EP4363634A1 - Substrat revêtu d'au moins une couche de carbone de type diamant protégée par une couche temporaire à base de germanium ou à base d'oxyde de germanium - Google Patents

Substrat revêtu d'au moins une couche de carbone de type diamant protégée par une couche temporaire à base de germanium ou à base d'oxyde de germanium

Info

Publication number
EP4363634A1
EP4363634A1 EP22747080.4A EP22747080A EP4363634A1 EP 4363634 A1 EP4363634 A1 EP 4363634A1 EP 22747080 A EP22747080 A EP 22747080A EP 4363634 A1 EP4363634 A1 EP 4363634A1
Authority
EP
European Patent Office
Prior art keywords
layer
germanium
layers
dlc
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22747080.4A
Other languages
German (de)
English (en)
Inventor
Jean-Thomas FONNE
Denis Guimard
Lorenzo MANCINI
Nadia ZENID
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP4363634A1 publication Critical patent/EP4363634A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/355Temporary coating

Definitions

  • the present invention relates to a substrate provided with a coating or a stack of layers comprising at least one layer of diamond-like carbon (also called “Diamond Like Carbon", in English, or "DLC”), on which is deposited at least one temporary protection layer (also called sacrificial layer) which is a layer based on germanium or based on germanium oxide having a thickness of between 2 and 40 nm, said layer based on germanium or based on germanium oxide comprising an amount of tin less than 20%.
  • the invention also relates to the method of manufacturing a heat-treated substrate which is coated with a stack of layers comprising at least one layer of diamond-like carbon.
  • Thin diamond-like carbon layers are known to improve the scratch resistance of the underlying substrate by substantially reducing its surface friction coefficient and also to increase its hardness.
  • These so-called “DLC” amorphous carbon layers can comprise carbon atoms in a mixture of sp2 and sp3 hybridization states.
  • document WO 2004/071981 A1 describes a process for depositing DLC layers by ion beam.
  • Document CN 104962914 A describes a vapor phase deposition device for the industrial production of DLC layers.
  • CN 105441871 A relates to a high performance physical vapor deposition and pulsed magnetron sputtering device for the production of thick DLC coatings.
  • Document WO 2016/171627 A1 relates to the coating of a substrate comprising a carbon layer of the DLC type, which is formed by means of physical vapor deposition, for example by means of high-speed pulse magnetron sputtering. Powerful.
  • JP 2011068940 A relates to a method for producing abrasion resistant DLC layers.
  • the substrates comprising coatings of the DLC layer type be heat treated.
  • it may involve thermal toughening treatment intended to mechanically reinforce the substrate by creating high compressive stresses on its surface.
  • DLC coatings are not stable at high temperatures, especially under an oxygen atmosphere. Indeed, at high temperatures the DLC amorphous carbon layers undergo dramatic structural changes, even going so far as to “burn”.
  • the first method is based on the silicon doping of the DLC layers themselves in order to improve the resistance to high temperatures during a heat treatment.
  • additional protective layers (so-called sacrificial layers) that can be removed are used to protect the DLC layer against oxygen in order to prevent the burning of the DLC layer during the heat treatment. These protective layers can also be removed after the heat treatment.
  • document US 7060322 B2 describes a glass substrate provided with a coating in which the DLC layer is provided with a protective layer of zirconium nitride.
  • the protective layer prevents the DLC layer from burning off significantly and can be removed after heat treatment.
  • Document US8580336 B2 describes a coating of a glass substrate comprising a DLC layer, in which a first and a second inorganic layer are placed on the DLC layer.
  • the first layer includes zinc oxide and nitrogen.
  • Document US 20080182033 A1 describes a similar coating comprising an optional first layer of zinc oxide and a second layer of tin oxide.
  • the document US8443627 B2 relates to a glass substrate coated with at least one layer comprising diamond-like carbon (DLC) and a protective film covering the latter.
  • the protective film includes two layers of oxygen-substoichiometric zinc oxide to prevent oxidation of the DLC layer on the glass.
  • This document also describes a protective film comprising a first layer of carbon oxide magnesium or zinc under-stoichiometric in oxygen (called "release layer” in English) deposited on a layer of DLC, and a second layer called the oxygen barrier layer of aluminum nitride or silicon carbide, deposited on said first layer.
  • the first layer must be relatively thick (>100 nm) in order to obtain satisfactory protection of the DLC layer.
  • Document WO2019/020485 describes a system of several sacrificial layers in order to protect the DLC layer from oxidation during heat treatment.
  • This document discloses in particular a substrate provided with a coating comprising, from said substrate, the layers in the following order: a DLC layer, a mono-layer or multi-layer metal(s) comprising tin or magnesium, and an oxygen barrier layer.
  • the Applicant has therefore sought a temporary protection layer or a temporary protection system for a substrate coated with at least one layer of diamond-like carbon (DLC) which can be easily removed without solvents or mechanical friction, after heat treatment of said coated substrate, while retaining the mechanical properties (including the anti-scratch properties) of the DLC layer.
  • the temporary protection must allow the coated substrate to undergo a heat treatment without altering or without negatively affecting the DLC layer and its properties.
  • the temporary protection must be sufficiently stable to allow protection of the surface of the substrate coated with the DLC layer before heat treatment during manufacturing, processing, handling, transport and/or storage operations.
  • the subject of the invention is a substrate coated with a stack of layers comprising the succession of the following layers starting from the surface of said substrate:
  • a layer based on germanium or based on germanium oxide having a thickness of between 2 and 40 nm, preferably between 2 and 20 nm, said layer based on germanium or based on germanium oxide comprising a quantity less than 10% tin, and
  • a layer based on germanium or based on germanium oxide, optionally surmounted by an oxygen barrier layer, according to the invention could ensure the protection of a DLC layer deposited on a substrate whether before, during and after heat treatment of said substrate and that such a layer (or a stack of layers comprising said layer and the oxygen barrier layer) could (have) be removed ( s) easily by simple washing with water without using solvents and/or mechanical friction after the heat treatment of said substrate.
  • the coating of the substrate, according to the invention exhibited good mechanical stability and good aging stability before the heat treatment.
  • the layer which coats the substrate or another layer is deposited above said substrate or this other layer, but not necessarily in contact with them.
  • a first layer is placed “on top” of a second layer (or “on top” of a second layer), we mean that the first layer is farther from the substrate than the second layer.
  • the substrate according to the invention is preferably ceramic, glass-ceramic or glass, and more preferably glass.
  • the glass is in particular of the silico-sodo-lime type, but it can also be of borosilicate or aluminosilicate type glass. Silico-soda-lime glass can be clear or tinted.
  • the substrate is a pane of glass.
  • the thickness of the substrate, in particular of a glass substrate can vary between 0.1 mm and 20 mm, in particular between 2 and 8 mm.
  • the substrate coated with a stack of layers according to the invention thus comprises the succession of the following layers, starting from the surface of said substrate:
  • a layer based on germanium or based on germanium oxide having a thickness of between 2 and 40 nm, preferably between 2 and 20 nm, said layer based on germanium or based on germanium oxide comprising a quantity less than 20% tin, and
  • the DLC diamond-like carbon layer is therefore located closest to the substrate.
  • the layer based on germanium or based on germanium oxide is placed above the DLC layer; and the optional oxygen barrier layer is disposed above said germanium-based or germanium oxide-based layer.
  • each of said layers is in direct contact with the previous one.
  • the stack of layers essentially consists of the DLC layer and the layer based on germanium or based on germanium oxide, in this order, from the surface of said substrate.
  • an oxygen barrier layer is not necessary, which has the advantage of reducing the number of layers of the stack and consequently of reducing the number of sacrificial layers to be eliminated after the heat treatment of the substrate. coated since only the layer based on germanium or based on germanium oxide is to be removed. Indeed, in this preferred embodiment, the layer based on germanium or based on germanium oxide, itself behaves as an oxygen barrier layer.
  • the stack of layers according to the invention does not comprise a layer based on Ag, Au, Cu and Ni.
  • these silver-based layers are temporarily protected by a DLC layer this sacrificial time which is eliminated.
  • the DLC layer according to the invention is a functional layer which it is absolutely desirable to keep.
  • the layers of diamond-like carbon also called “Diamond Like Carbon", in English, or "DLC", according to the invention, are well known in the art according to this simple name without the need to explain in more detail their constitution. These diamond-like carbon layers are amorphous carbon layers that may or may not contain hydrogen.
  • the carbon atoms in a DLC layer can be in a mixture of sp2 and sp3 hybridization state, the proportion of sp3 hybridized carbons can be greater than the proportion of sp2 hybridized carbons or vice versa. Indeed, we can distinguish four main families of amorphous carbon, depending on whether the carbon contains hydrogen or not, and on the proportion of sp3 hybridization:
  • a-C predominant sp2 hybridization
  • ta-C predominant sp3 preponderance
  • a-C:H predominant sp2 hybridization
  • ta-C:H predominant sp3 preponderance
  • the DLC layers according to the present invention include in particular all these families.
  • the DLC layer used according to the invention can be doped or undoped; in other words, the DLC layer can comprise atoms other than carbon and hydrogen, such as for example silicon, oxygen, nitrogen, a metal or fluorine, as a dopant, or else be devoid of them.
  • DLC layers are generally deposited on the substrate by a vapor phase deposition process, for example by physical vapor deposition (PVD) or by chemical vapor deposition (CVD), and preferably by sputtering.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the preferred deposition methods used are: plasma-enhanced chemical vapor deposition (PECVD) and ion beam deposition.
  • PECVD plasma-enhanced chemical vapor deposition
  • hydrocarbons in particular alkanes and alkynes, such as C2H2 or CHU, can be used as precursors for the DLC layer to be deposited.
  • the DLC layer is formed by sputtering by plasma-enhanced chemical vapor deposition (PECVD).
  • PECVD plasma-enhanced chemical vapor deposition
  • the plasma is generated by a magnetron or a magnetron target.
  • the coating of the substrate (of which said substrate may also comprise at least one ion diffusion barrier layer between the substrate and the DLC layer to be formed) is carried out in a vacuum chamber, in which are placed a magnetron equipped with the target and the substrate.
  • At least one reactive gas is introduced into the chamber under vacuum, for example at a pressure of 0.1 pbar (microbar) to 10 pbar, the plasma generated by the magnetron target leads to the formation of fragments of the reactive gas, which are deposited on the substrate to form the DLC layer.
  • the reactive gas can, for example, comprise hydrocarbons, in particular alkanes and alkynes, such as C2H2 or CH4, or organosilicon compounds, such as tetramethylsilane.
  • additional inert gases such as argon, can be introduced into the vacuum chamber to enhance the plasma.
  • the magnetron target can, for example, be made of silicon, which is optionally doped with one or more elements, such as aluminum and/or boron, or made of titanium. Fabricating the DLC layer using the magnetron PECVD process is advantageous because it allows large substrate areas to be coated with good process stability, without the need for strong heating of the substrate.
  • the DLC layers thus produced have very good scratch resistance and good optical properties, in particular when said method is used in target poisoning mode, known to those skilled in the art.
  • the DLC diamond-like carbon layer can have a thickness of between 1 and 20 nm, preferably between 2 and 10 nm, and more preferably between 3 and 8 nm. These layer thicknesses are advantageous, because a high transparency of the layers is thereby ensured.
  • the layer based on germanium or based on germanium oxide, according to the invention has a thickness of between 2 and 40 nm, preferably between 2 and 20 nm and comprises an amount of tin of less than 20%, of preferably less than 10%.
  • the layer based on germanium or based on germanium oxide is free of tin.
  • said layer may comprise between 1 and 20 atomic % of a metal or a metalloid other than germanium, in particular chosen from antimony, copper, lead, silver, zinc, indium, gallium, aluminum , bismuth, manganese, cadmium, iron, strontium, zirconium, thorium, lithium, nickel, chromium, silicon, tin, gadolinium, yttrium, calcium, or a mixture thereof.
  • a metal or a metalloid other than germanium in particular chosen from antimony, copper, lead, silver, zinc, indium, gallium, aluminum , bismuth, manganese, cadmium, iron, strontium, zirconium, thorium, lithium, nickel, chromium, silicon, tin, gadolinium, yttrium, calcium, or a mixture thereof.
  • the layer based on germanium or based on germanium oxide can comprise at least 50 atomic % germanium or at least 50 atomic % germanium oxide, preferably at least 80 atomic % germanium or at least 80 atomic % of germanium oxide, and even more preferentially at least 90 atomic % germanium or at least 90 atomic % germanium oxide.
  • the layer based on germanium or based on germanium oxide essentially consists of germanium or germanium oxide.
  • the layer based on germanium or based on germanium oxide may also comprise nitrogen, in particular the nitrogen may only be present in the form of unavoidable impurities.
  • the layer based on germanium or based on germanium oxide consists essentially of germanium (denoted “Ge”).
  • the layer based on germanium or based on germanium oxide consists essentially of germanium oxide.
  • germanium oxide in the present invention, is meant in particular an oxide of formula “GeOx” with x between 0.01 and 2, limits included, preferably the value of x is between 1 and 2. In particular, the value of x is equal to 2, which corresponds to the stoichiometric compound “GeÜ2”.
  • the germanium-based or germanium oxide-based layer can be deposited and thus formed by magnetron-assisted sputtering.
  • the layer based on germanium or based on germanium oxide, according to the invention which is deposited above the DLC layer (which is itself deposited above the substrate ) was water soluble after heat treatment of said coated substrate; thus allowing simple and rapid removal by simple washing with water of said layer based on germanium or based on germanium oxide as well as any layers placed above (such as the oxygen barrier layers) .
  • the inventors remarked surprisingly that this layer was not water-soluble before the heat treatment of the coated substrate, thus rendering the stable stack during storage, but that this layer oxidized during the heat treatment then becoming water-soluble after said heat treatment, thus allowing its removal by washing with water (after heat treatment of said coated substrate).
  • temporary protective layer or “sacrificial layer” is understood to mean a layer which is removed after heat treatment, in particular by washing with water.
  • such layers are layers based on germanium or based on germanium oxide and layers possible oxygen barriers arranged above said layers based on germanium or based on germanium oxide.
  • the coating of the substrate may further comprise an oxygen barrier layer placed above the layer based on germanium or based on germanium oxide mentioned above.
  • the role of the oxygen barrier layer is to protect (in addition to the layer based on germanium or based on germanium oxide) the DLC layer, in particular against ambient oxygen.
  • the oxygen barrier layer makes it possible, in addition to the layer based on germanium or based on germanium oxide, to subject the coated substrate to a heat treatment (such as quenching), without causing partial degradation. or full DLC layer.
  • Such oxygen barrier layers and their formation are well known in the prior art. Conventional materials can be used for this purpose. Vapor phase deposition processes, such as PVD or CVD, and preferably magnetron sputtering, or atomic thin film deposition (ALD), can be used for applying the oxygen barrier layer above the layer based on germanium or based on germanium oxide mentioned above.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • ALD atomic thin film deposition
  • the oxygen barrier layer may comprise or may consist essentially of at least one material chosen from the group consisting of silicon carbide, silicon oxide, silicon nitride, silicon oxynitride, metal oxide, metal nitride, metal carbide, or a mixture thereof.
  • the metal can be chosen from the following metals: titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten.
  • the oxygen barrier layer comprises or consists essentially of silicon nitride, in particular S13N4 and/or doped S13N4; with Al, Zr, Ti, Hf and/or B doped S13N4 being particularly preferred and Zr doped S13N4 being most preferred.
  • the proportion of doping elements (in particular Al, Zr, Ti and/or Hf) in the doped S13N4 can be in the range from 1 to 40 atomic %.
  • the proportion of B as doping element may be between 0.1 ppm and 100 ppm.
  • the combination of the layer based on germanium or based on germanium oxide described above with an oxygen barrier layer allows better protection of the DLC layer, in particular when the barrier layer at the oxygen is a layer of doped Sblsb, preferably doped with Zr.
  • the oxygen barrier layer placed above the layer based on germanium or based on germanium oxide also makes it possible to reduce the thickness of the layer based on germanium or based on germanium oxide and therefore reduce the cost of stacking; germanium being an expensive element, in particular in its oxide form or else in its metallic form entering into the constitution of a magnetron target.
  • an even more advantageous embodiment is the combination of the layer based on germanium or based on germanium oxide and an oxygen barrier layer comprising silicon nitride, in particular as described previously.
  • the oxygen barrier layer may have a thickness of between 2 and 100 nm, preferably between 20 and 80 nm, and more preferably between 30 and 80 nm.
  • the DLC layer is deposited directly and in contact with the surface of the substrate, but according to a possible alternative, the coating of the substrate may also comprise at least one ion diffusion barrier layer between the substrate and the diamond-like carbon layer.
  • said ion diffusion barrier layer preferably consisting essentially of silicon carbide, silicon oxide, silicon nitride, silicon oxynitride, metal oxide, metal nitride, metal carbide, or a mixture of these, and more preferably Sblsb and/or doped Sblsb, and even more preferably Sblsb doped with Al, Zr, Ti, Hf and/or B.
  • the metal can be chosen from the following metals: titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten.
  • the ion diffusion barrier layer prevents the unwanted diffusion of ions, such as sodium ions, from the substrate to the coating and in particular during heat treatment.
  • ion diffusion barrier layers and their formation are well known in the prior art. Conventional materials can be used for this purpose. Vapor deposition processes, such as PVD or CVD, sputtering, preferably magnetron sputtering, or atomic thin film deposition (ALD), can be used for application of the diffusion barrier layer ionic.
  • the ion diffusion barrier layer may have a thickness of between 1 and 100 nm, preferably between 5 and 50 nm.
  • each of the layers of the stack described above is in direct contact with the previous one.
  • the substrate and in particular the glass substrate, provided with at least one DLC layer and one or more optional layers of ion diffusion barrier or oxygen barrier, is transparent.
  • the light transmission in the visible range is greater than 50%, preferably greater than 70%, and in particular greater than 80% .
  • the application more particularly targeted by the invention is the glazing for interior furniture, other applications are possible, in particular in the glazing of vehicles.
  • the heat-treated substrate coated with a stack of layers, according to the invention can be used as a glass table or as a shower wall or even as a vehicle window.
  • the invention also relates to the method of manufacturing a heat-treated substrate coated with a stack of layers comprising at least one DLC diamond-like carbon layer. Said method comprises the following steps:
  • the heat treatment step can be quenching, annealing or bending, preferably quenching.
  • the heat treatment can be carried out at a temperature between 300°C and 800°C, preferably between 500°C and 700°C, and more preferably between 600°C and 700°C.
  • the duration of the heat treatment can vary between 1 and 20 min, preferably between 2 and 5 min.
  • the heat treatment is quenching, preferably carried out at a temperature of 700° C., for a duration of 3 minutes and at a pressure of 1 atm.
  • the step of heat treatment of the coated substrate according to the invention is followed by a step of washing said heat-treated coated substrate with water, which allows to eliminate, in other words to completely remove, the temporary protective layer comprising the layer based on germanium or based on germanium oxide and the possible oxygen barrier layer, without affecting the DLC layer deposited on the substrate (in particular without affecting the so-called “anti-scratch” mechanical properties of said DLC layer).
  • the step of washing with water can be carried out at a pH of between 6 and 8.5, preferably at a pH approximately equal to 7; at room temperature in a temperature range from 15°C to 40°C.
  • washing with water it is meant within the meaning of the present invention that the sacrificial layer (that is to say the layer based on germanium or based on germanium oxide and the barrier layer to possible oxygen described above) are completely removed or eliminated either:
  • the method according to the invention makes it possible to obtain a heat-treated substrate provided with a DLC layer having good mechanical properties.
  • a glass substrate was covered with a stack of layers comprising the succession of the following layers from the surface of said glass substrate:
  • germanium denoted Ge having a thickness of 10 nm.
  • Example 1b a glass substrate was covered with a stack of layers comprising the succession of the following layers from the surface of said glass substrate:
  • a glass substrate was covered with a stack of layers comprising the succession of the following layers from the surface of said glass substrate:
  • the glass substrate is coated from said substrate only with said ion diffusion barrier layer of S13N4, then with the DLC layer; no temporary protective layer is deposited above the DLC layer.
  • the substrate is a glass substrate of the Planiclear® type (marketed by the company Saint-Gobain Glass France) and has a thickness of 4 mm.
  • the DLC layer is deposited by sputtering by magnetron assisted chemical vapor deposition, i.e. by the PECVD method with C2H2 as precursor.
  • the other layers are deposited by sputtering assisted by magnetic field (often called magnetron). Raman spectroscopy.
  • a Raman spectroscopy is carried out on each of the coated substrates described above before a heat treatment consisting of quenching and after quenching, in order to observe the molecular composition of the DLC layer.
  • the measurements are carried out using a Raman spectrometer equipped with a laser source having a wavelength of 532 nm and a power of 50 mW, a magnification objective of x100, a network of 2400 lines/mm and an entry slit set at 20 ⁇ m.
  • the sample exposure time is typically 20 s.
  • the quenching for these tests consists in heating the substrates 1a, 1b, 2 and 3 at a temperature of 700°C, for 3 min, at a pressure of 1 atm, followed by rapid cooling.
  • the substrates whose DLC layer has been protected either by a layer of germanium or based on germanium oxide have two peaks at around 1370 cm 1 and 1590 cm 1 whose positions and the relative intensities are comparable to that of a DLC layer protected by tin such as in Example 2 (according to the prior art).
  • the layer based on germanium or based on germanium oxide provides good protection of a DLC layer deposited on a substrate during a heat treatment.
  • Borosilicate spheres with a diameter of 10 mm are subjected to an increasing force (uniform increase in force from 0 N to 30 N with increasing drop height, speed of 30 N/min) on the glass substrates coated with at least one layer of DLC (obtained from examples 1a and 1b, according to the invention, after heat treatment and after removal of the layer of germanium or based on germanium oxide by washing with water) and, by way of comparison, on the glass substrate not coated with a DLC layer (glass obtained from example 3, after toughening and therefore after disappearance of the DLC layer).
  • an increasing force uniform increase in force from 0 N to 30 N with increasing drop height, speed of 30 N/min
  • the borosilicate spheres left deep scratches on the uncoated glass substrate but no scratches were observed on the heat-treated coated glass substrates.
  • This test shows that a layer based on germanium or based on germanium oxide, according to the invention, makes it possible not only to protect a substrate coated with at least one DLC layer during a heat treatment but also to preserve the anti-scratch properties of said DLC layer after its removal.
  • the quenching was carried out at a temperature of 700° C., for 3 min, at a pressure of 1 atm.
  • the measurements of the optical properties of said glass substrates are therefore carried out in accordance with European standard NF EN 410 (2011). More precisely, the light transmissions TL and the light reflections on the RLC layer(s) side, are measured in the range of the visible spectrum: wavelengths between 380 nm and 780 nm, depending on the illuminant D65.
  • the colorimetry parameters a * and b * are measured according to the international colorimetry model (L, a * , b * ).
  • the TL, RLC and a * , b * values obtained for the glass substrate according to example 1a are identical to the TL, RLC and a * values, b * obtained with the glass substrate Ex. 1a (Tr + Gt), which shows that the germanium layer can be removed by simple washing with water.
  • the TL, RLC and a * , b * values obtained for the glass substrate according to Example 2 (according to the prior art) after toughening (Tr) are identical to the TL, RLC and a * , b * values obtained with the glass substrate Ex. 2 (Tr + Gt). This shows that a simple washing with water does not allow the elimination of the protective layer Sn but that an additional rubbing step is necessary.
  • results similar to those obtained with a glass substrate according to example 1a were obtained with a glass substrate whose germanium layer was replaced by a layer based on germanium oxide: glass/Si3N4/DLC/GeOx.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Laminated Bodies (AREA)

Abstract

La présente invention se rapporte un substrat revêtu d'un empilement de couches comprenant la succession des couches suivantes à partir de la surface dudit substrat : - une couche de carbone de type diamant DLC, - une couche à base de germanium ou à base d'oxyde de germanium présentant une épaisseur comprise entre 2 et 40 nm, de préférence entre 2 et 20 nm, ladite couche à base de germanium ou à base d'oxyde de germanium comprenant une quantité d'étain inférieure à 20%, et - éventuellement une couche barrière à l'oxygène. La présente invention concerne également un procédé de fabrication d'un substrat traité thermiquement revêtu d'un empilement de couches, tel que décrit ci-dessus, comprenant au moins une couche de carbone de type diamant DLC.

Description

DESCRIPTION
TITRE DE L’INVENTION : Substrat revêtu d’au moins une couche de carbone de type diamant protégée par une couche temporaire à base de germanium ou à base d’oxyde de germanium
La présente invention concerne un substrat muni d’un revêtement ou d’un empilement de couches comprenant au moins une couche de carbone de type diamant (appelée également « Diamond Like Carbon », en anglais, soit « DLC »), sur laquelle est déposée au moins une couche de protection temporaire (appelée également couche sacrificielle) qui est une couche à base de germanium ou à base d’oxyde de germanium présentant une épaisseur comprise entre 2 et 40 nm, ladite couche à base de germanium ou à base d’oxyde de germanium comprenant une quantité d’étain inférieure à 20%. L’invention concerne également le procédé de fabrication d’un substrat traité thermiquement qui est revêtu d’un empilement de couches comprenant au moins une couche de carbone de type diamant.
Les couches minces en carbone de type diamant (notée « couche DLC ») sont connues pour améliorer la résistance aux rayures du substrat sous-jacent en diminuant sensiblement son coefficient de frottement superficiel et également pour augmenter sa dureté. Ces couches de carbones amorphes dites « DLC » peuvent comprendre des atomes de carbone dans un mélange d’état d’hybridation sp2 et sp3.
Il existe d’ailleurs une littérature abondante sur les méthodes de production de revêtements DLC. Par exemple, le document WO 2004/071981 A1 décrit un procédé de dépôt de couches DLC par faisceau d’ions. Le document CN 104962914 A décrit un dispositif de dépôt en phase vapeur pour la production industrielle de couches DLC. Le document CN 105441871 A concerne un dispositif de dépôt physique en phase vapeur et de pulvérisation magnétron à impulsions haute performance pour la production de revêtements DLC épais. Le document WO 2016/171627 A1 concerne le revêtement d’un substrat comprenant une couche de carbone de type DLC, qui est formée au moyen d'un dépôt physique en phase vapeur, par exemple au moyen d'une pulvérisation magnétron à impulsion de haute puissance. Le document JP 2011068940 A concerne une méthode de production de couches DLC résistantes à l'abrasion. Dans de nombreuses applications, il est nécessaire que les substrats comprenant des revêtements de type couche DLC, soient traités thermiquement. Il peut par exemple s’agir, dans le cas de substrats en verre, de traitement de trempe thermique destiné à renforcer mécaniquement le substrat en créant de fortes contraintes de compression à sa surface. Cependant, les revêtements DLC ne sont pas stables à températures élevées, en particulier sous atmosphère d’oxygène. En effet, à des températures élevées les couches de carbones amorphes DLC subissent des changements structurels dramatiques, allant même jusqu’à « brûler ». Ainsi, les revêtements DLC déposés sur des substrats en verre subissant des traitements thermiques requérant des températures allant jusqu'à 800°C, sous atmosphère d’oxygène, tel que la trempe, le recuit ou le bombage, disparaissent simplement s’ils ne sont pas protégés de l’oxydation.
Deux méthodes principales sont connues pour fournir des couches DLC résistantes aux traitements thermiques. La première méthode est basée sur le dopage au silicium des couches DLC elles-mêmes afin d'améliorer la résistance aux températures élevées lors d’un traitement thermique. Dans l'autre méthode, des couches de protection supplémentaires (couches dites sacrificielles) pouvant être enlevées sont utilisées pour protéger la couche DLC contre l'oxygène afin d’empêcher la combustion de la couche DLC pendant le traitement thermique. Ces couches de protection sont en outre éliminables après le traitement thermique.
Ainsi, le document US 7060322 B2 décrit un substrat en verre muni d’un revêtement dans lequel la couche DLC est pourvue d'une couche protectrice de nitrure de zirconium. La couche protectrice empêche la couche de DLC de brûler de manière significative et peut être retirée après traitement thermique. Le document US8580336 B2 décrit un revêtement d’un substrat en verre comprenant une couche DLC, dans lequel une première et une seconde couche inorganique sont disposées sur la couche DLC. La première couche comprend de l'oxyde de zinc et de l'azote. Le document US 20080182033 A1 décrit un revêtement similaire comprenant une première couche d'oxyde de zinc optionnelle et une seconde couche d'oxyde d'étain. Le document US8443627 B2 concerne un substrat en verre revêtu d'au moins une couche comprenant du carbone de type diamant (DLC) et un film protecteur recouvrant celle- ci. Le film protecteur comprend deux couches d’oxyde de zinc sous-stœchiométrique en oxygène afin d’empêcher l'oxydation de la couche DLC sur le verre. Ce document décrit également un film protecteur comprenant une première couche d’oxyde de magnésium ou de zinc sous-stœchiométrique en oxygène (appelée « release layer » en anglais) déposée sur une couche de DLC, et une deuxième couche dite couche barrière à l’oxygène de nitrure d’aluminium ou de carbure de silicium, déposée sur ladite première couche. Cependant, dans ce document la première couche doit être relativement épaisse (>100 nm) afin d'obtenir une protection satisfaisante de la couche DLC. De plus, l'élimination du film protecteur après traitement thermique du substrat revêtu est assez fastidieuse et peut, par exemple, nécessiter un lavage avec des solutions d'acide acétique. Le document WO2019/020485 décrit un système de plusieurs couches sacrificielles afin de protéger la couche DLC de l’oxydation lors d’un traitement thermique. Ce document divulgue en particulier un substrat muni d’un revêtement comprenant à partir dudit substrat les couches dans l’ordre suivant : une couche DLC, une mono-couche ou multi-couches métallique(s) comprenant de l’étain ou du magnésium, et une couche barrière à l’oxygène.
L’inconvénient de ces couches sacrificielles (couches métalliques et couche barrière à l’oxygène) est que celles-ci s’enlèvent difficilement après traitement thermique du substrat revêtu. Ceci est dû en partie à l’adhésion qui existent entre la ou les couche(s) métallique(s) mentionnées ci-dessus et la couche DLC. En effet, bien que les couches sacrificielles soient dégradées lors du traitement thermique, l'élimination complète de ces couches, sans altérer la couche DLC, nécessite non seulement un lavage à l’eau avec ou sans autres solvants mais surtout des frottements mécaniques, effectués par exemple à l’aide de machines à laver et/ou de brosses. Or ces appareils ne font pas partie des équipements standards de nettoyage ou des protocoles de nettoyage pouvant être utilisés dans des procédés à l’échelle industrielle.
Le Demandeur a donc cherché une couche de protection temporaire ou un système de protection temporaire pour un substrat revêtu d’au moins une couche de carbone de type diamant (DLC) qui puisse être enlevé facilement sans solvants, ni frottements mécaniques, après traitement thermique dudit substrat revêtu, tout en conservant les propriétés mécaniques (dont les propriétés anti-rayure) de la couche DLC. Ainsi, la protection temporaire doit permettre au substrat revêtu de subir un traitement thermique sans altérer ou sans affecter négativement la couche DLC et ses propriétés. En outre, la protection temporaire doit être suffisamment stable pour permettre une protection de la surface du substrat revêtu de la couche DLC avant traitement thermique pendant les opérations de fabrication, de transformation, de manipulation, de transport et/ou de stockage. A cet effet, l’invention a pour objet un substrat revêtu d’un empilement de couches comprenant la succession des couches suivantes à partir de la surface dudit substrat :
- une couche de carbone de type diamant DLC,
- une couche à base de germanium ou à base d’oxyde de germanium présentant une épaisseur comprise entre 2 et 40 nm, de préférence entre 2 et 20 nm, ladite couche à base de germanium ou à base d’oxyde de germanium comprenant une quantité d’étain inférieure à 10%, et
- éventuellement une couche barrière à l’oxygène.
Il a été constaté de manière surprenante par les inventeurs qu’une couche à base de germanium ou à base d’oxyde de germanium, surmontée éventuellement d’une couche barrière à l’oxygène, selon l’invention, pouvait assurer la protection d’une couche DLC déposée sur un substrat que ce soit avant, pendant et après traitement thermique dudit substrat et qu’une telle couche (ou un empilement de couches comprenant ladite couche et la couche barrière à l’oxygène) pouvait(aient) être retirée(s) facilement par un simple lavage à l’eau sans utiliser de solvants et/ou de frottements mécaniques après le traitement thermique dudit substrat. Il a en effet été observé par les inventeurs qu’après traitement thermique et simple lavage à l’eau du substrat initialement revêtu de la couche ou de l’empilement de couches précités, la couche DLC était toujours présente sur le substrat et que ses propriétés mécaniques, notamment anti-rayures, étaient parfaitement conservées, comme démontré par les exemples qui suivent.
En outre, le revêtement du substrat, selon l’invention, présentait une bonne stabilité mécanique et une bonne stabilité au vieillissement avant le traitement thermique.
Par l’expression « revêtu », on entend que la couche qui revêt le substrat ou une autre couche est déposée au-dessus dudit substrat ou de cette autre couche, mais pas nécessairement en contact avec eux. Lorsqu’une première couche est disposée « au-dessus » d’une deuxième couche (ou « surmonte » une deuxième couche), on entend que la première couche est plus éloignée du substrat que la deuxième couche.
Le substrat selon l’invention est de préférence en céramique, en vitrocéramique ou en verre, et plus préférentiellement en verre. Le verre est en particulier de type silico-sodo-calcique, mais il peut être également en verre de type borosilicate ou aluminosilicate. Le verre silico-sodo-calcique peut être clair ou teinté. Dans un mode de réalisation préféré, le substrat est un panneau de verre. L'épaisseur du substrat, en particulier d’un substrat en verre, peut varier entre 0,1 mm et 20 mm, en particulier entre 2 et 8 mm.
Le substrat revêtu d’un empilement de couches selon l'invention comprend ainsi la succession des couches suivantes, à partir de la surface dudit substrat :
- une couche de carbone de type diamant DLC,
- une couche à base de germanium ou à base d’oxyde de germanium présentant une épaisseur comprise entre 2 et 40 nm, de préférence entre 2 et 20 nm, ladite couche à base de germanium ou à base d’oxyde de germanium comprenant une quantité d’étain inférieure à 20%, et
- éventuellement une couche barrière à l’oxygène.
De ces trois couches, la couche de carbone de type diamant DLC est donc située la plus près du substrat. La couche à base de germanium ou à base d’oxyde de germanium est disposée au-dessus de la couche DLC ; et la couche barrière à l'oxygène éventuelle est disposée au-dessus de ladite couche à base de germanium ou à base d’oxyde de germanium.
De manière avantageuse, chacune desdites couches est au contact direct de la précédente.
De manière encore plus avantageuse, l’empilement de couches est essentiellement constitué de la couche DLC et de la couche à base de germanium ou à base d’oxyde de germanium, dans cet ordre, à partir de la surface dudit substrat. Dans ce cas, une couche barrière à l’oxygène n’est pas nécessaire, ce qui a pour avantage de réduire le nombre de couches de l’empilement et par conséquent de réduire le nombre de couches sacrificielles à éliminer après le traitement thermique du substrat revêtu puisque seule la couche à base de germanium ou à base d’oxyde de germanium est à éliminer. En effet, dans ce mode de réalisation préféré, la couche à base de germanium ou à base d’oxyde de germanium, se comporte elle-même comme une couche barrière à l’oxygène.
De préférence, l’empilement de couches selon l’invention ne comprend pas de couche à base d’Ag, Au, Cu et Ni. En effet, dans des empilements de couches connus présentant des couches fonctionnelles à base d’argent (c'est-à-dire qu’elles agissent sur le rayonnement solaire), ces couches à base d’argent sont protégées temporairement par une couche DLC cette fois sacrificielle qui est éliminée. En revanche, la couche DLC selon l’invention est une couche fonctionnelle que l’on cherche absolument à conserver. D’ailleurs, les couches de carbone de type diamant, appelées également « Diamond Like Carbon », en anglais, soit « DLC », selon l’invention, sont bien connues de l’art selon cette simple appellation sans qu’il soit besoin d’expliquer plus en détail leur constitution. Ces couches de carbones de type diamant sont des couches de carbone amorphes pouvant contenir de l’hydrogène ou non. Et les atomes de carbone dans une couche DLC peuvent être dans un mélange d’état d’hybridation sp2 et sp3, la proportion de carbones hybridés sp3 pouvant être supérieure à la proportion de carbones hybridés sp2 ou inversement. En effet, on peut distinguer quatre grandes familles de carbone amorphe, selon que le carbone contienne de l’hydrogène ou non, et selon la proportion d’hybridation sp3 :
- les carbones amorphes, noté a-C (hybridation sp2 majoritaire) ou ta-C (prépondérance sp3 majoritaire),
- les carbones amorphes hydrogénés, noté a-C :H (hybridation sp2 majoritaire) ou ta- C :H (prépondérance sp3 majoritaire).
Les couches DLC selon la présente invention incluent en particulier toutes ces familles.
En outre, la couche DLC utilisée selon l'invention peut être dopée ou non dopée; autrement dit la couche DLC peut comprendre d’autres atomes que le carbone et l’hydrogène, comme par exemple le silicium, l’oxygène, l’azote, un métal ou le fluor, en tant que dopant, ou bien en être dépourvue.
L'homme du métier connaît divers procédés de fabrication des couches DLC. Les couches DLC sont généralement déposées sur le substrat par un procédé de dépôt en phase vapeur, par exemple par dépôt physique en phase vapeur (PVD) ou par dépôt chimique en phase vapeur (CVD), et de préférence par pulvérisation. Les procédés préférés de dépôt utilisés sont : le dépôt chimique en phase vapeur assisté par plasma (PECVD) et le dépôt par faisceau d’ions. Dans le procédé PECVD, des hydrocarbures, en particulier des alcanes et des alcynes, tels que C2H2 ou CHU, peuvent être utilisés comme précurseurs pour la couche DLC à déposer.
Selon un mode de réalisation préféré, la couche DLC est formée par pulvérisation par dépôt chimique en phase vapeur assisté par plasma (PECVD). Dans ce procédé, le plasma est généré par un magnétron ou une cible magnétron. Le revêtement du substrat (dont ledit substrat peut en outre comprendre au moins une couche barrière de diffusion ionique entre le substrat et la couche DLC à former) est effectué dans une chambre sous vide, dans laquelle sont disposés un magnétron muni de la cible et le substrat. Au moins un gaz réactif est introduit dans la chambre sous vide, par exemple à une pression de 0,1 pbar (microbar) à 10 pbar, le plasma généré par la cible du magnétron entraîne la formation de fragments du gaz réactif, qui sont déposés sur le substrat pour former la couche DLC. Le gaz réactif peut, par exemple, comprendre des hydrocarbures, en particulier des alcanes et des alcynes, tels que C2H2 ou CH4, ou des composés organosiliciés, tel que le tétraméthylsilane. Optionnellement, des gaz inertes supplémentaires, tel que l'argon, peuvent être introduits dans la chambre sous vide pour améliorer le plasma. La cible du magnétron peut, par exemple, être constituée de silicium, qui est éventuellement dopé avec un ou plusieurs éléments, tels que l'aluminium et/ou le bore, ou constituée de titane. La fabrication de la couche DLC à l'aide du procédé PECVD par magnétron est avantageuse car il permet de revêtir de grandes surfaces de substrat avec une bonne stabilité du procédé, sans qu'un fort chauffage du substrat soit nécessaire. Les couches DLC ainsi produites présentent une très bonne résistance aux rayures et de bonnes propriétés optiques, en particulier lorsque ledit procédé est utilisée en mode empoisonnement de la cible, connu de l’homme du métier.
La couche de carbone de type diamant DLC peut présenter une épaisseur comprise entre 1 et 20 nm, de préférence entre 2 et 10 nm, et plus préférentiellement entre 3 et 8 nm. Ces épaisseurs de couche sont avantageuses, car une transparence élevée des couches est ainsi assurée.
La couche à base de germanium ou à base d’oxyde de germanium, selon l’invention, présente une épaisseur comprise entre 2 et 40 nm, de préférence entre 2 et 20 nm et comprend une quantité d’étain inférieure à 20%, de préférence inférieure à 10%.
De préférence, la couche à base de germanium ou à base d’oxyde de germanium est exempte d’étain.
Dans un mode de réalisation alternatif, ladite couche peut comprendre entre 1 et 20% atomique d’un métal ou d’un métalloïde autre que le germanium, en particulier choisi parmi antimoine, cuivre, plomb, argent, zinc, indium, gallium, aluminium, bismuth, manganèse, cadmium, fer, strontium, zirconium, thorium, lithium, nickel, chrome, silicium, étain, gadolinium, yttrium, calcium, ou un mélange de ceux-ci.
La couche à base de germanium ou à base d’oxyde de germanium peut comprendre au moins 50% atomique de germanium ou au moins 50% atomique d’oxyde de germanium, de préférence au moins 80% atomique de germanium ou au moins 80% atomique d’oxyde de germanium, et encore plus préférentiellement au moins 90% atomique de germanium ou au moins 90% atomique d’oxyde de germanium. Avantageusement, la couche à base de germanium ou à base d’oxyde de germanium est essentiellement constituée de germanium ou d’oxyde de germanium.
La couche à base de germanium ou à base d’oxyde de germanium peut comprendre en outre de l’azote, en particulier l’azote peut n’être présent que sous forme d’impuretés inévitables.
Dans un mode de réalisation préféré, la couche à base de germanium ou à base d’oxyde de germanium est essentiellement constituée de germanium (noté « Ge »).
Et, dans un autre mode de réalisation préféré, la couche à base de germanium ou à base d’oxyde de germanium est essentiellement constituée d’oxyde de germanium. Par oxyde de germanium, dans la présente invention, on entend en particulier un oxyde de formule « GeOx » avec x compris entre 0,01 et 2, bornes incluses, de préférence la valeur de x est comprise entre 1 et 2. En particulier, la valeur de x est égale à 2, ce qui correspond au composé stoechiométrique « GeÜ2 ».
La couche à base de germanium ou à base d’oxyde de germanium peut être déposée et donc formée par pulvérisation cathodique assistée par magnétron.
Les inventeurs ont constaté de manière surprenante que la couche à base de germanium ou à base d’oxyde de germanium, selon l’invention, qui est déposée au- dessus de la couche DLC (qui est elle-même déposée au-dessus du substrat) était soluble dans l’eau après traitement thermique dudit substrat revêtu; permettant ainsi un enlèvement simple et rapide par un simple lavage à l’eau de ladite couche à base de germanium ou à base d’oxyde de germanium ainsi que des couches éventuelles placées au-dessus (telle que les couches barrières à l’oxygène).
Dans le cas particulier où la couche à base de germanium ou à base d’oxyde de germanium est essentiellement constituée de germanium, les inventeurs ont remarqué de manière étonnante que cette couche n’était pas hydrosoluble avant le traitement thermique du substrat revêtu rendant ainsi l’empilement stable pendant le stockage, mais que cette couche s’oxydait pendant le traitement thermique devenant alors hydrosoluble après ledit traitement thermique permettant ainsi son enlèvement par un lavage à l’eau (après traitement thermique dudit substrat revêtu).
D’ailleurs, selon l'invention, on entend par « couche de protection temporaire » ou « couche sacrificielle », une couche qui est éliminée après traitement thermique, notamment par un lavage à l’eau. Ainsi, selon l’invention, de telles couches sont les couches à base de germanium ou à base d’oxyde de germanium et les couches barrières à l’oxygène éventuelles disposées au-dessus desdites couches à base de germanium ou à base d’oxyde de germanium.
Le revêtement du substrat peut comprendre en outre une couche barrière à l'oxygène disposée au-dessus de la couche à base de germanium ou à base d’oxyde de germanium précitée. La couche barrière à l'oxygène a pour rôle de protéger (en supplément de la couche à base de germanium ou à base d’oxyde de germanium) la couche DLC, en particulier contre l'oxygène ambiant. Ainsi, la couche barrière à l'oxygène permet, en plus de la couche à base de germanium ou à base d’oxyde de germanium, de soumettre le substrat revêtu à un traitement thermique (tel que la trempe), sans provoquer de dégradation partielle ou complète de la couche DLC.
De telles couches barrières à l'oxygène et leur formation sont bien connues de l’art antérieur. Les matériaux conventionnels peuvent être utilisés à cet effet. Les procédés de dépôt en phase vapeur, tel que le PVD ou le CVD, et de préférence par pulvérisation par magnétron, ou le dépôt de couches minces atomiques (ALD), peuvent être utilisés pour l'application de la couche barrière à l'oxygène au-dessus de la couche à base de germanium ou à base d’oxyde de germanium mentionnée ci- dessus.
Ainsi, la couche barrière à l’oxygène peut comprendre ou peut être essentiellement constituée d’au moins un matériau choisi dans le groupe constitué par le carbure de silicium, l'oxyde de silicium, le nitrure de silicium, l'oxynitrure de silicium, l'oxyde métallique, le nitrure métallique, le carbure métallique, ou un mélange de ceux- ci. Dans le cas des oxydes, nitrures et carbures métalliques, le métal peut être choisi parmi les métaux suivants : le titane, le zirconium, l’hafnium, le vanadium, le niobium, le tantale, le chrome, le molybdène ou le tungstène.
Dans un mode de réalisation préféré, la couche barrière à l'oxygène comprend ou est essentiellement constituée de nitrure de silicium, en particulier de S13N4 et/ou de S13N4 dopé ; le S13N4 dopé par Al, Zr, Ti, Hf et/ou B étant particulièrement préféré et le S13N4 dopé par Zr étant le plus préféré. À l'exception du B, la proportion des éléments dopants (en particulier Al, Zr, Ti et/ou Hf) dans le S13N4 dopé peut se situer dans la plage allant de de 1% à 40% atomique. La proportion de B comme élément dopant peut-être comprise entre 0,1 ppm et 100 ppm.
La combinaison de la couche à base de germanium ou à base d’oxyde de germanium décrite ci-dessus avec une couche barrière à l'oxygène permet une meilleure protection de la couche DLC, en particulier lorsque la couche barrière à l'oxygène est une couche de Sblsb dopé, de préférence dopé par Zr. La couche barrière à l’oxygène disposée au-dessus de la couche à base de germanium ou à base d’oxyde de germanium, selon l’invention, permet également de diminuer l’épaisseur de la couche à base de germanium ou à base d’oxyde de germanium et par conséquent de réduire le coût de l’empilement ; le germanium étant un élément coûteux, notamment sous sa forme oxyde ou encore sous sa forme métallique entrant dans la constitution d’une cible magnétron. En outre, un mode de réalisation encore plus avantageux est la combinaison de la couche à base de germanium ou à base d’oxyde de germanium et d’une couche barrière à l'oxygène comprenant du nitrure de silicium, notamment telle que décrite précédemment.
La couche barrière à l’oxygène peut présenter une épaisseur comprise entre 2 et 100 nm, de préférence entre 20 et 80 nm, et plus préférentiellement entre 30 et 80 nm.
En principe, la couche DLC est déposée directement et au contact de la surface du substrat mais selon une alternative possible, le revêtement du substrat peut comprendre en outre au moins une couche barrière de diffusion ionique entre le substrat et la couche de carbone de type diamant DLC, ladite couche barrière de diffusion ionique étant de préférence essentiellement constituée de carbure de silicium, d'oxyde de silicium, de nitrure de silicium, d'oxynitrure de silicium, d'oxyde métallique, de nitrure métallique, de carbure métallique, ou d'un mélange de ceux-ci, et plus préférentiellement de Sblsb et/ou de Sblsb dopé, et encore plus préférentiellement de Sblsb dopé par Al, Zr, Ti, Hf et/ou B. Dans le cas des oxydes, nitrures et carbures métalliques, le métal peut être choisi parmi les métaux suivants : le titane, le zirconium, l’hafnium, le vanadium, le niobium, le tantale, le chrome, le molybdène ou le tungstène.
La couche barrière de diffusion ionique permet d’empêcher la diffusion indésirable d'ions, tels que les ions sodium, du substrat vers le revêtement et en particulier pendant le traitement thermique.
De telles couches de barrière de diffusion ionique et leur formation sont bien connues de l’art antérieur. Les matériaux classiques peuvent être utilisés à cet effet. Les procédés de dépôt en phase vapeur, tel que le PVD ou le CVD, par pulvérisation, de préférence par pulvérisation par magnétron, ou le dépôt de couches minces atomiques (ALD), peuvent être utilisés pour l'application de la couche barrière de diffusion ionique. La couche barrière de diffusion ionique peut présenter une épaisseur comprise entre 1 et 100 nm, de préférence entre 5 et 50 nm.
De préférence, chacune des couches de l’empilement décrites ci-dessus est au contact direct de la précédente.
Dans un mode de réalisation avantageux, le substrat, et en particulier le substrat de verre, muni d’au moins une couche DLC et une ou plusieurs couches optionnelles de barrière de diffusion ionique ou de barrière à l’oxygène, est transparent. En d'autres termes, la transmission lumineuse dans le domaine visible, par exemple telle que mesurée selon la norme européenne NF EN 410 (2011 ), est supérieure à 50%, de préférence supérieure à 70%, et en particulier supérieure à 80%.
Si l'application plus particulièrement visée par l'invention est le vitrage pour mobiliers intérieurs, d’autres applications sont envisageables, notamment dans les vitrages de véhicules. Ainsi, le substrat traité thermiquement revêtu d’un empilement de couches, selon l’invention, peut être utilisé comme table en verre ou comme paroi de douche ou bien comme vitre de véhicules.
L’invention concerne également le procédé de fabrication d’un substrat traité thermiquement revêtu d’un empilement de couches comprenant au moins une couche de carbone de type diamant DLC. Ledit procédé comprend les étapes suivantes :
- le traitement thermique d’un substrat revêtu d’un empilement de couches tel que décrit ci-dessus, de préférence à une température comprise entre 300°C et 800°C pour une durée comprise entre 1 min et 20 min, à une pression de 1 atm (atmosphère),
- l’élimination de la couche à base de germanium ou à base d’oxyde de germanium et de la couche barrière à l’oxygène éventuelle par un lavage à l’eau dudit substrat revêtu traité thermiquement.
L’étape de traitement thermique peut être une trempe, un recuit ou un bombage, de préférence une trempe. Le traitement thermique peut être effectué à une température comprise entre 300°C et 800°C, de préférence entre 500°C et 700°C, et plus préférentiellement entre 600°C et 700°C. La durée du traitement thermique peut varier entre 1 et 20 min, de préférence entre 2 et 5 min.
Dans un mode de réalisation préféré, le traitement thermique est une trempe, effectuée préférentiellement à une température de 700°C, pendant une durée de 3 minutes et à une pression de 1 atm.
L’étape de traitement thermique du substrat revêtu selon l’invention est suivie d’une étape de lavage à l’eau dudit substrat revêtu traité thermiquement qui permet d’éliminer, autrement dit d’enlever complètement, la couche de protection temporaire comprenant la couche à base de germanium ou à base d’oxyde de germanium et la couche barrière à l’oxygène éventuelle, sans affecter la couche DLC déposée sur le substrat (notamment sans affecter les propriétés mécaniques dites « anti-rayures » de ladite couche DLC). L’étape de lavage à l’eau peut être réalisée à un pH compris entre 6 et 8,5, de préférence à un pH environ égal à 7 ; à température ambiante dans une gamme de température allant de 15°C à 40°C.
Par « lavage à l’eau », on entend au sens de la présente invention que la couche sacrificielle (c.-à-d. la couche à base de germanium ou à base d’oxyde de germanium et la couche barrière à l’oxygène éventuelle décrites ci-dessus) sont enlevées complètement ou éliminées soit :
- par dépôt d’eau à la surface du substrat revêtu traité thermiquement côté couche(s) pendant une durée allant de 1 min à 20 min, de préférence de 1 min à 5 min, ou
- par immersion dans l’eau du substrat revêtu traité thermiquement pendant une durée allant de 1 min à 20 min, de préférence de 1 min à 5 min, ou
- par projection d’eau agitée ou d’eau sous pression sur la surface du substrat revêtu traité thermiquement côté couche(s) ; par exemple de l’eau serait éjectée par des buses sur ledit substrat, ou
- par simple essuyage à l’aide d’un chiffon, d’un tissus ou d’un papier, imbibé d’eau.
Dans la présente description, on entend par « élimination de la couche à base de germanium ou à base d’oxyde de germanium et de la couche barrière à l’oxygène éventuelle » ou « couche à base de germanium ou à base d’oxyde de germanium et de la couche barrière à l’oxygène éventuelle éliminée(s) » lorsqu’il est observé sur la couche DLC de l’empilement du substrat revêtu traité thermiquement aucun résidu suite audit lavage à l’eau, la couche DLC est propre.
Le procédé selon l’invention permet l’obtention de substrat traité thermiquement muni d'une couche DLC présentant de bonnes propriétés mécaniques.
La couche à base de germanium ou à base d’oxyde de germanium et la couche barrière à l’oxygène éventuelle, selon l’invention, étant enlevées complètement du substrat traité thermiquement muni d’au moins une couche DLC par un simple lavage à l’eau, sans utiliser de solvants, ni de frottements mécaniques, le procédé selon l'invention convient à la fabrication à l’échelle industrielle d'un substrat traité thermiquement muni d’une couche DLC, puisqu’aucun équipement particulier de lavage n’est nécessaire. L'invention et ses avantages sont décrits avec plus de détails, ci-après, au moyen des exemples non limitatifs ci-dessous, selon l’invention et comparatifs.
Exemples
Dans l’exemple 1a, selon l’invention, un substrat de verre a été recouvert d’un empilement de couches comprenant la succession des couches suivantes à partir de la surface dudit substrat de verre :
- une couche barrière de diffusion ionique de S13N4 ayant une épaisseur de 15 nm,
- une couche de carbone de type diamant DLC ayant une épaisseur de 5 nm, et
- une couche de germanium (noté Ge) ayant une épaisseur de 10 nm.
Dans l’exemple 1 b, selon l’invention, un substrat de verre a été recouvert d’un empilement de couches comprenant la succession des couches suivantes à partir de la surface dudit substrat de verre :
- une couche barrière de diffusion ionique de S13N4 ayant une épaisseur de 15 nm,
- une couche de carbone de type diamant DLC ayant une épaisseur de 5 nm, et
- une couche à base d’oxyde de germanium ayant une épaisseur de 10 nm.
Dans l’exemple 2, selon l’art antérieur, un substrat de verre a été recouvert d’un empilement de couches comprenant la succession des couches suivantes à partir de la surface dudit substrat de verre :
- une couche barrière de diffusion ionique de Sblsb ayant une épaisseur de 15 nm,
- une couche de carbone de type diamant DLC ayant une épaisseur de 5 nm, et
- une couche métallique d’étain (noté Sn) ayant une épaisseur de 10 nm.
Dans l’exemple comparatif 3, le substrat de verre est revêtu à partir dudit substrat uniquement de ladite couche barrière de diffusion ionique de S13N4, puis de la couche DLC ; aucune couche de protection temporaire n’est déposée au-dessus de la couche DLC.
Dans tous ces exemples, le substrat est un substrat en verre de type Planiclear® (commercialisée par la société Saint-Gobain Glass France) et présente une épaisseur de 4 mm.
Dans tous ces exemples, la couche DLC est déposée par pulvérisation par dépôt chimique en phase vapeur assisté par magnétron, c.-à-d. par la méthode PECVD avec C2H2 comme précurseur. Les autres couches sont déposées par pulvérisation cathodique assistée par champ magnétique (souvent appelé magnétron). Spectroscopie de Raman. Figure 1
Une spectroscopie Raman est réalisée sur chacun des substrats revêtus décrit ci- dessus avant un traitement thermique consistant en une trempe et après trempe, afin d’observer la composition moléculaire de la couche DLC. Autrement dit, il s’agit de déterminer si la couche DLC est bien présente sur chacun des substrats, en mesurant la présence des liaisons Carbone-Carbone « notée C-C », qui composent ladite couche de DLC. Ainsi, les mesures sont effectuées à l’aide d’un spectromètre Raman équipé d’une source laser ayant une longueur d’onde de 532 nm et une puissance de 50 mW, d’un objectif de grandissement de x100, d’un réseau de 2400 traits/mm et d’une fente d’entrée réglée à 20 pm. Le temps d’exposition des échantillons est typiquement de 20 s.
La trempe pour ces tests consiste à chauffer les substrats 1a, 1 b, 2 et 3 à une température de 700°C, pendant 3 min, à une pression de 1 atm, suivi d’un refroidissement rapide.
Les résultats reportés sur les spectres Raman dans la Figure 1 montrent que :
- avant trempe, tous les spectres de tous les substrats revêtus présentent deux pics très convolués dont le premier est situé à environ 1390 cm 1 et le deuxième à 1545 cm 1. Ces pics sont typiques des liaisons carbone-carbone d’une couche de carbone de type diamant DLC, puis
- après trempe, aucun pic correspondant aux liaisons C-C n’est observé pour le substrat sans revêtement protecteur de l’exemple 3 en raison de la disparition complète de la couche DLC.
Les substrats dont la couche DLC a été protégée soit par une couche de germanium ou à base d’oxyde de germanium (exemples 1a et 1 b, selon l’invention) présentent deux pics à environ 1370 cm 1 et 1590cm 1 dont les positions et les intensités relatives sont comparables à celle d’une couche DLC protégé par de l’étain tel que dans l’exemple 2 (selon l’art antérieur).
Ainsi la couche à base de germanium ou à base d’oxyde de germanium, selon l’invention, assure bien la protection d’une couche DLC déposée sur un substrat lors d’un traitement thermique.
Test de résistance aux rayures
Afin d’évaluer la résistance mécanique et plus particulièrement la résistance aux rayures des substrats de verre des exemples 1a et 1b, après trempe et après élimination de la couche de germanium ou à base d’oxyde de germanium par un lavage à l’eau, ces substrats sont soumis au test décrit ci-dessous.
Des sphères en borosilicate d'un diamètre de 10 mm sont soumises à une force croissante (augmentation uniforme de la force de 0 N à 30 N en augmentant la hauteur de chute, vitesse de 30 N/min) sur les substrats de verres revêtus d’au moins une couche de DLC (obtenus à partir des exemples 1a et 1 b, selon l’invention, après traitement thermiquement et après élimination de la couche de germanium ou à base d’oxyde de germanium par un lavage à l’eau) et, à titre de comparaison, sur le substrat de verre non revêtu de couche DLC (verre obtenu à partir de l’exemple 3, après trempe et donc après disparition de la couche DLC).
À partir d'une force d'environ 5 N, les sphères en borosilicate ont laissé des rayures profondes sur le substrat de verre non revêtu mais aucune rayure n’est observée sur les substrats de verre revêtus traités thermiquement.
Ce test montre qu’une couche à base de germanium ou à base d’oxyde de germanium, selon l’invention, permet non seulement de protéger un substrat revêtu d’au moins une couche DLC lors d’un traitement thermique mais également de conserver les propriétés anti-rayures de ladite couche DLC après son élimination.
Résultats optiques des substrats revêtus traités thermiquement après étape de lavage
Dans une autre expérience, on a mesuré les propriétés optiques d’un substrat de verre selon l’exemple 2 : verre/SblWDLC/Sn (selon l’art antérieur) et d’un substrat de verre selon l’exemple 1a : verre/SbN4/DLC/Ge (selon l’invention) ; ces substrats ayant été soumis à certaines conditions, telles que décrites ci-dessous.
En effet les mesures ont été réalisées soit :
- après trempe de chacun des substrats (noté « Tr »), ou
- après trempe de chacun des substrats, suivi d’un frottement à l’aide d’un chiffon humide (noté « Tr + Fr ») dans le but d’enlever la couche d’étain ou de germanium, ou
- après trempe de chacun des substrats, suivi d’un dépôt d’une goutte d’eau pendant 2 minutes sur la couche à retirer (noté « Tr +Gt »).
Dans ces exemples, la trempe a été réalisée à une température de 700°C, pendant 3 min, à une pression de 1 atm.
Les mesures des propriétés optiques desdits substrats de verre sont par conséquent effectuées conformément à la norme européenne NF EN 410 (2011 ). Plus précisément, les transmissions lumineuses TL et les réflexions lumineuses côté couche(s) RLC, sont mesurées dans la gamme du spectre visible : longueurs d’ondes comprises entre 380 nm et 780 nm, selon l’illuminant D65. Les paramètres de colorimétrie a* et b* sont mesurés selon le modèle de colorimétrie international (L, a*, b*).
Les résultats obtenus sont regroupés dans le tableau 1 ci-dessous :
[Table 1]
Les résultats reportés sur le tableau montrent que la couche de germanium est éliminée à l’aide d’une simple goutte d’eau alors que la couche métallique d’étain nécessite un frottement supplémentaire afin que celle-ci soit complètement retirée.
En effet, tel que reporté dans les tableaux qui précédent, les valeurs TL, RLC et a*, b* obtenues pour le substrat de verre selon l’exemple 1a (Tr + Fr) sont identiques aux valeurs TL, RLC et a*, b* obtenues avec le substrat de verre Ex. 1a (Tr + Gt), ce qui montre que la couche de germanium peut être retirée par simple lavage à l’eau. Au contraire, les valeurs TL, RLC et a*, b* obtenues pour le substrat de verre selon l’exemple 2 (selon l’art antérieur) après trempe (Tr) sont identiques aux valeurs TL, RLC et a*, b* obtenues avec le substrat de verre Ex. 2 (Tr + Gt). Ceci montre qu’un simple lavage à l’eau ne permet pas l’élimination de la couche de protection Sn mais qu’une étape de frottement supplémentaire est nécessaire.
De tels résultats montrent l’avantage de l’utilisation d’une couche en germanium dans une application industrielle, puisque l’utilisateur pourra la supprimer par un simple lavage sans avoir besoin d’utiliser des moyens plus contraignants tels que des brosses ou équivalents.
En outre, des résultats similaires à ceux obtenus avec un substrat de verre selon l’exemple 1a : verre/S N4/DLC/Ge (selon l’invention) ont été obtenus avec un substrat de verre dont la couche de germanium était remplacée par une couche à base d’oxyde de germanium : verre/Si3N4/DLC/GeOx.

Claims

REVENDICATIONS
1 . Substrat revêtu d’un empilement de couches comprenant la succession des couches suivantes à partir de la surface dudit substrat :
- une couche de carbone de type diamant DLC,
- une couche à base de germanium ou à base d’oxyde de germanium présentant une épaisseur comprise entre 2 et 40 nm, de préférence entre 2 et 20 nm, ladite couche à base de germanium ou à base d’oxyde de germanium comprenant une quantité d’étain inférieure à 20%, et
- éventuellement une couche barrière à l’oxygène.
2. Substrat revêtu selon la revendication 1 , caractérisé en ce que ladite couche à base de germanium ou à base d’oxyde de germanium est exempte d’étain.
3. Substrat revêtu selon la revendication 1 ou 2, caractérisé en ce que l’empilement de couches ne comprend pas de couche à base d’Ag, Au, Cu et Ni.
4. Substrat revêtu selon l’une quelconque des revendications précédentes, dans lequel la couche de carbone de type diamant DLC présente une épaisseur comprise entre 1 et 20 nm, de préférence entre 2 et 10 nm, et plus préférentiellement entre 3 et 8 nm.
5. Substrat revêtu selon l’une quelconque des revendications précédentes, dans lequel lorsque la couche barrière à l’oxygène est présente, cette couche comprend au moins un matériau choisi dans le groupe constitué par le carbure de silicium, l'oxyde de silicium, le nitrure de silicium, l'oxynitrure de silicium, l'oxyde métallique, le nitrure métallique, le carbure métallique, ou un mélange de ceux-ci, de préférence le S13N4 et/ou le S13N4 dopé, et plus préférentiellement le S13N4 dopé par Al, Zr, Ti, Hf et/ou B.
6. Substrat revêtu selon l’une quelconque des revendications précédentes, dans lequel la couche barrière à l’oxygène présente une épaisseur comprise entre 2 et 100 nm, de préférence entre 20 et 80 nm, et plus préférentiellement entre 30 et 80 nm.
7. Substrat revêtu selon l’une quelconque des revendications précédentes, dans lequel l’empilement de couches comprend en outre au moins une couche barrière de diffusion ionique entre le substrat et la couche de carbone de type diamant DLC, ladite couche barrière de diffusion ionique étant de préférence essentiellement constituée de carbure de silicium, d'oxyde de silicium, de nitrure de silicium, d'oxynitrure de silicium, d'oxyde métallique, de nitrure métallique, de carbure métallique, ou d'un mélange de ceux-ci, et plus préférentiellement de S13N4 et/ou de S13N4 dopé, et encore plus préférentiellement de S13N4 dopé par Al, Zr, Ti, Hf et/ou B.
8. Substrat revêtu selon la revendication 7, dans lequel la couche barrière de diffusion ionique présente une épaisseur comprise entre 1 et 100 nm, de préférence entre 5 et 50 nm.
9. Substrat revêtu selon l’une quelconque des revendications précédentes, dans lequel le substrat est en céramique, en vitrocéramique, ou en verre, de préférence en verre.
10. Substrat revêtu selon l’une quelconque des revendications précédentes, dans lequel la couche à base de germanium ou à base d’oxyde de germanium est essentiellement constituée de germanium ou d’oxyde de germanium.
11. Substrat selon l’une quelconque des revendications précédentes, dans lequel chacune desdites couches de l’empilement est au contact direct de la précédente.
12. Substrat revêtu selon l’une quelconque des revendications précédentes, caractérisé en ce que l’empilement de couches est essentiellement constitué de ladite couche de carbone de type diamant DLC et de ladite couche à base de germanium ou à base d’oxyde de germanium, dans cet ordre, à partir de la surface dudit substrat.
13. Procédé de fabrication d’un substrat traité thermiquement revêtu d’un empilement de couches comprenant au moins une couche de carbone de type diamant DLC caractérisé en ce qu’il comprend les étapes suivantes :
- traitement thermique d’un substrat revêtu d’un empilement de couches selon l’une quelconque des revendications 1 à 12, de préférence à une température comprise entre 300°C et 800°C pour une durée comprise entre 1 min et 20 min à une pression de 1 atm,
- élimination de la couche à base de germanium ou à base d’oxyde de germanium et de la couche barrière à l’oxygène éventuelle par un lavage à l’eau dudit substrat revêtu traité thermiquement.
14. Procédé de fabrication d’un substrat selon la revendication 13 caractérisé en ce que le traitement thermique est choisi parmi les traitements de trempe, de recuit et de bombage.
EP22747080.4A 2021-06-30 2022-06-29 Substrat revêtu d'au moins une couche de carbone de type diamant protégée par une couche temporaire à base de germanium ou à base d'oxyde de germanium Pending EP4363634A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2107026A FR3124805B1 (fr) 2021-06-30 2021-06-30 Substrat revêtu d’au moins une couche de carbone de type diamant protégée par une couche temporaire à base de germanium ou à base d’oxyde de germanium
PCT/FR2022/051298 WO2023275493A1 (fr) 2021-06-30 2022-06-29 Substrat revêtu d'au moins une couche de carbone de type diamant protégée par une couche temporaire à base de germanium ou à base d'oxyde de germanium

Publications (1)

Publication Number Publication Date
EP4363634A1 true EP4363634A1 (fr) 2024-05-08

Family

ID=77519297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22747080.4A Pending EP4363634A1 (fr) 2021-06-30 2022-06-29 Substrat revêtu d'au moins une couche de carbone de type diamant protégée par une couche temporaire à base de germanium ou à base d'oxyde de germanium

Country Status (5)

Country Link
EP (1) EP4363634A1 (fr)
BR (1) BR112023027053A2 (fr)
CO (1) CO2024000500A2 (fr)
FR (1) FR3124805B1 (fr)
WO (1) WO2023275493A1 (fr)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878404B2 (en) 2003-02-06 2005-04-12 Guardian Industries Corp. Method of depositing DLC on substrate
US7060322B2 (en) 2003-09-02 2006-06-13 Guardian Industries Corp. Method of making heat treatable coated article with diamond-like carbon (DLC) coating
US8071166B2 (en) * 2007-01-29 2011-12-06 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
US7833574B2 (en) * 2007-01-29 2010-11-16 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
US7914857B2 (en) 2007-01-29 2011-03-29 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film with oxygen content of protective film based on bending characteristics of coated article
US8132426B2 (en) 2007-01-29 2012-03-13 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
JP5592625B2 (ja) 2009-09-25 2014-09-17 Ntn株式会社 硬質膜の成膜方法および硬質膜
US20150004362A1 (en) * 2013-07-01 2015-01-01 General Electric Company Multilayered coatings with diamond-like carbon
CN105441871A (zh) 2014-09-29 2016-03-30 苏州克里福迪纳米科技有限公司 一种pvd与hipims工业化制备超硬dlc碳涂层方法及装置
SG10201503260YA (en) 2015-04-24 2016-11-29 Wangi Ind Co Pte Ltd A Substantially Transparent Coating
CN104962914B (zh) 2015-07-03 2018-01-05 成都工具研究所有限公司 制备dlc膜的工业型自动化气相沉积设备
US20180299587A1 (en) * 2017-04-12 2018-10-18 Corning Incorporated Anti-reflection coatings for infrared optics
EP3658702A1 (fr) 2017-07-26 2020-06-03 Saint-Gobain Glass France Revêtements thermiquement conditionnables présentant du carbone similaire au diamant

Also Published As

Publication number Publication date
CO2024000500A2 (es) 2024-02-15
WO2023275493A1 (fr) 2023-01-05
FR3124805A1 (fr) 2023-01-06
BR112023027053A2 (pt) 2024-03-12
FR3124805B1 (fr) 2024-03-22

Similar Documents

Publication Publication Date Title
BE1019346A3 (fr) Vitrage de controle solaire.
FR2800731A1 (fr) Substrat transparent muni d'une couche en derive de silicium
EP1663895A1 (fr) Substrat transparent revetu d un empilement de couches mince s a proprietes de reflexion dans l infrarouge et/ou dans le domaine du rayonnement solaire
EP1047644A1 (fr) Vitrage muni d'un empilement de couches bas-emissif
FR2988387A1 (fr) Vitrage de controle solaire
KR20200035285A (ko) 다이아몬드상 탄소를 포함하는 열처리 가능한 코팅
WO2013057425A1 (fr) Vitrage de controle solaire comprenant une couche d'un alliage nicu
FR2948037A1 (fr) Materiau photocatalytique
WO2019002737A1 (fr) Vitrage a proprietes antisolaires comprenant une couche d'oxynitrure de titane
EP3237348B1 (fr) Vitrage comprenant un revetement protecteur
EP3262006B1 (fr) Vitrage comprenant un revetement protecteur
WO2011110584A1 (fr) Vitrage a reflexion elevee
EP4363634A1 (fr) Substrat revêtu d'au moins une couche de carbone de type diamant protégée par une couche temporaire à base de germanium ou à base d'oxyde de germanium
FR3068031B1 (fr) Vitrage a proprietes antisolaires comprenant une couche d'oxynitrure de titane
WO2021170959A1 (fr) Vitrage de controle solaire comprenant une couche de nitrure de titane
EP3419946B1 (fr) Vitrage de contrôle solaire comprenant une couche d'un alliage nicucr
WO2023131766A1 (fr) Vitrage contrôle solaire
WO2023131765A1 (fr) Vitrage contrôle solaire
WO2022144519A1 (fr) Vitrage antisolaire comprenant une couche mince de nichrome et une couche mince de nitrure de silicium sous-stœchiométrique en azote
EP1140720B1 (fr) Couche de protection pour substrat revetu
WO2023217992A1 (fr) Vitrage reflechissant comprenant une couche de chrome
FR3030492A1 (fr) Vitrage comprenant une couche de protection superieure a base de carbone
FR3127490A1 (fr) Vitrage de controle solaire comprenant une couche a base de nitrure de titane
WO2018189488A1 (fr) Vitrage reflechissant comprenant une couche mince de nitrure de silicium riche en silicium

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR