eau déminéralisée, puis traité par une solution à 10% de sol de silice de 70 nm de taille de particules, et rincé de nouveau à l’eau distillée. L’opération est répétée quatre fois.
Dans cet exemple, les fibres de carbone ainsi recouvertes sont assemblées en faisceau, le faisceau est immergé dans une solution précurseur d’un gel de silice, solution dont on provoque le gel autour des fibres, puis les fibres sont éliminées par pyrolyse et combustion. Un faisceau est fabriqué en assemblant ces filaments en un faisceau de section rectangulaire de 1700 pm de largeur, de 250 pm de profondeur et de 100 mm de long. Ce faisceau est créé par insertion dans un tel conduit précisément usiné dans une feuille de titane (grade 2 ASTM) de 100 mm x 20 mm x 10 mm. Le faisceau de fibres de carbone est imprégné par un mélange de 1 ,6 g de Brij 56
(tensio actif commercial), de 1 g de dodécane, de 4 g de tétraméthoxysilane, et de 2g de HCl 0,05 N dans l’eau désionisée. On mélange TEOS, dodécane et Brij à 50°C jusqu'à ce que le mélange soit homogène. On ajoute ensuite l'acide 0,5 N (HCl) sous agitation forte. Le mélange est coulé dans le conduit portant les fibres. Le garnissage est refermé par un couvercle supérieur constitué d’une feuille de titane
(grade 2 ASTM) plane de dimensions identiques à celles de la feuille de titane de base, vissée sur celle-ci, sur laquelle est préalablement déposée une épaisseur de 5 micromètres environ d’une paraffine fondant à 90 °C.
Le mélange est laissé à polymériser et geler durant 24 heures à 20 °C. Les deux extrémités du garnissage sont coupées au ras de la feuille de titane de façon à libérer la section du garnissage.
Le garnissage a une longueur de 100 mm.
Le couvercle est enlevé et le garnissage est séché sous vide.
Le produit résultant est chauffé jusqu'à 700°C dans une atmosphère d’air pour le convertir en un garnissage multicapillaire en brûlant les fibres de carbone.
Une fois refroidi, le garnissage est clos de nouveau sur sa partie supérieure par une feuille plane de titane (grade 2 ASTM) des mêmes dimensions, ou couvercle, vissée sur celle contenant le garnissage.
Exemple 5 Un faisceau de fibres de carbone contenant 12000 filaments de 7 pm de diamètre fourni par la société GOODFELLOW est traité successivement par des bains de solution aqueuse à 0,5 % en poids de poly (diethylaminoethylmethacrylate) de poids moléculaire 10000 g Sigma Aldrich de référence 910104, sous forme d’acétate, rincé à l’eau déminéralisée, puis traité par une solution à 10% de sol de silice de 70 nm de taille de particules, et rincé de nouveau à l’eau distillée. L’opération est répétée quatre fois.
Dans cet exemple, les fibres de carbone ainsi recouvertes sont assemblées en faisceau, le faisceau est immergé dans une solution précurseur d’un gel de silice, solution dont on provoque le gel autour des fibres, puis les fibres sont éliminées par pyrolyse et combustion. Un faisceau est fabriqué en assemblant ces filaments en un faisceau de section rectangulaire de 1700 pm de largeur, de 250 pm de profondeur et de 100 mm de long. Ce faisceau est créé par insertion dans un tel conduit précisément usiné dans une feuille de titane (grade 2 ASTM) de 100 mm x 20 mm x 10 mm. Le faisceau de fibres de carbone est imprégné par un mélange de 1 ,6 g de Brij 56 (tensio actif commercial), de 1 g de dodécane, de 4 g de tétraméthoxysilane, et de 2g de HCl 0,05 N dans l’eau désionisée. On mélange TEOS, dodécane et Brij à 50°C jusqu'à ce que le mélange soit homogène. On ajoute ensuite l'acide 0,5 N (HCl) sous agitation forte. Le mélange est coulé dans le conduit portant les fibres.
Le garnissage est refermé par un couvercle supérieur constitué d’une feuille de titane (grade 2 ASTM) plane de dimensions identiques à celles de la feuille de titane de base, vissée sur celle-ci, sur laquelle est préalablement déposée une épaisseur de 5 micromètres environ d’une paraffine fondant à 90 °C. Le mélange est laissé à polymériser et geler durant 24 heures à 20 °C.
Les deux extrémités du garnissage sont coupées au ras de la feuille de titane de façon à libérer la section du garnissage.
Le garnissage a une longueur de 100 mm.
Le couvercle est enlevé et le garnissage est séché sous vide. Le produit résultant est chauffé jusqu'à 700°C dans une atmosphère d’air pour le convertir en un garnissage multicapillaire en brûlant les fibres de carbone.
Une fois refroidi, le garnissage est clos de nouveau sur sa partie supérieure par une feuille plane de titane (grade 2 ASTM) des mêmes dimensions, ou couvercle, vissée sur celle contenant le garnissage. Exemple 6
Un faisceau de fibres de carbone contenant 12000 filaments de 7 pm de diamètre fourni par la société GOODFELLOW est traité successivement par des bains de solution aqueuse à 0,5 % en poids de poly (diethylaminoethylmethacrylate) acétate, rincé à l’eau déminéralisée, puis traité par une solution à 10% de sol de silice de 20 nm de taille de particules, et rincé de nouveau à l’eau distillée. L’opération est répétée quatre fois.
Dans cet exemple, les fibres de carbone ainsi recouvertes sont assemblées en faisceau, le faisceau est immergé dans une solution précurseur d’un gel de silice macroporeux obtenu par décomposition spinodale, solution dont on provoque le gel autour des fibres, puis les fibres sont éliminées par pyrolyse et combustion. Un faisceau est fabriqué en assemblant ces filaments en un faisceau de section rectangulaire de 1700 pm de largeur, de 250 pm de profondeur et de 100 mm de long. Ce faisceau est créé par insertion dans un tel conduit précisément usiné dans une feuille de titane (grade 2 ASTM) de 100 mm x 20 mm x 10 mm.
Le faisceau est réalisé avec une longueur de 75 mm de long. Un monolithe silicique est synthétisé à partir de tetraéthoxysilane (TEOS, Aldrich
99%), de Polyéthylène oxyde (PEO, masse molaire =10 000, Aldrich 99%), de l’acide nitrique (68 %, Aldrich) et du NH40H (pureté analytique, Aldrich). Un Erlenmeyer de 250 ml_ est placé dans un bain de glace à 0°C avec un barreau aimanté. Puis de l’eau déminéralisée (36 g, 2 mol) et de l’acide nitrique (68% HN03, 3.60 g, 38,84 mmol) sont ajoutés et agités à 500 rpm pendant 15 min. Ensuite, le PEO (4.79 g PEO dont 0.11 mol unité EO) est ajouté et le mélange est agité pendant une heure à 700 rpm afin que tout le PEO soit dissout. Le TEOS (37.70 g,0.18 mol) est ensuite ajouté et le mélange est agité pendant une heure. La solution transparente obtenue est ensuite versée à l’aide d’une pipette de 10 mL dans le sein du faisceau de tronçons obtenu précédemment préalablement gardé dans un environnement sec à 0°C avant le remplissage. Le garnissage est refermé par un couvercle supérieur constitué d’une feuille de titane (grade 2 ASTM) plane de dimensions identiques à celles de la feuille de titane de base, vissée sur celle-ci, sur laquelle est préalablement déposée une épaisseur de 5 micromètres environ d’une paraffine fondant à 90 °C.
Le barreau est ensuite placé dans une étuve sous atmosphère saturée de vapeur d’eau à 40°C pendant 72 heures. Le couvercle en Titane est enlevé. Le barreau est immergé dans un bêcher de 2 L avec 1500 mL d’eau déminéralisée à température ambiante pendant 1 h. Le monolithe est ensuite lavé de la même manière quatre fois par immersion dans de l’eau déminéralisée (500 mL, 1 h) jusqu’à obtention d’un pH neutre. Le monolithe est ensuite soumis à un traitement basique. Il est alors immergé dans 400 mL d’une solution d’ammoniaque (0.1 M) dans un flacon en polypropylène (500 mL). Le flacon est ensuite mis dans une étuve à 40°C pendant 24 heures.
Le monolithe récupéré est rincé à l’aide d’une pissette avec de l’eau distillée, séché à température ambiante pendant 48 h et à 40°C pendant 24 h sur une surface plane.
Il est calciné à 650°C sous air pendant 24 heures (rampe 1 °C min-1 ).
Un couvercle plan dans une feuille de 20x10x75 mm de Titane (figures 19 et 20) est préparé.
Le couvercle est repositionné avec un joint de PEEK à 340°C et refroidi.
Exemple 7
Un faisceau de fibres de carbone contenant 12000 filaments de 7 pm de diamètre fourni par la société GOODFELLOW est traité successivement par des bains de solution aqueuse à 0,5 % en poids de poly (diethylaminoethylmethacrylate) de poids moléculaire 10000 g Sigma Aldrich de référence 910104, sous forme d’acétate, rincé à l’eau déminéralisée, puis traité par une solution à 10% de nanoparticules de gel de silice poreuses de taille de pores de 4 nanomètres et de volume poreux supérieur à 50 % en volume commercialisées par la firme Sigma Aldrich sous la référence 748161 de 200 nm de taille de particules, et rincé de nouveau à l’eau distillée. L’opération est répétée quatre fois.
Dans cet exemple, les fibres de carbone ainsi recouvertes sont assemblées en faisceau, le faisceau est immergé dans une solution précurseur d’un gel de silice, solution dont on provoque le gel autour des fibres, puis les fibres sont éliminées par pyrolyse et combustion.
Un faisceau est fabriqué en assemblant ces filaments en un faisceau de section rectangulaire de 1700 pm de largeur, de 250 pm de profondeur et de 100 mm de long. Ce faisceau est créé par insertion dans un tel conduit précisément usiné dans une feuille de titane (grade 2 ASTM) de 100 mm x 20 mm x 10 mm.
Le faisceau de fibres de carbone est imprégné par un mélange de 1 ,6 g de Brij 56 (tensio actif commercial), de 1 g de dodécane, de 4 g de tétraméthoxysilane, et de 2g de HCl 0,05 N dans l’eau désionisée. On mélange TEOS, dodécane et Brij à 50°C jusqu'à ce que le mélange soit homogène. On ajoute ensuite l'acide 0,5 N (HCl) sous agitation forte. Le mélange est coulé dans le conduit portant les fibres.
Le garnissage est refermé par un couvercle supérieur constitué d’une feuille de titane (grade 2 ASTM) plane de dimensions identiques à celles de la feuille de titane de base, vissée sur celle-ci, sur laquelle est préalablement déposée une épaisseur de 5 micromètres environ d’une paraffine fondant à 90 °C.
Le mélange est laissé à polymériser et geler durant 24 heures à 20 °C.
Les deux extrémités du garnissage sont coupées au ras de la feuille de titane de façon à libérer la section du garnissage.
Le garnissage a une longueur de 100 mm. Le couvercle est enlevé et le garnissage est séché sous vide.
Le produit résultant est chauffé jusqu'à 700°C dans une atmosphère d’air pour le convertir en un garnissage multicapillaire en brûlant les fibres de carbone.
Une fois refroidi, le garnissage est clos de nouveau sur sa partie supérieure par une feuille plane de titane (grade 2 ASTM) des mêmes dimensions, ou couvercle, vissée sur celle contenant le garnissage.
REFERENCES
[1] Core-shell particles, préparation, fundamentals and application in high performance liquid chromatography; R. Hayes, A. Ahmed, T. Edge, H. Zhang, Journal of Chromatography A, 1357, (2014), 36-52
[2] US 3,505,785
[3] K Nakanishi, Phase séparation in silica sol-gel System containing polyacrylic acid, Journal of non-crystalline Solids 139 (1992), 1-13 and 14-24;
[4] K. Nakanishi, Phase séparation in Gelling Silica-Organic Polymer Solution: Systems Containing Poly(sodium styrenesulfonate), J. Am. Ceram. Soc. 74 (10)
2518-2530-30 (1991);
[5] N. Ishizuka, Designing monolithic double pore silica for high-speed liquid chromatography, Journal of Chromatography A, 797 (1998), 133-137.

Claims

REVENDICATIONS
1. Procédé de fabrication d’un garnissage multicapillaire comprenant une pluralité de canaux adaptés pour la convection d’un fluide entre une face d’entrée et une face de sortie dudit garnissage, ledit procédé comprenant les étapes de :
-fourniture d’au moins une préforme (1) adaptée pour former, après ablation, un canal capillaire (3) du garnissage,
- assemblage desdites préformes en un faisceau,
- enrobage de chaque préforme (1 ) d’une pluralité de couches poreuses (2) par dépôt de couches alternées d’un poly électrolyte et de nanoparticules ou de nanoparticules colloïdales ou par dépôt de couches alternées desdites nanoparticules et d’une colle polymère,
- liaison des préformes enrobées pour former un monolithe poreux,
- ablation des préformes pour former les canaux dans ledit monolithe poreux.
2. Procédé selon la revendication 1, dans lequel au moins une dimension parmi la longueur, la largeur, l’épaisseur ou le diamètre des nanoparticules est inférieure à 1 pm.
3. Procédé selon l’une des revendications 1 ou 2, dans lequel le poly électrolyte est choisi parmi du chlorure de poly diallyl methyl ammonium, du poly diethylaminoethylmethacrylate acétate, du poly-8-methacrylyloxyethyldiethylmethyl ammonium méthyl sulfate (poly-g-MEMAMS), ou de l’acide poly méthacrylique.
4. Procédé selon l’une des revendications 1 à 3, dans lequel les nanoparticules comprennent un sol de silice, un sol d’alumine activée, ou un aluminosilicate, tel qu’une zéolithe.
5. Procédé selon l’une des revendications 1 à 4, dans lequel la liaison des préformes enrobées est réalisée par frittage.
6. Procédé selon l’une des revendications 1 à 5, dans lequel la liaison des préformes enrobées est réalisée par ajout d’un liant entre lesdites préformes.
7. Procédé selon la revendication 6, dans lequel le liant est obtenu par un procédé sol gel.
8. Procédé selon la revendication 6, dans lequel le liant est obtenu par séchage d’un sol.
9. Procédé selon l’une des revendications 6 à 8, dans lequel le liant comprend un gel de silice.
10. Procédé selon l’une des revendications 1 à 9, dans lequel l’ablation des préformes comprend au moins l’une des techniques suivantes : dissolution, réaction chimique, oxydation, pyrolyse, hydrolyse, vaporisation, dépolymérisation.
11. Procédé selon l’une des revendications 1 à 10, dans lequel les préformes présentent un diamètre ou, lorsque les préformes ont une section non circulaire, le diamètre d’une préforme de section circulaire présentant une aire identique, inférieur à 10 pm, de préférence inférieur à 5 pm.
12. Procédé selon l’une des revendications 1 à 11 , dans lequel les préformes comprennent des fibres de polyamide.
13. Procédé selon l’une des revendications 1 à 11 , dans lequel les préformes comprennent des fibres de carbone.
14. Procédé selon l’une des revendications 1 à 13, dans lequel les nanoparticules ou nanoparticules colloïdales présentent au moins une dimension de largeur, de longueur, d’épaisseur ou de diamètre qui est inférieure à 0,2 pm.
15. Procédé selon l’une des revendications 1 à 14, dans lequel les nanoparticules ou nanoparticules colloïdales sont poreuses.
16. Procédé selon la revendication 15, dans lequel le poly électrolyte ou la colle polymérique présente un poids moléculaire adapté pour empêcher la pénétration dudit poly électrolyte ou de ladite colle dans les pores desdites nanoparticules.
EP22754462.4A 2021-07-05 2022-07-05 Procédé de fabrication d'un garnissage multicapillaire Pending EP4366864A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2107256A FR3124743A1 (fr) 2021-07-05 2021-07-05 Procédé de fabrication d’un garnissage multicapillaire
PCT/FR2022/051345 WO2023281209A1 (fr) 2021-07-05 2022-07-05 Procédé de fabrication d'un garnissage multicapillaire

Publications (1)

Publication Number Publication Date
EP4366864A1 true EP4366864A1 (fr) 2024-05-15

Family

ID=77913222

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22754462.4A Pending EP4366864A1 (fr) 2021-07-05 2022-07-05 Procédé de fabrication d'un garnissage multicapillaire

Country Status (4)

Country Link
US (1) US20240307850A1 (fr)
EP (1) EP4366864A1 (fr)
FR (1) FR3124743A1 (fr)
WO (1) WO2023281209A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505785A (en) 1967-06-20 1970-04-14 Du Pont Superficially porous supports for chromatography
FR2957276A1 (fr) * 2010-03-15 2011-09-16 Francois Parmentier Monolithe multicapillaire
FR3026312B1 (fr) * 2014-09-29 2018-07-13 Francois Parmentier Procede de chromatographie sur un gel ou un liquide organique
FR3112083A1 (fr) * 2020-07-03 2022-01-07 François PARMENTIER Procédé de fabrication d’un garnissage multicapillaire

Also Published As

Publication number Publication date
US20240307850A1 (en) 2024-09-19
WO2023281209A1 (fr) 2023-01-12
FR3124743A1 (fr) 2023-01-06

Similar Documents

Publication Publication Date Title
EP2868770B1 (fr) Dispositif d'encapsulation d'un dispositif sensible et procédé de réalisation dudit dispositif
CA2634204C (fr) Membranes de separation de gaz contenant une couche de silice microporeuse a base de silice dopee par un element trivalent
EP2547440B1 (fr) Monolithe multicapillaire
EP2755751B1 (fr) Garnissage pour une colonne chromatographique et procédé de réalisation
EP1228001A1 (fr) Materiau mesostructure integrant des particules de dimension nanometrique
FR2945529A1 (fr) Piece a base de materiau composite c/c et procede pour sa fabrication.
FR3026312A1 (fr) Procede de chromatographie sur un gel ou un liquide organique
CN100560526C (zh) 在玻璃基片表面制备碳纳米管复合薄膜的方法
US20100093021A1 (en) Hardening of ordered films of silica colloids
FR3084883A1 (fr) Aerogels de nanofils de silice et leur preparation
EP4366864A1 (fr) Procédé de fabrication d'un garnissage multicapillaire
WO2022003307A1 (fr) Procédé de fabrication d'un garnissage multicapillaire
WO2003062138A2 (fr) Materiaux mesostructures integrant des particules cristallines nanometriques comprenant un metal en solution solide au sein de leur reseau cristallin
EP2582622B1 (fr) Utilisation de nanoparticules pour le stockage "sec" longue duree de radicaux peroxydes
WO2021234331A1 (fr) Procede de fabrication d'un garnissage multicapillaire pour un echange de matiere
WO2012143658A1 (fr) Procede de preparation d'un element monolithique de catalyse comprenant un support fibreux et ledit element monolithique de catalyse
EP3028039B1 (fr) Procédé de fabrication d'une colonne de chromatographie en phase gazeuse et colonne obtenue par un tel procédé
EP2263253A2 (fr) Procédé de formation de matériau poreux dans une microcavité ou un micropassage par polissage mécano-chimique
Piwoński et al. The application of Langmuir–Blodgett technique in preparation of the macroporous titania coatings
Chang et al. A step-growth model for molecular mechanisms of monolayer formation in ordered nanoporous channels
FR2967992A1 (fr) Preparation de sols d'oxydes metalliques stables, utiles notamment pour la fabrication de films minces a proprietes optiques et resistants a l'abrasion
FR2944005A1 (fr) Depot conforme d'une couche mince de nanotubes de carbone

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)