EP4361450A1 - Hydraulic assembly with load holding function and control method of the hydraulic assembly - Google Patents

Hydraulic assembly with load holding function and control method of the hydraulic assembly Download PDF

Info

Publication number
EP4361450A1
EP4361450A1 EP23203942.0A EP23203942A EP4361450A1 EP 4361450 A1 EP4361450 A1 EP 4361450A1 EP 23203942 A EP23203942 A EP 23203942A EP 4361450 A1 EP4361450 A1 EP 4361450A1
Authority
EP
European Patent Office
Prior art keywords
electric motor
hydraulic
valve
arrangement
shut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23203942.0A
Other languages
German (de)
French (fr)
Inventor
Alexander Trott
Manuel Rumpel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP4361450A1 publication Critical patent/EP4361450A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/003Systems with load-holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/082Servomotor systems incorporating electrically operated control means with different modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/003Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors with multiple outputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/003Systems with different interchangeable components, e.g. using preassembled kits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/30515Load holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3138Directional control characterised by the positions of the valve element the positions being discrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • F15B2211/50527Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves using cross-pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6653Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6656Closed loop control, i.e. control using feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6658Control using different modes, e.g. four-quadrant-operation, working mode and transportation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • F15B2211/7054Having equal piston areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7055Linear output members having more than two chambers
    • F15B2211/7056Tandem cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7114Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators
    • F15B2211/7128Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators the chambers being connected in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/765Control of position or angle of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/775Combined control, e.g. control of speed and force for providing a high speed approach stroke with low force followed by a low speed working stroke with high force, e.g. for a hydraulic press
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/785Compensation of the difference in flow rate in closed fluid circuits using differential actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • F15B2211/851Control during special operating conditions during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/8606Control during or prevention of abnormal conditions the abnormal condition being a shock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/8613Control during or prevention of abnormal conditions the abnormal condition being oscillations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present disclosure relates to a hydraulic arrangement according to the preamble of patent claim 1 and a method for controlling a hydraulic arrangement according to patent claim 11.
  • a hydraulic arrangement for example a hydraulic axis, in particular a linear axis and/or a compact axis, has a hydraulic cylinder in a closed hydraulic circuit or, if compensation of differential volume is necessary, in a partially closed hydraulic circuit.
  • the hydraulic cylinder can be designed as a constant or differential cylinder or as a multi-surface cylinder.
  • the axis can be used to move, press, join or close with high dynamics, precision and force. Typical applications for such axes are presses, injection molding machines, hexapods for simulators or the like. If the axis is designed as a servo-hydraulic axis with servo drive, it has extremely high positioning accuracy and also good electrical/electronic networkability.
  • a generic servo-hydraulic axis is shown in the applicant's data sheet RD 08137 / 2018 - 02.
  • the compact axis has a servo motor, a hydraulic control block, a hydraulic cylinder, a hydraulic accumulator and control elements such as valves, as well as power electronics.
  • the hydraulic servo-hydraulic axis can be position and/or force controlled. In this way, the axis can be driven with path-force profiles and path-time profiles adapted to a specific application.
  • the state of the art knows various modes.
  • the axis remains in its position or force control and the pump is still fluidly connected to the axis.
  • the delivery volume or the speed of the servo motor is regulated in such a way that only the internal leakage of the system - the pump - that occurs when the load is held is compensated.
  • Another mode is made possible by the use of a load holding valve that blocks the pressure medium flow path between the loaded cylinder chamber and the pressure side of the hydraulic pump. In this way, the servo motor can be switched torque-free, which reduces the duration of its power consumption and reduces wear.
  • the publication US 2016 010 26 85 A1 shows a servo-hydraulic axis and a method for controlling it when the load is held by a pump and a load holding valve, and when the load is resumed by the pump after it has been held by a load holding valve.
  • the starting position is the torque-free servo motor, the stationary pump, and the closed load holding valve that holds the load.
  • a target-actual deviation of the position of the axis is continuously determined. If the deviation is within a 5% tolerance band, the control of the servo motor and the load holding valve remains unchanged. If the deviation leaves the tolerance band, this is the signal for the pump to resume the load in order to adjust the target position again.
  • a target direction of rotation and target speed and a corresponding control signal for the servo motor are determined from the deviation.
  • the load holding valve In order to enable the resumption and reaching of the target position, the load holding valve must be controlled or opened. In order to prevent the unwanted movement of the axis described above, the pump pressure on this side of the load holding valve is first brought to the load pressure on the other side of the load holding valve. To achieve this, the servo motor is controlled with the previously determined control signal before - after a time constant in the millisecond range has elapsed - the load holding valve is opened. This is followed by the simultaneous control of the load holding valve (opening) and servo motor (ramping up to the target speed).
  • this speed ramp is flattened to avoid overshooting. If the new target position is reached and the deviation remains within the 5% tolerance band for a configurable time constant, at the same time a) the load holding valve is closed and b) the servo motor - and thus the pump - is ramped down to 0 speed. The energy-saving load holding state is thus resumed by the load holding valve.
  • the signal for load holding by the load holding valve and the signal for the pump to resume the load are sent according to the US 2016 010 26 85 A1 on the one hand automatically and on the other hand solely depending on the actual position of the axis.
  • a time constant can be effective that slightly delays the switching to load holding mode via the load holding valve, so that the position of the axis can still be held in normal operation for a certain time despite the condition being met.
  • the invention is based on the object of providing a hydraulic arrangement which overcomes or at least reduces the disadvantages of the prior art and in particular enables a smooth switching from a load holding mode with simple pressure adjustment.
  • the object is achieved by a hydraulic arrangement having the features according to claim 1 and by a method having the features according to claim 11.
  • the present disclosure relates to a hydraulic arrangement with a hydraulic cylinder and a hydraulic pump for supplying the hydraulic medium to the hydraulic cylinder, which can be driven by an electric motor, in particular a servo or stepper motor, of the arrangement and can be fluidically connected to a cylinder chamber via a hydraulic medium flow path.
  • a check valve is provided in the hydraulic medium flow path, by means of which the hydraulic medium flow path can be hydraulically separated in order to hold a load of the hydraulic cylinder without a drive.
  • an operating variable of the electric motor is determined or recorded when the hydraulic medium flow path is hydraulically separated, and the recorded or determined operating variable is determined when a condition in which the pressure medium flow path or the shut-off valve is opened is set on the electric motor.
  • the operating variable of the electric motor can be adjusted by a control unit of the hydraulic arrangement. Adjustment is understood to mean setting a control variable, in particular a control current, and then adjusting the electric motor to the control variable.
  • the pressure medium flow path between the cylinder chamber and the hydraulic pump can therefore be hydraulically shut off by the shut-off valve.
  • the shut-off valve When the shut-off valve is closed, the hydraulic cylinder can hold a load without power being required from the hydraulic pump.
  • the shut-off valve therefore fulfils the function of a load holding valve. Opening the shut-off valve deactivates the load holding function of the hydraulic arrangement.
  • a control unit of the hydraulic arrangement detects or determines the operating variable of the electric motor while the shut-off valve is closing. If the condition is set or recognized that the load holding function should be ended and fluid is required from the hydraulic pump, the detected or determined operating variable of the electric motor that drives the hydraulic pump is set by the control unit. Ending or deactivating the load holding function of the hydraulic arrangement therefore corresponds to the hydraulic pump resuming the load after holding it using the load holding valve.
  • the shut-off valve in the pressure medium flow path can be controlled via a control unit of the arrangement depending on at least the detected or determined operating variable of the arrangement.
  • the at least one operating variable is an operating variable of the electric motor.
  • the load on the motor-pump unit or the operating variable of the electric motor can therefore be secured and reduced in a controlled manner at the time the shut-off valve is shut off as a reference for resumption, in order to be raised again to the value of the operating variable at the time of shut-off or adjusted to the current state when resuming, without any significant pressure change or movement occurring in the loaded cylinder chamber.
  • the detected or determined operating variable of the electric motor is set before the shut-off valve is opened and a fluidic connection is established between the hydraulic cylinder and the hydraulic pump.
  • the hydraulic arrangement has the following advantages.
  • the electric motor and thus the hydraulic pump are adapted to the load level or the pressure level in the cylinder chamber. This avoids a discontinuity in the force or position caused by a sudden adjustment of the different pressure levels when opening the shut-off valve.
  • the electric motor is controlled or regulated via an operating variable of the electric motor, the control is easier to design and less prone to errors.
  • force, position and/or pressure sensors in the cylinder chamber are not absolutely necessary. This means that costs can be saved.
  • the object of the present disclosure is further achieved by a method for controlling a hydraulic arrangement with a hydraulic cylinder and a hydraulic pump.
  • the method according to the disclosure has the following steps.
  • the check valve in the pressure medium flow path between the hydraulic cylinder and the hydraulic pump of the hydraulic arrangement is closed. While the check valve is closing, the operating variable of the electric motor that drives the hydraulic pump is determined or recorded.
  • the determined or recorded operating variable is then set on the electric motor.
  • the check valve is opened.
  • the hydraulic arrangement is switched to load-holding mode. If the load-holding function is deactivated, the determined or recorded operating variable can first be set on the electric motor and then the shut-off valve can be opened. The determined or recorded operating variable can in particular represent the load on the hydraulic pump and thus on the electric motor.
  • the resumption involves the deactivation of the load holding function and thus the (delayed) opening of the shut-off valve. After resumption, the hydraulic cylinder is back in the control system (the control unit of the hydraulic arrangement).
  • the load or pressure level of the cylinder chamber and the hydraulic pump are equalized before the check valve opens.
  • the equalized pressure levels on both sides of the check valve prevent unwanted movement of the cylinder piston when the check valve opens.
  • the operating variable of the electric motor is proportional to a pressure in the cylinder chamber.
  • the operating variable can thus indicate the load on the electric motor during the hydraulic separation of the fluid line by the shut-off valve.
  • the load on the electric motor can depend on the pressure in the cylinder chamber.
  • the operating variable, which is proportional to the pressure in the cylinder chamber, can therefore be a measure of the load on the electric motor. Since an operating variable of the electric motor is determined or recorded, a pressure measurement in the cylinder chamber is optional. Since the operating variable of the electric motor can be recorded on the electric motor, the control or activation of the electric motor can be kept simpler.
  • the operating variable of the electric motor can be determined from its load or is determined from its load.
  • the load of the electric motor can thus represent a load of the electric motor of the hydraulic pump.
  • the operating size of the electric motor can be determined from its current consumption or is determined from its current consumption.
  • the current consumption of the electric motor can be easily recorded. If the current consumption of the electric motor is known, the torque of the electric motor can be determined.
  • the pressure in the cylinder chamber or the force on the cylinder can be determined. This means that sensors in the cylinder chamber could be dispensed with. which could save costs.
  • the pressure in the cylinder chamber or the force on the cylinder could be influenced by a control current from the electric motor.
  • the operating variable of the electric motor is its torque.
  • the torque of the electric motor can be proportional to the pressure in the cylinder chamber and can be calculated from the known operating variables of the electric motor.
  • the torque as an operating variable can thus indicate the load on the electric motor.
  • the load holding function can be deactivated by a condition.
  • Various processes or events can be considered as conditions for deactivating the load holding function.
  • a hydraulic/fluidic connection can exist between the hydraulic cylinder and the hydraulic pump.
  • a control unit of the hydraulic arrangement can regulate or control a movement, a pressure and/or a position of the hydraulic cylinder using a control current from the electric motor that drives the hydraulic pump.
  • the fluidic connection can be severed and the hydraulic cylinder can no longer be controlled. Deactivation of the load holding function can therefore correspond to opening the shut-off valve and thus resuming control by the control unit.
  • the condition is that the load holding function is deactivated.
  • the deactivation of the load holding function can be time-controlled or can be initiated by a user.
  • the condition can be the command to deactivate the load holding function.
  • the condition can also be the input of a control word.
  • the control word can be used to manually instruct the user to deactivate the load holding function and thus resume control.
  • the condition may involve the pressure and/or force leaving a predetermined range If the force on the cylinder and/or the pressure in the cylinder chamber is recorded, a deviation from the setpoint that is greater than a predetermined tolerance deviation can be the condition for deactivating the load holding function. It can be advantageous that the actual pressure in the cylinder chamber or the actual force on the cylinder does not have to be determined from the operating variable of the electric motor and therefore no deviations occur due to the determination in the control system.
  • Pressure loss in the cylinder chamber or force changes on the cylinder could, for example, occur due to leakage at the check valve or load changes on the cylinder. If the pressure in the cylinder chamber or the force on the cylinder falls below a predefined limit, this can cause the check valve to open in order to increase or reduce the pressure in the cylinder chamber using the hydraulic pump. This prevents the cylinder chamber pressure from falling or rising below or above a permissible level.
  • the condition can be that a position of the hydraulic cylinder or a piston rod of the hydraulic cylinder is outside a predetermined range. If the position of a cylinder piston or the piston rod is detected, a deviation in the piston position that exceeds a predefined tolerance deviation can trigger a deactivation of the load holding function. In this way, undesirable piston movements and thus a decrease/increase in the cylinder pressure can be detected and avoided.
  • the condition may be a change in a position setpoint of the hydraulic cylinder or the piston rod of the hydraulic cylinder. If a user enters or requests a new setpoint for the position of the cylinder piston, the load holding function may be deactivated in order to move the hydraulic cylinder to the new setpoint using the hydraulic pump. The hydraulic arrangement can thus respond promptly to user inputs.
  • the detected or determined or tracked operating variable of the electric motor is first set and then the shut-off valve is opened. This allows a hydraulic connection between the hydraulic cylinder and the hydraulic pump. The load holding function is then deactivated and the axis is in control.
  • the shut-off valve before the first step of blocking the pressure medium flow path by the shut-off valve, it can be checked whether a condition for activating the load holding function exists at all. Only when the activation of the load holding function is requested by reaching a predetermined pressure in the cylinder chamber and/or by a manual control word, could the shut-off valve be closed and in particular the pressure medium flow path blocked.
  • a pressure in the pressure medium flow path(s) is detected during the closing of the shut-off valve.
  • the pressure can be detected, for example, by pressure sensors in the pressure medium flow path(s).
  • the pressure detected when the shut-off valve is blocked could represent a reference to which the electric motor and thus the hydraulic pump are adjusted when control is resumed or when the load holding function is deactivated.
  • the control of the hydraulic cylinder acts during the closing of the at least one shut-off valve.
  • a hydraulic/fluidic connection can exist between the hydraulic cylinder and the hydraulic pump.
  • the control unit can thus control the hydraulic cylinder using a control current of the electric motor that drives the hydraulic pump.
  • the control of the control unit acts on the hydraulic cylinder. It can thus be possible to detect or determine the operating variable of the electric motor during the closing of the shut-off valve.
  • the control of the hydraulic cylinder using the hydraulic pump or the electric motor is terminated after the shut-off valve is closed.
  • the hydraulic arrangement is in load-holding mode.
  • the hydraulic/fluidic connection between the hydraulic cylinder and the hydraulic pump can be be interrupted. This may make it impossible to control the hydraulic cylinder via the (control of the) hydraulic pump.
  • the operating size of the electric motor is reduced after the shut-off valve has been closed.
  • the torque and thus the load on the electric motor is reduced by a torque control that follows a profile for reducing the load on the electric motor.
  • the complete closing of at least one shut-off valve can be ensured either by a time control or by position monitoring.
  • the closing of the shut-off valve can be a condition for reducing the operating size of the electric motor.
  • the operating variable, in particular the torque, of the electric motor is increased to the detected or determined or tracked value of the operating variable when the shut-off valve is closed when the condition occurs.
  • the operating size of the electric motor in particular the torque, is increased before the shut-off valve opens.
  • the operating variable is stored in a storage unit of the control unit of the hydraulic arrangement when the shut-off valve is closed.
  • the torque of the electric motor and thus the load on the electric motor is stored when the shut-off valve is closed.
  • the stored value can be called up when the condition occurs and optionally updated and the operating variable can be increased until the stored value is reached.
  • a hydraulic arrangement 1 has according to Fig.1 a hydraulic pump or machine 4, which is driven by an electric motor 2, and at least one of three hydraulic cylinders 6, 8 and 10 supplied with pressure medium by the hydraulic pump 4. Basic features of the hydraulic arrangement 1 are shown in the WO 2020 / 260 124 A1 Accordingly, the differences to the WO 2020 / 260 124 A1 received.
  • a first working flow path 12 and a second working flow path 14 extend from the hydraulic pump 4.
  • the first working flow path 12 has a branch 16, from which a third working flow path 18 branches off.
  • the first working flow path 12 extends further, with a further shut-off valve 22 being arranged, via which the first working flow path 12 can be shut off.
  • the shut-off valve 22 is also designed in a simple device-technically manner as a 2/2-way switching valve.
  • this has branches 24 and 26.
  • a working connection 28 branches off from the branch 24 and working connections 30E and 30A branch off from the branch 26.
  • a shut-off valve 32 is arranged in the second working flow path 14, via which the second working flow path 14 can be shut off.
  • the second working flow path 14 continues via the shut-off valve 32 to a branch 34.
  • a working connection 40 branches off from the branch 34. From the branch 34
  • the second working flow path 14 extends to a branch 36.
  • Working connections 38, 42 branch off from the branch 36.
  • the third working flow path 18 continues beyond the shut-off valve 20 to a branch 44, from which a third working connection 46 branches off to the hydraulic cylinder 10.
  • the third working connection 46 can be connected by a (switchable) configuration 50B.
  • the hydraulic cylinders 6, 8 with two piston surfaces or the hydraulic cylinder 10 with three piston surfaces can be supplied with pressure medium, depending on the configuration.
  • a connecting flow path 48 is provided, via which the first working flow path 12 can be fluidly connected to the third working flow path 18 downstream of the shut-off valve 20.
  • a receptacle 50E is provided in the connecting flow path 48.
  • a receptacle 50A which is designed identically in the exemplary embodiment, is provided in the first working flow path 12 in a section between the branch 16 and an opening of the connecting flow path 48.
  • the circuit structure is configurable by the closure means 52.
  • a detailed explanation of the circuit structure of the hydraulic arrangement can be found in the WO 2020 / 260 124 A1 described and is therefore omitted here.
  • the mounts 50A, 50B and 50E and thus the configurations A1 and E1 are optional.
  • the second working flow path 14 has a pressure sensor 54 downstream of the shut-off valve 32.
  • the pressure sensor is optional.
  • the pump-side part of the hydraulic arrangement 1 also has an optional pressure sensor 56.
  • the Working ports 40 and 46 are fluidly connected via the shut-off valve 58 and can be short-circuited.
  • one of the check valves 20, 22, 32 and 58 can block the fluidic line or the pressure medium flow path between the hydraulic pump 4 and the respective hydraulic cylinder 6, 8 and 10.
  • the working connection 28 can be blocked by the check valve 20 and in a configuration E, the working connection 28 can be blocked by the check valve 22. This allows the respective hydraulic cylinders 6, 8 and 10 to hold a load without requiring a drive from the hydraulic pump 4.
  • the hydraulic arrangement has an accumulator flow path 62, which can be fluidically connected to the respective working flow path 12, 14 via pressure relief valves 64 preset to a pressure value.
  • a gas-loaded hydraulic accumulator 60 is connected to the accumulator flow path 62.
  • check valve 32 is considered as an example.
  • the working connection 40 is fluidically separated from the hydraulic pump 4 via the shut-off valve 32.
  • This enables the load holding function, through which a load on the hydraulic cylinder 10 can be held without drive.
  • the hydraulic pump 4 and thus also the electric motor 2 can be switched off or the load on the electric motor 2 can be reduced.
  • the timing of the closing of the shut-off valve 32 and the reduction of the torque of the electric motor 2 is determined in the Fig. 2 clarified.
  • Fig.2 shows an example of a time course of a force on the hydraulic cylinder 10 or a pressure in the cylinder chamber 41 of the hydraulic cylinder 10 and a torque of the electric motor 2.
  • the basic time course is identical for all other working connections and cylinder chambers of the hydraulic cylinders 6, 8 and 10.
  • the Pressure in the cylinder chamber 41 is detected, for example, by a pressure sensor 54 in the cylinder chamber 41.
  • the check valve 32 In a first area B1, the check valve 32 is open. When the check valve 32 is open, there is a fluidic connection between the hydraulic cylinder 6 and the hydraulic pump 4. This allows the hydraulic cylinder 10 to be controlled via a control current from the electric motor 2, which drives the hydraulic pump 4.
  • the hydraulic cylinder 10 can therefore be controlled via a control unit of the hydraulic arrangement 1.
  • the load holding function is therefore not active in this area.
  • the external load increases the torque of the electric motor 2. This increases the load on the hydraulic pump 4 and the pressure in the cylinder chamber 41.
  • the torque of the electric motor 2 is increased until the detected force Factual reaches a force setpoint Fsetpoint or a predetermined tolerance range close to the force setpoint Fsetpoint and optionally a detected position reaches a position setpoint xsetpoint or a predetermined tolerance range close to the position setpoint xsetpoint.
  • the load holding function can therefore be activated by a detected signal.
  • the detected signal can be, for example, the detected force on the hydraulic cylinder 10, which lies in a predefined target range, while simultaneously optionally reaching a position in a predefined target range of the hydraulic cylinder 10, while simultaneously reaching a predetermined torque on the electric motor 2.
  • the load holding function can be activated by manual commanding via a control word.
  • a time t1 begins to run.
  • the predetermined tolerance range can, for example, be a certain percentage of the force setpoint, optionally the position setpoint, to be achieved.
  • the time t1 is referred to as the debounce time.
  • the debounce time is intended to prevent the hydraulic arrangement 1 from reacting to short-term force/position fluctuations.
  • the force applied to the hydraulic cylinder 10 can slowly decrease in the area B2 during the active load holding mode. If the force changes outside of a predetermined (limit) range, the load holding function is deactivated.
  • a hysteresis adjustment Fhyst can also be included in the predetermined limit range.
  • the position of the cylinder 10 can also be detected by a position sensor (not shown). If the cylinder position leaves a predetermined (limit) range due to (unintentional) movement caused by leakage, a signal can be given to deactivate the load holding function. A hysteresis adjustment xhyst can also be included in the predetermined limit range.
  • the torque of the electric motor 2 is increased to the last (detected) value or, optionally, adjusted to the current load situation before the shut-off valve 32 is closed.
  • a time period t3 is waited.
  • the time period t3 is intended to ensure that the desired torque is set, but can also be 0 seconds.
  • the shut-off valve 32 is then opened.
  • the opening process of the shut-off valve 32 requires a time period t4.
  • the last recorded value of the electric motor 2 can, for example, be the recorded torque of the electric motor 2 when closing the shut-off valve 32 and can optionally be adjusted to the current load situation. This value can be stored in a storage unit and retrieved when the torque increases.
  • the electric motor 2 is controlled via the pressure detected on the pump side of the hydraulic arrangement 1 when the hydraulic pump 4 is restarted.
  • a pressure sensor would have to be present on the cylinder side and on the pump side in order to adjust the respective pressures to one another before the shut-off valve is opened.
  • Fig.3 shows a flow chart of a method according to the disclosure for controlling the hydraulic arrangement 1 with the hydraulic cylinders 6, 8, 10 and the hydraulic pump 4.
  • step S1 the check valve 32 in the working flow path or pressure medium flow path 14 between the hydraulic cylinder 10 and the hydraulic pump 4 is closed. Closing the check valve 32 requires the time period t2.
  • step S2 an operating variable of the electric motor 2, which drives the hydraulic pump 4, is determined or recorded while the check valve 32 is closing. This can be either a torque of the electric motor 2 or a pressure in the cylinder chamber 41.
  • the determined or recorded operating variable can be stored, for example, in a storage unit of the hydraulic arrangement 1.
  • step S3 it is determined whether a condition for deactivating the load holding function or for resuming control exists.
  • step S4 the determined or recorded operating variable is set on the electric motor 2. This means that the electric motor 2 increases its torque, for example, until the torque is present that was determined or detected when the shut-off valve 32 was closed.
  • step S5 the shut-off valve 32 is opened. The load holding function is thus deactivated.
  • the hydraulic cylinder 6 is again controlled by the control unit of the hydraulic arrangement 1.
  • step S0 an optional step S0 can be carried out in which it is checked (by the control unit) whether a condition for activating the load holding function
  • This condition can be an automatic detection of whether the pressure medium flow path should be shut off when a predetermined force or pressure range is reached.
  • the sensors in the pressure medium flow path can detect that the predetermined force or pressure range has been reached.
  • the condition for activating the load holding function can also be a manual command using a control word.
  • the condition for deactivating the load holding function can, for example, be a manual deactivation of the load holding function. It can also be a control word that is used to order the control to be resumed.
  • the condition can also be, for example, that a detected force on the hydraulic cylinder or a pressure in the cylinder chamber leaves a predetermined tolerance range.
  • the condition can also be that a detected position of the cylinder piston leaves a predetermined tolerance range.
  • a change in a position setpoint of the cylinder piston can also be a condition for deactivating the load holding function.
  • the load holding function is deactivated.
  • a blocking of the blocking valve 32 is activated either automatically or manually and then the blocking valve 32 is closed.
  • the complete closing of the blocking valve 32 can be monitored over time or implemented via position monitoring. If the blocking valve 32 is completely closed, the hydraulic cylinder 10 is taken out of control and the torque of the electric motor 2 is reduced in a controlled manner to 0 Nm.
  • the load holding function is deactivated when the load holding function is active or if a resumption of control of the hydraulic cylinder 10 is requested, the torque of the electric motor 2 is increased. If the load holding function is not deactivated, it is first checked whether the position setpoint of the cylinder piston has been changed. If this is the case, it is checked whether an automatic travel movement of the cylinder piston is desired. The pressure in the line 14 is adjusted to the pressure of the line section 41 before the shut-off valve 32 is closed, or adjusted to the current load of the chamber. If an automatic travel movement of the cylinder piston is desired, the change in the position setpoint of the cylinder piston can be ignored for the duration of the resumption.
  • the change in the position setpoint of the cylinder piston only becomes active when the shut-off valve 32 is fully opened.
  • the torque of the electric motor 2 is increased.
  • a waiting time t3 can be waited for. This can ensure that the torque corresponds to the setpoint.
  • the shut-off valve 32 is then opened.
  • the opening duration of the shut-off valve 32 can require a time period t4.
  • the hydraulic cylinder 10 is again in the control of the hydraulic arrangement 1.
  • a setpoint change in the position of the cylinder piston is active and is no longer ignored. The load holding function is thus completely deactivated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Offenbart ist eine hydraulische Anordnung (1) mit einem Hydrozylinder (6, 8, 10) und einer Hydropumpe (4) zu dessen Druckmittelversorgung, die von einem Elektromotor (2) der Anordnung (1) antreibbar ist und mit einem Zylinderraum über einen Druckmittelströmungspfad (12, 14, 18) fluidisch verbindbar ist. In dem Druckmittelströmungspfad (12, 14, 18) ist zumindest ein Sperrventil (22, 32) vorgesehen, durch das der Druckmittelströmungspfad (12, 14, 18) zum antriebslosen Halten einer Last des Hydrozylinders (6, 8, 10) hydraulisch abtrennbar ist. Eine Betriebsgröße des Elektromotors (2) wird beim hydraulischen Trennen des Druckmittelströmungspfads (12, 14, 18) ermittelt oder erfasst und die erfasste oder ermittelte Betriebsgröße wird beim Einstellen einer Bedingung, bei deren Eintreten der Druckmittelströmungspfad (12, 14, 18) geöffnet wird, an dem Elektromotor (2) eingestellt und nachgeführt.

Figure imgaf001
A hydraulic arrangement (1) is disclosed with a hydraulic cylinder (6, 8, 10) and a hydraulic pump (4) for supplying pressure medium to the hydraulic cylinder, which can be driven by an electric motor (2) of the arrangement (1) and can be fluidically connected to a cylinder chamber via a pressure medium flow path (12, 14, 18). At least one check valve (22, 32) is provided in the pressure medium flow path (12, 14, 18), by means of which the pressure medium flow path (12, 14, 18) can be hydraulically separated in order to hold a load of the hydraulic cylinder (6, 8, 10) without a drive. An operating variable of the electric motor (2) is determined or detected when the pressure medium flow path (12, 14, 18) is hydraulically separated, and the detected or determined operating variable is set and adjusted on the electric motor (2) when a condition is set, upon the occurrence of which the pressure medium flow path (12, 14, 18) is opened.
Figure imgaf001

Description

Die vorliegende Offenbarung betrifft eine hydraulische Anordnung gemäß dem Oberbegriff des Patentanspruchs 1 sowie ein Verfahren zum Steuern einer hydraulischen Anordnung gemäß Patentanspruch 11.The present disclosure relates to a hydraulic arrangement according to the preamble of patent claim 1 and a method for controlling a hydraulic arrangement according to patent claim 11.

Eine hydraulische Anordnung, beispielsweise eine hydraulische Achse, insbesondere eine Linearachse und/oder eine Kompaktachse, weist einen Hydrozylinder in geschlossenem oder bei notwendiger Kompensation von Differenzvolumen in teilgeschlossenem, hydraulischen Kreis auf. Der Hydrozylinder kann als Gleich- oder Differenzialzylinder ebenso als Mehrflächenzylinder ausgeprägt sein. Bei geringem Ölvolumen kann mittels der Achse mit hoher Dynamik, Präzision und Kraft bewegt, gepresst, gefügt oder geschlossen werden. Typische Anwendungen für derartige Achsen sind Pressen, Spritzgussmaschinen, Hexapode für Simulatoren oder dergleichen. Ist die Achse als servohydraulische Achse mit Servoantrieb ausgestaltet, weist sie eine extrem hohe Positioniergenauigkeit und zudem eine gute elektrische/elektronische Vernetzbarkeit auf.A hydraulic arrangement, for example a hydraulic axis, in particular a linear axis and/or a compact axis, has a hydraulic cylinder in a closed hydraulic circuit or, if compensation of differential volume is necessary, in a partially closed hydraulic circuit. The hydraulic cylinder can be designed as a constant or differential cylinder or as a multi-surface cylinder. With a low oil volume, the axis can be used to move, press, join or close with high dynamics, precision and force. Typical applications for such axes are presses, injection molding machines, hexapods for simulators or the like. If the axis is designed as a servo-hydraulic axis with servo drive, it has extremely high positioning accuracy and also good electrical/electronic networkability.

Eine gattungsgemäße servohydraulische Achse zeigt das Datenblatt RD 08137 / 2018 - 02 des Anmelders. Die kompakt aufgebaute Achse hat einen Servomotor, einen Hydraulik-Steuerblock, sowie einen Hydraulikzylinder, einen Hydrospeicher und Steuerelemente wie beispielsweise Ventile, sowie eine Leistungselektronik. Die hydraulische servohydraulische Achse kann positions- und/oder kraftgeregelt werden. Auf diese Weise können an eine jeweilige Anwendung angepasste Weg-Kraft-Profile und Weg-Zeit-Profile der Achse gefahren werden.A generic servo-hydraulic axis is shown in the applicant's data sheet RD 08137 / 2018 - 02. The compact axis has a servo motor, a hydraulic control block, a hydraulic cylinder, a hydraulic accumulator and control elements such as valves, as well as power electronics. The hydraulic servo-hydraulic axis can be position and/or force controlled. In this way, the axis can be driven with path-force profiles and path-time profiles adapted to a specific application.

Um die Position der Achse entgegen einer Last zu halten, kennt der Stand der Technik verschiedene Modi. In einem Modus bleibt die Achse in ihrer Positions- oder Kraftregelung und die Pumpe ist weiterhin fluidisch mit der Achse verbunden. Dabei wird das Fördervolumen, bzw. die Drehzahl des Servomotors so geregelt, dass lediglich die beim Halten der Last auftretende innere Leckage des Systems - der Pumpe - kompensiert wird. Ein anderer Modus wird durch die Verwendung eines Lasthalteventils ermöglicht, das den Druckmittelströmungspfad zwischen dem belasteten Zylinderraum und der Druckseite der Hydropumpe absperrt. Auf diese Weise kann der Servomotor momentenfrei geschaltet werden, was die Dauer seiner Leistungsaufnahme verringert und Verschleiß reduziert. Bei Wiederaufnahme der Last durch die Pumpe, im Anschluss an die vom Lasthalteventil gesicherte Position oder Kraft, kann es beim Öffnen des Lasthalteventils zu einer ungewollten Bewegung der Achse kommen, wenn der Druck zwischen der Pumpe und dem Lasthalteventil nicht an die Last der Achse angepasst ist.To maintain the position of the axis against a load, the state of the art knows various modes. In one mode, the axis remains in its position or force control and the pump is still fluidly connected to the axis. the delivery volume or the speed of the servo motor is regulated in such a way that only the internal leakage of the system - the pump - that occurs when the load is held is compensated. Another mode is made possible by the use of a load holding valve that blocks the pressure medium flow path between the loaded cylinder chamber and the pressure side of the hydraulic pump. In this way, the servo motor can be switched torque-free, which reduces the duration of its power consumption and reduces wear. When the pump resumes the load following the position or force secured by the load holding valve, an unwanted movement of the axle can occur when the load holding valve is opened if the pressure between the pump and the load holding valve is not adapted to the load on the axle.

Die Druckschrift US 2016 010 26 85 A1 zeigt eine servohydraulische Achse und ein Verfahren zu deren Steuerung beim Halten der Last mittels Pumpe und mittels Lasthalteventil sowie bei Wiederaufnahme der Last durch die Pumpe im Anschluss an das Halten mittels Lasthalteventil. Die Ausgangslage ist der drehmomentfreie Servomotor, die ruhende Pumpe, sowie das geschlossene Lasthalteventil, das die Last hält. Fortwährend erfolgt die Ermittlung einer Soll-Ist-Abweichung der Position der Achse. Liegt die Abweichung innerhalb eines 5%-Toleranzbandes, bleibt die Ansteuerung des Servomotors und des Lasthalteventils ungeändert. Verlässt die Abweichung das Toleranzband, ist dies das Signal zur Wiederaufnahme der Last durch die Pumpe, um die Soll-Position wieder einzuregeln. Hierzu wird aus der Abweichung eine Soll-Drehrichtung und Soll-Drehzahl und ein entsprechendes Ansteuersignal für den Servomotor ermittelt. Um die Wiederaufnahme und das Erreichen der Soll-Position zu ermöglichen, muss das Lasthalteventil aufgesteuert oder geöffnet werden. Um dabei die oben beschriebene, ungewollte Bewegung der Achse zu verhindern, wird zunächst der Pumpendruck diesseits des Lasthalteventils auf den Lastdruck jenseits des Lasthalteventils gebracht. Um dies zu erreichen, wird der Servomotor mit dem zuvor ermittelten Ansteuersignal angesteuert, bevor - nach Ablauf einer im Millisekundenbereich liegenden Zeitkonstante - das Lasthalteventil aufgesteuert wird. Im Anschluss erfolgt dann die gleichzeitige Ansteuerung des Lasthalteventils (Öffnen) und Servomotors (hochrampen zur Soll-Drehzahl). Mit Erreichen eines 5%-Bandes der Soll-Position der Achse wird diese Drehzahl-Rampe abgeflacht, um ein Überschießen zu vermeiden. Ist die neue Soll-Position erreicht und bleibt die Abweichung während einer konfigurierbaren Zeitkonstante innerhalb des 5%-Toleranzbandes, werden zeitgleich a) das Lasthalteventil geschlossen und b) der Servomotor - und damit die Pumpe - auf die Drehzahl 0 heruntergerampt. Somit wird der energiesparende Lasthaltezustand per Lasthalteventil wieder eingenommen. Das Signal zum Lasthalten mittels Lasthalteventil und das Signal zur Wiederaufnahme der Last durch die Pumpe erfolgt gemäß der US 2016 010 26 85 A1 zum einen automatisch und zum anderen allein in Abhängigkeit der Ist-Position der Achse. Ergänzend kann eine Zeitkonstante wirksam sein, die das Umschalten in den Lasthaltemodus per Lasthalteventil etwas verzögert, sodass die Position der Achse trotz erfüllter Bedingung noch eine gewisse Zeit im Regelbetrieb gehalten werden kann.The publication US 2016 010 26 85 A1 shows a servo-hydraulic axis and a method for controlling it when the load is held by a pump and a load holding valve, and when the load is resumed by the pump after it has been held by a load holding valve. The starting position is the torque-free servo motor, the stationary pump, and the closed load holding valve that holds the load. A target-actual deviation of the position of the axis is continuously determined. If the deviation is within a 5% tolerance band, the control of the servo motor and the load holding valve remains unchanged. If the deviation leaves the tolerance band, this is the signal for the pump to resume the load in order to adjust the target position again. For this purpose, a target direction of rotation and target speed and a corresponding control signal for the servo motor are determined from the deviation. In order to enable the resumption and reaching of the target position, the load holding valve must be controlled or opened. In order to prevent the unwanted movement of the axis described above, the pump pressure on this side of the load holding valve is first brought to the load pressure on the other side of the load holding valve. To achieve this, the servo motor is controlled with the previously determined control signal before - after a time constant in the millisecond range has elapsed - the load holding valve is opened. This is followed by the simultaneous control of the load holding valve (opening) and servo motor (ramping up to the target speed). When a 5% band of the target position of the axis is reached, this speed ramp is flattened to avoid overshooting. If the new target position is reached and the deviation remains within the 5% tolerance band for a configurable time constant, at the same time a) the load holding valve is closed and b) the servo motor - and thus the pump - is ramped down to 0 speed. The energy-saving load holding state is thus resumed by the load holding valve. The signal for load holding by the load holding valve and the signal for the pump to resume the load are sent according to the US 2016 010 26 85 A1 on the one hand automatically and on the other hand solely depending on the actual position of the axis. In addition, a time constant can be effective that slightly delays the switching to load holding mode via the load holding valve, so that the position of the axis can still be held in normal operation for a certain time despite the condition being met.

Für eine solche Lösung wird aber zum einen eine Positionserfassung vorausgesetzt, zum anderen muss der Servomotor aufwendig geregelt werden, um die Druckniveaus auf beiden Seiten des Lasthalteventils anzugleichen, bevor das Lasthalteventil geöffnet wird.However, such a solution requires, on the one hand, position detection and, on the other hand, the servo motor must be controlled in a complex manner in order to equalize the pressure levels on both sides of the load holding valve before the load holding valve is opened.

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, eine hydraulische Anordnung bereitzustellen, die die Nachteile des Standes der Technik überkommt oder zumindest mindert und insbesondere ein ruckelfreies Umschalten aus einem Lasthaltemodus mit einfachem Druckangleich ermöglicht.In contrast, the invention is based on the object of providing a hydraulic arrangement which overcomes or at least reduces the disadvantages of the prior art and in particular enables a smooth switching from a load holding mode with simple pressure adjustment.

Kurzbeschreibung der OffenbarungBrief description of the revelation

Die Aufgabe wird gelöst durch eine hydraulische Anordnung mit den Merkmalen gemäß Anspruch 1 und durch ein Verfahren mit den Merkmalen gemäß Anspruch 11 gelöst.The object is achieved by a hydraulic arrangement having the features according to claim 1 and by a method having the features according to claim 11.

Die vorliegende Offenbarung betrifft eine hydraulische Anordnung mit einem Hydrozylinder und einer Hydropumpe zu dessen Druckmittelversorgung, die von einem Elektromotor, insbesondere einem Servo- oder Schrittmotor, der Anordnung antreibbar ist und mit einem Zylinderraum über einen Druckmittelströmungspfad fluidisch verbindbar ist. In dem Druckmittelströmungspfad ist ein Sperrventil vorgesehen, durch das der Druckmittelströmungspfad zum antriebslosen Halten einer Last des Hydrozylinders hydraulisch abtrennbar ist. Offenbarungsgemäß wird eine Betriebsgröße des Elektromotors beim hydraulischen Trennen des Druckmittelströmungspfads ermittelt oder erfasst und die erfasste oder ermittelte Betriebsgröße wird beim Erkennen einer Bedingung, bei der der Druckmittelströmungspfad bzw. das Sperrventil geöffnet wird, an dem Elektromotor eingestellt.The present disclosure relates to a hydraulic arrangement with a hydraulic cylinder and a hydraulic pump for supplying the hydraulic medium to the hydraulic cylinder, which can be driven by an electric motor, in particular a servo or stepper motor, of the arrangement and can be fluidically connected to a cylinder chamber via a hydraulic medium flow path. A check valve is provided in the hydraulic medium flow path, by means of which the hydraulic medium flow path can be hydraulically separated in order to hold a load of the hydraulic cylinder without a drive. According to the disclosure, an operating variable of the electric motor is determined or recorded when the hydraulic medium flow path is hydraulically separated, and the recorded or determined operating variable is determined when a condition in which the pressure medium flow path or the shut-off valve is opened is set on the electric motor.

Die Betriebsgröße an dem Elektromotor kann durch eine Steuereinheit der hydraulischen Anordnung eingestellt werden. Unter Einstellen ist dabei ein Setzen einer Steuergröße, insbesondere eines Steuerstroms, und ein anschließendes Nachführen des Elektromotors auf die Steuergröße zu verstehen.The operating variable of the electric motor can be adjusted by a control unit of the hydraulic arrangement. Adjustment is understood to mean setting a control variable, in particular a control current, and then adjusting the electric motor to the control variable.

Der Druckmittelströmungspfad zwischen dem Zylinderraum und der Hydropumpe ist also durch das (Ab-)Sperrventil hydraulisch absperrbar. Wenn das Sperrventil geschlossen ist, kann der Hydrozylinder eine Last halten, ohne dass Leistung von der Hydropumpe benötigt wird. Das Sperrventil erfüllt also die Funktion eines Lasthalteventils. Durch Öffnen des Sperrventils wird die Lasthaltefunktion der hydraulischen Anordnung deaktiviert. Eine Steuereinheit der hydraulischen Anordnung erfasst oder ermittelt während des Schließens des Sperrventils die Betriebsgröße des Elektromotors. Wenn durch die Bedingung eingestellt oder erkannt wird, dass die Lasthaltefunktion beendet werden soll und Fluid von der Hydropumpe benötigt wird, wird die erfasste oder ermittelte Betriebsgröße des Elektromotors, der die Hydropumpe antreibt, durch die Steuereinheit eingestellt. Das Beenden bzw. Deaktivieren der Lasthaltefunktion der hydraulischen Anordnung entspricht damit einer Wiederaufnahme der Last durch die Hydropumpe im Anschluss an das Halten mittels Lasthalteventil.The pressure medium flow path between the cylinder chamber and the hydraulic pump can therefore be hydraulically shut off by the shut-off valve. When the shut-off valve is closed, the hydraulic cylinder can hold a load without power being required from the hydraulic pump. The shut-off valve therefore fulfils the function of a load holding valve. Opening the shut-off valve deactivates the load holding function of the hydraulic arrangement. A control unit of the hydraulic arrangement detects or determines the operating variable of the electric motor while the shut-off valve is closing. If the condition is set or recognized that the load holding function should be ended and fluid is required from the hydraulic pump, the detected or determined operating variable of the electric motor that drives the hydraulic pump is set by the control unit. Ending or deactivating the load holding function of the hydraulic arrangement therefore corresponds to the hydraulic pump resuming the load after holding it using the load holding valve.

In anderen Worten ist das Sperrventil in dem Druckmittelströmungspfad über eine Steuereinheit der Anordnung in Abhängigkeit wenigstens der erfassten oder ermittelten Betriebsgröße der Anordnung zusteuerbar. Die wenigstens eine Betriebsgröße ist dabei eine Betriebsgröße des Elektromotors.In other words, the shut-off valve in the pressure medium flow path can be controlled via a control unit of the arrangement depending on at least the detected or determined operating variable of the arrangement. The at least one operating variable is an operating variable of the electric motor.

Die Belastung der Motor-Pumpeneinheit bzw. die Betriebsgröße des Elektromotors kann also zum Zeitpunkt des Absperrens des Sperrventils als Referenz für die Wiederaufnahme gesichert und geregelt reduziert werden, um bei der Wiederaufnahme wieder auf den Wert der Betriebsgröße beim Absperren oder nachgeführt auf den aktuellen Zustand, angehoben zu werden, ohne dass eine nennenswerte Druckänderung oder Bewegung in der belasteten Zylinderkammer auftritt.The load on the motor-pump unit or the operating variable of the electric motor can therefore be secured and reduced in a controlled manner at the time the shut-off valve is shut off as a reference for resumption, in order to be raised again to the value of the operating variable at the time of shut-off or adjusted to the current state when resuming, without any significant pressure change or movement occurring in the loaded cylinder chamber.

Vorzugsweise wird die erfasste oder ermittelte Betriebsgröße des Elektromotors eingestellt, bevor das Sperrventil geöffnet wird und eine fluidische Verbindung zwischen dem Hydrozylinder und der Hydropumpe hergestellt wird.Preferably, the detected or determined operating variable of the electric motor is set before the shut-off valve is opened and a fluidic connection is established between the hydraulic cylinder and the hydraulic pump.

Die hydraulische Anordnung hat die folgenden Vorteile. Durch das Einstellen der erfassten oder ermittelten Betriebsgröße vor dem Öffnen des Sperrventils wird der Elektromotor und dadurch die Hydropumpe an das Belastungsniveau bzw. das Druckniveau im Zylinderraum angepasst. Somit wird eine Unstetigkeit in der Kraft oder Position durch ein schlagartiges Angleichen der unterschiedlichen Druckniveaus beim Öffnen des Sperrventils vermieden. Da der Elektromotor über eine Betriebsgröße des Elektromotors gesteuert oder geregelt wird, ist die Regelung einfacher auszulegen und weniger fehleranfällig. Weiterhin sind Kraft-, Positions- und/oder Drucksensoren im Zylinderraum nicht zwingend erforderlich. Somit können Kosten eingespart werden.The hydraulic arrangement has the following advantages. By setting the recorded or determined operating variable before opening the shut-off valve, the electric motor and thus the hydraulic pump are adapted to the load level or the pressure level in the cylinder chamber. This avoids a discontinuity in the force or position caused by a sudden adjustment of the different pressure levels when opening the shut-off valve. Since the electric motor is controlled or regulated via an operating variable of the electric motor, the control is easier to design and less prone to errors. Furthermore, force, position and/or pressure sensors in the cylinder chamber are not absolutely necessary. This means that costs can be saved.

Die Aufgabe der vorliegenden Offenbarung wird ferner durch ein Verfahren zum Steuern einer hydraulischen Anordnung mit einem Hydrozylinder und einer Hydropumpe gelöst. Das offenbarungsgemäße Verfahren weist dabei die folgenden Schritte auf. Das Sperrventil in dem Druckmittelströmungspfad zwischen dem Hydrozylinder und der Hydropumpe der hydraulischen Anordnung wird geschlossen. Während des Schließens des Sperrventils wird die Betriebsgröße des Elektromotors, der die Hydropumpe antreibt, ermittelt oder erfasst. In einem nächsten Schritt wird erkannt, dass eine Bedingung für eine Wiederaufnahme (der Last durch die Hydropumpe) vorliegt. Daraufhin wird die ermittelte oder erfasste Betriebsgröße an dem Elektromotor eingestellt. Als letzter Schritt wird das Sperrventil geöffnet.The object of the present disclosure is further achieved by a method for controlling a hydraulic arrangement with a hydraulic cylinder and a hydraulic pump. The method according to the disclosure has the following steps. The check valve in the pressure medium flow path between the hydraulic cylinder and the hydraulic pump of the hydraulic arrangement is closed. While the check valve is closing, the operating variable of the electric motor that drives the hydraulic pump is determined or recorded. In a next step, it is recognized that a condition for resumption (of the load by the hydraulic pump) exists. The determined or recorded operating variable is then set on the electric motor. As a final step, the check valve is opened.

Durch das Schließen des Sperrventils wird die hydraulische Anordnung in den Lasthaltemodus geschaltet. Wenn die Lasthaltefunktion deaktiviert wird, kann erst die ermittelte oder erfasste Betriebsgröße an dem Elektromotor eingestellt und anschließend das Sperrventil geöffnet werden. Die ermittelte oder erfasste Betriebsgröße kann dabei insbesondere die Belastung der Hydropumpe und damit des Elektromotors abbilden.By closing the shut-off valve, the hydraulic arrangement is switched to load-holding mode. If the load-holding function is deactivated, the determined or recorded operating variable can first be set on the electric motor and then the shut-off valve can be opened. The determined or recorded operating variable can in particular represent the load on the hydraulic pump and thus on the electric motor.

Bei der Wiederaufnahme handelt es sich dabei um die Deaktivierung der Lasthaltefunktion und somit um das (zeitversetzte) Öffnen des Sperrventils. Durch die Wiederaufnahme ist der Hydrozylinder wieder in der Regelung (der Steuereinheit der hydraulischen Anordnung).The resumption involves the deactivation of the load holding function and thus the (delayed) opening of the shut-off valve. After resumption, the hydraulic cylinder is back in the control system (the control unit of the hydraulic arrangement).

Durch das offenbarungsgemäße Verfahren wird insbesondere das Belastungs- oder Druckniveau des Zylinderraums und der Hydropumpe aneinander angeglichen, bevor das Sperrventil öffnet. Die angeglichenen Druckniveaus an beiden Seiten des Sperrventils verhindern eine ungewollte Bewegung des Zylinderkolbens beim Öffnen des Sperrventils.By means of the method according to the disclosure, in particular the load or pressure level of the cylinder chamber and the hydraulic pump are equalized before the check valve opens. The equalized pressure levels on both sides of the check valve prevent unwanted movement of the cylinder piston when the check valve opens.

Vorteilhafte Weiterbildungen der vorliegenden Offenbarung sind Gegenstand der beigefügten Unteransprüche.Advantageous further developments of the present disclosure are the subject of the appended subclaims.

Vorzugsweise ist die Betriebsgröße des Elektromotors proportional zu einem Druck im Zylinderraum. Die Betriebsgröße kann somit die Belastung des Elektromotors während des hydraulischen Trennens der Fluidleitung durch das Sperrventil angeben. Die Belastung des Elektromotors kann von dem Druck in dem Zylinderraum abhängig sein. Die Betriebsgröße, die proportional zu dem Druck im Zylinderraum ist, kann deshalb ein Maß für die Belastung des Elektromotors sein. Da eine Betriebsgröße des Elektromotors ermittelt oder erfasst wird, ist eine Druckmessung im Zylinderraum optional. Da die Betriebsgröße des Elektromotors an dem Elektromotor erfasst werden kann, kann die Regelung bzw. Ansteuerung des Elektromotors einfacher gehalten werden.Preferably, the operating variable of the electric motor is proportional to a pressure in the cylinder chamber. The operating variable can thus indicate the load on the electric motor during the hydraulic separation of the fluid line by the shut-off valve. The load on the electric motor can depend on the pressure in the cylinder chamber. The operating variable, which is proportional to the pressure in the cylinder chamber, can therefore be a measure of the load on the electric motor. Since an operating variable of the electric motor is determined or recorded, a pressure measurement in the cylinder chamber is optional. Since the operating variable of the electric motor can be recorded on the electric motor, the control or activation of the electric motor can be kept simpler.

Nach einem optionalen Merkmal der vorliegenden Offenbarung ist die Betriebsgröße des Elektromotors aus dessen Belastung ermittelbar oder wird aus dessen Belastung ermittelt. Somit kann die Belastung des Elektromotors eine Belastung des Elektromotors der Hydropumpe abbilden.According to an optional feature of the present disclosure, the operating variable of the electric motor can be determined from its load or is determined from its load. The load of the electric motor can thus represent a load of the electric motor of the hydraulic pump.

Vorzugsweise ist die Betriebsgröße des Elektromotors aus dessen Stromaufnahme ermittelbar oder wird aus dessen Stromaufnahme ermittelt. Die Stromaufnahme des Elektromotors kann dabei einfach erfasst werden. Bei bekannter Stromaufnahme des Elektromotors kann das Drehmoment des Elektromotors ermittelt werden. Somit kann durch Erfassen der Stromaufnahme der Druck im Zylinderraum bzw. die Kraft am Zylinder ermittelt werden. Dadurch könnte auf Sensoren im Zylinderraum verzichtet werden, was Kosten sparen könnte. Ferner könnte durch einen Steuerstrom des Elektromotors der Druck im Zylinderraum bzw. die Kraft am Zylinder beeinflusst werden.Preferably, the operating size of the electric motor can be determined from its current consumption or is determined from its current consumption. The current consumption of the electric motor can be easily recorded. If the current consumption of the electric motor is known, the torque of the electric motor can be determined. Thus, by recording the current consumption, the pressure in the cylinder chamber or the force on the cylinder can be determined. This means that sensors in the cylinder chamber could be dispensed with. which could save costs. Furthermore, the pressure in the cylinder chamber or the force on the cylinder could be influenced by a control current from the electric motor.

Nach einem weiteren optionalen Merkmal der vorliegenden Offenbarung ist die Betriebsgröße des Elektromotors dessen Drehmoment. Das Drehmoment des Elektromotors kann proportional zu dem Druck im Zylinderraum sein und aus den bekannten Betriebsgrößen des Elektromotors berechnet werden. Das Drehmoment als Betriebsgröße kann somit die Belastung des Elektromotors angeben.According to a further optional feature of the present disclosure, the operating variable of the electric motor is its torque. The torque of the electric motor can be proportional to the pressure in the cylinder chamber and can be calculated from the known operating variables of the electric motor. The torque as an operating variable can thus indicate the load on the electric motor.

Die Lasthaltefunktion kann durch eine Bedingung deaktiviert werden. Als Bedingung für die Deaktivierung der Lasthaltefunktion können verschiedene Vorgänge oder Ereignisse infrage kommen.The load holding function can be deactivated by a condition. Various processes or events can be considered as conditions for deactivating the load holding function.

Bei geöffnetem Sperrventil kann eine hydraulische / fluidische Verbindung zwischen dem Hydrozylinder und der Hydropumpe bestehen. Somit kann eine Steuereinheit der hydraulischen Anordnung eine Bewegung, einen Druck und/oder eine Position des Hydrozylinders durch einen Steuerstrom des Elektromotors, der die Hydropumpe antreibt, regeln bzw. ansteuern. Wenn das Sperrventil geschlossen wird, kann die fluidische Verbindung getrennt werden und der Hydrozylinder kann nicht mehr geregelt werden. Die Deaktivierung der Lasthaltefunktion kann also einem Öffnen des Sperrventils und dadurch einer Wiederaufnahme der Regelung durch die Steuereinheit entsprechen.When the shut-off valve is open, a hydraulic/fluidic connection can exist between the hydraulic cylinder and the hydraulic pump. This means that a control unit of the hydraulic arrangement can regulate or control a movement, a pressure and/or a position of the hydraulic cylinder using a control current from the electric motor that drives the hydraulic pump. When the shut-off valve is closed, the fluidic connection can be severed and the hydraulic cylinder can no longer be controlled. Deactivation of the load holding function can therefore correspond to opening the shut-off valve and thus resuming control by the control unit.

Vorzugsweise ist die Bedingung, dass die Lasthaltefunktion deaktiviert wird. Das Deaktivieren der Lasthaltefunktion kann zeitlich gesteuert werden oder kann durch einen Benutzer veranlasst werden. Beispielsweise kann die Bedingung der Befehl sein, die Lasthaltefunktion zu deaktivieren.Preferably, the condition is that the load holding function is deactivated. The deactivation of the load holding function can be time-controlled or can be initiated by a user. For example, the condition can be the command to deactivate the load holding function.

Die Bedingung kann ferner eine Eingabe eines Steuerwortes sein. Durch das Steuerwort können die Deaktivierung der Lasthaltefunktion und damit die Wiederaufnahme der Regelung manuell durch den Benutzer angewiesen werden.The condition can also be the input of a control word. The control word can be used to manually instruct the user to deactivate the load holding function and thus resume control.

Nach einem weiteren optionalen Merkmal der vorliegenden Offenbarung kann die Bedingung ein Verlassen des Drucks und/oder der Kraft eines vorbestimmten Bereiches sein. Wenn die Kraft am Zylinder und/oder der Druck im Zylinderraum erfasst wird, kann eine Abweichung vom Sollwert, die größer als eine vorbestimmte Toleranzabweichung ist, die Bedingung für das Deaktivieren der Lasthaltefunktion sein. Vorteilhaft kann dabei sein, dass der Ist-Druck im Zylinderraum bzw. die Ist-Kraft am Zylinder nicht aus der Betriebsgröße des Elektromotors ermittelt werden muss und somit keine Abweichungen durch die Ermittlung in der Regelung auftreten.According to a further optional feature of the present disclosure, the condition may involve the pressure and/or force leaving a predetermined range If the force on the cylinder and/or the pressure in the cylinder chamber is recorded, a deviation from the setpoint that is greater than a predetermined tolerance deviation can be the condition for deactivating the load holding function. It can be advantageous that the actual pressure in the cylinder chamber or the actual force on the cylinder does not have to be determined from the operating variable of the electric motor and therefore no deviations occur due to the determination in the control system.

Druckverlust im Zylinderraum oder Kraftänderungen am Zylinder könnten beispielsweise durch Leckage beim Sperrventil auftreten oder Laständerungen am Zylinder. Wenn der Druck im Zylinderraum oder die Kraft am Zylinder unter einen vordefinierten Grenzwert sinkt, kann dadurch veranlasst werden, dass das Sperrventil geöffnet wird, um den Druck im Zylinderraum mithilfe der Hydropumpe zu erhöhen oder zu reduzieren. Somit wird ein Absinken oder Ansteigen des Zylinderraumdrucks unter oder über ein zulässiges Niveau verhindert.Pressure loss in the cylinder chamber or force changes on the cylinder could, for example, occur due to leakage at the check valve or load changes on the cylinder. If the pressure in the cylinder chamber or the force on the cylinder falls below a predefined limit, this can cause the check valve to open in order to increase or reduce the pressure in the cylinder chamber using the hydraulic pump. This prevents the cylinder chamber pressure from falling or rising below or above a permissible level.

Vorzugsweise kann die Bedingung sein, dass eine Position des Hydrozylinders bzw. einer Kolbenstange des Hydrozylinders außerhalb eines vorbestimmten Bereichs liegt. Wenn die Position eines Zylinderkolbens bzw. der Kolbenstange erfasst wird, kann eine Abweichung der Kolbenposition, die eine vordefinierte Toleranzabweichung übersteigt, eine Deaktivierung der Lasthaltefunktion triggern. Somit können unerwünschte Kolbenbewegungen und damit ein Absinken/Ansteigen des Zylinderdrucks erkannt und vermieden werden.Preferably, the condition can be that a position of the hydraulic cylinder or a piston rod of the hydraulic cylinder is outside a predetermined range. If the position of a cylinder piston or the piston rod is detected, a deviation in the piston position that exceeds a predefined tolerance deviation can trigger a deactivation of the load holding function. In this way, undesirable piston movements and thus a decrease/increase in the cylinder pressure can be detected and avoided.

Nach einem weiteren optionalen Merkmal der vorliegenden Offenbarung kann die Bedingung eine Änderung eines Positionssollwerts des Hydrozylinders bzw. der Kolbenstange des Hydrozylinders sein. Wenn ein Benutzer einen neuen Sollwert für die Position des Zylinderkolbens eingibt oder anfordert, dann kann die Lasthaltefunktion deaktiviert werden, um den Hydrozylinder mithilfe der Hydropumpe zu dem neuen Sollwert zu verfahren. Somit kann die hydraulische Anordnung zeitnah auf Benutzereingaben reagieren.According to a further optional feature of the present disclosure, the condition may be a change in a position setpoint of the hydraulic cylinder or the piston rod of the hydraulic cylinder. If a user enters or requests a new setpoint for the position of the cylinder piston, the load holding function may be deactivated in order to move the hydraulic cylinder to the new setpoint using the hydraulic pump. The hydraulic arrangement can thus respond promptly to user inputs.

Wenn die Bedingung eingetreten ist, dann wird zuerst die erfasste oder ermittelte oder nachgeführte Betriebsgröße des Elektromotors eingestellt und dann das Sperrventil geöffnet. Somit kann eine hydraulische Verbindung zwischen dem Hydrozylinder und der Hydropumpe hergestellt werden. Die Lasthaltefunktion ist dann deaktiviert und die Achse ist in der Regelung.When the condition has occurred, the detected or determined or tracked operating variable of the electric motor is first set and then the shut-off valve is opened. This allows a hydraulic connection between the hydraulic cylinder and the hydraulic pump. The load holding function is then deactivated and the axis is in control.

Optional kann vor dem ersten Schritt des Sperrens des Druckmittelströmungspfades durch das Sperrventil abgefragt werden, ob überhaupt eine Bedingung für die Aktivierung der Lasthaltefunktion vorliegt. Erst, wenn die Aktivierung der Lasthaltefunktion durch ein Erreichen eines vorbestimmten Drucks im Zylinderraum und/oder durch ein manuelles Steuerwort angefordert wäre, könnte das Sperrventil geschlossen werden und insbesondere der Druckmittelströmungspfad abgesperrt werden.Optionally, before the first step of blocking the pressure medium flow path by the shut-off valve, it can be checked whether a condition for activating the load holding function exists at all. Only when the activation of the load holding function is requested by reaching a predetermined pressure in the cylinder chamber and/or by a manual control word, could the shut-off valve be closed and in particular the pressure medium flow path blocked.

Vorzugsweise wird während des Schließens des Sperrventils ein Druck in dem oder in den Druckmittelströmungspfaden erfasst. Der Druck kann beispielsweise durch Drucksensoren in dem oder in den Druckmittelströmungspfaden erfasst werden. Der Druck, der beim Sperren des Sperrventils erfasst wurde, könnte bei der Wiederaufnahme der Regelung bzw. beim Deaktivieren der Lasthaltefunktion eine Referenz darstellen, auf die der Elektromotor und damit die Hydropumpe eingestellt werden.Preferably, a pressure in the pressure medium flow path(s) is detected during the closing of the shut-off valve. The pressure can be detected, for example, by pressure sensors in the pressure medium flow path(s). The pressure detected when the shut-off valve is blocked could represent a reference to which the electric motor and thus the hydraulic pump are adjusted when control is resumed or when the load holding function is deactivated.

Nach einem weiteren optionalen Merkmal der vorliegenden Offenbarung wirkt die Regelung des Hydrozylinders während des Schließens des zumindest einen Sperrventils. Bei geöffnetem Sperrventil kann eine hydraulische / fluidische Verbindung zwischen dem Hydrozylinder und der Hydropumpe bestehen. Somit kann die Steuereinheit den Hydrozylinder durch einen Steuerstrom des Elektromotors, der die Hydropumpe antreibt, regeln. Solange das Sperrventil nicht vollständig geschlossen ist, wirkt die Regelung der Steuereinheit auf den Hydrozylinder. Somit kann es möglich sein, die Betriebsgröße des Elektromotors während des Schließens des Sperrventils zu erfassen oder ermitteln.According to a further optional feature of the present disclosure, the control of the hydraulic cylinder acts during the closing of the at least one shut-off valve. When the shut-off valve is open, a hydraulic/fluidic connection can exist between the hydraulic cylinder and the hydraulic pump. The control unit can thus control the hydraulic cylinder using a control current of the electric motor that drives the hydraulic pump. As long as the shut-off valve is not completely closed, the control of the control unit acts on the hydraulic cylinder. It can thus be possible to detect or determine the operating variable of the electric motor during the closing of the shut-off valve.

Vorzugsweise wird die Regelung des Hydrozylinders mithilfe der Hydropumpe bzw. des Elektromotors nach dem Schließen des Sperrventils beendet. Mit dem Schließen des Sperrventils ist die hydraulische Anordnung im Lasthaltemodus. Die hydraulische / fluidische Verbindung zwischen dem Hydrozylinder und der Hydropumpe kann dabei unterbrochen sein. Somit kann es unmöglich sein, den Hydrozylinder über die (Ansteuerung der) Hydropumpe zu regeln.Preferably, the control of the hydraulic cylinder using the hydraulic pump or the electric motor is terminated after the shut-off valve is closed. When the shut-off valve is closed, the hydraulic arrangement is in load-holding mode. The hydraulic/fluidic connection between the hydraulic cylinder and the hydraulic pump can be be interrupted. This may make it impossible to control the hydraulic cylinder via the (control of the) hydraulic pump.

Vorzugsweise wird die Betriebsgröße des Elektromotors reduziert, nachdem das Sperrventil geschlossen wurde. Insbesondere wird das Drehmoment und damit die Belastung des Elektromotors durch eine Drehmomentregelung reduziert, die einem Profil zur Reduzierung der Belastung des Elektromotors folgt. Durch die Reduzierung der Betriebsgröße, insbesondere des Drehmoments, des Elektromotors wird während dem Lasthaltemodus Energie gespart.Preferably, the operating size of the electric motor is reduced after the shut-off valve has been closed. In particular, the torque and thus the load on the electric motor is reduced by a torque control that follows a profile for reducing the load on the electric motor. By reducing the operating size, in particular the torque, of the electric motor, energy is saved during the load holding mode.

Das vollständige Schließen des zumindest einen Sperrventils kann entweder durch eine zeitliche Steuerung oder durch eine Stellungsüberwachung sichergestellt werden. Das Schließen des Sperrventils kann eine Bedingung sein, dass die Betriebsgröße des Elektromotors reduziert wird.The complete closing of at least one shut-off valve can be ensured either by a time control or by position monitoring. The closing of the shut-off valve can be a condition for reducing the operating size of the electric motor.

Nach einem weiteren optionalen Merkmal der vorliegenden Offenbarung wird die Betriebsgröße, insbesondere das Drehmoment, des Elektromotors beim Eintreten der Bedingung auf den erfassten oder ermittelten oder nachgeführten Wert der Betriebsgröße beim Schließen des Sperrventils erhöht.According to a further optional feature of the present disclosure, the operating variable, in particular the torque, of the electric motor is increased to the detected or determined or tracked value of the operating variable when the shut-off valve is closed when the condition occurs.

Vorzugsweise wird die Betriebsgröße des Elektromotors, insbesondere das Drehmoment, erhöht, bevor das Sperrventil öffnet.Preferably, the operating size of the electric motor, in particular the torque, is increased before the shut-off valve opens.

Vorzugsweise wird die Betriebsgröße beim Schließen des Sperrventils in einer Speichereinheit der Steuereinheit der hydraulischen Anordnung gespeichert. Insbesondere wird das Drehmoment des Elektromotors und damit die Belastung des Elektromotors beim Schließen des Sperrventils gespeichert. Der gespeicherte Wert kann beim Eintreten der Bedingung abgerufen und optional nachgeführt werden und die Betriebsgröße solange erhöht werden, bis der gespeicherte Wert erreicht wird.Preferably, the operating variable is stored in a storage unit of the control unit of the hydraulic arrangement when the shut-off valve is closed. In particular, the torque of the electric motor and thus the load on the electric motor is stored when the shut-off valve is closed. The stored value can be called up when the condition occurs and optionally updated and the operating variable can be increased until the stored value is reached.

Kurzbeschreibung der FigurenShort description of the characters

  • Fig. 1 zeigt eine hydraulische Anordnung gemäß der vorliegenden Offenbarung; Fig.1 shows a hydraulic arrangement according to the present disclosure;
  • Fig. 2 zeigt einen zeitlichen Verlauf einer Kraft eines Hydrozylinders und eines Drehmoments eines Elektromotors; und Fig. 2 shows a time course of a force of a hydraulic cylinder and a torque of an electric motor; and
  • Fig. 3 zeigt ein Ablaufdiagramm eines Verfahrens zum Steuern der hydraulischen Anordnung gemäß der vorliegenden Offenbarung. Fig.3 shows a flow diagram of a method for controlling the hydraulic arrangement according to the present disclosure.
Detaillierte Beschreibung der FigurenDetailed description of the figures

Eine hydraulische Anordnung 1 hat gemäß Fig. 1 eine Hydropumpe oder -maschine 4, die von einem Elektromotor 2 angetrieben wird, und mindestens einen von drei von der Hydropumpe 4 druckmittelversorgte Hydrozylinder 6, 8 und 10. Grundzüge der hydraulischen Anordnung 1 sind aus der WO 2020 / 260 124 A1 bekannt. Dementsprechend wird auf die Unterschiede zu der WO 2020 / 260 124 A1 eingegangen.A hydraulic arrangement 1 has according to Fig.1 a hydraulic pump or machine 4, which is driven by an electric motor 2, and at least one of three hydraulic cylinders 6, 8 and 10 supplied with pressure medium by the hydraulic pump 4. Basic features of the hydraulic arrangement 1 are shown in the WO 2020 / 260 124 A1 Accordingly, the differences to the WO 2020 / 260 124 A1 received.

Von der Hydropumpe 4 geht ein erster Arbeitsströmungspfad 12 und ein zweiter Arbeitsströmungspfad 14 aus. Der erste Arbeitsströmungspfad 12 hat eine Verzweigung 16, an der ein dritter Arbeitsströmungspfad 18 abzweigt. In diesem ist ein (Ab-)Sperrventil 20, das als 2/2-Wege-Schaltventil ausgestaltet ist, angeordnet.A first working flow path 12 and a second working flow path 14 extend from the hydraulic pump 4. The first working flow path 12 has a branch 16, from which a third working flow path 18 branches off. A shut-off valve 20, which is designed as a 2/2-way switching valve, is arranged in this.

Von der Verzweigung 16 ausgehend erstreckt sich der erste Arbeitsströmungspfad 12 weiter, wobei ein weiteres Sperrventil 22 angeordnet ist, über das der erste Arbeitsströmungspfad 12 absperrbar ist. Auch das Sperrventil 22 ist vorrichtungstechnisch einfach als 2/2-Wege-Schaltventile ausgestaltet.Starting from the branch 16, the first working flow path 12 extends further, with a further shut-off valve 22 being arranged, via which the first working flow path 12 can be shut off. The shut-off valve 22 is also designed in a simple device-technically manner as a 2/2-way switching valve.

In Fortführung des ersten Arbeitsströmungspfades 12 weist dieser Verzweigungen 24 und 26 auf. Von der Verzweigung 24 zweigt ein Arbeitsanschluss 28 und von der Verzweigung 26 zweigen Arbeitsanschlüsse 30E und 30A ab.In continuation of the first working flow path 12, this has branches 24 and 26. A working connection 28 branches off from the branch 24 and working connections 30E and 30A branch off from the branch 26.

In dem zweiten Arbeitsströmungspfad 14 ist ein Sperrventil 32 angeordnet, über das der zweite Arbeitsströmungspfad 14 absperrbar ist. Der zweite Arbeitsströmungspfad 14 setzt sich über das Sperrventil 32 bis zu einer Verzweigung 34 fort. Von der Verzweigung 34 zweigt ein Arbeitsanschluss 40 ab. Von der Verzweigung 34 ausgehend erstreckt sich der zweite Arbeitsströmungspfad 14 zu einer Verzweigung 36. Von der Verzweigung 36 zweigen Arbeitsanschlüsse 38, 42 ab.A shut-off valve 32 is arranged in the second working flow path 14, via which the second working flow path 14 can be shut off. The second working flow path 14 continues via the shut-off valve 32 to a branch 34. A working connection 40 branches off from the branch 34. From the branch 34 The second working flow path 14 extends to a branch 36. Working connections 38, 42 branch off from the branch 36.

Der dritte Arbeitsströmungspfad 18 ist jenseits des Sperrventils 20 fortgesetzt, bis zu einer Verzweigung 44, von der ein dritter Arbeitsanschluss 46 zu dem Hydrozylinder 10 abzweigt. Der dritte Arbeitsanschluss 46 ist durch eine (schaltbare) Konfiguration 50B zuschaltbar.The third working flow path 18 continues beyond the shut-off valve 20 to a branch 44, from which a third working connection 46 branches off to the hydraulic cylinder 10. The third working connection 46 can be connected by a (switchable) configuration 50B.

Bei der hydraulischen Anordnung 1 kann wahlweise und je nach Konfiguration die Hydrozylinder 6, 8 mit zwei Kolbenflächen oder der Hydrozylinder 10 mit drei Kolbenflächen druckmittelversorgt werden.In the hydraulic arrangement 1, the hydraulic cylinders 6, 8 with two piston surfaces or the hydraulic cylinder 10 with three piston surfaces can be supplied with pressure medium, depending on the configuration.

Hierzu ist ein Verbindungsströmungspfad 48 vorgesehen, über den der erste Arbeitsströmungspfad 12 mit dem dritten Arbeitsströmungspfad 18 stromab des Sperrventils 20 fluidverbindbar ist. Im Verbindungsströmungspfad 48 ist eine Aufnahme 50E vorgesehen. Eine im Ausführungsbeispiel gleich ausgestaltete Aufnahme 50A ist im ersten Arbeitsströmungspfad 12 in einem Abschnitt zwischen der Abzweigung 16 und einer Einmündung des Verbindungsströmungspfades 48 vorgesehen.For this purpose, a connecting flow path 48 is provided, via which the first working flow path 12 can be fluidly connected to the third working flow path 18 downstream of the shut-off valve 20. A receptacle 50E is provided in the connecting flow path 48. A receptacle 50A, which is designed identically in the exemplary embodiment, is provided in the first working flow path 12 in a section between the branch 16 and an opening of the connecting flow path 48.

In die jeweilige Aufnahme 50E, 50B, 50A ist ein als Schraube, insbesondere M18 x 1.5 (in diesem Fall gemäß DIN906) ausgebildetes Verschlussmittel 52 einsetzbar, bzw. eingesetzt. Aufgrund der im Ausführungsbeispiel gleichen Ausführung der Aufnahmen 50E, 50A mit M18-Gewinde kann je nach wünschenswerter Konfiguration E, A das genau eine Verschlussmittel 52 in die entsprechende Aufnahme 50E, 50A eingesetzt werden.A locking means 52 designed as a screw, in particular M18 x 1.5 (in this case according to DIN906), can be inserted or is inserted into the respective receptacle 50E, 50B, 50A. Due to the identical design of the receptacles 50E, 50A with M18 thread in the exemplary embodiment, exactly one locking means 52 can be inserted into the corresponding receptacle 50E, 50A, depending on the desired configuration E, A.

Durch das Verschlussmittel 52 ist die Schaltungsstruktur konfigurierbar. Eine detaillierte Erklärung der Schaltungsstruktur der hydraulischen Anordnung ist in der WO 2020 / 260 124 A1 beschrieben und wird deshalb hier ausgespart. Die Aufnahmen 50A, 50B und 50E und damit die Konfigurationen A1 und E1 sind dabei optional.The circuit structure is configurable by the closure means 52. A detailed explanation of the circuit structure of the hydraulic arrangement can be found in the WO 2020 / 260 124 A1 described and is therefore omitted here. The mounts 50A, 50B and 50E and thus the configurations A1 and E1 are optional.

Der zweite Arbeitsströmungspfad 14 weist einen Drucksensor 54 stromabwärts des Sperrventils 32 auf. Der Drucksensor ist dabei optional. Der pumpenseitige Teil der hydraulischen Anordnung 1 weist ebenfalls einen optionalen Drucksensor 56 auf. Die Arbeitsanschlüsse 40 und 46 sind über das Sperrventil 58 fluidverbunden und können kurzgeschlossen werden.The second working flow path 14 has a pressure sensor 54 downstream of the shut-off valve 32. The pressure sensor is optional. The pump-side part of the hydraulic arrangement 1 also has an optional pressure sensor 56. The Working ports 40 and 46 are fluidly connected via the shut-off valve 58 and can be short-circuited.

Um eine Lasthaltefunktion der hydraulischen Anordnung 1 zu ermöglichen, kann eines der Sperrventile 20, 22, 32 und 58 die fluidische Leitung bzw. den Druckmittelströmungspfad zwischen der Hydropumpe 4 und dem jeweiligen Hydrozylinder 6, 8 und 10 sperren. Beispielsweise können in einer Konfiguration A der Arbeitsanschluss 28 durch das Sperrventil 20 und in einer Konfiguration E der Arbeitsanschluss 28 durch das Sperrventil 22 abgesperrt werden. Dadurch können die jeweiligen Hydrozylinder 6, 8 und 10 eine Last halten, ohne einen Antrieb durch die Hydropumpe 4 zu benötigen.In order to enable a load-holding function of the hydraulic arrangement 1, one of the check valves 20, 22, 32 and 58 can block the fluidic line or the pressure medium flow path between the hydraulic pump 4 and the respective hydraulic cylinder 6, 8 and 10. For example, in a configuration A, the working connection 28 can be blocked by the check valve 20 and in a configuration E, the working connection 28 can be blocked by the check valve 22. This allows the respective hydraulic cylinders 6, 8 and 10 to hold a load without requiring a drive from the hydraulic pump 4.

Um Differenzvolumina aufzunehmen, die aus unterschiedlichen Kolbenflächengrößen der Hydrozylinder 6, 8, 10 resultieren, hat die hydraulische Anordnung einen Speicherströmungspfad 62, der über auf einen Druckwert voreingestellte Druckbegrenzungsventile 64 mit dem jeweiligen Arbeitsströmungspfad 12, 14 fluidisch verbindbar ist. An den Speicherströmungspfad 62 ist ein gasbelasteter Hydrospeicher 60 angebunden.In order to accommodate differential volumes resulting from different piston surface sizes of the hydraulic cylinders 6, 8, 10, the hydraulic arrangement has an accumulator flow path 62, which can be fluidically connected to the respective working flow path 12, 14 via pressure relief valves 64 preset to a pressure value. A gas-loaded hydraulic accumulator 60 is connected to the accumulator flow path 62.

Die folgende Funktionsweise kann mit jedem der Sperrventile 20, 22, 32, 58 ausgeführt werden. Zum einfacheren Verständnis wird das Sperrventil 32 exemplarisch betrachtet.The following function can be carried out with each of the check valves 20, 22, 32, 58. For easier understanding, the check valve 32 is considered as an example.

Beispielsweise wird der Arbeitsanschluss 40 über das Sperrventil 32 fluidisch von der Hydropumpe 4 getrennt. Damit wird die Lasthaltefunktion ermöglicht, durch die eine Last am Hydrozylinder 10 antriebslos gehalten werden kann. Bei aktiver Lasthaltefunktion kann die Hydropumpe 4 und damit auch der Elektromotor 2 abgeschaltet werden bzw. die Belastung des Elektromotors 2 reduziert werden. Der zeitliche Ablauf des Schließens des Sperrventils 32 und der Reduzierung des Drehmoments des Elektromotors 2 wird in der Fig. 2 verdeutlicht.For example, the working connection 40 is fluidically separated from the hydraulic pump 4 via the shut-off valve 32. This enables the load holding function, through which a load on the hydraulic cylinder 10 can be held without drive. When the load holding function is active, the hydraulic pump 4 and thus also the electric motor 2 can be switched off or the load on the electric motor 2 can be reduced. The timing of the closing of the shut-off valve 32 and the reduction of the torque of the electric motor 2 is determined in the Fig. 2 clarified.

Fig. 2 zeigt beispielhaft einen zeitlichen Verlauf einer Kraft am Hydrozylinder 10 bzw. eines Drucks in dem Zylinderraum 41 des Hydrozylinders 10 und eines Drehmoments des Elektromotors 2. Der grundlegende zeitliche Ablauf ist für alle anderen Arbeitsanschlüsse und Zylinderräume der Hydrozylinder 6, 8 und 10 identisch. Der Druck im Zylinderraum 41 wird dabei beispielsweise von einem Drucksensor 54 im Zylinderraum 41 erfasst. In einem ersten Bereich B1 ist das Sperrventil 32 offen. Bei geöffnetem Sperrventil 32 besteht eine fluidische Verbindung zwischen dem Hydrozylinder 6 und der Hydropumpe 4. Dadurch kann der Hydrozylinder 10 über einen Steuerstrom des Elektromotors 2, der die Hydropumpe 4 antreibt, geregelt werden. Der Hydrozylinder 10 kann bei geöffnetem Sperrventil 32 also über eine Steuereinheit der hydraulischen Anordnung 1 geregelt werden. Die Lasthaltefunktion ist in diesem Bereich also nicht aktiv. Die externe Belastung erhöht das Drehmoment des Elektromotors 2. Damit steigt die Belastung der Hydropumpe 4 und der Druck im Zylinderraum 41 steigt. Das Drehmoment des Elektromotors 2 wird solange erhöht, bis die erfasste Kraft Fist einen Kraft-Sollwert Fsoll bzw. einen vorbestimmten Toleranzbereich nahe dem Kraft-Sollwert Fsoll erreicht und optional eine erfasste Position einen Positions-Sollwert xsoll bzw. einen vorbestimmten Toleranzbereich nahe dem Positions-Sollwert xsoll erreicht. Fig.2 shows an example of a time course of a force on the hydraulic cylinder 10 or a pressure in the cylinder chamber 41 of the hydraulic cylinder 10 and a torque of the electric motor 2. The basic time course is identical for all other working connections and cylinder chambers of the hydraulic cylinders 6, 8 and 10. The Pressure in the cylinder chamber 41 is detected, for example, by a pressure sensor 54 in the cylinder chamber 41. In a first area B1, the check valve 32 is open. When the check valve 32 is open, there is a fluidic connection between the hydraulic cylinder 6 and the hydraulic pump 4. This allows the hydraulic cylinder 10 to be controlled via a control current from the electric motor 2, which drives the hydraulic pump 4. When the check valve 32 is open, the hydraulic cylinder 10 can therefore be controlled via a control unit of the hydraulic arrangement 1. The load holding function is therefore not active in this area. The external load increases the torque of the electric motor 2. This increases the load on the hydraulic pump 4 and the pressure in the cylinder chamber 41. The torque of the electric motor 2 is increased until the detected force Factual reaches a force setpoint Fsetpoint or a predetermined tolerance range close to the force setpoint Fsetpoint and optionally a detected position reaches a position setpoint xsetpoint or a predetermined tolerance range close to the position setpoint xsetpoint.

Die Lasthaltefunktion kann also durch ein erfasstes Signal aktiviert werden. Das erfasste Signal kann beispielsweise die erfasste Kraft am Hydrozylinder 10 sein, die in einem vordefinierten Zielbereich liegt, bei gleichzeitiger optional erreichter Position in einem vordefiniertem Zielbereich des Hydrozylinders 10, bei gleichzeitigem Erreichen eines vorbestimmten Drehmoments am Elektromotor 2 aktiviert werden. Ferner kann die Aktivierung der Lasthaltefunktion durch eine manuelle Kommandierung über ein Steuerwort erfolgen.The load holding function can therefore be activated by a detected signal. The detected signal can be, for example, the detected force on the hydraulic cylinder 10, which lies in a predefined target range, while simultaneously optionally reaching a position in a predefined target range of the hydraulic cylinder 10, while simultaneously reaching a predetermined torque on the electric motor 2. Furthermore, the load holding function can be activated by manual commanding via a control word.

Wenn die erfasste Kraft Fist und optional die erfasste Position xist den vorbestimmten Toleranzbereich erreicht, beginnt eine Zeit t1 zu laufen. Der vorbestimmte Toleranzbereich kann beispielsweise ein bestimmter zu erreichender Prozentsatz des Kraft-Sollwertes, optional des Positions-Sollwertes, sein. Die Zeit t1 wird als Entprellzeit bezeichnet. Durch die Entprellzeit soll verhindert werden, dass die hydraulische Anordnung 1 auf kurzfristige Kraft-/Positionsschwankungen reagiert. Wenn die Zeit t1 abgelaufen ist, wird die Lasthaltefunktion aktiviert. Das Sperrventil 32 wird geschlossen. Der Schließvorgang des Sperrventils 32 benötigt die Zeitspanne t2. Wenn das Sperrventil 32 vollständig geschlossen ist, also im zweiten Bereich B2, ist der Zylinderkolben nicht mehr über die Steuereinheit der hydraulischen Anordnung 1 geregelt. Der fluide Durchgang zwischen der Hydropumpe 4 und dem Hydrozylinder 10 ist also durch das Sperrventil 32 hydraulisch getrennt. Das Drehmoment des Elektromotors 2 wird anschließend auf null reduziert. Dabei folgt die Regelung des Elektromotors 2 einem vorbestimmten Profil zur Belastungs- oder Drehmomentreduzierung.When the detected force Fist and optionally the detected position xist reach the predetermined tolerance range, a time t1 begins to run. The predetermined tolerance range can, for example, be a certain percentage of the force setpoint, optionally the position setpoint, to be achieved. The time t1 is referred to as the debounce time. The debounce time is intended to prevent the hydraulic arrangement 1 from reacting to short-term force/position fluctuations. When the time t1 has elapsed, the load holding function is activated. The check valve 32 is closed. The closing process of the check valve 32 requires the time period t2. When the check valve 32 is completely closed, i.e. in the second area B2, the cylinder piston is no longer controlled by the control unit of the hydraulic arrangement 1. The fluid passage between the hydraulic pump 4 and the hydraulic cylinder 10 is therefore hydraulically separated by the shut-off valve 32. The torque of the electric motor 2 is then reduced to zero. The control of the electric motor 2 follows a predetermined profile for load or torque reduction.

Durch Leckage des Sperrventils 32 und gleichzeitig drückende Last auf den Zylinder 10 oder anderen Druckverlusten kann die anliegende Kraft an dem Hydrozylinder 10 während des aktiven Lasthaltemodus im Bereich B2 langsam absinken. Wenn sich die Kraft außerhalb eines vorbestimmten (Grenz-)Bereichs ändert, wird die Lasthaltefunktion deaktiviert. In den vorbestimmten Grenzbereich kann zusätzliche eine Hystereseanpassung Fhyst einfließen.Due to a leak in the check valve 32 and a load pressing on the cylinder 10 at the same time or other pressure losses, the force applied to the hydraulic cylinder 10 can slowly decrease in the area B2 during the active load holding mode. If the force changes outside of a predetermined (limit) range, the load holding function is deactivated. A hysteresis adjustment Fhyst can also be included in the predetermined limit range.

Optional kann auch die Position des Zylinders 10 durch einen Postionssensor (nicht dargestellt) erfasst werden. Wenn die Zylinderposition durch (ungewollte) Bewegung aufgrund von Leckage einen vorbestimmten (Grenz-)Bereich verlässt, kann dadurch ein Signal zum Deaktivieren der Lasthaltefunktion gegeben werden. In den vorbestimmten Grenzbereich kann zusätzliche eine Hystereseanpassung xhyst einfließen.Optionally, the position of the cylinder 10 can also be detected by a position sensor (not shown). If the cylinder position leaves a predetermined (limit) range due to (unintentional) movement caused by leakage, a signal can be given to deactivate the load holding function. A hysteresis adjustment xhyst can also be included in the predetermined limit range.

Wenn die Lasthaltefunktion deaktiviert wird, wird das Drehmoment des Elektromotors 2 auf den letzten (erfassten) Wert oder optional an die aktuelle Lastsituation nachgeführt vor dem Schließen des Sperrventils 32 erhöht. Wenn das Drehmoment den Sollwert erreicht, wird eine Zeitspanne t3 gewartet. Die Zeitspanne t3 soll sicherstellen, dass das gewünschte Drehmoment eingestellt ist, kann aber auch 0 Sekunden betragen. Anschließend wird das Sperrventil 32 geöffnet. Der Öffnungsvorgang des Sperrventils 32 benötigt eine Zeitspanne t4. Wenn das Sperrventil geöffnet ist, wird eine fluidische Verbindung zwischen dem Hydrozylinder 10 und der Hydropumpe 4 wiederhergestellt. Es wird die kommandierte Kraft und/oder Position wiederhergestellt. Die Kraft am Hydrozylinder 10 steigt somit auf den Sollwert an bzw. die Position wird wieder auf den Sollwert ausgeregelt. Da das Drehmoment des Elektromotors 1 vor dem Öffnen des Sperrventils 32 erhöht wurde, wird der Druck in den entsprechenden Leitungen vor dem Öffnen des Sperrventils 32 bzw. nachgeführt auf die aktuelle Belastung der Kammer, angeglichen. Ab dem Zeitpunkt, an dem das Sperrventil 32 komplett offen ist, wird der Hydrozylinder wieder durch die Steuereinheit geregelt. Die Lasthaltefunktion ist somit vollständig deaktiviert. Damit ist der dritte Bereich B3 erreicht.If the load holding function is deactivated, the torque of the electric motor 2 is increased to the last (detected) value or, optionally, adjusted to the current load situation before the shut-off valve 32 is closed. When the torque reaches the setpoint, a time period t3 is waited. The time period t3 is intended to ensure that the desired torque is set, but can also be 0 seconds. The shut-off valve 32 is then opened. The opening process of the shut-off valve 32 requires a time period t4. When the shut-off valve is opened, a fluidic connection between the hydraulic cylinder 10 and the hydraulic pump 4 is restored. The commanded force and/or position is restored. The force on the hydraulic cylinder 10 thus increases to the setpoint or the position is regulated back to the setpoint. Since the torque of the electric motor 1 was increased before the shut-off valve 32 was opened, the pressure in the corresponding lines is adjusted to the current load on the chamber before the shut-off valve 32 was opened or adjusted to the current load. From the moment the shut-off valve 32 is completely open, the hydraulic cylinder is again controlled by the control unit. The load holding function is thus completely deactivated. The third area B3 is thus reached.

Der letzte erfasste Wert des Elektromotors 2 kann beispielsweise das erfasste Drehmoment des Elektromotors 2 beim Schließen des Sperrventils 32 sein und optional an die aktuelle Lastsituation angepasst, nachgeführt werden. Dieser Wert kann in einer Speichereinheit gespeichert werden und bei der Erhöhung des Drehmoments abgerufen werden.The last recorded value of the electric motor 2 can, for example, be the recorded torque of the electric motor 2 when closing the shut-off valve 32 and can optionally be adjusted to the current load situation. This value can be stored in a storage unit and retrieved when the torque increases.

Es ist aber auch denkbar, dass der Elektromotor 2 bei der Wiederaufnahme der Hydropumpe 4 über den erfassten Druck an der Pumpenseite der hydraulischen Anordnung 1 geregelt wird. In diesem Fall müsste jeweils ein Drucksensor an der Zylinderseite und an der Pumpenseite vorliegen, um die jeweiligen Drücke vor dem Öffnen des Sperrventils aneinander anzupassen.However, it is also conceivable that the electric motor 2 is controlled via the pressure detected on the pump side of the hydraulic arrangement 1 when the hydraulic pump 4 is restarted. In this case, a pressure sensor would have to be present on the cylinder side and on the pump side in order to adjust the respective pressures to one another before the shut-off valve is opened.

Fig. 3 zeigt ein Ablaufdiagramm eines offenbarungsgemäßen Verfahrens zum Steuern der hydraulischen Anordnung 1 mit den Hydrozylindern 6, 8, 10 und der Hydropumpe 4. In Schritt S1 wird das Sperrventil 32 in dem Arbeitsströmungspfad oder Druckmittelströmungspfad 14 zwischen dem Hydrozylinder 10 und der Hydropumpe 4 geschlossen. Das Schließen des Sperrventils 32 benötigt die Zeitdauer t2. In Schritt S2 wird eine Betriebsgröße des Elektromotors 2, der die Hydropumpe 4 antreibt, während des Schließens des Sperrventils 32 ermittelt oder erfasst. Dabei kann es sich entweder um ein Drehmoment des Elektromotors 2 oder um einen Druck im Zylinderraum 41 handeln. Die ermittelte oder erfasste Betriebsgröße kann beispielsweise in einer Speichereinheit der hydraulischen Anordnung 1 gespeichert werden. In Schritt S3 wird bestimmt, ob eine Bedingung für die Deaktivierung der Lasthaltefunktion bzw. für eine Wiederaufnahme der Regelung vorliegt. In Schritt S4 wird die ermittelte oder erfasste Betriebsgröße an dem Elektromotor 2 eingestellt. D.h. der Elektromotor 2 erhöht beispielsweise sein Drehmoment so lange, bis das Drehmoment anliegt, das beim Schließen des Sperrventils 32 ermittelt oder erfasst wurde. In Schritt S5 wird das Sperrventil 32 geöffnet. Somit ist die Lasthaltefunktion deaktiviert. Wenn das Sperrventil 32 geöffnet ist, wird der Hydrozylinder 6 wieder durch die Steuereinheit der hydraulischen Anordnung 1 geregelt. Fig.3 shows a flow chart of a method according to the disclosure for controlling the hydraulic arrangement 1 with the hydraulic cylinders 6, 8, 10 and the hydraulic pump 4. In step S1, the check valve 32 in the working flow path or pressure medium flow path 14 between the hydraulic cylinder 10 and the hydraulic pump 4 is closed. Closing the check valve 32 requires the time period t2. In step S2, an operating variable of the electric motor 2, which drives the hydraulic pump 4, is determined or recorded while the check valve 32 is closing. This can be either a torque of the electric motor 2 or a pressure in the cylinder chamber 41. The determined or recorded operating variable can be stored, for example, in a storage unit of the hydraulic arrangement 1. In step S3, it is determined whether a condition for deactivating the load holding function or for resuming control exists. In step S4, the determined or recorded operating variable is set on the electric motor 2. This means that the electric motor 2 increases its torque, for example, until the torque is present that was determined or detected when the shut-off valve 32 was closed. In step S5, the shut-off valve 32 is opened. The load holding function is thus deactivated. When the shut-off valve 32 is open, the hydraulic cylinder 6 is again controlled by the control unit of the hydraulic arrangement 1.

Vor Schritt S1 kann ein optionaler Schritt S0 ausgeführt werden, in dem (durch die Steuereinheit) geprüft wird, ob eine Bedingung zur Aktivierung der Lasthaltefunktion vorliegt. Diese Bedingung kann dabei eine automatische Erkennung, ob der Druckmittelströmungspfad abgesperrt werden soll, wenn ein vorbestimmter Kraft- oder Druckbereich erreicht wird. Das Erreichen des vorbestimmten Kraft- oder Druckbereich kann durch die Sensoren im Druckmittelströmungspfad erkannt werden. Die Bedingung zur Aktivierung der Lasthaltefunktion kann ferner eine manuelle Kommandierung durch ein Steuerwort sein.Before step S1, an optional step S0 can be carried out in which it is checked (by the control unit) whether a condition for activating the load holding function This condition can be an automatic detection of whether the pressure medium flow path should be shut off when a predetermined force or pressure range is reached. The sensors in the pressure medium flow path can detect that the predetermined force or pressure range has been reached. The condition for activating the load holding function can also be a manual command using a control word.

Bei der Bedingung für die Deaktivierung der Lasthaltefunktion kann es sich beispielsweise um eine manuelle Deaktivierung der Lasthaltefunktion handeln. Es kann sich ferner um ein Steuerwort handeln, mit dem eine Wiederaufnahme der Regelung angeordnet wird. Die Bedingung kann beispielsweise auch sein, dass eine erfasste Kraft am Hydrozylinder bzw. ein Druck im Zylinderraum einen vorbestimmten Toleranzbereich verlässt. Weiterhin kann die Bedingung sein, dass eine erfasste Position des Zylinderkolbens einen vorbestimmten Toleranzbereich verlässt. Auch eine Änderung eines Positionssollwerts des Zylinderkolbens kann eine Bedingung für die Deaktivierung der Lasthaltefunktion sein.The condition for deactivating the load holding function can, for example, be a manual deactivation of the load holding function. It can also be a control word that is used to order the control to be resumed. The condition can also be, for example, that a detected force on the hydraulic cylinder or a pressure in the cylinder chamber leaves a predetermined tolerance range. The condition can also be that a detected position of the cylinder piston leaves a predetermined tolerance range. A change in a position setpoint of the cylinder piston can also be a condition for deactivating the load holding function.

Der Ablauf des offenbarungsgemäßen Steuerungsverfahrens wird im Folgenden detailliert dargelegt. Am Anfang ist die Lasthaltefunktion deaktiviert. Anschließend wird ein Sperren des Sperrventils 32 entweder automatisch oder manuell aktiviert und danach das Sperrventil 32 geschlossen. Das vollständige Schließen des Sperrventils 32 kann zeitlich überwacht werden oder über eine Stellungsüberwachung realisiert werden. Ist das Sperrventil 32 komplett geschlossen, wird der Hydrozylinder 10 aus der Regelung genommen und das Drehmoment des Elektromotors 2 geregelt auf 0 Nm reduziert.The sequence of the control method according to the disclosure is explained in detail below. At the beginning, the load holding function is deactivated. Then a blocking of the blocking valve 32 is activated either automatically or manually and then the blocking valve 32 is closed. The complete closing of the blocking valve 32 can be monitored over time or implemented via position monitoring. If the blocking valve 32 is completely closed, the hydraulic cylinder 10 is taken out of control and the torque of the electric motor 2 is reduced in a controlled manner to 0 Nm.

Wird bei aktiver Lasthaltefunktion die Lasthaltefunktion deaktiviert oder eine Wiederaufnahme der Regelung des Hydrozylinders 10 angefordert, wird das Drehmoment des Elektromotors 2 erhöht. Wird die Lasthaltefunktion nicht deaktiviert, wird zuerst überprüft, ob der Positionssollwert des Zylinderkolbens geändert wurde. Ist dies der Fall, wird geprüft, ob eine automatische Fahrbewegung des Zylinderkolbens gewünscht ist. Der Druck in der Leitung 14 wird auf den Druck des Leitungszuges 41 vor dem Schließen des Sperrventils 32 angeglichen, bzw. auf die aktuelle Belastung der Kammer nachgeführt. Wenn eine automatische Fahrbewegung des Zylinderkolbens gewünscht ist, kann die Änderung des Positionssollwerts des Zylinderkolbens für die Dauer des Wiederaufnehmens ignoriert werden. In diesem Fall wird die Änderung des Positionssollwerts des Zylinderkolbens erst aktiv, wenn das Sperrventil 32 vollständig geöffnet ist. Nachdem der Befehl zur Wiederaufnahme aktiviert ist, wird das Drehmoment des Elektromotors 2 erhöht. Es kann eine Wartezeit t3 abgewartet werden. Dadurch kann sichergestellt werden, dass das Drehmoment dem Sollwert entspricht.If the load holding function is deactivated when the load holding function is active or if a resumption of control of the hydraulic cylinder 10 is requested, the torque of the electric motor 2 is increased. If the load holding function is not deactivated, it is first checked whether the position setpoint of the cylinder piston has been changed. If this is the case, it is checked whether an automatic travel movement of the cylinder piston is desired. The pressure in the line 14 is adjusted to the pressure of the line section 41 before the shut-off valve 32 is closed, or adjusted to the current load of the chamber. If an automatic travel movement of the cylinder piston is desired, the change in the position setpoint of the cylinder piston can be ignored for the duration of the resumption. In this case, the change in the position setpoint of the cylinder piston only becomes active when the shut-off valve 32 is fully opened. After the resumption command is activated, the torque of the electric motor 2 is increased. A waiting time t3 can be waited for. This can ensure that the torque corresponds to the setpoint.

Anschließend wird das Sperrventil 32 geöffnet. Die Öffnungsdauer des Sperrventils 32 kann eine Zeitspanne t4 benötigen. Nach dem vollständigen Öffnen des Sperrventils 32 ist der Hydrozylinder 10 wieder in der Regelung der hydraulischen Anordnung 1. Eine Sollwertänderung der Position des Zylinderkolbens ist aktiv und wird nicht mehr ignoriert. Die Lasthaltefunktion ist somit vollständig deaktiviert.The shut-off valve 32 is then opened. The opening duration of the shut-off valve 32 can require a time period t4. After the shut-off valve 32 has been fully opened, the hydraulic cylinder 10 is again in the control of the hydraulic arrangement 1. A setpoint change in the position of the cylinder piston is active and is no longer ignored. The load holding function is thus completely deactivated.

Claims (15)

Hydraulische Anordnung (1) mit einem Hydrozylinder (6, 8, 10) und einer Hydropumpe (4) zu dessen Druckmittelversorgung, die von einem Elektromotor (2) antreibbar ist und mit einem Zylinderraum über einen Druckmittelströmungspfad (12, 14, 18) fluidisch verbindbar ist, in dem ein oder mehrere Sperrventile (20, 22, 32, 58) vorgesehen sind, durch das der Druckmittelströmungspfad (12, 14, 18) zum antriebslosen Halten einer Last des Hydrozylinders (6, 8, 10) hydraulisch abtrennbar ist,
dadurch gekennzeichnet, dass
eine Betriebsgröße des Elektromotors (2) beim hydraulischen Trennen des Druckmittelströmungspfads (12, 14, 18) ermittelt oder erfasst wird und die erfasste oder ermittelte Betriebsgröße beim Einstellen einer Bedingung, bei deren Eintreten der Druckmittelströmungspfad (12, 14, 18) geöffnet wird, an dem Elektromotor (2) eingestellt wird.
Hydraulic arrangement (1) with a hydraulic cylinder (6, 8, 10) and a hydraulic pump (4) for supplying pressure medium to the hydraulic cylinder, which can be driven by an electric motor (2) and can be fluidically connected to a cylinder chamber via a pressure medium flow path (12, 14, 18), in which one or more check valves (20, 22, 32, 58) are provided, by means of which the pressure medium flow path (12, 14, 18) can be hydraulically separated in order to hold a load of the hydraulic cylinder (6, 8, 10) without a drive,
characterized in that
an operating variable of the electric motor (2) is determined or detected when the pressure medium flow path (12, 14, 18) is hydraulically separated, and the detected or determined operating variable is set on the electric motor (2) when a condition is set, upon the occurrence of which the pressure medium flow path (12, 14, 18) is opened.
Anordnung (1) nach Anspruch 1, wobei die Betriebsgröße des Elektromotors (2) proportional zu einem Druck im Zylinderraum ist.Arrangement (1) according to claim 1, wherein the operating variable of the electric motor (2) is proportional to a pressure in the cylinder chamber. Anordnung (1) nach Anspruch 1 oder 2, wobei die Betriebsgröße des Elektromotors (2) aus dessen Belastung ermittelbar oder ermittelt ist.Arrangement (1) according to claim 1 or 2, wherein the operating variable of the electric motor (2) can be determined or is determined from its load. Anordnung (1) nach einem der Ansprüche 1 bis 3, wobei die Betriebsgröße des Elektromotors (2) aus dessen Stromaufnahme ermittelbar oder ermittelt ist.Arrangement (1) according to one of claims 1 to 3, wherein the operating variable of the electric motor (2) can be determined or is determined from its current consumption. Anordnung (1) nach einem der Ansprüche 1 bis 4, wobei die Betriebsgröße des Elektromotors (2) dessen Drehmoment ist.Arrangement (1) according to one of claims 1 to 4, wherein the operating variable of the electric motor (2) is its torque. Anordnung (1) nach Anspruch 1, wobei die Betriebsgröße des Elektromotors (2) ein erfasster Druck in dem Druckmittelströmungspfad (12, 14, 18) ist, wobei der Elektromotor (2) derart eingestellt ist, dass der erfasste Druck beim Öffnen des Druckmittelströmungspfades (12, 14, 18) anliegt.Arrangement (1) according to claim 1, wherein the operating variable of the electric motor (2) is a detected pressure in the pressure medium flow path (12, 14, 18), wherein the electric motor (2) is set such that the detected pressure is present when the pressure medium flow path (12, 14, 18) is opened. Anordnung (1) nach einem der Ansprüche 1 bis 6, wobei die Bedingung ein Deaktivieren einer Lasthaltefunktion ist.Arrangement (1) according to one of claims 1 to 6, wherein the condition is a deactivation of a load holding function. Anordnung (1) nach einem der Ansprüche 1 bis 6, wobei die Bedingung ein manuell eingestelltes Steuerwort ist.Arrangement (1) according to one of claims 1 to 6, wherein the condition is a manually set control word. Anordnung (1) nach einem der Ansprüche 1 bis 6, wobei die Bedingung ist, dass eine erfasste Kraft an dem Hydrozylinder (6, 8, 10) oder Druck in dem Zylinderraum außerhalb eines vorbestimmten Toleranzbereichs liegt.Arrangement (1) according to one of claims 1 to 6, wherein the condition is that a detected force on the hydraulic cylinder (6, 8, 10) or pressure in the cylinder space is outside a predetermined tolerance range. Anordnung nach einem der Ansprüche 1 bis 6, wobei die Bedingung ist, dass eine erfasste Position des Hydrozylinders (6, 8, 10) außerhalb eines vorbestimmten Toleranzbereichs liegt.Arrangement according to one of claims 1 to 6, wherein the condition is that a detected position of the hydraulic cylinder (6, 8, 10) is outside a predetermined tolerance range. Anordnung (1) nach einem der Ansprüche 1 bis 6, wobei die Bedingung eine Änderung eines Positionssollwerts des Hydrozylinders (6, 8, 10) ist.Arrangement (1) according to one of claims 1 to 6, wherein the condition is a change in a position setpoint of the hydraulic cylinder (6, 8, 10). Verfahren zum Steuern einer hydraulischen Anordnung (1) mit einer Lasthaltefunktion mit zumindest einem Hydrozylinder (6, 8, 10) und einer Hydropumpe (4) mit den Schritten: - Schließen eines Sperrventils (20, 22, 32, 58) in einem Druckmittelströmungspfad (12, 14, 18) zwischen dem Hydrozylinder (6, 8, 10) und der Hydropumpe (4); - Ermitteln oder Erfassen einer Betriebsgröße eines Elektromotors (2), der die Hydropumpe (4) antreibt, während des Schließens des Sperrventils (20, 22, 32, 58); - Erkennen, dass eine Bedingung für eine Deaktivierung der Lasthaltefunktion vorliegt; - Einstellen und Nachführen der ermittelten oder erfassten Betriebsgröße an dem Elektromotor (2); und - Öffnen des Sperrventils (20, 22, 32, 58). Method for controlling a hydraulic arrangement (1) with a load holding function with at least one hydraulic cylinder (6, 8, 10) and a hydraulic pump (4) with the steps: - closing a shut-off valve (20, 22, 32, 58) in a pressure medium flow path (12, 14, 18) between the hydraulic cylinder (6, 8, 10) and the hydraulic pump (4); - determining or detecting an operating variable of an electric motor (2) which drives the hydraulic pump (4) during the closing of the shut-off valve (20, 22, 32, 58); - Detecting that a condition exists for deactivating the load holding function; - setting and tracking the determined or recorded operating variable on the electric motor (2); and - Open the shut-off valve (20, 22, 32, 58). Verfahren nach Anspruch 12, wobei der Hydrozylinder (6, 8, 10) von einer Steuereinheit der hydraulischen Anordnung (1) geregelt wird, während das Sperrventil (20, 22, 32, 58) schließt.Method according to claim 12, wherein the hydraulic cylinder (6, 8, 10) is controlled by a control unit of the hydraulic arrangement (1) while the shut-off valve (20, 22, 32, 58) closes. Verfahren nach Anspruch 12 oder 13, wobei eine Regelung des Hydrozylinders (6, 8, 10) durch die Steuereinheit beendet wird, nachdem das Sperrventil (20, 22, 32, 58) vollständig geschlossen ist.Method according to claim 12 or 13, wherein a control of the hydraulic cylinder (6, 8, 10) by the control unit is terminated after the shut-off valve (20, 22, 32, 58) is completely closed. Verfahren nach einem der Ansprüche 12 bis 14, wobei die Betriebsgröße des Elektromotors (2) reduziert wird, nachdem das Sperrventil (20, 22, 32, 58) vollständig geschlossen ist.Method according to one of claims 12 to 14, wherein the operating size of the electric motor (2) is reduced after the shut-off valve (20, 22, 32, 58) is completely closed.
EP23203942.0A 2022-10-27 2023-10-17 Hydraulic assembly with load holding function and control method of the hydraulic assembly Pending EP4361450A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022211393.4A DE102022211393A1 (en) 2022-10-27 2022-10-27 Hydraulic arrangement with load holding function and control method of the hydraulic arrangement

Publications (1)

Publication Number Publication Date
EP4361450A1 true EP4361450A1 (en) 2024-05-01

Family

ID=88417378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23203942.0A Pending EP4361450A1 (en) 2022-10-27 2023-10-17 Hydraulic assembly with load holding function and control method of the hydraulic assembly

Country Status (4)

Country Link
US (1) US20240141932A1 (en)
EP (1) EP4361450A1 (en)
CN (1) CN117948306A (en)
DE (1) DE102022211393A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080295504A1 (en) * 2006-01-16 2008-12-04 Volvo Construction Equipment Ab Method For Controlling a Hydraulic Cylinder in a Work Machine
DE102011056894A1 (en) * 2011-05-06 2012-11-08 Internationale Hydraulik Akademie Gmbh Hydraulic linear drive, has feeding pump pumping hydraulic oil to low pressure side, and discharge pressure relief valve, which allows flow of hydraulic oil into reservoir when fixed maximum pressure on low pressure side exceeds
US20160102685A1 (en) 2014-10-10 2016-04-14 MEA Inc. Self-contained energy efficient hydraulic actuator system
US20200262677A1 (en) * 2019-02-18 2020-08-20 Thyssenkrupp Elevator Corporation Systems and methods for controlling working fluid in hydraulic elevators
WO2020239258A1 (en) * 2019-05-28 2020-12-03 Eaton Intelligent Power Limited Optimizing mode transitions between dual power electro-hydrostatic control systems
WO2020260124A1 (en) 2019-06-27 2020-12-30 Robert Bosch Gmbh Hydraulic control block and hydraulic spindle comprising said control block

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080295504A1 (en) * 2006-01-16 2008-12-04 Volvo Construction Equipment Ab Method For Controlling a Hydraulic Cylinder in a Work Machine
DE102011056894A1 (en) * 2011-05-06 2012-11-08 Internationale Hydraulik Akademie Gmbh Hydraulic linear drive, has feeding pump pumping hydraulic oil to low pressure side, and discharge pressure relief valve, which allows flow of hydraulic oil into reservoir when fixed maximum pressure on low pressure side exceeds
US20160102685A1 (en) 2014-10-10 2016-04-14 MEA Inc. Self-contained energy efficient hydraulic actuator system
US20200262677A1 (en) * 2019-02-18 2020-08-20 Thyssenkrupp Elevator Corporation Systems and methods for controlling working fluid in hydraulic elevators
WO2020239258A1 (en) * 2019-05-28 2020-12-03 Eaton Intelligent Power Limited Optimizing mode transitions between dual power electro-hydrostatic control systems
WO2020260124A1 (en) 2019-06-27 2020-12-30 Robert Bosch Gmbh Hydraulic control block and hydraulic spindle comprising said control block

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAGEN DANIEL ET AL: "A Method for Smoothly Disengaging the Load-Holding Valves of Energy-Efficient Electro-Hydraulic Systems", THE 1ST INTERNATIONAL ELECTRONIC CONFERENCE ON ACTUATOR TECHNOLOGY: MATERIALS, DEVICES AND APPLICATIONS, 1 January 2020 (2020-01-01), Basel Switzerland, pages 36, XP093098679, DOI: 10.3390/IeCAT2020-08478 *

Also Published As

Publication number Publication date
CN117948306A (en) 2024-04-30
US20240141932A1 (en) 2024-05-02
DE102022211393A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
EP2032878B1 (en) Device for controlling a fluid-activated double-action operating cylinder
DE60206609T2 (en) HYDRAULIC CONTROL SYSTEM FOR A CONTINUOUSLY ADJUSTABLE GEARBOX
EP3247503B1 (en) Pumping arrangement and method of operating said arrangement
DE3443265A1 (en) CONTROL VALVE FOR A PUMP
EP2542779B1 (en) Regulating device and method for controlling the torque of a drive shaft of a hydrostatic machine
DE3022918A1 (en) PRESSURE OVERLOAD CONTROL DEVICE
DE10250586A1 (en) Electro-hydraulic valve control system and control method
EP3329129B1 (en) Hydraulic drive for executing a linear movement
DE102004012294A1 (en) High speed drive method and system for impression cylinders
DE102010054100A1 (en) Hydraulic system for e.g. hydraulic power storage for internal combustion engine in moped, has proportionally adjustable supply valve i.e. butterfly valve, that is arranged between hydraulic motor and pressure line
EP2613058A2 (en) Système hydraulique
WO2020216398A1 (en) Actuation method for a hydraulic system having a pump and valves for supplying multiple consumers and a cooling and/or lubricating device, and hydraulic system
WO2020182358A1 (en) Pressure control valve and device comprising such a pressure control valve, for open-loop or closed-loop control of the pressure of a pressurized fluid in a pilot pressure chamber
WO2006133797A1 (en) Hydraulically actuated clamping unit and hydraulic control shaft embodied therewith
EP3601806B1 (en) Apparatus for controlling a hydraulic machine
DE102012016838B4 (en) Hydraulic control circuit for a hydraulically operated casting unit
DE19620809A1 (en) Device and method for controlling the drive of a ram of a hydraulic cylinder of a hydraulic press
DE3633312C2 (en)
WO2018108615A1 (en) Hydraulic drive with fast stroke and load stroke
EP4361450A1 (en) Hydraulic assembly with load holding function and control method of the hydraulic assembly
EP1388404A1 (en) Hydraulic assembly for an injection moulding machine
EP0370131B1 (en) Three way pilot operated valve
DE102009005768A1 (en) Pressure control valve for adjusting displacement volume of e.g. axial piston machine of traction drive in vehicle, has body shifted into position in which opening is not closed while two pressures exert large opening force on body
DE102006046854A1 (en) Hydrostatic adjustment unit, for controlling servo system by valve units, uses two magnetically actuated proportional pressure reduction valves for actuating servo-system
WO2013037582A1 (en) Adjustment device for a hydrostatic machine and hydrostatic machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR