EP4364283A1 - Système de conversion de tension et véhicule automobile comportant un tel système - Google Patents

Système de conversion de tension et véhicule automobile comportant un tel système

Info

Publication number
EP4364283A1
EP4364283A1 EP22743773.8A EP22743773A EP4364283A1 EP 4364283 A1 EP4364283 A1 EP 4364283A1 EP 22743773 A EP22743773 A EP 22743773A EP 4364283 A1 EP4364283 A1 EP 4364283A1
Authority
EP
European Patent Office
Prior art keywords
converter
terminals
output terminals
mode
main output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22743773.8A
Other languages
German (de)
English (en)
Inventor
Nicolas ALLALI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes de Controle Moteur SAS
Original Assignee
Valeo Systemes de Controle Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes de Controle Moteur SAS filed Critical Valeo Systemes de Controle Moteur SAS
Publication of EP4364283A1 publication Critical patent/EP4364283A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage

Definitions

  • TITLE VOLTAGE CONVERSION SYSTEM AND MOTOR VEHICLE
  • the present invention relates to a voltage conversion system and a motor vehicle comprising such a system.
  • the system further comprises, upstream, a differential alternating-direct voltage converter designed to convert an alternating voltage from an electrical network into a direct voltage on the input terminals.
  • the DC-DC voltage converter described in this article has two parallel conversion lines, each with a galvanic isolation transformer.
  • the electrical power is transferred through the AC-DC voltage converter, then through the DC-DC voltage converter from the input terminals to the main output terminals.
  • this article does not describe how to transfer electrical power in the opposite direction, from the main output terminals to the input terminals. [0006] It may thus be desirable to provide an isolated voltage conversion system which makes it possible to overcome at least some of the aforementioned problems and constraints.
  • a voltage conversion system comprising: input terminals and main output terminals; and a first DC-DC converter connected between the input terminals and the main output terminals and comprising a first galvanic isolation transformer; characterized in that it further comprises: a second DC-DC converter connected between the input terminals and the output terminals and comprising a second galvanic isolation transformer; and a control device designed, in a first operating mode, called direct mode, to activate the first converter and deactivate the second converter so that the system transfers electrical power from the input terminals to the main output terminals and, in a second operating mode, called reverse mode, to activate the second converter and deactivate the first converter so that the system transfers electrical power from the main output terminals to the input terminals; and in that the second transformer has a reverse turns ratio greater than a reverse turns ratio of the first transformer.
  • the transformation ratio of the first transformer is preferably kept relatively small so as not to generate significant losses.
  • this transfer of power in the opposite direction is carried out through the second converter, which does not increase no losses when the system is used in the forward direction, through the first converter.
  • one of the input terminals is connected to a first electrical ground and one of the output terminals is connected to a second electrical ground.
  • the first electrical ground is different from the second electrical ground, for example the first electrical ground is connected to the second electrical ground by a high resistance.
  • the second DC-DC converter comprises two switching arms connected between the main output terminals.
  • the second DC-DC converter comprises a switching arm connected between the input terminals.
  • the second DC-DC converter comprises a capacitive voltage divider connected between the input terminals.
  • the primary of the second transformer is connected between the midpoints of the capacitive voltage divider and of the switching arm connected between the input terminals.
  • the secondary of the second transformer is connected between the midpoints of the two switching arms connected between the main output terminals.
  • the system further comprises network terminals intended to be connected to an AC network; and a third reversible AC-DC converter connected between the network terminals and the input terminals; and the control device is designed, in a first mode of operation, called direct mode, to control the third converter into a rectifier to transfer electrical power from the network terminals to the input terminals and, in a second mode of operation , called reverse mode, in an inverter to transfer electrical power from the input terminals to the network terminals.
  • a first mode of operation called direct mode
  • reverse mode in an inverter to transfer electrical power from the input terminals to the network terminals.
  • the third converter comprises at least one electrical energy storage capacity.
  • the third converter comprises two switching arms and the control device is designed, in the direct mode, to control the two switching arms according to two respective duty cycles, by regulating a DC voltage between the terminals main output from one of a sum and a difference of the duty cycles and by controlling the energy storage of the storage capacitor(s) from the other of the sum and the difference of the duty cycles.
  • the two switching arms of the third converter are connected between the input terminals.
  • the at least one storage capacitor comprises two storage capacitors connected between one of the input terminals and the network terminals respectively
  • the third converter comprises two inductors each connected between a midpoint of a respective one of the switching arms and a respective one of the network terminals.
  • the at least one storage capacitor comprises two storage capacitors connected between the first electrical ground and respectively the network terminals
  • the third converter comprises two inductors each connected between a midpoint of a respective arm switch and a respective one of the network terminals.
  • control device is designed, in direct mode, to regulate the electrical power supplied by the main output terminals by controlling the energy storage of the storage capacity or capacities.
  • the system comprises, connected between the main output terminals, either a switching arm or a capacitive voltage divider, common to the first and second converters.
  • system further comprises: auxiliary output terminals; a fourth DC-DC converter connected between the main output terminals and the auxiliary output terminals; and a switching arm connected between the main output terminals and common to the second and fourth converters.
  • one of the auxiliary terminals is connected to a second electrical ground.
  • the system further comprises at least one switching arm connected between the main output terminals and common to the first and fourth converters.
  • control device is designed, in a third operating mode, called transfer mode between outputs, to deactivate the first and second converters and to control the switching arm(s) common to the first and fourth converter and the switching arm common to the second and fourth converters in order to be used by the fourth converter.
  • control device is designed in a transfer mode between outputs to deactivate the third reversible AC-DC converter.
  • control device is designed, in a fourth mode of operation, called direct combined mode and transfer between outputs, to control the switching arm(s) common to the first and fourth converters in order to be used by the first converter, to deactivate the second converter and to control the switching arm common to the second and fourth converters in order to be used by the fourth converter.
  • a fourth mode of operation called direct combined mode and transfer between outputs
  • control device is designed, in a fifth mode of operation, called reverse combined mode and transfer between outputs, to control the switching arm common to the second and fourth converters in order to be used by the second converter, to deactivate the first converter and to control at least one of the switching arm(s) common to the first and fourth converters in order to be used by the fourth converter.
  • a fifth mode of operation called reverse combined mode and transfer between outputs
  • a mobility device comprising: an electric motor; an electric motor supply battery; and a voltage conversion system according to the invention, in which the supply battery of the electric motor is connected between the main output terminals.
  • a mobility device is for example a land motor vehicle, an aircraft or a drone.
  • a motorized land vehicle is, for example, a motor vehicle, a motorcycle, a motorized bicycle or a motorized wheelchair.
  • the system further comprises, connected between the auxiliary output terminals, a passive load and/or another battery having for example a lower voltage than the battery supplying the electric motor.
  • Figure 1 is a functional representation of an electrical installation comprising an isolated voltage conversion system according to the invention
  • Figure 2 is an electrical diagram of an embodiment of the isolated voltage conversion system of Figure 1, and
  • Figure 3 is an example of a regulation diagram implemented in a control device of the isolated voltage conversion system of Figure 2.
  • the electrical installation 100 firstly comprises an alternating electrical network 102 having a phase and a neutral between which the alternating electrical network 102 supplies a network voltage Vg.
  • This network voltage Vg is an alternating voltage having a high nominal effective voltage, that is to say for example greater than 60 V.
  • the alternating electrical network 102 is for example the European electrical network whose nominal effective voltage is 230 V and whose frequency is 50 Flz.
  • the electrical installation 100 further comprises at least one load.
  • there are two batteries 104, 106 for example of low voltage, that is to say for example of voltage lower than 60 V.
  • the voltage of the first battery 104 is for example higher to that of the second battery 106.
  • the first battery 104 is a 48 V battery
  • the second battery 106 is a 12 V battery.
  • the electrical installation 100 further comprises a voltage conversion system 108 connected to the AC network 102 and to the load or loads 104, 106 in order to allow exchanges of electric power between these elements, as will be explained by the following.
  • the system 108 and the batteries 104, 106 are integrated into a motor vehicle designed to connect to the AC network 102, external to the motor vehicle.
  • the battery 104 serves for example to electrically supply an electric motor (not shown) for driving driving wheels (not shown) of the motor vehicle
  • the battery 106 serves for example to electrically supply electrical accessories (not shown) of the motor vehicle.
  • the system 108 firstly comprises network terminals P, N intended to be connected to the alternating network 102 and more precisely, in the example described, respectively to the phase and to the neutral of this alternating network 102, to receive the network voltage Vg.
  • the network terminals P, N could be connected between two phases of the AC network 102.
  • the system 108 further comprises intermediate terminals Vc+, G1 intended to present between them a DC voltage Vc.
  • Terminal G1 is an electrical ground terminal.
  • the system 108 further comprises main output terminals V48+, G2 intended to be connected to the battery 104 and to present between them a DC voltage V48 equal to 48 V in the example described.
  • Terminal G2 is an electrical ground terminal, which may be different from electrical ground G1.
  • electrical ground G2 may be different from electrical ground G1 and connected to electrical ground G1 by a strong resistance. In the following description of this embodiment, it will be assumed that the electrical ground G1 is different from the electrical ground G2.
  • the system 108 further comprises auxiliary output terminals V12+, G2 intended to be connected to the battery 106 and to present between them a DC voltage V12 equal to 12 V in the example described.
  • the system 108 further includes a reversible AC-DC voltage converter 110, hereinafter simply referred to as a network converter. It is connected between the network terminals P, N and the intermediate terminals Vc+, G1 and designed to carry out a voltage conversion between the voltage Vg and the voltage Vc.
  • the network converter 110 is designed to operate selectively as a rectifier to convert the voltage Vg into the voltage Vc and as an inverter to convert the voltage Vc into the voltage Vg.
  • a rectifier is a converter of an AC voltage source into a DC voltage source and an inverter is a device performing the inverse function of the inverter.
  • the system 108 further comprises an isolated DC-DC voltage converter 112, hereinafter simply referred to as direct DC converter. It is connected between the intermediate terminals Vc+, G1 and the main output terminals V48+, G2 and designed to convert the voltage Vc into the voltage V48.
  • DC-DC voltage converter 112 hereinafter simply referred to as direct DC converter. It is connected between the intermediate terminals Vc+, G1 and the main output terminals V48+, G2 and designed to convert the voltage Vc into the voltage V48.
  • the direct DC converter 112 comprises two isolated voltage conversion lines, in parallel with each other. Each of these lines comprises, in cascade from the intermediate terminals Vc+, G1 to the main output terminals V48+, G2: an inverter 01, 02, a galvanic isolation transformer T1, T2 and a rectifier R1, R2.
  • Each of the transformers T1, T2 has a transformation ratio M in the opposite direction.
  • M the transformation ratio M in the opposite direction.
  • its secondary T 1 S, T2S has M times more windings than its primary T 1 P, T2P.
  • the system 108 is designed to transfer electrical power from the network terminals P, N (that is to say the electrical network 102 in the example described) to the main output terminals V48+, G2 (that is to say the battery 104 in the example described) through the mains converter 110 in rectifier mode and the direct DC converter 112.
  • the motor vehicle connected to the electrical network 102 can store electrical energy when the demand on the electrical network 102 is low and restore this electrical energy when the electrical network 102 undergoes a peak in demand.
  • this transfer of energy in the opposite direction can allow the motor vehicle to electrically supply an external electrical device usually plugging into the electrical network 102.
  • the system 108 further comprises an isolated DC-DC voltage converter 118, hereinafter simply called the DC-inverse converter 118. It is connected between the main output terminals V48+, G2 and the intermediate terminals Vc+, G1 and designed to convert voltage V48 to voltage Vc.
  • DC-inverse converter 118 an isolated DC-DC voltage converter 118, hereinafter simply called the DC-inverse converter 118. It is connected between the main output terminals V48+, G2 and the intermediate terminals Vc+, G1 and designed to convert voltage V48 to voltage Vc.
  • the system 108 is also designed to transfer electrical power from the main output terminals V48+, G2 (that is to say the battery 104 in the example described) to the network terminals P, N (that is to say, for example, the electrical network 102 or else an external electrical device as explained above) through the direct-to-inverse converter 118 and the network converter 110 in inverter mode.
  • the DC reverse converter 118 comprises, in cascade from the main output terminals V48+, G2 to the intermediate terminals VC+, G1, an inverter 03, a galvanic isolation transformer T3 and a rectifier R3.
  • the transformer T3 has a transformation ratio M' in the opposite direction.
  • its T3S secondary has M’ times more windings than its T3P primary.
  • M' is greater than M.
  • M' is at least twice as large as M, preferably at least five times and more preferably at least ten times.
  • the transformation ratio M' of the transformer T3 is greater than the transformation ratio M of each of the transformers T1, T2.
  • the transformers T1, T2, T3 form a galvanic isolation barrier between a high voltage side and a low voltage side of the system 108.
  • the high voltage side thus comprises the blocks 110, 01, 02 and R3, while that the low voltage side has blocks R1 , R2 and 03.
  • the system 108 further comprises a DC-DC voltage converter 124, hereinafter simply called internal DC converter. It is connected between the main output terminals V48+, G2 and the auxiliary output terminals V12+, G2 to allow the transfer of electric power between these two pairs of terminals, and therefore between the batteries 104 and 106 in the example described.
  • the system 108 further comprises a device 126 for controlling the mains converter 110, the forward DC converter 112, the reverse DC converter 118 and the internal DC converter 124.
  • the control device 126 is in particular designed to selectively activate and disable one or more of these converters 110, 112, 118 and 124.
  • polarity switching devices can be made by a full H-bridge comprising four switches arranged in two switching arms connected at their ends, or else by a half-H bridge comprising two switches arranged in a switching arm and two capacitors arranged in a capacitive voltage divider, the switching arm and the capacitive voltage divider being connected at their ends.
  • a change in polarity of the voltage between the ends can thus be obtained between the two respective midpoints of the two switching arms (for an H-bridge) or else of the switching arm and the capacitive voltage divider (for a half-bridge in H), by the appropriate control of the switches.
  • Each switch is preferably a controllable semiconductor switch, such as for example a transistor of the FET type (or field-effect transistor in English “Field-Effect Transistor”) or of the IGBT type (or bipolar transistor insulated-gate from English "Insulated-Gate Bipolar Transistor”).
  • the FET-type transistor may be a MOSFET (or Metal-Oxide Semiconductor Field Effect Field Effect Transistor). Transistor”) in silicon (Si-MOSFET) or silicon carbide (SiC-MOSFET) or even a gallium nitride FET transistor (GaN-FET).
  • the switches are MOSFET transistors.
  • the network converter 110 firstly comprises a capacitor C1 connected between the terminal P and the electrical ground G1, a switching arm HV1 connected between the terminal Vc+ and the electrical ground G1 and an inductor L1 connected between the terminal P and a midpoint of switching arm HV 1.
  • network converter 110 further comprises a capacitor C2 connected between terminal N and electrical ground G1, a switching arm HV2 connected between terminal Vc+ and electrical ground G1 and an inductance L2 connected between terminal N and a midpoint of switching arm HV2.
  • the inverter 01 comprises a polarity switching device comprising, in the example described, the switching arm HV1 and a capacitive voltage divider CD1, arranged as a half-bridge at F1.
  • a primary T1 P of the transformer T 1 is thus connected between their respective midpoints.
  • switching arm HV1 is therefore common to network converter 110 and inverter 01.
  • the inverter 02 comprises a polarity switching device comprising, in the example described, the switching arm HV2 and a capacitive voltage divider CD2, arranged as a half-bridge at F1.
  • a primary T2P of the transformer T2 is thus connected between their respective midpoints.
  • the switching arm FIV2 is therefore common to the network converter 110 and to the inverter 02.
  • the rectifier R1 comprises a polarity switching device comprising, in the example described, a switching arm LV1 and a capacitive voltage divider CD, arranged as a half-bridge at F1 between the terminals V48+ and G2.
  • a secondary T1 S of the transformer T 1 is thus connected between their respective midpoints.
  • the rectifier R2 comprises a polarity switching device comprising, in the example described, a switching arm LV2 and the divider capacitive CD, arranged as a half H-bridge between terminals V48+ and G2.
  • a secondary T2S of transformer T2 is connected between their respective midpoints.
  • the capacitive divider CD is common to the two rectifiers R1, R2, which saves two capacitors.
  • the inverter 03 comprises a polarity switching device comprising, in the example described, a switching arm LV3 and the switching arm LV2, arranged as a full H bridge between the terminals V48+ and G2.
  • a secondary T3S of the transformer T3 is thus connected between their respective midpoints.
  • the rectifier R3 comprises a polarity switching device comprising, in the example described, a switching arm HV3 and a capacitive voltage divider CD3, arranged as a half-H bridge between the terminals Vc+ and G1.
  • a primary T3P of the transformer T3 is thus connected between their respective midpoints.
  • the internal DC converter 124 comprises the switching arms LV1, LV2, LV3 and, for each of them, a respective inductance L'1, L'2, L'3 connected between the midpoint of the switching arm LV1 , LV2, LV3 considered and terminal V12+.
  • Circuit 124 further comprises a capacitor C12 connected between terminals V12+ and G2.
  • the internal DC converter 124 further comprises a safety device 202 comprising semiconductor switches (for example, transistor switches such as MOSFETs) for respectively disconnecting the inductors L'1, L'2, L '3 switching arms LV1, LV2, LV3.
  • a safety device 202 comprising semiconductor switches (for example, transistor switches such as MOSFETs) for respectively disconnecting the inductors L'1, L'2, L '3 switching arms LV1, LV2, LV3.
  • Controller 126 is designed to operate system 108 in various modes which will now be described.
  • a first mode of operation is a direct mode from the network terminals P, N to the main output terminals V48+, G2, to charge the battery 104 in the example described.
  • control device 126 is designed to deactivate the reverse DC converter 118 (by maintaining the switching arms HV3 and LV3 open in the example described), as well as the internal DC converter 124 (for example by opening the switches of the safety device 202). Controller 126 is further designed to activate forward DC converter 112 and activate mains converter 110 to rectifier.
  • control device 126 for the direct mode will now be described.
  • the control device 126 is designed to determine the duty cycles a1, a2 for the switching arms HV1, HV2 respectively and to control the latter from the duty cycles a1, a2 in order to activate the inverter 01, as well than the network converter 110.
  • control device 126 is first of all designed to slave the output voltage V48 to a reference V48 * .
  • the voltages VC1 , VC2 are equal to:
  • voltage Vc is linked to network voltage Vg by:
  • VA8 k M Vc where k is a constant depending for example on the type of polarity switching device used.
  • control device 126 is designed to control the voltage V48 by playing on the difference in the duty cycles a1, a2 of the switching arms HV1, HV2.
  • the device 126 is also designed to simultaneously perform a power factor correction (from the English, "Power Factor Correction” also designated by the acronym PFC) by varying the sum of the duty cycles a1, a2.
  • a power factor correction from the English, "Power Factor Correction” also designated by the acronym PFC
  • control device 126 firstly includes a notch filter 302 to filter the measured voltage V48.
  • the control device 126 further comprises a comparator 304 for comparing the voltage reference V48 * with the filtered voltage V48, in order to provide a voltage difference AV48.
  • the control device 126 further includes a corrector 305 designed to correct the voltage difference AV48.
  • the corrector 305 is for example a proportional-integral corrector.
  • the control device 126 further comprises a module 306 for analyzing the network voltage Vg to determine a sinusoidal signal sin(wt) set on the network voltage Vg.
  • the analysis module 306 comprises a phase-locked loop (from the English “Phase-Locked Loop” also designated by the acronym PLL).
  • the control device 126 includes a multiplier 308 designed to multiply the voltage difference AV48 with the sinusoidal signal sin(wt).
  • the control device 126 further includes a reactive power compensation module 310 designed to supply a cosine signal (that is to say sinusoidal with a phase shift of pi/2 with the sinusoidal signal sin(wt)) with a wCA gain: wCA x cos(wt).
  • a cosine signal that is to say sinusoidal with a phase shift of pi/2 with the sinusoidal signal sin(wt)
  • wCA gain wCA x cos(wt).
  • the control device 126 further comprises a subtractor 312 for subtracting the cosine signal wCA cos(wt) from the sinusoidal signal multiplied by the voltage difference AV48 x sin(wt), to provide a differential current set point of inductance (11-12) * corresponding to a duty cycle differential Aa.
  • the control device 126 then comprises a module 314 for determining the duty cycle ratios a1, a2 so that they are equal to an average value at respectively plus and minus the duty cycle differential Aa.
  • control device 126 is designed to perform power decoupling (also called “rectifier harmonic compensation” or else “active filtering”).
  • Power decoupling consists in ensuring that the power transmitted by the output terminals main V48+, G2 is substantially constant, which amounts to ensuring, since the output voltage V48 is substantially constant, that the current supplied is substantially constant.
  • This power decoupling is possible because the electrical energy stored by the capacitors C1, C2 can be controlled.
  • the stored electrical energy depends on the duty cycles a1, a2 of the switching arms HV1, HV2. Indeed, on average, the electrical energy E stored in the capacitors C1, C2 is equal to:
  • control device 126 is designed to perform the power decoupling by varying the electrical energy E stored in the capacitors C1, C2 by acting on the sum of the duty cycles a1 and a2.
  • control device 126 firstly includes a low-cut filter 316 to filter the measured voltage V48.
  • the control device 126 further includes a corrector 318 for the filtered voltage V48 to supply a setpoint, denoted (11+12) * , of the sum of the inductance currents 11, 12. It is for example a proportional resonant corrector. In this case, it presents for example the following transfer function T(s):
  • T(s) K p + K t s 2 + w 2
  • Kp and Ki are predefined gains and w a predefined frequency preferably equal to twice the main frequency of the network voltage Vg of the network 102.
  • this predefined frequency is preferably equal to 100 Hz.
  • the control device 126 further comprises a comparator 320 for comparing the setpoint (11+12) * with the sum of the inductance currents I1, I2 measured, in order to provide a deviation of the sum of the inductance currents , denoted D(I1+I2).
  • the control device 126 further includes an amplifier 322 to amplify the difference D(I1+I2) in order to provide the average value at the duty cycles a1, a2.
  • the control device 110 is also designed to control the switching arms LV1, LV2 to activate the rectifier R1.
  • a third mode of operation is a transfer mode between outputs, in which electrical power is transferred bidirectionally (that is to say selectively in one direction and in the other) between the output terminals main V48+, G2 and the auxiliary output terminals V12+, G2.
  • control device 126 is designed to deactivate the mains converter 110 and the direct DC converter 112 (by keeping the switching arms HV1, HV2 open in the example described), as well as the inverse DC converter 118 (keeping the switching arm HV3 open in the example described).
  • the control device 126 then controls at least one of the switching arms LV1, LV2, LV3 in order to be used by the internal DC converter 124 to perform the voltage conversion between the voltages V48 and V12, in one way or the other.
  • the control device 126 controls the three switching arms LV1, LV2, LV3.
  • they are controlled at the same switching frequency and with the same duty cycle, but out of phase in order to reduce the variations in current flowing in the auxiliary output terminals V12+ , G2.
  • the phase shift is not too high between the switching arms LV2 and LV3 so as not to generate at the secondary T3S of the transformer T3 too high a voltage which could cause reinjection. power to the network terminals P, N.
  • this phase shift must comply with the following equation:
  • a fourth operating mode is a combined direct mode and transfer between outputs.
  • control device 126 is designed to control the switching arms LV1, LV2 to activate the rectifiers R1, R2 and to control the switching arm LV3 to activate the internal DC converter 124.
  • a second operating mode is an inverse mode, to transfer electrical power from the main output terminals V48+, G2 to the network terminals P, N.
  • control device 126 is designed to deactivate the direct DC converter 112 (by keeping the switching arm LV1 open in the example described), by controlling the switching arms LV2,
  • the switching arm HV3 to convert the voltage V48 into the voltage Vc and by controlling the switching arms HV1, HV2 so that the network converter 110 operates as an inverter.
  • the switching arms LV1, LV2 are phase shift controlled.
  • none of the switching arms LV1, LV2, LV3 is controlled to be used by the internal DC converter 124, so that the latter is deactivated.
  • a fifth mode of operation is a combined reverse mode and transfer between outputs.
  • control device 126 is designed to control the switching arm LV1 in order to be used by the internal DC converter 124 and thus carry out the voltage conversion dc-dc between terminals V48+, G2 and terminals V12+, G2. It clearly appears that an isolated voltage conversion system such as that described above makes it possible to transfer electrical power in the reverse direction, without impacting the transfer of electrical power in the forward direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Rectifiers (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention concerne un système comportant : - des bornes d'entrée (Vc+, G1) et des bornes de sortie principales (V48+, G2); et - un premier convertisseur continu-continu (112) connecté entre les bornes d'entrée (Vc+, G1) et les bornes de sortie principales (V48+, G2) et comportant un premier transformateur d'isolation galvanique (T1, T2). Il comporte en outre : - un deuxième convertisseur continu-continu (118) connecté entre les bornes d'entrée (Vc+, G1) et les bornes de sortie (V48+, G2) et comportant un deuxième transformateur d'isolation galvanique (T3); et - un dispositif de commande (126) conçu, dans un mode direct, pour activer le premier convertisseur (112) et désactiver le deuxième convertisseur (118) pour que le système (108) transfère de la puissance électrique dans un sens direct, c'est-à-dire depuis les bornes d'entrée (Vc+, GND1) vers les bornes de sortie principales (V48+, G2), et, dans un mode inverse, pour activer le deuxième convertisseur (118) et désactiver le premier convertisseur (112) pour que le système (108) transfère de la puissance électrique dans un sens inverse, c'est-à-dire depuis les bornes de sortie principales (V48+, G2) vers les bornes d'entrée (Vc+, GND1). Le deuxième transformateur (T3) présente un rapport de transformation (M') dans le sens inverse plus grand qu'un rapport de transformation (M) dans le sens inverse du premier transformateur (T1, T2).

Description

Description
TITRE : SYSTÈME DE CONVERSION DE TENSION ET VÉHICULE AUTOMOBILE
COMPORTANT UN TEL SYSTÈME
Domaine technique de l’invention
[0001] La présente invention concerne un système de conversion de tension et un véhicule automobile comportant un tel système.
[0002] Elle s’applique en particulier dans le domaine des engins de mobilité, en particulier dans le domaine des véhicules à propulsion électrique ou bien hybride (électrique/thermique).
Arrière-plan technologique
[0003] L’article « Single-Stage Isolated Electrolytic Capacitor-Less EV Onboard Charger With Power Decoupling » de Ali Tausif, Hoyoung Jung et Sewan Choi, publié dans « CPSS transactions on power electronics and applications » en mars 2019, décrit un système de conversion de tension, comportant : des bornes d’entrée et des bornes de sortie principales ; et un convertisseur continu-continu connecté entre les bornes d’entrée et les bornes de sortie principales et comportant un transformateur d’isolation galvanique.
[0004] Plus précisément, dans cet article, le système comporte en outre, en amont, un convertisseur de tension alternatif-continu différentiel conçu pour convertir une tension alternative d’un réseau électrique en une tension continue sur les bornes d’entrée. Ainsi, le convertisseur de tension continu-continu décrit dans cet article comporte deux lignes de conversion parallèles, comportant chacune un transformateur d’isolation galvanique. Ainsi, la puissance électrique est transférée au travers du convertisseur de tension alternatif-continu, puis au travers du convertisseur de tension continu-continu depuis les bornes d’entrée jusqu’aux bornes de sortie principales.
[0005] En revanche, cet article ne décrit pas comment transférer de la puissance électrique dans le sens inverse, depuis les bornes de sortie principales vers les bornes d’entrée. [0006] Il peut ainsi être souhaité de prévoir un système de conversion de tension isolé qui permette de s’affranchir d’au moins une partie des problèmes et contraintes précités.
Résumé de l’invention
[0007] Il est donc proposé un système de conversion de tension, comportant : des bornes d’entrée et des bornes de sortie principales ; et un premier convertisseur continu-continu connecté entre les bornes d’entrée et les bornes de sortie principales et comportant un premier transformateur d’isolation galvanique ; caractérisé en ce qu’il comporte en outre : un deuxième convertisseur continu-continu connecté entre les bornes d’entrée et les bornes de sortie et comportant un deuxième transformateur d’isolation galvanique ; et un dispositif de commande conçu, dans un premier mode de fonctionnement, dit mode dit direct, pour activer le premier convertisseur et désactiver le deuxième convertisseur pour que le système transfère de la puissance électrique depuis les bornes d’entrée vers les bornes de sortie principales et, dans un deuxième mode de fonctionnement, dit mode inverse, pour activer le deuxième convertisseur et désactiver le premier convertisseur pour que le système transfère de la puissance électrique depuis les bornes de sortie principales vers les bornes d’entrée ; et en ce que le deuxième transformateur présente un rapport de transformation dans le sens inverse plus grand qu’un rapport de transformation dans le sens inverse du premier transformateur.
[0008] Le rapport de transformation du premier transformateur est de préférence gardé relativement petit afin de ne pas générer des pertes importantes. Or, pour transférer de la puissance électrique dans le sens inverse, il est nécessaire de beaucoup augmenter la tension présente sur les bornes de sortie principales, pour obtenir une tension sur les bornes d’entrée suffisamment élevée pour permettre une réinjection sur le réseau électrique. Grâce à l’invention, du fait du rapport de transformation plus élevé du deuxième transformateur, ce transfert de puissance en sens inverse est réalisé au travers du deuxième convertisseur, ce qui n’augmente pas les pertes lorsque le système est utilisé dans le sens direct, au travers du premier convertisseur.
[0009] De façon optionnelle, l’une des bornes d’entrée est connectée à une première masse électrique et l’une des bornes de sortie est connectée à une deuxième masse électrique.
[0010] De façon optionnelle, la première masse électrique est différente de la deuxième masse électrique, par exemple la première masse électrique est reliée à la deuxième masse électrique par une forte résistance.
[0011] De façon optionnelle, le deuxième convertisseur continu-continu comprend deux bras de commutation connectés entre les bornes de sortie principale.
[0012] De façon optionnelle, le deuxième convertisseur continu-continu comprend un bras de commutation connecté entre les bornes d’entrées.
[0013] De façon optionnelle, le deuxième convertisseur continu-continu comprend un diviseur de tension capacitif connecté entre les bornes d’entrées.
[0014] De façon optionnelle, le primaire du deuxième transformateur est connecté entre les points milieux du diviseur de tension capacitif et du bras de commutation connecté entre les bornes d’entrées.
[0015] De façon optionnelle, le secondaire du deuxième transformateur est connecté entre les points milieux des deux bras de commutation connecté entre les bornes de sortie principale.
[0016] De façon optionnelle, le système comporte en outre des bornes réseau destinées à être connectées à un réseau alternatif ; et un troisième convertisseur alternatif-continu réversible connecté entre les bornes réseau et les bornes d’entrée ; et le dispositif de commande est conçu, dans un premier mode de fonctionnement, dit mode direct, pour commander le troisième convertisseur en redresseur pour transférer de la puissance électrique depuis les bornes réseau vers les bornes d’entrée et, dans un deuxième mode de fonctionnement, dit mode inverse, en onduleur pour transférer de la puissance électrique depuis les bornes d’entrée vers les bornes réseau.
[0017] De façon optionnelle également, le troisième convertisseur comporte au moins une capacité de stockage d’énergie électrique. [0018] De façon optionnelle également, le troisième convertisseur comporte deux bras de commutation et le dispositif de commande est conçu, dans le mode direct, pour commander les deux bras de commutation selon deux rapports cycliques respectifs, en régulant une tension continue entre les bornes de sortie principales à partir de l’un parmi une somme et une différence des rapports cycliques et en pilotant le stockage d’énergie de la ou des capacités de stockage à partir de l’autre parmi la somme et la différence des rapports cycliques.
[0019] De façon optionnelle également, les deux bras de commutation du troisième convertisseur sont connectés entre les bornes d’entrée.
[0020] De façon optionnelle également, la au moins une capacité de stockage comporte deux capacités de stockage connectées entre l’une des bornes d’entrée et respectivement les bornes réseau, le troisième convertisseur comporte deux inductances connectées chacune entre un point milieu d’un respectif des bras de commutation et l’une respective des bornes réseau.
[0021] De façon optionnelle également, la au moins une capacité de stockage comporte deux capacités de stockage connectées entre la première masse électrique et respectivement les bornes réseau, le troisième convertisseur comporte deux inductances connectées chacune entre un point milieu d’un respectif des bras de commutation et l’une respective des bornes réseau.
[0022] De façon optionnelle également, le dispositif de commande est conçu, dans le mode direct, pour réguler la puissance électrique fournie par les bornes de sortie principales en pilotant le stockage d’énergie de la ou des capacités de stockage.
[0023] De façon optionnelle également, le système comporte, connecté entre les bornes de sortie principales, soit un bras de commutation, soit un diviseur de tension capacitif, commun aux premier et deuxième convertisseurs.
[0024] De façon optionnelle également, le système comporte en outre : des bornes de sortie auxiliaires ; un quatrième convertisseur continu-continu connecté entre les bornes de sortie principales et les bornes de sortie auxiliaires ; et un bras de commutation connecté entre les bornes de sortie principales et commun aux deuxième et quatrième convertisseurs.
[0025] De façon optionnelle également, l’une des bornes auxiliaires est connectée à une deuxième masse électrique. [0026] De façon optionnelle également, le système comporte en outre au moins un bras de commutation connecté entre les bornes de sortie principales et commun aux premier et quatrième convertisseur.
[0027] De façon optionnelle également, le dispositif de commande est conçu, dans un troisième mode de fonctionnement, dit mode de transfert entre sorties, pour désactiver les premier et deuxième convertisseurs et pour commander le ou les bras de commutation communs aux premier et quatrième convertisseur et le bras de commutation commun aux deuxième et quatrième convertisseurs afin d’être utilisés par le quatrième convertisseur.
[0028] De façon optionnelle également, le dispositif de commande est conçu, dans un mode de transfert entre sorties pour désactiver le troisième convertisseur alternatif-continu réversible.
[0029] De façon optionnelle également, le dispositif de commande est conçu, dans un quatrième mode de fonctionnement, dit mode combiné direct et de transfert entre sorties, pour commander le ou les bras de commutation communs aux premier et quatrième convertisseurs afin d’être utilisés par le premier convertisseur, pour désactiver le deuxième convertisseur et pour commander le bras de commutation commun aux deuxième et quatrième convertisseurs afin d’être utilisé par le quatrième convertisseur.
[0030] De façon optionnelle également, le dispositif de commande est conçu, dans un cinquième mode de fonctionnement, dit mode combiné inverse et de transfert entre sorties, pour commander le bras de commutation commun aux deuxième et quatrième convertisseurs afin d’être utilisé par le deuxième convertisseur, pour désactiver le premier convertisseur et pour commander au moins un du ou des bras de commutation communs aux premier et quatrième convertisseurs afin d’être utilisé par le quatrième convertisseur.
[0031] Il est également proposé un engin de mobilité comportant : un moteur électrique ; une batterie d’alimentation du moteur électrique ; et un système de conversion de tension selon l’invention, dans lequel la batterie d’alimentation du moteur électrique est connectée entre les bornes de sortie principales. [0032] Un engin de mobilité est par exemple un véhicule terrestre à moteur, un aéronef ou un drone.
[0033] Un véhicule terrestre à moteur est par exemple un véhicule automobile, une moto, un vélo motorisé ou un fauteuil roulant motorisé.
[0034] De façon optionnelle, le système comporte en outre, connectée entre les bornes de sortie auxiliaire, une charge passive et/ou une autre batterie présentant par exemple une tension inférieure à la batterie d’alimentation du moteur électrique.
Brève description des figures
[0035] L’invention sera mieux comprise à l’aide de la description qui va suivre, donnée uniquement à titre d’exemple et faite en se référant aux dessins annexés dans lesquels :
[0036] [Fig. 1] la figure 1 est une représentation fonctionnelle d’une installation électrique comportant un système de conversion de tension isolé selon l’invention,
[0037] [Fig. 2] la figure 2 est un schéma électrique d’un exemple de réalisation du système de conversion de tension isolé de la figure 1 , et
[0038] [Fig. 3] la figure 3 est un exemple de schéma de régulation mis en oeuvre dans un dispositif de commande du système de conversion de tension isolé de la figure 2.
Description détaillée de l’invention
[0039] En référence à la figure 1 , un exemple d’installation électrique 100 dans laquelle l’invention est mise en oeuvre va à présent être décrite.
[0040] L’installation électrique 100 comporte tout d’abord un réseau électrique alternatif 102 présentant une phase et un neutre entre lesquels le réseau électrique alternatif 102 fournit une tension réseau Vg. Cette tension réseau Vg est une tension alternative ayant une tension efficace nominale élevée, c’est-à-dire par exemple supérieure à 60 V. Le réseau électrique alternatif 102 est par exemple le réseau électrique européen dont la tension efficace nominale vaut 230 V et dont la fréquence est de 50 Flz.
[0041] L’installation électrique 100 comporte en outre au moins une charge. Dans l’exemple décrit, il s’agit de deux batteries 104, 106, par exemple de basse tension, c’est-à-dire par exemple de tension inférieure à 60 V. La tension de la première batterie 104 est par exemple supérieure à celle de la deuxième batterie 106. Par exemple, la première batterie 104 est une batterie 48 V, tandis que la deuxième batterie 106 est une batterie 12 V.
[0042] L’installation électrique 100 comporte en outre un système de conversion de tension 108 connecté au réseau alternatif 102 et à la ou les charges 104, 106 afin de permettre des échanges de puissance électrique entre ces éléments, comme cela sera expliqué par la suite.
[0043] Dans l’exemple décrit, le système 108 et les batteries 104, 106 sont intégrés dans un véhicule automobile conçu pour se connecter au réseau alternatif 102, externe au véhicule automobile. Dans ce cas, la batterie 104 sert par exemple à alimenter électriquement un moteur électrique (non représenté) d’entraînement de roues motrices (non représentées) du véhicule automobile, tandis que la batterie 106 sert par exemple à alimenter électriquement des accessoires électriques (non représentés) du véhicule automobile.
[0044] Le système 108 comporte tout d’abord des bornes réseau P, N destinées à être connectées au réseau alternatif 102 et plus précisément, dans l’exemple décrit, respectivement à la phase et au neutre de ce réseau alternatif 102, pour recevoir la tension réseau Vg. Alternativement, les bornes réseau P, N pourraient être connectées entre deux phases du réseau alternatif 102.
[0045] Le système 108 comporte en outre des bornes intermédiaires Vc+, G1 destinées à présenter entre elles une tension continue Vc. La borne G1 est une borne de masse électrique.
[0046] Le système 108 comporte en outre des bornes de sortie principales V48+, G2 destinées à être connectées à la batterie 104 et à présenter entre elles une tension continue V48 valant 48 V dans l’exemple décrit. La borne G2 est une borne de masse électrique, pouvant être différente de la masse électrique G1. Par exemple, la masse électrique G2 peut être différente de la masse électrique G1 et reliée à la masse électrique G1 par une forte résistance. Dans la suite de la description de ce mode de réalisation, on fera l’hypothèse que la masse électrique G1 est différente de la masse électrique G2.
[0047] Le système 108 comporte en outre des bornes de sortie auxiliaires V12+, G2 destinées à être connectées à la batterie 106 et à présenter entre elles une tension continue V12 valant 12 V dans l’exemple décrit. [0048] Le système 108 comporte en outre un convertisseur de tension alternatif- continu réversible 110, appelé par la suite simplement convertisseur réseau. Il est connecté entre les bornes réseau P, N et les bornes intermédiaires Vc+, G1 et conçu pour réaliser une conversion de tension entre la tension Vg et la tension Vc. Ainsi, le convertisseur réseau 110 est conçu pour fonctionner sélectivement en redresseur pour convertir la tension Vg en la tension Vc et en onduleur pour convertir la tension Vc en la tension Vg.
[0049] Au sens de l’invention, un redresseur est un convertisseur d’une source de tension alternative en une source de tension continue et un onduleur est un dispositif réalisant la fonction inverse de l’onduleur.
[0050] Le système 108 comporte en outre un convertisseur de tension continu- continu isolé 112, appelé par la suite simplement convertisseur continu direct. Il est connecté entre les bornes intermédiaires Vc+, G1 et les borne de sortie principales V48+, G2 et conçu pour convertir la tension Vc en la tension V48.
[0051] Le convertisseur continu direct 112 comporte deux lignes de conversion de tension isolées, en parallèle l’une de l’autre. Chacune de ces lignes comporte, en cascade depuis les bornes intermédiaires Vc+, G1 vers les bornes de sortie principales V48+, G2 : un onduleur 01 , 02, un transformateur d’isolation galvanique T1 , T2 et un redresseur R1 , R2.
[0052] Chacun des transformateurs T1 , T2 présente un rapport de transformation M dans le sens inverse. Par exemple, pour chaque transformateur T1 , T2, son secondaire T 1 S, T2S comporte M fois plus d’enroulements que son primaire T 1 P, T2P.
[0053] Ainsi, le système 108 est conçu pour transférer de la puissance électrique depuis les bornes réseau P, N (c’est-à-dire le réseau électrique 102 dans l’exemple décrit) vers les bornes de sortie principales V48+, G2 (c’est-à-dire la batterie 104 dans l’exemple décrit) au travers du convertisseur réseau 110 en mode redresseur et du convertisseur continu direct 112.
[0054] Dans certaines situations, il peut être intéressant de permettre le transfert de puissance électrique dans le sens inverse, depuis les bornes de sortie principales V48+, G2 (c’est-à-dire la batterie 104 dans l’exemple décrit) vers les bornes réseau P, N. [0055] Par exemple, cela permet d’utiliser le véhicule automobile branché au réseau électrique 102 comme un moyen de stockage temporaire d’énergie électrique pour mettre en oeuvre un réseau électrique intelligent (de l’anglais « Smart grid »). Ainsi, le véhicule automobile peut stocker de l’énergie électrique lorsque la demande sur le réseau électrique 102 est faible et restituer cette énergie électrique lorsque le réseau électrique 102 subit un pic de demande.
[0056] En outre, ce transfert d’énergie dans le sens inverse peut permettre au véhicule automobile d’alimenter électriquement un dispositif électrique externe se branchant habituellement sur le réseau électrique 102.
[0057] Pour cela, le système 108 comporte en outre un convertisseur de tension continu-continu isolé 118, appelé par la suite simplement convertisseur continu inverse 118. Il est connecté entre les bornes de sortie principales V48+, G2 et les bornes intermédiaires Vc+, G1 et conçu pour convertir la tension V48 en la tension Vc.
[0058] Ainsi, le système 108 est en outre conçu pour transférer de la puissance électrique depuis les bornes de sortie principales V48+, G2 (c’est-à-dire la batterie 104 dans l’exemple décrit) vers les bornes réseau P, N (c’est-à-dire par exemple le réseau électrique 102 ou bien un dispositif électrique externe comme expliqué précédemment) au travers du convertisseur continu inverse 118 et du convertisseur réseau 110 en mode onduleur.
[0059] Le convertisseur continu inverse 118 comporte, en cascade depuis les bornes de sortie principales V48+, G2 vers les bornes intermédiaires VC+, G1 , un onduleur 03, un transformateur d’isolation galvanique T3 et un redresseur R3.
[0060] Le transformateur T3 présente un rapport de transformation M’ dans le sens inverse. Par exemple, son secondaire T3S comporte M’ fois plus d’enroulements que son primaire T3P. M’ est plus grand que M. Par exemple, M’ est au moins deux fois plus grand que M, de préférence au moins cinq fois et de préférence encore au moins dix fois. Ainsi, le rapport de transformation M’ du transformateur T3 est plus grand que le rapport de transformation M de chacun des transformateurs T1 , T2.
[0061] Ainsi, les transformateurs T1 , T2, T3 forment une barrière d’isolation galvanique entre un côté haute tension et un côté basse tension du système 108. Le côté haute tension comporte ainsi les blocs 110, 01 , 02 et R3, tandis que le côté basse tension comporte les blocs R1 , R2 et 03. [0062] Le système 108 comporte en outre un convertisseur de tension continu- continu 124, appelé par la suite simplement convertisseur continu interne. Il est connecté entre les bornes de sortie principales V48+, G2 et les bornes de sorties auxiliaires V12+, G2 pour permettre le transfert de puissance électrique entre ces deux paires de bornes, et donc entre les batteries 104 et 106 dans l’exemple décrit.
[0063] Le système 108 comporte en outre un dispositif 126 de commande du convertisseur réseau 110, du convertisseur continu direct 112, du convertisseur continu inverse 118 et du convertisseur continu interne 124. Le dispositif de commande 126 est en particulier conçu pour sélectivement activer et désactiver un ou plusieurs de ces convertisseurs 110, 112, 118 et 124.
[0064] Sur la figure 1 , les différents blocs du système 108 sont représentés comme séparés. Cependant, dans certains modes de réalisation (comme celui qui sera décrit plus bas en référence à la figure 2), des composants électriques peuvent être commun à plusieurs blocs.
[0065] En référence à la figure 2, un exemple de réalisation des différents blocs du convertisseur 108 va à présent être décrit.
[0066] Certains de ces blocs utilisent des dispositifs de commutation de polarité pour réaliser des conversions de tension entre alternatif et continu. Comme cela est connu en soi, un dispositif de commutation de polarité peut être réalisé par un pont complet en H regroupant quatre commutateurs agencés en deux bras de commutation connectés à leurs extrémités, ou bien par un demi-pont en H comportant deux commutateurs agencés en un bras de commutation et deux capacités agencées en un diviseur de tension capacitif, le bras de commutation et le diviseur de tension capacitif étant connectés à leur extrémités. Un changement de polarité de la tension entre les extrémités peut ainsi être obtenu entre les deux points milieux respectifs des deux bras de commutation (pour un pont en H) ou bien du bras de commutation et du diviseur de tension capacitif (pour un demi-pont en H), par la commande adéquate des commutateurs.
[0067] Chaque commutateur est de préférence un interrupteur commandable à semi- conducteur, comme par exemple un transistor de type FET (ou transistor à effet de champ de l’anglais « Field-Effect Transistor ») ou de type IGBT (ou transistor bipolaire à grille isolée de l’anglais « Insulated-Gate Bipolar Transistor »). Par exemple le transistor de type FET peut être un MOSFET (ou transistor à effet de champ à grille métal-oxyde de l’anglais « Métal Oxide Semiconductor Field Effect Transistor ») en silicium (Si-MOSFET) ou en carbure de silicium (SiC-MOSFET) ou bien encore un transistor FET en nitrure de gallium (GaN-FET). Dans l’exemple décrit ici, les commutateurs sont des transistors MOSFET.
[0068] Le convertisseur réseau 110 comporte tout d’abord une capacité C1 connectée entre la borne P et la masse électrique G1 , un bras de commutation HV1 connecté entre la borne Vc+ et la masse électrique G1 et une inductance L1 connectée entre la borne P et un point milieu du bras de commutation HV 1. De manière symétrique, le convertisseur réseau 110 comporte en outre une capacité C2 connectée entre la borne N et la masse électrique G1 , un bras de commutation HV2 connecté entre la borne Vc+ et la masse électrique G1 et une inductance L2 connectée entre la borne N et un point milieu du bras de commutation HV2.
[0069] Dans certains modes de réalisation, les inductances L1 et L2 pourrait être couplées magnétiquement afin de permettre une commutation à tension nulle (de l’anglais « Zéro Voltage Switching » également désigné par l’acronyme ZVS) des bras de commutations HV1 et HV2.
[0070] L’onduleur 01 comporte un dispositif de commutation de polarité comportant, dans l’exemple décrit, le bras de commutation HV1 et un diviseur de tension capacitif CD1 , agencés en demi-pont en Fl. Un primaire T1 P du transformateur T 1 est ainsi connecté entre leurs points milieu respectifs. Dans l’exemple décrit, le bras de commutation HV1 est donc commun au convertisseur réseau 110 et à l’onduleur 01.
[0071] De même, l’onduleur 02 comporte un dispositif de commutation de polarité comportant, dans l’exemple décrit, le bras de commutation HV2 et un diviseur de tension capacitif CD2, agencés en demi-pont en Fl. Un primaire T2P du transformateur T2 est ainsi connecté entre leurs points milieu respectifs. Dans l’exemple décrit, le bras de commutation FIV2 est donc commun au convertisseur réseau 110 et à l’onduleur 02.
[0072] Le redresseur R1 comporte un dispositif de commutation de polarité comportant, dans l’exemple décrit, un bras de commutation LV1 et un diviseur de tension capacitif CD, agencés en demi-pont en Fl entre les bornes V48+ et G2. Un secondaire T1 S du transformateur T 1 est ainsi connecté entre leurs points milieu respectifs.
[0073] De même, le redresseur R2 comporte un dispositif de commutation de polarité comportant, dans l’exemple décrit, un bras de commutation LV2 et le diviseur capacitif CD, agencés en demi-pont en H entre les bornes V48+ et G2. Un secondaire T2S du transformateur T2 est connecté entre leurs points milieu respectifs.
[0074] Ainsi, le diviseur capacitif CD est commun aux deux redresseurs R1 , R2, ce qui économise deux capacités.
[0075] L’onduleur 03 comporte un dispositif de commutation de polarité comportant, dans l’exemple décrit, un bras de commutation LV3 et le bras de commutation LV2, agencés en pont complet en H entre les bornes V48+ et G2. Un secondaire T3S du transformateur T3 est ainsi connecté entre leurs points milieu respectifs.
[0076] Le redresseur R3 comporte un dispositif de commutation de polarité comportant, dans l’exemple décrit, un bras de commutation HV3 et un diviseur de tension capacitif CD3, agencés en demi-pont en H entre les bornes Vc+ et G1. Un primaire T3P du transformateur T3 est ainsi connecté entre leurs points milieu respectifs.
[0077] Le convertisseur continu interne 124 comporte les bras de commutation LV1 , LV2, LV3 et, pour chacun d’eux, une inductance L’1 , L’2, L’3 respective connectée entre le point milieu du bras de commutation LV1 , LV2, LV3 considéré et la borne V12+. Le circuit 124 comporte en outre une capacité C12 connectée entre les bornes V12+ et G2.
[0078] Le convertisseur continu interne 124 comporte en outre un dispositif de sécurité 202 comportant des interrupteurs à semi-conducteur (par exemple, des interrupteurs à transistor tels que des MOSFET) pour respectivement déconnecter les inductances L’1 , L’2, L’3 des bras de commutation LV1 , LV2, LV3.
[0079] Le dispositif de commande 126 est conçu pour faire fonctionner le système 108 dans différents modes qui vont à présent être décrits.
[0080] Un premier mode de fonctionnement est un mode direct depuis les bornes réseau P, N vers les bornes de sortie principales V48+, G2, pour charger la batterie 104 dans l’exemple décrit.
[0081] Dans ce mode direct, le dispositif de commande 126 est conçu pour désactiver le convertisseur continu inverse 118 (en maintenant les bras de commutation HV3 et LV3 ouverts dans l’exemple décrit), ainsi que le convertisseur continu interne 124 (par exemple en ouvrant les interrupteurs du dispositif de sécurité 202). Le dispositif de commande 126 est en outre conçu pour activer le convertisseur continu direct 112 et activer le convertisseur réseau 110 en redresseur.
[0082] En référence à la figure 3, un exemple de réalisation du dispositif de commande 126 pour le mode direct va à présent être décrit. [0083] Le dispositif de commande 126 est conçu pour déterminer des rapports cycliques a1 , a2 pour respectivement les bras de commutation HV1 , HV2 et de commander ces dernier à partir des rapports cycliques a1 , a2 afin d’activer l’onduleur 01 , ainsi que le convertisseur réseau 110.
[0084] Pour cela, le dispositif de commande 126 est tout d’abord conçu pour asservir la tension de sortie V48 à une référence V48*. En effet, en moyenne, les tensions VC1 , VC2 sont égales à :
[Math. 1]
VC1= al Vc VC2= a2-Vc
[0085] Ainsi, toujours en moyenne, la tension Vc est reliée à la tension réseau Vg par :
[Math. 2]
A
Vc= -
|al— a2\ où A est l’amplitude de la tension Vg.
[0086] Or, la tension V48 est sensiblement proportionnelle à la tension Vc : [Math. 3]
VA8= k M Vc où k est une constante dépendant par exemple du type de dispositif de commutation de polarité utilisé.
[0087] Ainsi, le dispositif de commande 126 est conçu pour asservir la tension V48 en jouant sur la différence des rapports cycliques a1 , a2 des bras de commutation HV1 , HV2.
[0088] Dans l’exemple décrit, le dispositif 126 est en outre conçu pour en même temps réaliser une correction de facteur de puissance (de l’anglais, « Power Factor Correction » également désigné par l’acronyme PFC) en jouant sur la somme des rapports cycliques a1 , a2.
[0089] Ainsi, dans l’exemple décrit, le dispositif de commande 126 comporte tout d’abord un filtre coupe-bande 302 pour filtrer la tension V48 mesurée.
[0090] Le dispositif de commande 126 comporte en outre un comparateur 304 pour comparer la référence de tension V48* avec la tension V48 filtrée, afin de fournir un écart de tension AV48.
[0091] Le dispositif de commande 126 comporte en outre un correcteur 305 conçu pour corriger l’écart de tension AV48. Le correcteur 305 est par exemple un correcteur proportionnel-intégral.
[0092] Le dispositif de commande 126 comporte en outre un module 306 d’analyse de la tension réseau Vg pour déterminer un signal sinusoïdal sin(wt) caler sur la tension réseau Vg. Par exemple, le module d’analyse 306 comporte une boucle à verrouillage de phase (de l’anglais « Phase-Locked Loop » également désigné par l’acronyme PLL).
[0093] Le dispositif de commande 126 comporte un multiplieur 308 conçu pour multiplier l’écart de tension AV48 avec le signal sinusoïdal sin(wt).
[0094] Le dispositif de commande 126 comporte en outre un module 310 de compensation de puissance réactive conçu pour fournir un signal cosinusoïdal (c’est- à-dire sinusoïdal avec un déphasage de pi/2 avec le signal sinusoïdal sin(wt)) avec un gain wCA : wCA x cos(wt).
[0095] Le dispositif de commande 126 comporte en outre un soustracteur 312 pour soustraire le signal cosinusoïdal wCA cos(wt) au signal sinusoïdal multiplié par l’écart de tension AV48 x sin(wt), pour fournir une consigne de courant différentiel d’inductance (11-12)* correspondant à un différentiel de rapport cyclique Aa.
[0096] Le dispositif de commande 126 comporte alors un module 314 de détermination des rapports cyclique a1 , a2 pour qu’ils soient égaux à une valeur moyenne à respectivement plus et moins le différentiel de rapport cyclique Aa.
[0097] En outre, dans l’exemple décrit, le dispositif de commande 126 est conçu pour réaliser un découplage de puissance (également appelé « compensation de l’harmonique de redressement » ou bien « filtrage actif »). Le découplage de puissance consiste à s’assurer que la puissance transmise par les bornes de sortie principales V48+, G2 est sensiblement constante, ce qui revient à s’assurer, puisque la tension de sortie V48 est sensiblement constante, que le courant fourni est sensiblement constant. Ce découplage de puissance est possible du fait que l’énergie électrique stockée par les capacités C1 , C2 est pilotable. En particulier, dans l’exemple décrit, l’énergie électrique stockée dépend des rapports cycliques a1 , a2 des bras de commutation HV1 , HV2. En effet, en moyenne, l’énergie électrique E stockée dans les capacités C1 , C2 vaut :
[Math. 4]
E = (al
[0098] En supposant que les capacités C1 , C2 sont de même valeur C, cette énergie vaut :
[Math. 5]
[0099] Il est donc possible de modifier la charge des capacités C1 , C2 à partir de la somme des carrés des rapport cycliques a1 , a2 ou de façon approximative comme c’est le cas dans l’exemple décrit de la somme des rapports cyclique a1 , a2.
[0100] Ainsi, le dispositif de commande 126 est conçu pour réaliser le découplage de puissance en faisant varier l’énergie électrique E stockée dans les capacités C1 , C2 en jouant sur la somme des rapports cycliques a1 et a2.
[0101 ] Dans l’exemple décrit, le dispositif de commande 126 comporte tout d’abord un filtre coupe-bas 316 pour filtrer la tension V48 mesurée.
[0102] Le dispositif de commande 126 comporte en outre un correcteur 318 de la tension V48 filtrée pour fournir une consigne, notée (11+12)*, de la somme des courants d’inductance 11 , 12 . Il s’agit par exemple d’un correcteur résonant proportionnel. Dans ce cas, il présente par exemple la fonction de transfert T(s) suivante :
[Math. 6] s
T(s) = Kp + Kt s2 + w2 où Kp et Ki sont des gains prédéfinis et w une fréquence prédéfinie valant de préférence deux fois la fréquence principale de la tension réseau Vg du réseau 102. Ainsi, dans l’exemple décrit, cette fréquence prédéfinie vaut de préférence 100 Hz.
[0103] Le dispositif de commande 126 comporte en outre un comparateur 320 pour comparer la consigne (11+12)* avec la somme des courants d’inductance 11 , I2 mesurés, afin de fournir un écart de la somme des courants d’inductance, noté D(I1+I2).
[0104] Le dispositif de commande 126 comporte en outre amplificateur 322 de pour amplifier l’écart D(I1+I2) afin de fournir la valeur moyenne â des rapports cycliques a1 , a2.
[0105] Le dispositif de commande 110 est en outre conçu pour commander les bras de commutation LV1 , LV2 pour activer le redresseur R1.
[0106] Un troisième mode de fonctionnement est un mode de transfert entre sorties, dans lequel de la puissance électrique est transférée de manière bidirectionnelle (c’est-à-dire sélectivement dans un sens et dans l’autre) entre les bornes de sortie principales V48+, G2 et les bornes de sortie auxiliaires V12+, G2.
[0107] Dans ce mode de transfert entre sorties, le dispositif de commande 126 est conçu pour désactiver le convertisseur réseau 110 et le convertisseur continu direct 112 (en maintenant les bras de commutation HV1 , HV2 ouverts dans l’exemple décrit), ainsi que le convertisseur continu inverse 118 (en maintenant le bras de commutation HV3 ouvert dans l’exemple décrit).
[0108] Le dispositif de commande 126 commande alors au moins un des bras de commutation LV1 , LV2, LV3 afin d’être utilisé(s) par le convertisseur continu interne 124 pour réaliser la conversion de tension entre les tensions V48 et V12, dans un sens ou bien dans l’autre. Dans l’exemple décrit, le dispositif de commande 126 commande les trois bras de commutation LV1 , LV2, LV3. De préférence, lorsque plusieurs des bras de commutation LV1 , LV2, LV3 sont utilisés, ils sont commandés à une même fréquence de commutation et avec un même rapport cyclique, mais déphasés afin de réduire les variations de courant passant dans les bornes de sortie auxiliaires V12+, G2. De préférence encore, le déphasage n’est pas trop élevé entre les bras de commutation LV2 et LV3 afin de ne pas générer au secondaire T3S du transformateur T3 une tension trop importante qui pourrait entraîner une réinjection de puissance vers les bornes réseau P, N. Par exemple, ce déphasage doit respecter l’équation suivante :
[Math. 7] où Q est le déphasage considéré exprimé en radians.
[0109] Un quatrième mode de fonctionnement est un mode combiné direct et de transfert entre sorties.
[0110] Ce mode de fonctionnement est similaire au précédent, si ce n’est que le dispositif de commande 126 est conçu pour commander les bras de commutation LV1 , LV2 pour activer les redresseurs R1 , R2 et pour commander le bras de commutation LV3 pour activer le convertisseur continu interne 124.
[0111] Un deuxième mode de fonctionnement est un mode inverse, pour transférer de la puissance électrique depuis les bornes de sortie principales V48+, G2 vers les bornes réseau P, N.
[0112] Dans ce mode inverse, le dispositif de commande 126 est conçu pour désactiver le convertisseur continu direct 112 (en maintenant le bras de commutation LV1 ouvert dans l’exemple décrit), en commandant les bras de commutation LV2,
LV3 et le bras de commutation HV3 pour convertir la tension V48 en la tension Vc et en commandant les bras de commutation HV1 , HV2 pour que le convertisseur réseau 110 fonctionne en onduleur. Par exemple, les bras de commutation LV1 , LV2 sont commandé en décalage de phase (de l’anglais, « phase shift »).
[0113] Ainsi, aucun des bras de commutation LV1 , LV2, LV3 n’est commandé pour être utilisé par le convertisseur continu interne 124, de sorte que ce dernier est désactivé.
[0114] Un cinquième mode de fonctionnement est un mode combiné inverse et de transfert entre sorties.
[0115] Ce mode de fonctionnement est identique au précédent, si ce n’est que le dispositif de commande 126 est conçu pour commander le bras de commutation LV1 afin d’être utilisé par le convertisseur continu interne 124 et ainsi réaliser la conversion de tension continu-continu entre les bornes V48+, G2 et les bornes V12+, G2. [0116] Il apparaît clairement qu’un système de conversion de tension isolé tel que celui décrit précédemment permet de transférer de la puissance électrique dans le sens inverse, sans impacter le transfert de puissance électrique dans le sens direct.
[0117] On notera par ailleurs que l’invention n’est pas limitée aux modes de réalisation décrits précédemment. Il apparaîtra en effet à l'homme de l'art que diverses modifications peuvent être apportées aux modes de réalisation décrits ci- dessus, à la lumière de l'enseignement qui vient de lui être divulgué.
[0118] Dans la présentation détaillée de l’invention qui est faite précédemment, les termes utilisés ne doivent pas être interprétés comme limitant l’invention aux modes de réalisation exposés dans la présente description, mais doivent être interprétés pour y inclure tous les équivalents dont la prévision est à la portée de l'homme de l'art en appliquant ses connaissances générales à la mise en oeuvre de l'enseignement qui vient de lui être divulgué.

Claims

Revendications
[1] Système de conversion de tension (108), comportant : des bornes d’entrée (Vc+, G1) et des bornes de sortie principales (V48+, G2) ; et un premier convertisseur continu-continu (112) connecté entre les bornes d’entrée (Vc+, G1) et les bornes de sortie principales (V48+, G2) et comportant un premier transformateur d’isolation galvanique (T 1 , T2) ; caractérisé en ce qu’il comporte en outre : un deuxième convertisseur continu-continu (118) connecté entre les bornes d’entrée (VC+, G1) et les bornes de sortie (V48+, G2) et comportant un deuxième transformateur d’isolation galvanique (T3) ; et un dispositif de commande (126) conçu, dans un premier mode de fonctionnement, dit mode direct, pour activer le premier convertisseur (112) et désactiver le deuxième convertisseur (118) pour que le système (108) transfère de la puissance électrique dans un sens direct, c’est-à-dire depuis les bornes d’entrée (VC+, GND1) vers les bornes de sortie principales (V48+, G2), et, dans un deuxième mode de fonctionnement, dit mode inverse, pour activer le deuxième convertisseur (118) et désactiver le premier convertisseur (112) pour que le système (108) transfère de la puissance électrique dans un sens inverse, c’est-à-dire depuis les bornes de sortie principales (V48+, G2) vers les bornes d’entrée (VC+, GND1) ; et en ce que le deuxième transformateur (T3) présente un rapport de transformation (M’) dans le sens inverse plus grand qu’un rapport de transformation (M) dans le sens inverse du premier transformateur (T 1 , T2).
[2] Système (108) selon la revendication 1 , comportant en outre : des bornes réseau (P, N) destinées à être connectées à un réseau alternatif (102) ; et un troisième convertisseur alternatif-continu réversible (110) connecté entre les bornes réseau (P, N) et les bornes d’entrée (VC+, G1) ; dans lequel le dispositif de commande (126) est conçu, dans le mode direct, pour commander le troisième convertisseur (110) en redresseur pour transférer de la puissance électrique depuis les bornes réseau (P, N) vers les bornes d’entrée (VC+, G1) et, dans le mode inverse, en onduleur pour transférer de la puissance électrique depuis les bornes d’entrée (VC+, G1) vers les bornes réseau (P, N).
[3] Système (108) selon la revendication 2, dans lequel le troisième convertisseur (110) comporte au moins une capacité (C1 , C2) de stockage d’énergie électrique.
[4] Système (108) selon la revendication 3, dans lequel le troisième convertisseur (110) comporte deux bras de commutation (HV1 , HV2) et dans lequel le dispositif de commande (126) est conçu, dans le mode direct, pour commander les deux bras de commutation (HV1 , HV2) selon deux rapports cycliques (a1 , a2) respectifs, en régulant une tension continue (V48) entre les bornes de sortie principales (V48, G2) à partir de l’un parmi une somme et une différence des rapports cycliques (a1 , a2) et en pilotant le stockage d’énergie de la ou des capacités de stockage (C1 , C2) à partir de l’autre parmi la somme et la différence des rapports cycliques (a1 , a2).
[5] Système (108) selon la revendication 4, dans lequel la au moins une capacité de stockage (C1 , C2) comporte deux capacités de stockage (C1 , C2) connectées entre l’une des bornes d’entrée (G1) et respectivement les bornes réseau (P, N), dans lequel le troisième convertisseur (110) comporte deux inductances (L1 , L2) connectées chacune entre un point milieu d’un respectif des bras de commutation (HV1 , HV2) et l’une respective des bornes réseau (P, N).
[6] Système (108) selon l’une quelconque des revendications 3 à 5, dans lequel le dispositif de commande (126) est conçu, dans le mode direct, pour réguler la puissance électrique fournie par les bornes de sortie principales (V48+, G2) en pilotant le stockage d’énergie de la ou des capacités de stockage (C1 , C2).
[7] Système (108) selon l’une quelconque des revendications 1 à 6, comportant, connecté entre les bornes de sortie principales (V48+, G2), soit un bras de commutation (LV2), soit un diviseur de tension capacitif, commun aux premier et deuxième convertisseurs (112, 118).
[8] Système (108) selon l’une quelconque des revendications 1 à 7, comportant en outre : des bornes de sortie auxiliaires (V12+, G2) ; un quatrième convertisseur continu-continu (124) connecté entre les bornes de sortie principales (V48+, G2) et les bornes de sortie auxiliaires (V12+, G2) ; et un bras de commutation (LV3) connecté entre les bornes de sortie principales (V48+, G2) et commun aux deuxième et quatrième convertisseurs (118, 124).
[9] Système (108) selon la revendication 8, comportant en outre au moins un bras de commutation (LV1 , LV2) connecté entre les bornes de sortie principales (V48+, G2) et commun aux premier et quatrième convertisseur (112, 124).
[10] Système (108) selon la revendication 9, dans lequel le dispositif de commande (126) est conçu, dans un troisième mode de fonctionnement, dit mode de transfert entre sorties, pour désactiver les premier et deuxième convertisseurs (112, 118) et pour commander le ou les bras de commutation (LV1 , LV2) communs aux premier et quatrième convertisseur (112, 124) et le bras de commutation (LV3) commun aux deuxième et quatrième convertisseurs (118, 124) afin d’être utilisés par le quatrième convertisseur (124).
[11 ] Système (108) selon la revendication 9 ou 10, dans lequel le dispositif de commande (126) est conçu, dans un quatrième mode de fonctionnement, dit mode combiné direct et de transfert entre sorties, pour commander le ou les bras de commutation (LV1 , LV2) communs aux premier et quatrième convertisseurs (112, 124) afin d’être utilisés par le premier convertisseur (112), pour désactiver le deuxième convertisseur (118) et pour commander le bras de commutation (LV3) commun aux deuxième et quatrième convertisseurs (118, 124) afin d’être utilisé par le quatrième convertisseur (124).
[12] Système (108) selon l’une quelconque des revendications 9 à 11 , dans lequel le dispositif de commande (126) est conçu, dans un cinquième mode de fonctionnement, dit mode combiné inverse et de transfert entre sorties, pour commander le bras de commutation (LV3) commun aux deuxième et quatrième convertisseurs (118, 124) afin d’être utilisé par le deuxième convertisseur (118), pour désactiver le premier convertisseur (112) et pour commander au moins un (LV1 ) du ou des bras de commutation (LV1 , LV2) communs aux premier et quatrième convertisseurs (112, 124) afin d’être utilisé par le quatrième convertisseur (124).
[13] Engin de mobilité comportant : un moteur électrique ; une batterie (104) d’alimentation du moteur électrique ; et un système (108) de conversion de tension isolé selon l’une quelconque des revendications 1 à 12, dans lequel la batterie (104) d’alimentation du moteur électrique est connectée entre les bornes de sortie principales (V48+, G2). [14] Engin de mobilité selon la revendication 13, dans lequel le système (108) de conversion de tension isolé est selon l’une quelconque des revendications 8 à 12, et comportant en outre, connectée entre les bornes de sortie auxiliaire (V12+, G2), une charge passive et/ou une autre batterie (106) présentant par exemple une tension inférieure à la batterie (104) d’alimentation du moteur électrique.
EP22743773.8A 2021-06-30 2022-06-29 Système de conversion de tension et véhicule automobile comportant un tel système Pending EP4364283A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2107067A FR3124905A1 (fr) 2021-06-30 2021-06-30 Système de conversion de tension et véhicule automobile comportant un tel système
PCT/EP2022/067994 WO2023275202A1 (fr) 2021-06-30 2022-06-29 Système de conversion de tension et véhicule automobile comportant un tel système

Publications (1)

Publication Number Publication Date
EP4364283A1 true EP4364283A1 (fr) 2024-05-08

Family

ID=77519302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22743773.8A Pending EP4364283A1 (fr) 2021-06-30 2022-06-29 Système de conversion de tension et véhicule automobile comportant un tel système

Country Status (3)

Country Link
EP (1) EP4364283A1 (fr)
FR (1) FR3124905A1 (fr)
WO (1) WO2023275202A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5480296B2 (ja) * 2009-01-29 2014-04-23 ブルサ エレクトロニック アーゲー 単相および3相動作用の変換器、dc電源および電池充電器
US9716447B2 (en) * 2014-06-18 2017-07-25 Raytheon Company Method and integrated motor drive power electronics system with improved efficiency
CN108092371B (zh) * 2016-11-15 2020-04-03 华为技术有限公司 充放电装置

Also Published As

Publication number Publication date
FR3124905A1 (fr) 2023-01-06
WO2023275202A1 (fr) 2023-01-05

Similar Documents

Publication Publication Date Title
EP3554887B1 (fr) Procédé de commande d'un dispositif de charge embarqué sur un véhicule électrique ou hybride
CA2865804C (fr) Dispositif de charge externe pour la batterie d'un vehicule comprenant convertisseur ac-dc avec un etage isole resonant
FR2937479A1 (fr) Dispositif de recuperation d'energie dans un variateur de vitesse
FR3104846A1 (fr) Système électrique pour la conversion de tension continue et la charge de batteries d’alimentation
EP3207629A1 (fr) Convertisseur dc/dc isole
EP3685485B1 (fr) Procédé de commande d'un système de charge d'une batterie de traction
WO2023275202A1 (fr) Système de conversion de tension et véhicule automobile comportant un tel système
EP3707800B1 (fr) Procédé de commande d'un chargeur de batterie d'accumulateurs électriques
EP3161950B1 (fr) Convertisseur de tension comprenant un circuit convertisseur dc/dc isolé
EP3987647A1 (fr) Circuit électrique pour charge d'une source de tension continue
FR3089076A1 (fr) Convertisseur courant continu - courant continu résonant de type LLC
WO2016001545A1 (fr) Convertisseur de tension comprenant un circuit convertisseur a résonnance
FR3082683A1 (fr) Convertisseur bidirectionnel pour vehicule electrique ou hybride
EP3966922B1 (fr) Convertisseur de tension multi niveaux à stockage d'énergie additionnel optimisé
EP3807984B1 (fr) Procédé de commande d'un redresseur de vienne
WO2024094727A1 (fr) Système électrique et procédé de charge d'une batterie, notamment pour véhicule
FR3141010A1 (fr) Système électrique pour la conversion de la tension continue et pour la charge des batteries d'un véhicule.
FR3078212A1 (fr) Convertisseur dc-dc pour chargeur bidirectionnel.
WO2018219905A1 (fr) Convertisseur continu-continu pour vehicule electrique ou hybride
FR2983365A1 (fr) Systeme de transfert d'energie electrique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR