EP4355570A1 - Verwendung eines laminats zur abschirmung elektromagnetischer strahlung - Google Patents

Verwendung eines laminats zur abschirmung elektromagnetischer strahlung

Info

Publication number
EP4355570A1
EP4355570A1 EP22729452.7A EP22729452A EP4355570A1 EP 4355570 A1 EP4355570 A1 EP 4355570A1 EP 22729452 A EP22729452 A EP 22729452A EP 4355570 A1 EP4355570 A1 EP 4355570A1
Authority
EP
European Patent Office
Prior art keywords
laminate
use according
electromagnetic radiation
iso
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22729452.7A
Other languages
English (en)
French (fr)
Inventor
Ulrich Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Publication of EP4355570A1 publication Critical patent/EP4355570A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/265Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer
    • B32B5/266Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer next to one or more non-woven fabric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention relates to the use of a laminate for shielding against electromagnetic radiation.
  • Electromagnetic waves have an electric and a magnetic field component.
  • EMI mutual electromagnetic interference
  • B. electric in electric vehicles High-performance drives integrated in the smallest of spaces and controlled by electronic components. Li-ion batteries with the associated control electronics are used in many areas to store and provide electrical energy. It must be ensured that the individual components do not interfere with one another.
  • EMC electromagnetic compatibility
  • DIN VDE 0870 the concept of electromagnetic compatibility (EMC) is defined according to DIN VDE 0870, for example, as the ability of electrical equipment to function satisfactorily in its environment without inadmissibly influencing this environment, which may also include other equipment. This means that EMC must meet two conditions: shielding of the emitted radiation and immunity to interference from other electromagnetic radiation. In many countries, the corresponding devices must comply with legal regulations. According to DIN VDE 0870, electromagnetic interference (EMI) is the effect of electromagnetic waves on circuits, devices, systems or living beings. Such an impact can lead to acceptable or unacceptable impairments for the objects affected, e.g. B. the functionality of devices or the endangerment of persons. In such cases, appropriate protective measures must be taken.
  • the frequency range relevant for EMI shielding is generally between 100 Hz and 100 GHz, specifically from about 10 MHz to 10 GHz.
  • Electromagnetic compatibility of the components as well as energy saving and thermal management are the challenges for successful electromobility technology.
  • the use of modern brushless electric motors and various control units require the provision of electrical power in the form of alternating and three-phase current.
  • the electronic components emit unwanted magnetic, electrical and electromagnetic vibrations of different frequencies, which on the one hand can be a source of interference for other control units, or the control unit itself is disturbed in its function by the vibrations emitted by the other components.
  • EP 0998182 A2 (DE 69923142 T2) describes an electromagnetic shielding plate that can be mounted as a front panel in front of a screen in order to shield off electromagnetic radiation that emerges from the front of the screen.
  • the Electromagnetic shielding is provided by a conductive grid in which the individual lines must be sufficiently thin and spaced sufficiently so that the grid lines are not visible as far as possible.
  • a glass plate for example, is printed with a conductive paste to produce the grid pattern.
  • the DE 102005001063 A1 describes a layered material for shielding against electromagnetic waves, specifically in buildings.
  • the layered material comprises at least one fiber-comprising layer and at least one aluminum layer.
  • the fiber-encompassing layer can be a woven fabric, knitted fabric, warp-knitted fabric, scrim, fiber bundle and preferably non-woven fabric. It is described that both the aluminum layer and the fiber-encompassing layer can be provided with a perforation so that adhesive and bitumen can penetrate better into the material and gas can escape.
  • the aluminum layer can have an extensibility in at least one direction in the range from 2 to 35%, based on the length of the fiber-comprising layer in this direction.
  • WO 2008/130201 A2 teaches using a laminate for shielding electromagnetic waves, which laminate comprises a polymer resin layer and at least one metal foil layer. Compared to a pure metal foil, this laminate should be distinguished by good tensile stability and flexibility.
  • Embodiments of the invention relate to laminates having embossed areas on one or both surfaces, or laminates having perforated areas. The diameter of the perforated areas is preferably in a range from 10 ⁇ m to 5 mm. This involves making holes with a specific diameter in the laminate, ie punching, in which material is removed from the laminate. Through the embossed and/or perforated areas the laminate can be given a flexibility comparable to that of a metal fabric.
  • WO 2008/127077 A1 describes a thermally conductive layered material for shielding electromagnetic waves, which comprises an elastic carrier layer and at least one conductive layer laminated thereon.
  • the resilient backing has a pattern of a plurality of perforated areas and the conductive layer has conductive bumps formed by cuts in the conductive layer which are coaxial with the perforated areas of the resilient backing.
  • the conductive bosses are folded over toward the back of the elastic backing so that they traverse the perforated areas of the backing and protrude from the back of the elastic backing to contact the back of the elastic backing.
  • a thermal conductivity in the direction of the z-axis should be achieved.
  • the known simple laminates of at least one carrier layer, z. B. a polymer film or a fiber-containing layer, and at least one metal layer are only suitable to a limited extent for the sheathing of three-dimensional structures for shielding from electromagnetic waves, especially structures with a complex structure. These laminates lack sufficient formability.
  • a laminate as described in WO2021099163A1, comprising at least one metal foil, and b) a flat substrate, comprising or consisting of a fiber, film or foam material, the laminate comprising a multiplicity of objects formed by cuts in the base of the laminate, each object consisting of two or more cuts having a common starting point, and wherein the two cuts or any two adjacent cuts have an angle of 45 to 160°.
  • the laminate has very good mechanical and physical properties. It combines good electromagnetic shielding with good draping properties.
  • a disadvantage is a comparatively complex manufacture and the high production costs associated therewith.
  • the object of the present invention is to provide laminates for shielding electromagnetic radiation and a method for producing components that are shielded from electromagnetic radiation, which overcome the disadvantages described above and can be produced easily and inexpensively.
  • the laminates should also be suitable for the production of shielded components without having to be preformed. It should preferably be possible to form the components to be shielded in one operation and to connect them to the laminate for shielding against electromagnetic radiation. These include special injection molding processes such as back injection and multi-component injection molding, or forming processes such as thermoforming.
  • the laminates according to the invention should be suitable for use in a process for producing fiber composite materials, specifically an SMC process (extrusion molding of sheet molding compounds).
  • a laminate for shielding electromagnetic radiation which comprises a) at least one metal foil, and b) a flat substrate having a nonwoven fabric as the carrier material, the laminate and the nonwoven fabric being specially adjusted have physical and mechanical properties.
  • the invention relates to the use of a laminate comprising a) at least one metal foil, the metal foil having a thickness of 3 to 250 ⁇ m, and b) a flat substrate comprising a nonwoven fabric with a maximum tensile strength quotient determined according to ISO 9073-3 : 1989(E), longitudinal to transverse from 1:2 to 2:1, the laminate having a maximum tensile strength, longitudinal and/or transverse, determined according to ISO 9073-3: 1989(E) in the range from 50 to 800 N/5cm and has an elongation, measured longitudinally and/or transversely according to ISO 9073-3: 1989(E), of less than 30%, for shielding against electromagnetic radiation.
  • the laminates used according to the invention are sheet-like structures which have an essentially two-dimensional, planar extent and, in comparison, have a smaller thickness.
  • the laminates used according to the invention provided the laminate and the nonwoven have specially adjusted physical and mechanical properties, have sufficient deformability even without being provided with incisions and also without having to have high elongation. This enables simpler and more cost-effective manufacture.
  • the setting of a high isotropy of the maximum tensile force of the nonwoven seems to be particularly advantageous for obtaining a high deformability.
  • the combination of the metal foil with the special nonwoven surprisingly seems to result in the laminated metal foil having a higher extensibility than the unlaminated metal foil, which leads to a high deformability of the laminate even with comparatively low extensibility.
  • the laminate according to the invention for shielding electromagnetic radiation comprises at least one metal foil as component a).
  • Component a) can be one or more than one, e.g. B. 2, 3, 4, 5 or more than 5 metal foils or consist. In a preferred embodiment, component a) comprises 1, 2 or 3 metal foils. If component a) comprises more than one metal foil, there can be an adhesion-promoting layer between two metal foils.
  • the adhesion-promoting layer preferably comprises at least one polymer, preferably selected from thermoplastics or curable polymer compositions. Suitable curable polymer systems can be based on the polyesters, polyurethanes, epoxides and silicones known for this purpose.
  • Preferred thermoplastics are polyesters, polyamides, polyolefins and mixtures thereof.
  • Preferred polyesters are polyethylene terephthalate and polybutylene terephthalate.
  • Preferred polyolefins are polyethylene or polypropylene.
  • the metal of the metal foil is preferably selected from aluminum, titanium, magnesium, tin, nickel, copper, silver, gold, etc.
  • Metal alloys, preferably m-metal (permalloy), are also suitable.
  • the metal foil particularly preferably comprises aluminum or consists of aluminum.
  • the metal foil is cold rolled.
  • the metal of the metal foil is preferably an alloy, in particular an iron-silicon alloy.
  • preferred metals of the metal foil are metals and/or alloys that are used for electrical steel sheets.
  • the metal foil preferably has a thickness of from 3 to 250 ⁇ m, particularly preferably from 5 to 225 ⁇ m, in particular from 7 to 200 ⁇ m.
  • the laminate has a maximum tensile strength, determined longitudinally and/or transversely according to ISO 9073-3: 1989(E), in the range from 50 to 800 N/5cm, preferably from 100 to 700 N/5cm, more preferably from 150 to 700 N /5cm and in particular from 150 to 600 N/5cm.
  • the advantage of setting a maximum tensile force in the aforementioned ranges is that the laminate has good stability during processing.
  • the laminate has a longitudinal and/or transverse elongation, determined according to ISO 9073-3: 1989(E), of less than 30%, for example from 3% to 30%, more preferably from 3% to 25%, and in particular from 5% to 20%, up.
  • the metal foil and the flat substrate are preferably connected over the entire surface with a binder, preferably a thermoplastic.
  • a binder preferably a thermoplastic.
  • Preferred thermoplastics are polyesters, polyamides, polyolefins and mixtures thereof.
  • Preferred polyesters are polyethylene terephthalate and polybutylene terephthalate.
  • Preferred polyolefins are polyethylene or polypropylene.
  • the thermoplastic can also be multi-layered.
  • An adhesion promoter layer can be present between the binder and the metal foil and/or between the binder and the flat substrate.
  • the laminate is preferably in the form of sheet goods.
  • the laminate has no or at most one, preferably at most 0.5, more preferably at most 0.2 and in particular at most 0.1 incision (of a length of more than 1 mm) per 10 cm 2 in the area of its base area in the base area of the laminate on.
  • the number of cuts at least 10 samples with an area of 10 cm 2 are randomly selected from a total sample size of 2 m 2 , the number of cuts found per sample is determined and averaged over the total number of samples.
  • an incision refers to a partial or complete severing of the metal foil and possibly the flat substrate, without material being deliberately removed from the metal foil or the substrate in the process.
  • the incisions may be straight or curvilinear, eg circular or non-circular.
  • the laminate has no cuts in the base of the laminate, or only so few cuts that the ultimate tensile force, longitudinal and/or transverse, determined according to ISO 9073-3: 1989(E), through the cuts compared to a reference laminate the same structure but without incisions is reduced by a maximum of 150%, more preferably by a maximum of 100%, in particular by 50%.
  • the laminate has no cuts in the base surface of the laminate, or only so few cuts that the shielding, determined as the screening attenuation value, according to ASTM D-4935-2010 by the cuts, compared to a Comparative laminate of the same structure but without cuts is reduced by at most 60 dB, more preferably at most 50 dB, in particular by 40 dB.
  • the laminate for shielding electromagnetic radiation comprises as component b) a flat substrate comprising a nonwoven fabric with a quotient of maximum tensile strength, determined according to ISO 9073-3: 1989(E), longitudinal to transverse from 1:2 to 2:1, preferably from from 1.25:2 to 2:1.25, especially from 1.5:2 to 2:1.5.
  • the substrate b) can have one or more layers.
  • component b) consists of the nonwoven.
  • a special embodiment is a multi-layered substrate b).
  • non-woven fabric means a structure made up of fibers of limited length, continuous fibers (filaments) or chopped yarns of any kind and from any origin, which have been combined in any way into a fibrous layer or batt and in any way connected to one another; this is excluded the crossing or intertwining of yarns, as occurs in weaving, knitting, knitting, lace making, braiding and the manufacture of tufted products
  • Non-woven fabrics do not include foils and papers.
  • the fibers used to produce the nonwoven can be filaments, ie fibers with a principally endless length, and/or staple fibers. According to the invention, the fibers are preferably filaments. Staple fibers can be manufactured and laid using a wide variety of known manufacturing processes, for example carding processes, airlaid and wetlaid processes.
  • the substrate b) comprises at least one mechanically bonded nonwoven. In the case of mechanically bonded nonwovens, a fibrous web is z. B. solidified by a needling technique or by means of water jets.
  • the substrate b) comprises at least one thermally bonded nonwoven.
  • Thermally bonded nonwovens can e.g. B. by pressing at elevated temperature, for example by means of a calender or by hot air.
  • the fibrous web of thermally bonded nonwovens typically comprises fibers made from polyolefins, polyester and/or polyamide.
  • the substrate b) comprises at least one chemically bonded nonwoven.
  • the fiber web is provided with a fiber binder (e.g. acrylate binder) by impregnation, spraying or other conventional application methods and then hardened.
  • the fiber binder binds the fibers together to form a non-woven fabric.
  • the substrate b) comprises at least one spunbonded nonwoven (spunbond).
  • spunbonded nonwoven spunbonded continuous fibers (filaments) are stored and can then z. B. be solidified by treatment with heated rollers or by steam flow / hot air.
  • an engraving e.g. B. consist of circular, rectangular or diamond-shaped points. The threads fuse at the contact points and thus form the non-woven fabric.
  • a special version is a thermally bonded spunbonded nonwoven.
  • the basis weight of the nonwoven can vary within wide ranges.
  • a basis weight according to DIN EN 29073-1:1992-08 from 10 to is preferred 400 g/m 2 , preferably from 15 to 300 g/m 2 , in particular from 20 to 250 g/m 2
  • the substrate b) can additionally contain at least one additive.
  • Suitable additives are, on the one hand, fillers and reinforcing materials. These include particulate fillers, fibrous materials and any transitional forms. Particulate fillers can have a wide range of particle sizes, ranging from dusty to coarse-grained particles.
  • Organic or inorganic fillers and reinforcing materials can be used as the filler material. For example, inorganic fillers such as carbon fibers, kaolin, chalk, wollastonite, talc, calcium carbonate, silicates, titanium dioxide, zinc oxide, glass particles, z. B.
  • nanoscale phyllosilicates nanoscale aluminum oxide (AI2O3), nanoscale titanium dioxide (T1O2), phyllosilicates and nanoscale silicon dioxide (S1O2) can be used.
  • the fillers can also be surface treated. Suitable phyllosilicates are kaolins, serpentines, talcum, mica, vermiculite, lllite, smectite, montmorillonite, hectorite, double hydroxides and mixtures thereof.
  • the phyllosilicates can be surface-treated or untreated.
  • one or more fibrous materials can be used.
  • inorganic reinforcing fibers such as boron fibers, glass fibers, silicic acid fibers, ceramic fibers and basalt fibers; organic reinforcing fibers such as aramid fibers, polyester fibers, nylon fibers and polyethylene fibers; and natural fibers such as pile fibers, flax fibers, flax fibers and sisal fibers.
  • Suitable additives are also selected from antioxidants, heat stabilizers, flame retardants, light stabilizers (UV stabilizers, UV absorbers or UV blockers), catalysts for the crosslinking reaction, thickeners, thixotropic agents, surface-active agents, viscosity modifiers, lubricants, dyes, Nucleating agents, antistatic agents, mold release agents, defoamers, bactericides, etc..
  • the substrate b) can contain at least one binder.
  • Binders serve z. B. to improve the adhesion of fiber materials, especially nonwovens. They also serve to improve adhesion between different layers of the substrate b), z. B. between two layers of nonwoven fabric. Binders are also used to improve the adhesion of fillers and reinforcing materials and other additives used in component b).
  • Suitable binders include at least one polymeric material, preferably selected from polyvinyl alcohol, polyacrylates, polyurethanes, styrene butadiene rubber, nitrile butadiene rubber, polyester, epoxy and polyurethane resins.
  • the substrate b) comprises at least two layers, one of the layers being designed as a reinforcing insert (scrim).
  • a reinforcing insert for example, the adhesion between the two adjacent layers can be increased by using reinforcing inserts.
  • Suitable materials for the reinforcement insert are those mentioned above as fiber materials. A polyester is specifically used.
  • the fabrics described for this purpose made of fibers with threads crossing in two directions are generally suitable as reinforcing inserts. These usually have a significantly lower basis weight than the nonwovens described above.
  • the basis weight of the reinforcement insert is preferably in a range from 1 to 100 g/m 2 , preferably from 1 to 50 g/m 2 , in particular from 2 to 25 g/m 2 .
  • the substrate b) preferably has a thickness, measured according to ISO 9073-2:1995(E), of 50 to 1500 ⁇ m, particularly preferably of 100 to 1000 ⁇ m, in particular of 150 to 800 ⁇ m.
  • the substrate b) preferably has a maximum tensile strength, determined longitudinally and/or transversely according to ISO 9073-3: 1989(E), in the range from 50 to 800 N/5cm, preferably from 100 to 700 N/5cm, more preferably from 100 to 500 N/5cm and in particular from 100 to 350 N/5cm.
  • the advantage of setting a maximum tensile force in the aforementioned ranges is that the substrate b) has good stability during processing.
  • a spunbonded nonwoven in particular a polyester spunbonded nonwoven, is used to produce the substrate b) and is connected in a lamination process with at least one polymer material as a binder to form a multilayer composite material.
  • This preparation is carried out by conventional methods known to those skilled in the art, e.g. B. Thermobonding or lamination.
  • polymer material and/or non-woven fabric are plasticized at certain points by means of an embossing roller using high temperature and pressure, resulting in a bond between the two material webs. Extrusion is preferred. So e.g. B.
  • nonwoven-film substrate with the structure nonwoven-film-nonwoven two nonwoven webs are connected by means of a binder.
  • the plasticized binder can be extruded onto at least one web of material and then combined with another nonwoven web, followed by pressing and cooling. It is also possible for two webs of material to form a nip into which the binder is extruded, pressed with the webs of material and cooled. By repeating the extrusion and curing steps, these processes can be used to produce multilayer substrates b), it being possible for the layer sequence of the nonwoven layers and polymer layers to vary. If several nonwoven layers and/or several binder layers are provided, they can have the same composition or different compositions, e.g. B.
  • the The material properties can be influenced by the amount of binder applied, the type of binder, the temperature, the web speed and the line pressure. So you can z. B. control how long the binder is liquid between the webs, ie how well he can connect to the two webs. Thus z. B. control the adhesion between the material webs or the depth of penetration into the material webs.
  • the number of sheets to be laminated is not limited. It only has to be used for the required heating of the webs, e.g. B. a heating cylinder, are taken care of. In principle, not only nonwovens can be laminated with foils, but any conceivable combination (e.g. nonwovenA/woven; nonwoven/foil; nonwoven/foilA/woven; foil/foil; etc.).
  • the laminates for shielding electromagnetic radiation can be produced by connecting at least one metal foil a) and at least one flat substrate b) or their precursors to one another in a laminating process.
  • This connection is usually a material connection.
  • a positive and/or non-positive connection can take place.
  • a bond is formed by atomic or molecular forces between the connection partners.
  • the material connections of plastics include the glued connections and welded connections; Injection molding processes also lead to material connections.
  • a material connection is usually a non-detachable connection.
  • Form-fitting connections are created by the interlocking of at least two connection partners. As a result, the connection partners cannot become detached even without power transmission or when power transmission is interrupted. Non-positive connections require a normal force on the surfaces to be connected. Their mutual displacement is prevented as long as the counter-force caused by the static friction is not exceeded.
  • individual components e.g. B.
  • Non-curable or curable polymer systems in the form of one-component or multi-component systems can be used as binders.
  • Preferred binders are thermoplastics.
  • the lamination generally takes place at elevated temperature and/or under elevated pressure.
  • the methods already described above are suitable.
  • the components to be laminated can be guided through one or more roller nips in the form of layers as web material.
  • the components to be laminated in the form of a stack can be pressed at high temperature and pressure for a time sufficient to plasticize and optionally cure the binder and form a laminate.
  • the laminates according to the invention have a high resistance to tear propagation, both starting from the incisions in the laminates and in the event of undesired damage when sheathed or connected to at least one component.
  • the resistance of an incision to tear propagation under tensile stress is determined.
  • DIN 53356 (1982-08-01, Form A) determines the tear strength of nonwovens.
  • the tear propagation force is the force that occurs when the test sample is subjected to tensile stress, at which an incision continues to tear.
  • the laminates according to the invention preferably have a tear propagation strength, determined according to DIN 53356 (1982-08-01, Form A), in the range from 1 to 100 N, preferably from 2 to 80 N, in particular from 3 to 40 N.
  • the laminate enables the production of an opposite electromagnetic
  • Radiation-shielded component in which one:
  • the component is partially or completely coated or encased with the laminate.
  • a component which requires electromagnetic shielding is produced from at least one polymer material (c) or its precursor and connected to a laminate as described here. This connection is usually integral.
  • the laminate and the component can be produced in separate steps. Alternatively, those forming the laminate Components and the components forming the component to be shielded are connected to one another in a single step.
  • Polymer materials (c) within the meaning of the invention are materials which contain at least one polymer or consist of at least one polymer.
  • the polymeric materials (c) may contain at least one further component, e.g. B. fillers, reinforcing materials or additives different from them.
  • the polymer materials (c) are present in a special version as a composite (composite material).
  • the polymer component of the polymer material (c) is preferably selected from polyurethanes, silicones, fluorosilicones, polycarbonates, ethylene vinyl acetates, acrylonitrile butadiene acrylates, acrylonitrile butadiene rubbers, acrylonitrile butadiene styrenes, acrylonitrile methyl methacrylates, acrylonitrile styrene acrylates , cellulose acetates, cellulose acetate butyrates, polysulfones, poly(meth)acrylates, polyvinyl chlorides, polyphenylene ethers, polystyrenes, polyamides, polyolefins, polyketones, polyetherketones, polyimides, polyetherimides, polyethylene terephthalates, polybutylene terephthalates, fluoropolymers, polyesters, polyacetals, liquid crystal polymers, polyether sulfones, epoxy resins, phenolic
  • the polymer material (c) in step i.1) is provided in the form of a composite material which comprises the polymer component of the polymer material (c) and at least one further component (K) which is preferably selected from polymers, polymeric materials, textile materials, ceramic materials, mineral materials and Combinations thereof, particularly preferably selected from reinforced and/or filled plastic materials, polymer films, polymer moldings and combinations thereof.
  • the polymer material (c) in the form of a composite material which comprises at least one fibrous reinforcing material, the fibers preferably being selected from glass fibers, carbon fibers, aramid fibers, polyester fibers and combinations thereof.
  • the polymer material (c) is provided in the form of a composite material which comprises a fibrous reinforcing material which is embedded in a thermoplastic matrix (organic sheet).
  • step ii.1) the laminate and the polymer material (c) or its precursor are subjected to shaping, with the laminate and the polymer material being bonded.
  • SMC processing one can proceed in such a way that a laminate according to the invention is positioned in the cavity of the mold and subjected to a pressing process together with at least one polymer material.
  • the polymer material is also used in the form of a flat substrate, which is obtained by mixing and tailoring at least one polymeric binder, at least one fiber material and optionally at least one additive. This creates an SMC semi-finished product that can be processed together with the laminate according to the invention by extrusion to form an electromagnetically shielded component.
  • an in-moulding process is used to produce a component that is shielded from electromagnetic radiation.
  • Back injection molding produces components that consist of a polymer substrate and another plasticizable polymer material.
  • Laminate according to the invention can be used as the polymeric substrate.
  • There are various techniques for back injection molding such as inmold decoration (IMD), film insert molding (FIM), inmold labeling (IML), inmold coating (IMC) or inmold painting (IMP). What they all have in common is that the laminate is placed in an injection molding tool and then back-injected with another plastic and shaped, resulting in an electromagnetically shielded component part.
  • a forming process is used to produce a component that is shielded from electromagnetic radiation.
  • a laminate, as defined above, and at least one component are provided in step i.2) and the component is then partially or completely coated with the laminate in step ii.2). or sheathed.
  • the laminate can first be adapted to the geometry of the component to be electromagnetically shielded. So the laminate by cutting and / or punching in the desired shape can be brought. All imaginable contours are possible. It is also possible to make folds, e.g. B. to create a housing in which the component can be inserted.
  • the laminates described, as defined above, are preferably used for shielding electromagnetic radiation, preferably from current-carrying systems and current storage devices, particularly preferably in electronic housings.
  • An electric vehicle is generally a means of transport that is powered at least temporarily or partially with electrical energy.
  • the energy can be generated in the vehicle, stored in batteries or supplied temporarily or permanently from outside (e.g. through busbars, overhead lines, induction, etc.), with combinations of different forms of energy supply being possible.
  • Battery-powered vehicles are also known internationally as Battery Electric Vehicles (BEV).
  • Electric vehicles are road vehicles, rail vehicles, water vehicles or aircraft, such as electric cars, electric scooters, electric motorcycles, electric tricycles, battery and trolley buses, electric trucks, electric trains (trains and trams), electric bicycles and electric scooters.
  • Electric vehicles within the meaning of the invention are also hybrid electric vehicles (Hybrid Electric Vehicle, HEV) and fuel cell vehicles (Fuel Cell (Electric) Vehicle, FC(E)V).
  • HEV Hybrid Electric Vehicle
  • FC(E)V Fuel cell vehicles
  • electrical energy is generated from hydrogen or Methanol is generated by a fuel cell and converted directly into motion with the electric drive or temporarily stored in a battery.
  • electromobility there are four core areas in which the shielding of electromagnetic radiation is of critical importance: the power electronics, the battery, the electric motor and the navigation and communication equipment.
  • the laminates used according to the invention are advantageously suitable for the production of electronic housings for e-mobility vehicles in these four areas.
  • Modern electric vehicles are based on brushless electric motors, such as asynchronous machines or permanently excited synchronous machines (brushless DC machines).
  • the electric motor acts as a generator and supplies an AC voltage that can be rectified by the inverter and fed to the traction battery (recuperation).
  • Both fuel cells and the batteries in electric cars deliver higher voltages than the 12 V direct current or 24 V direct current known in the automotive sector.
  • a low-voltage vehicle electrical system is still required for many components of the on-board electronics.
  • DC/DC converters are used, which convert the high battery voltage into a correspondingly lower voltage and feed loads such as air conditioning, power steering, lighting, etc.
  • Another important power electronics component in electric cars is the onboard charger. Electric vehicle charging stations provide either single-phase or three-phase alternating current or direct current. Direct current is absolutely necessary to charge the traction batteries, which can be charged with the help of an onboard charger by rectifying and converting the Alternating current is generated.
  • the substrates used according to the invention are particularly suitable for shielding electromagnetic radiation from inverters, DC/DC converters and onboard chargers.
  • the laminates according to the invention are also particularly suitable for shielding navigation and communication devices, such as specifically GPS systems, from electromagnetic radiation.
  • a thermally bonded polyester spunbonded nonwoven (component b) with a weight per unit area of 100 g/m 2 and an aluminum foil (component a) with a thickness of 50 ⁇ m are laminated with polypropylene as a binder.
  • the polyester spunbonded nonwoven has a maximum tensile strength ratio, determined according to ISO 9073-3: 1989(E), longitudinal to transverse of 1.2.
  • a polymer coating is applied as a binder to the aluminum foil by means of triple extrusion using a sheet die, which consists of a layer of an adhesion promoter polymer, followed by a polypropylene layer (PP) and a second layer of an adhesion promoter polymer.
  • the temperature at the exit of the extruder is 240 °C.
  • the polyester spunbonded nonwoven is fed to the hot polymer layer and then pressed in a calender with two rolls at elevated temperature and a linear pressure of about 30 N/mm.
  • the laminate obtained has a maximum tensile strength, determined according to ISO 9073-3: 1989(E), of 450 N/5cm lengthwise and 395 N/5cm crosswise, and an elongation, determined according to ISO 9073-3: 1989(E), of 11 % (longitudinal) and 13.5 (transverse).
  • the screening attenuation values are determined on the laminate obtained in accordance with ASTM D-4935-2010. As shown in the table below, the laminate has very good shielding values, which are higher than those of a laminate constructed analogously but provided with incisions.
  • Example 1 The laminate produced in Example 1 is subjected to a deformation test according to the following scheme:
  • a circular sample with a diameter of 24 cm is clamped in a circular metal holding ring so that the area to be tested has a diameter of 22 cm.
  • This retaining ring is clamped in a device, with a deformation space of sufficient size being reserved.
  • the pattern is preheated to 180°C using IR heating and then shaped with a metal ball mounted on a stamp.
  • the metal ball is unheated, has a diameter of 7cm and hits the center at a speed of 40mm/sec.
  • the depth of penetration before the aluminum foil tears defines the maximum deformability under these conditions.
  • the penetration depth of the bullet in example 1 is 3 cm, the penetration depth on the unlaminated aluminum foil from example 1 is 1.5 cm. Despite its low elongation, the laminate consequently has sufficient deformability.
  • Shielded components can thus be manufactured with the laminate without the laminates having to be preformed. Furthermore, it is possible to form the components to be shielded in one operation and to connect them to the laminate for shielding against electromagnetic radiation.
  • Various injection molding processes such as back injection molding and multi-component injection molding, or forming processes, such as thermoforming, can be used for this purpose.
  • the laminates according to the invention are suitable for use in a process for producing fiber composite materials, specifically an SMC process (extrusion molding of sheet molding compounds).

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung eines Laminats, umfassend a) wenigstens eine Metallfolie, wobei die Metallfolie eine Dicke von 3 bis 250 qm aufweist, und b) ein flächiges Substrat, umfassend einen Vliesstoff mit einem Quotienten der Höchstzugkraft, bestimmt nach ISO 9073-3: 1989(E), längs zu quer von 1:2 bis 2:1, wobei das Laminat eine Höchstzugkraft, längs und/oder quer bestimmt nach ISO 9073-3: 1989(E) im Bereich von 50 bis 800 N/5cm und eine Dehnung, längs und/oder quer bestimmt nach ISO 9073-3: 1989(E), von weniger als 30 % aufweist, zur Abschirmung elektromagnetischer Strahlen.

Description

Anmelderin: Carl Freudenberg KG, 69469 Weinheim
Verwendung eines Laminats zur Abschirmung elektromagnetischer Strahlung
Beschreibung
HINTERGRUND DER ERFINDUNG
Die vorliegende Erfindung betrifft die Verwendung eines Laminats zur Abschirmung elektromagnetischer Strahlung.
STAND DER TECHNIK
Elektromagnetische Wellen weisen eine elektrische und eine magnetische Feldkomponente auf. Die von elektronischen Bauteilen, sei es von stromführenden oder solchen, die zur Stromspeicherung eingesetzt werden, abgestrahlten Wellen können zu einer gegenseitigen elektromagnetischen Beeinflussung (electromagnetic interference, EMI) führen. Durch die enormen Fortschritte in der Halbleitertechnik sind die elektronischen Bauteile zunehmend kleiner geworden, und ihre Dichte innerhalb von elektronischen Vorrichtungen hat deutlich zugenommen. Die zunehmende Komplexität elektronischer Systeme, z. B. in Bereichen wie der Elektromobilität, der Luft- und Raumfahrttechnik, der Medizintechnik oder der Unterhaltungselektronik, stellt eine hohe Herausforderung an die elektromagnetische Verträglichkeit der einzelnen Komponenten dar. So werden z. B. in Elektrofahrzeugen elektrische Antriebe mit hohen Leistungen auf engstem Raum integriert und durch elektronische Bauteile gesteuert. Zur Speicherung und Bereitstellung der elektrischen Energie werden in vielen Bereichen Li-Ionen-Batterien mit der zugehörigen Steuerelektronik eingesetzt. Es muss sichergestellt werden, dass sich die einzelnen Bauteile keineswegs gegenseitig stören. Um eine elektromagnetische Verträglichkeit zu erreichen, ist es bekannt, elektromagnetische Beeinflussungen mit Hilfe von abschirmenden Gehäusen zu dämpfen. Der Begriff der elektromagnetischen Verträglichkeit (EMV) wird beispielsweise nach DIN VDE 0870 definiert als die Fähigkeit einer elektrischen Einrichtung, in ihrer Umgebung zufriedenstellend zu funktionieren, ohne diese Umgebung, zu der auch andere Einrichtungen gehören können, unzulässig zu beeinflussen. Damit muss die EMV zwei Bedingungen erfüllen, die Abschirmung der ausgesendeten Strahlung und die Störfestigkeit gegenüber anderer elektromagnetischer Strahlung. In vielen Ländern müssen die entsprechenden Geräte dabei gesetzlichen Vorschriften genügen. Die elektromagnetische Beeinflussung (EMI) ist nach DIN VDE 0870 die Einwirkung elektromagnetischer Wellen auf Stromkreise, Geräte, Systeme oder Lebewesen. Eine solche Einwirkung kann bei den beeinflussten Objekten zu hinnehmbaren, aber auch nicht hinnehmbaren Beeinträchtigungen, z. B. der Funktionalität von Geräten oder der Gefährdung von Personen, führen. In solchen Fällen sind entsprechende Schutzvorkehrungen zu treffen. Der für EMI- Abschirmung relevante Frequenzbereich liegt im Allgemeinen zwischen 100 Hz und 100 GHz, speziell von etwa 10 MHz bis 10 GHz.
Elektromagnetische Verträglichkeit der Bauteile sowie Energieeinsparung und Thermomanagement sind die Herausforderungen für eine erfolgreiche Elektromobilitätstechnologie. Der Einsatz von modernen bürstenlosen Elektromotoren sowie diverse Steuerungseinheiten erfordern die Bereitstellung elektrischer Leistung in Form von Wechsel- und Drehstrom. Dabei senden die elektronischen Komponenten unerwünschte magnetische, elektrische und elektromagnetische Schwingungen unterschiedlicher Frequenz aus, die zum einen eine Störquelle für andere Steuerungseinheiten sein kann, oder die Steuerungseinheit selbst wird durch die ausgesendeten Schwingungen der anderen Bauteile in ihrer Funktion gestört.
Es ist bekannt, elektronische Komponenten mit Gehäusen aus Metall, z. B. Aluminium, elektromagnetisch abzuschirmen, damit sich diese in ihrer Funktionsausübung nicht gegenseitig negativ beeinflussen. Der Einsatz von rein metallischen Abschirmungen ist aber mit verschiedenen Nachteilen verbunden, wie das hohe Materialgewicht und die aufwendige Fierstellung durch Stanzen, Biegen und Aufbringen eines Korrosionsschutzes, was sehr kostenintensiv ist. Auch die konstruktive Gestaltungsfreiheit ist bei metallischen Werkstoffen sehr beschränkt. Abschirmungen aus Kunststoff lassen sich vielfach leichter als Metalle in die gewünschte Form bringen. Da die meisten Kunststoffe Isolatoren sind, kann diesen durch den Auftrag einer Oberflächenbeschichtung, z. B. durch Galvanisieren oder Gasphasenabscheidung (physical vapor deposition, PVD), die erforderliche Leitfähigkeit verliehen werden. Alternativ ist es bekannt, Schichtmaterialien einzusetzen, die wenigstens eine kunststoff- und/oder faserhaltige Schicht und wenigstens eine Aluminiumschicht umfassen. Nachteilig an den bekannten Schichtmaterialien ist, dass ihre Befähigung zur dreidimensionalen Verformung ohne mechanische Beschädigung, speziell Rissbildung, sehr eingeschränkt ist.
Zur elektromagnetischen Abschirmung von Bildschirmen ist es auch bekannt, einen transparenten Träger einzusetzen, der ein aufgedrucktes Gitter aus einem elektromagnetisch abschirmenden Material mit dünnen, weit auseinanderliegenden Gitterlinien aufweist. So beschreibt die EP 0998182 A2 (DE 69923142 T2) eine elektromagnetische Abschirmplatte, die als Frontplatte vor einem Bildschirm montiert werden kann, um elektromagnetische Strahlung abzuschirmen, die von der Vorderseite des Bildschirms austritt. Die elektromagnetische Abschirmung erfolgt durch ein leitfähiges Gitter, bei dem die einzelnen Linien ausreichend dünn ausgebildet sein und ausreichende Abstände aufweisen müssen, damit die Gitterlinien möglichst nicht sichtbar sind. Zur Erzeugung des Gittermusters wird beispielsweise eine Glasplatte mit einer leitfähigen Paste bedruckt.
Die DE 102005001063 A1 beschreibt ein Schichtmaterial zur Abschirmung von elektromagnetischen Wellen, speziell in Gebäuden. Das Schichtmaterial umfasst mindestens eine Faser-umfassende Schicht und mindestens eine Aluminiumschicht. Bei der Faser-umfassenden Schicht kann es sich um Gewebe, Gestricke, Gewirke, Gelege, Faserbündel und bevorzugt Faservliese handeln. Es ist beschrieben, dass sowohl die Aluminiumschicht als auch die Faser-umfassende Schicht mit einer Perforation versehen werden kann, damit Kleber und Bitumen besser in das Material eindringen und Gas entweichen kann. An anderer Stelle wird beschrieben, dass die Aluminiumschicht eine Dehnbarkeit in mindestens einer Richtung im Bereich von 2 bis 35 %, bezogen auf die Länge der Faser-umfassenden Schicht in dieser Richtung aufweisen kann.
Die WO 2008/130201 A2 lehrt, zur Abschirmung elektromagnetischer Wellen ein Laminat zu verwenden, das eine Polymerharzschicht und wenigstens eine Metallfolienschicht umfasst. Dieses Laminat soll sich gegenüber einer reinen Metallfolie durch eine gute Zugstabilität und Flexibilität auszeichnen. Ausführungsformen der Erfindung betreffen Laminate, bei denen eine Oberfläche oder beide Oberflächen geprägte Bereiche aufweisen oder Laminate, die perforierte Bereiche aufweisen. Der Durchmesser der perforierten Bereiche liegt bevorzugt in einem Bereich von 10 pm bis 5 mm. Hierbei handelt es sich somit um das Einbringen von Löchern mit einem bestimmten Durchmesser in das Laminat, d. h. um Stanzen, bei denen Material aus dem Laminat entfernt wird. Durch die geprägten und/oder perforierten Bereiche soll dem Laminat eine Flexibilität, vergleichbar einem Metall-Gewebe, verliehen werden.
Die WO 2008/127077 A1 beschreibt ein wärmeleitfähiges Schichtmaterial zur Abschirmung elektromagnetischer Wellen, das eine elastische Trägerschicht und wenigstens eine darauf laminierte leitfähige Schicht umfasst. Die elastische Trägerschicht weist ein Muster aus einer Vielzahl perforierter Bereiche auf, und die leitfähige Schicht weist leitfähige Ausbuchtungen auf, die durch Einschnitte in die leitfähige Schicht gebildet werden und die koaxial zu den perforierten Bereichen der elastischen Trägerschicht sind. Die leitfähigen Ausbuchtungen sind zur Rückseite der elastischen Trägerschicht hin umgefaltet, so dass sie die perforierten Bereiche der Trägerschicht durchqueren und ragen aus der Rückseite der elastischen Trägerschicht hervor, so dass sie in Kontakt mit der Rückseite der elastischen Trägerschicht kommen. Somit soll eine thermische Leitfähigkeit in Richtung der z-Achse erzielt werden.
Die im Stand der Technik beschriebenen Laminate weisen wenigstens einen der folgenden Nachteile auf:
Die bekannten einfachen Laminate aus wenigstens einer Trägerschicht, z. B. einer Polymerfolie oder einer faserhaltigen Schicht, und wenigstens einer Metallschicht eignen sich nur eingeschränkt zur Ummantelung von dreidimensionalen Gebilden zur Abschirmung von elektromagnetischen Wellen, insbesondere von Gebilden mit komplexer Struktur. Es mangelt diesen Laminaten an einer ausreichenden Verformbarkeit.
Auch die bekannten perforierten oder gestanzten Laminate weisen häufig keine gute Verformbarkeit auf. Bei zu hoher Kraftanwendung bei der Ummantelung von dreidimensionalen Gebilden können die Laminate unkontrolliert Reißen. Im Bereich solcher Risse kann die elektromagnetische Abschirmung stark beeinträchtigt sein. Die zuvor genannten Nachteile können vermindert oder vermieden werden mit einem Laminat, wie in WO2021099163A1 beschrieben, umfassend wenigstens eine Metallfolie, und b) ein flächiges Substrat, umfassend oder bestehend aus einem Faser-, Folien- oder Schaummaterial, wobei das Laminat eine Vielzahl von aus Einschnitten in die Grundfläche des Laminats gebildeten Objekten aufweist, wobei jedes Objekt aus zwei oder mehreren Einschnitten besteht, die einen gemeinsamen Anfangspunkt aufweisen, und wobei die zwei Einschnitte oder je zwei benachbarte Einschnitte einen Winkel von 45 bis 160° aufweisen. Das Laminat weist sehr gute mechanische und physikalische Eigenschaften aus. So verbindet es eine gute elektromagnetische Abschirmung mit einem guten Drapierverhalten. Nachteilig sind jedoch eine vergleichsweise aufwändige Herstellung und damit verbunden hohe Produktionskosten.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, Laminate zur Abschirmung elektromagnetischer Strahlung und ein Verfahren zur Herstellung von gegenüber elektromagnetischer Strahlung abgeschirmten Bauteilen zur Verfügung zu stellen, die die zuvor beschriebenen Nachteile überwinden und einfach und kostengünstig herstellbar sind.
Die Laminate sollen sich weiterhin zur Herstellung von abgeschirmten Bauteilen eignen, ohne dass sie vorgeformt werden müssen. Vorzugsweise soll es möglich sein, die abzuschirmenden Bauteile in einem Vorgang zu formen und mit dem Laminat zur Abschirmung elektromagnetischer Strahlung zu verbinden. Dazu zählen spezielle Spritzgussverfahren, wie das Hinterspritzen und der Mehrkomponenten-Spritzguss, oder Umformverfahren, wie das Thermoformen. Insbesondere sollen sich die erfindungsgemäßen Laminate für den Einsatz in einem Verfahren zur Herstellung von Faser-Verbundwerkstoffen, speziell einem SMC-Verfahren (Fließpressen von Sheet Molding Compounds), eignen. Überraschenderweise wurde erfindungsgemäß gefunden, dass die zuvor genannte Aufgabe durch die Verwendung eines Laminats zur Abschirmung elektromagnetischer Strahlung gelöst wird, das a) wenigstens eine Metallfolie, und b) ein einen Vliesstoff aufweisendes flächiges Substrat als Trägermaterial umfasst, wobei das Laminat und der Vliesstoff speziell eingestellte physikalische und mechanische Eigenschaften aufweisen.
ZUSAMMENFASSUNG DER ERFINDUNG
Gegenstand der Erfindung ist die Verwendung eines Laminats, umfassend a) wenigstens eine Metallfolie, wobei die Metallfolie eine Dicke von 3 bis 250 pm aufweist, und b) ein flächiges Substrat, umfassend einen Vliestoff mit einem Quotienten der Höchstzugkraft, bestimmt nach ISO 9073-3: 1989(E), längs zu quer von 1:2 bis 2:1, wobei das Laminat eine Höchstzugkraft, längs und/oder quer bestimmt nach ISO 9073-3: 1989(E) im Bereich von 50 bis 800 N/5cm und eine Dehnung, längs und/oder quer bestimmt nach ISO 9073-3: 1989(E), von weniger als 30 % aufweist, zur Abschirmung elektromagnetischer Strahlen.
BESCHREIBUNG DER ERFINDUNG
Bei den erfindungsgemäß verwendeten Laminaten handelt es sich um flächenförmige Gebilde, die über eine im Wesentlichen zweidimensionale, ebene Ausdehnung und eine demgegenüber geringere Dicke verfügen. Überraschend wurde erfindungsgemäß gefunden, dass die erfindungsgemäß verwendeten Laminate, sofern das Laminat und der Vliesstoff speziell eingestellte physikalische und mechanische Eigenschaften aufweisen, eine ausreichende Verformbarkeit aufweisen auch ohne dass sie mit Einschnitten versehen werden und auch ohne dass sie eine hohe Dehnung aufweisen müssen. Dies ermöglicht eine einfachere und kostengünstigere Herstellung. Dabei scheint die Einstellung einer hohen Isotropie der Höchstzugkraft des Vliesstoffs für den Erhalt einer hohen Verformbarkeit besonders vorteilhaft zu sein. Darüber hinaus scheint überraschenderweise die Kombination der Metallfolie mit dem speziellen Vliesstoff dazu zu führen, dass die laminierte Metallfolie eine höhere Dehnbarkeit als die unlaminierte Metallfolie aufweist, was zu einer hohen Verformbarkeit des Laminats auch bei vergleichsweise geringer Dehnbarkeit führt.
Das erfindungsgemäße Laminat zur Abschirmung elektromagnetischer Strahlung umfasst als Komponente a) wenigstens eine Metallfolie.
Die Komponente a) kann eine oder mehr als eine, z. B. 2, 3, 4, 5 oder mehr als 5 Metallfolien umfassen oder daraus bestehen. In einer bevorzugten Ausführung umfasst die Komponente a) 1, 2 oder 3 Metallfolien. Wenn die Komponente a) mehr als eine Metallfolie umfasst, so kann sich jeweils zwischen zwei Metallfolien eine haftvermittelnde Schicht befinden. Bevorzugt umfasst die haftvermittelnde Schicht wenigstens ein Polymer, vorzugsweise ausgewählt unter Thermoplasten oder härtbaren Polymerzusammensetzungen. Geeignete härtbare Polymersysteme können auf den dafür bekannten Polyestern, Polyurethanen, Epoxiden und Silikonen beruhen. Bevorzugte Thermoplaste sind Polyester, Polyamide, Polyolefine und Mischungen davon. Bevorzugte Polyester sind Polyethylenterephthalat und Polybutylenterephthalat. Bevorzugte Polyolefine sind Polyethylen oder Polypropylen. Das Metall der Metallfolie ist vorzugsweise ausgewählt unter Aluminium, Titan, Magnesium, Zinn, Nickel, Kupfer, Silber, Gold, etc. Geeignet sind auch Metalllegierungen, bevorzugt m-Metall (Permalloy). Besonders bevorzugt umfasst die Metallfolie Aluminium oder besteht aus Aluminium.
In einerweiteren bevorzugten Ausführungsform ist die Metallfolie kaltgewalzt. Dabei ist das Metall der Metallfolie vorzugsweise eine Legierung, insbesondere eine Eisen-Silizium-Legierung. Ebenfalls bevorzugte Metalle der Metallfolie sind Metalle und/oder Legierungen, die für Elektrobleche verwendet werden.
Bevorzugt weist die Metallfolie eine Dicke von 3 bis 250 pm, besonders bevorzugt von 5 bis 225 pm, insbesondere von 7 bis 200 pm, auf.
Erfindungsgemäß weist das Laminat eine Höchstzugkraft, längs und/oder quer bestimmt nach ISO 9073-3: 1989(E), im Bereich von 50 bis 800 N/5cm, vorzugsweise von 100 bis 700 N/5cm, noch bevorzugter von 150 bis 700 N/5cm und insbesondere von 150 bis 600 N/5cm auf. Vorteilhaft an der Einstellung einer Höchstzugkraft in den vorgenannten Bereichen ist, dass das Laminat eine gute Stabilität bei Verarbeitungsprozessen aufweist.
Ferner weist das Laminat eine Dehnung längs und/oder quer, bestimmt nach ISO 9073-3: 1989(E), von weniger als 30 %, beispielsweise von 3 % bis 30 %, noch bevorzugter von 3 % bis 25 %, und insbesondere von 5 % bis 20 %, auf.
Vorzugsweise sind im Laminat die Metallfolie und das flächige Substrat flächig mit einem Binder, vorzugsweise einem Thermoplasten verbunden. Bevorzugte Thermoplaste sind Polyester, Polyamide, Polyolefine und Mischungen davon. Bevorzugte Polyester sind Polyethylenterephthalat und Polybutylenterephthalat. Bevorzugte Polyolefine sind Polyethylen oder Polypropylen. Der Thermoplast kann auch mehrlagig vorliegen. Zwischen Binder und Metallfolie und/oder zwischen Binder und flächigem Substrat kann eine Haftvermittlerschicht vorliegen.
Vorzugsweise ist das Laminat als Bahnenware ausgebildet.
Weiter bevorzugt weist das Laminat im Bereich seiner Grundfläche keine oder höchstens einen, vorzugsweise höchstens 0,5, noch bevorzugter höchstens 0,2 und insbesondere höchstens 0,1 Einschnitt (einer Länge von über 1 mm) pro 10 cm2 in die Grundfläche des Laminats auf. Zur Bestimmung der Anzahl der Einschnitte werden aus einer Gesamtprobengröße von 2 m2 zufällig mind. 10 Proben einer Fläche von 10 cm2 ausgewählt, die gefundene Anzahl der Einschnitte pro Probe bestimmt und über die Gesamtanzahl der Proben gemittelt. Dabei bezeichnet ein Einschnitt ein teilweises oder vollständiges Durchtrennen der Metallfolie und gegebenenfalls des flächigen Substrats, ohne dass hierbei bewusst Material aus der Metallfolie oder dem Substrat entnommen wird. Die Einschnitte können geradlinig oder krummlinig, z.B. kreisförmig oder nicht kreisförmig, sein.
In einerweiteren bevorzugten Ausführungsform weist das Laminat keine Einschnitte in die Grundfläche des Laminats auf oder lediglich so wenig Einschnitte, dass die Höchstzugkraft, längs und/oder quer bestimmt nach ISO 9073-3: 1989(E), durch die Einschnitte, verglichen mit einem Vergleichslaminat gleichen Aufbaus aber ohne Einschnitte höchstens um 150%, noch bevorzugter höchstens um 100%, insbesondere um 50% veringert ist.
In einerweiteren bevorzugten Ausführungsform weist das Laminat keine Einschnitte in die Grundfläche des Laminats auf oder lediglich so wenig Einschnitte, dass die Abschirmung, bestimmt als Schirmdämpfungswert, nach ASTM D-4935-2010 durch die Einschnitte, verglichen mit einem Vergleichslaminat gleichen Aufbaus aber ohne Einschnitte höchstens um 60 dB, noch bevorzugter höchstens um 50 dB um, insbesondere um 40 dB erniedrigt ist.
Das Laminat zur Abschirmung elektromagnetischer Strahlung umfasst als Komponente b) ein flächiges Substrat, umfassend einen Vliesstoff mit einem Quotienten der Höchstzugkraft, bestimmt nach ISO 9073-3: 1989(E), längs zu quer von 1 :2 bis 2:1 , vorzugsweise von 1 ,25:2 bis 2:1 ,25, insbesondere von 1,5:2 bis 2:1,5.
Das Substrat b) kann ein- oder mehrlagig aufgebaut sein. In einer Ausführungsform besteht die Komponente b) aus dem Vliesstoff. Eine spezielle Ausführungsform ist ein mehrlagig aufgebautes Substrat b).
Im Sinne der Erfindung bezeichnet "Vliesstoff ein Gebilde aus Fasern begrenzter Länge, Endlosfasern (Filamenten) oder geschnittenen Garnen jeglicher Art und jeglichen Ursprungs, die auf irgendeine Weise zu einer Faserschicht oder einem Faserflor zusammengefügt und auf irgendeine Weise miteinander verbunden worden sind; davon ausgeschlossen ist das Verkreuzen bzw. Verschlingen von Garnen, wie es beim Weben, Wirken, Stricken, der Spitzenherstellung, dem Flechten und Herstellung von getufteten Erzeugnissen geschieht. Nicht zu den Vliesstoffen gehören Folien und Papiere.
Die zur Herstellung des Vliesstoffs eingesetzten Fasern können Filamente, d.h. Fasern mit einer prinzipiell endlosen Länge und/oder Stapelfasern sein. Erfindungsgemäß bevorzugt sind die Fasern Filamente. Stapelfasern können durch die verschiedensten bekannten Herstellungsverfahren gefertigt und gelegt werden, beispielsweise Kardierverfahren, Airlaid- und Wetlaid-Verfahren. In einer ersten geeigneten Ausführungsform umfasst das Substrat b) wenigstens einen mechanisch gebundenen Vliesstoff. Bei mechanisch gebundenen Vliesstoffen wird ein Faserflor z. B. durch eine Nadeltechnik oder mittels Wasserstrahlen verfestigt.
In einer weiteren geeigneten Ausführungsform umfasst das Substrat b) wenigstens einen thermisch gebundenen Vliesstoff. Thermisch gebundene Vliesstoffe können z. B. durch Pressen unter erhöhter Temperatur, beispielsweise mittels Kalander oder durch Heißluft, verfestigt werden. Der Faserflor thermisch gebundener Vliesstoffe umfasst in der Regel Fasern aus Polyolefinen, Polyester und/oder Polyamid.
In einer weiteren geeigneten Ausführungsform umfasst das Substrat b) wenigstens einen chemisch gebundenen Vliesstoff. Bei chemisch gebundenen Vliesstoffen wird der Faserflor durch Imprägnieren, Besprühen oder mittels sonst üblicher Auftragsmethoden mit einem Faserbinder (z. B. Acrylatbinder) versehen und anschließend gehärtet. Der Faserbinder bindet die Fasern untereinander zu einem Vliesstoff.
In einer bevorzugten Ausführungsform umfasst das Substrat b) wenigstens ein Spinnvlies (Spunbond). Zur Herstellung von Spinnvlies werden Endlosfasern (Filamente) abgelegt und können dann z. B. durch Behandlung mit beheizten Walzen oder durch Dampfstrom/Heißluft verfestigt werden. Bei der Verfestigung durch Walzen ist meist eine der beiden Walzen mit einer Gravur versehen, die z. B. aus kreis-, rechteck- oder rautenförmigen Punkten bestehen. An den Kontaktpunkten verschmelzen die Fäden und bilden so den Vliesstoff. Eine spezielle Ausführung ist ein thermisch verfestigtes Spinnvlies.
Das Flächengewicht des Vliesstoffs kann in weiten Bereichen variieren. Bevorzugt ist ein Flächengewicht gemäß DIN EN 29073-1:1992-08 von 10 bis 400 g/m2, vorzugsweise von 15 bis 300 g/m2, insbesondere von 20 bis 250 g/m2
Das Substrat b) kann zusätzlich wenigstens ein Additiv enthalten. Geeignete Additive sind zum einen Füllstoffe und Verstärkungsstoffe. Dazu zählen partikuläre Füllstoffe, Faserstoffe und beliebige Übergangsformen. Partikuläre Füllstoffe können eine weite Bandbreite von Teilchengrößen aufweisen, die von staubförmigen bis grobkörnigen Partikeln reichen. Als Füllmaterial kommen organische oder anorganische Füll- und Verstärkungsstoffe in Frage. Beispielsweise können anorganische Füllstoffe, wie Carbonfasern, Kaolin, Kreide, Wollastonit, Talkum, Calciumcarbonat, Silikate, Titandioxid, Zinkoxid, Glaspartikel, z. B. Glaskugeln, nanoskalige Schichtsilikate, nanoskaliges Aluminiumoxid (AI2O3), nanoskaliges Titandioxid (T1O2), Schichtsilikate und nanoskaliges Siliciumdioxid (S1O2), eingesetzt werden. Die Füllstoffe können auch oberflächenbehandelt sein. Geeignete Schichtsilikate sind Kaoline, Serpentine, Talkum, Glimmer, Vermiculite, lllite, Smectite, Montmorillonit, Hectorit, Doppelhydroxide und Gemische davon. Die Schichtsilikate können oberflächenbehandelt oder unbehandelt sein. Weiterhin können ein oder mehrere Faserstoffe zum Einsatz kommen. Diese sind vorzugsweise ausgewählt aus bekannten anorganischen Verstärkungsfasern, wie Borfasern, Glasfasern, Kieselsäurefasern, Keramikfasern und Basaltfasern; organischen Verstärkungsfasern, wie Aramidfasern, Polyesterfasern, Nylonfasern und Polyethylenfasern und Naturfasern, wie Flolzfasern, Flachsfasern, Flanffasern und Sisalfasern.
Geeignete Additive sind weiterhin ausgewählt unter Antioxidantien, Wärmestabilisatoren, Flammschutzmitteln, Lichtschutzmitteln (UV- Stabilisatoren, UV-Absorber oder UV-Blocker), Katalysatoren für die Vernetzungsreaktion, Verdickern, thixotropen Agentien, oberflächenaktiven Agentien, Viskositätsmodifikatoren, Gleitmitteln, Farbstoffen, Nukleierungsmitteln, Antistatika, Entformungsmitteln, Entschäumern, Bakteriziden, etc..
Das Substrat b) kann wenigstens ein Bindemittel enthalten. Bindemittel dienen z. B. zur Verbesserung der Haftung von Fasermaterialien, speziell Vliesstoffen. Sie dienen weiterhin zur Verbesserung der Haftung zwischen verschiedenen Lagen des Substrats b), z. B. zwischen zwei Vliesstofflagen. Bindemittel dienen weiterhin zur Verbesserung der Haftung von in der Komponente b) eingesetzten Füll- und Verstärkungsstoffen und weiteren Additiven. Geeignete Bindemittel umfassen wenigstens ein Polymermaterial, vorzugsweise ausgewählt unter Polyvinylalkohol, Polyacrylaten, Polyurethanen, Styrol-Butadien-Kautschuk, Nitril-Butadien-Kautschuk, Polyester-, Epoxid- und Polyurethanharzen.
In einer bevorzugten Ausführungsform umfasst das Substrat b) wenigstens zwei Schichten, wobei eine der Schichten als Verstärkungseinlage (scrim) ausgebildet ist. Durch den Einsatz von Verstärkungseinlagen kann beispielsweise die Haftung zwischen den beiden angrenzenden Lagen erhöht werden. Geeignete Materialen für die Verstärkungseinlage sind die zuvor als Fasermaterialien genannten. Speziell wird ein Polyester eingesetzt. Geeignet als Verstärkungseinlage sind allgemein die dafür beschriebenen Flächengebilde aus Fasern mit sich in zwei Richtungen kreuzenden Fäden. Diese weisen in der Regel ein deutlich geringeres Flächengewicht auf als die zuvor beschriebenen Vliesstoffe. Das Flächengewicht der Verstärkungseinlage liegt vorzugsweise in einem Bereich von 1 bis 100 g/m2, vorzugsweise von 1 bis 50 g/m2, insbesondere von 2 bis 25 g/m2.
Bevorzugt weist das Substrat b) eine Dicke, gemessen nach ISO 9073-2: 1995(E) von 50 bis 1500 pm, besonders bevorzugt von 100 bis 1000 pm, insbesondere von 150 bis 800 pm, auf. Bevorzugt weist das Substrat b) eine Höchstzugkraft, längs und/oder quer bestimmt nach ISO 9073-3: 1989(E), im Bereich von 50 bis 800 N/5cm, vorzugsweise von 100 bis 700 N/5cm, noch bevorzugter von 100 bis 500 N/5cm und insbesondere von 100 bis 350 N/5cm auf. Vorteilhaft an der Einstellung einer Höchstzugkraft in den vorgenannten Bereichen ist, dass das Substrat b) eine gute Stabilität bei Verarbeitungsprozessen aufweist.
In einer konkreten Ausführungsform wird zur Herstellung des Substrats b) ein Spinnvlies, insbesondere ein Polyester-Spinnvlies, eingesetzt und in einem Laminierungsverfahren mit wenigstens einem Polymermaterial als Bindemittel zu einem mehrschichtigen Verbundmaterial verbunden. Diese Herstellung erfolgt nach üblichen, dem Fachmann bekannten Verfahren, z. B. Thermobonding oder Kaschierung. Beim Thermobonding werden mittels einer Prägewalze punktuell Polymermaterial und/oder Vliesstoff durch hohe Temperatur und Druck plastifiziert, wobei sich eine Verbindung der beiden Materialbahnen ergibt. Bevorzugt ist die Extrusion. So können z. B. zur Herstellung eines Vliesstoff-Folie-Substrats mit dem Aufbau Vliesstoff-Folie- Vliesstoff zwei Vliesstoffbahnen mittels eines Binders verbunden werden. Dabei kann zumindest auf eine Materialbahn der plastifizierte Binder extrudiert werden und anschließend mit einer weiteren Vliesstoffbahn zusammengeführt werden, woran sich ein Verpressen und Abkühlen anschließt. Möglich ist auch, dass durch zwei Materialbahnen ein Walzenspalt gebildet wird, in den der Binder extrudiert, mit den Materialbahnen verpresst und abgekühlt wird. Nach diesen Verfahren lassen sich durch Wiederholung der Extrusions- und Härtungsschritte viellagige Substrate b) hersteilen, wobei die Schichtfolge der Vliesstoffschichten und Polymerschichten variieren kann. Werden mehrere Vliesstoffschichten und/oder mehrere Binderschichten vorgesehen, so können diese die gleiche Zusammensetzung oder verschiedene Zusammensetzungen, z. B. hinsichtlich der Art des Binders, der Art des Fasermaterials, der Materialmenge, etc., aufweisen. Durch Steuerung der Extrusionsbedingungen, z. B. der Auftragsmenge an Binder, der Art des Binders, der Temperatur, der Bahngeschwindigkeit und dem Liniendruck können die Materialeigenschaften beeinflusst werden. So lässt sich z. B. steuern, wie lange der Binder zwischen den Materialbahnen flüssig ist, d. h. wie gut er sich mit den beiden Materialbahnen verbinden kann. Somit lassen sich z. B. die Haftfestigkeit zwischen den Materialbahnen oder die Eindringtiefe in die Materialbahnen steuern. Die Anzahl der zu laminierenden Bahnen ist nicht begrenzt. Es muss nur für die erforderliche Erwärmung der Bahnen, z. B. über einen Heizzylinder, gesorgt werden. Prinzipiell können auch nicht nur Vliesstoffe mit Folien laminiert werden, sondern jede erdenkliche Kombination (z. B. VliesstoffA/liesstoff; Vliesstoff/Folie; Vliesstoff/FolieA/liesstoff; Folie/Folie; etc.).
Die Laminate zur Abschirmung elektromagnetischer Strahlung können hergestellt werden, indem man wenigstens eine Metallfolie a) und wenigstens ein flächiges Substrat b) oder deren Vorstufen in einem Laminierverfahren miteinander verbindet. Diese Verbindung ist in der Regel eine stoffschlüssige Verbindung. Alternativ oder zusätzlich kann eine form- und/oder kraftschlüssige Verbindung erfolgen.
Ein Stoffschluss wird durch atomare oder molekulare Kräfte zwischen den Verbindungspartnern gebildet. Zu den stoffschlüssigen Verbindungen von Kunststoffen zählen die Klebeverbindungen und Schweißverbindungen; auch Spritzgussverfahren führen zu stoffschlüssigen Verbindungen. Ein Stoffschluss ist eine in der Regel nicht lösbare Verbindung. Formschlüssige Verbindungen entstehen durch das Ineinandergreifen von mindestens zwei Verbindungspartnern. Dadurch können sich die Verbindungspartner auch ohne oder bei unterbrochener Kraftübertragung nicht lösen. Kraftschlüssige Verbindungen setzen eine Normal-Kraft auf die miteinander zu verbindenden Flächen voraus. Ihre gegenseitige Verschiebung ist verhindert, solange die durch die Haftreibung bewirkte Gegen-Kraft nicht überschritten wird. In dem Verfahren können einzelne Komponenten, z. B. mehrere mit einem Binder verbundene Metallfolien, mehrere mit einem Binder versehene Vliesstoffe, als Vorstufen (Zwischenprodukte) hergestellt und anschließend zu dem endgültigen Laminat verbunden werden. Als Binder können nicht härtbare oder härtbare Polymersysteme in Form von Ein- oder Mehrkomponentensystemen eingesetzt werden. Bevorzugte Binder sind Thermoplaste.
Die Laminierung, sei es in mehreren Einzelschritten oder in einem Schritt, erfolgt in der Regel bei erhöhter Temperatur und/oder unter erhöhtem Druck. Geeignet sind die bereits zuvor beschriebenen Verfahren. So kann man beispielsweise die zu laminierenden Komponenten schichtförmig als Bahnmaterial durch einen oder mehrere Walzenspalten führen. Des Weiteren kann man beispielsweise die zu laminierenden Komponenten in Form eines Stapels bei hoher Temperatur und hohem Druck für einen Zeitraum pressen, der ausreicht, um den Binder zu plastifizieren und gegebenenfalls zu härten und ein Laminat zu bilden.
Die erfindungsgemäßen Laminate weisen eine hohe Beständigkeit gegenüber einem Weiterreißen, sowohl ausgehend von den in den Laminaten befindlichen Einschnitten, als auch bei einer unerwünschten Beschädigung beim Ummanteln oder Verbinden mit wenigstens einem Bauteil auf. In Weiterreißversuchen wird der Widerstand eines Einschnitts gegen Weiterreißen bei einer Zugbeanspruchung bestimmt. Mit der DIN 53356 (1982-08-01, Form A) wird die Weiterreißkraft von Vliesstoffen bestimmt. Die Weiterreißkraft ist die Kraft, die bei der Zugbeanspruchung der Messprobe auftritt, bei der ein Einschnitt weiter reißt. Bevorzugt weisen die erfindungsgemäßen Laminate eine Weiterreißkraft, bestimmt nach DIN 53356 (1982-08-01, Form A), im Bereich von 1 bis 100 N, bevorzugt 2 bis 80 N, insbesondere 3 bis 40 N, auf.
Das Laminat ermöglicht die Herstellung eines gegenüber elektromagnetischer
Strahlung abgeschirmten Bauteils, bei dem man:
1.1) ein Laminat, wie zuvor definiert, und wenigstens ein Polymermaterial (c) oder eine Vorstufe davon bereitstellt,
11.1) das Laminat und das Polymermaterial (c) oder dessen Vorstufe einer Formgebung unter Verbindung der Materialen unterzieht, und dabei, falls vorhanden, die Vorstufe zur Polymerisation bringt, oder
1.2) ein Laminat, wie zuvor definiert, und wenigstens ein Bauteil bereitstellt,
11.2) das Bauteil teilweise oder vollständig mit dem Laminat beschichtet oder ummantelt.
Variante 1 :
Nach der ersten Verfahrensvariante wird aus wenigstens einem Polymermaterial (c) oder dessen Vorstufe ein Bauteil gefertigt, das der elektromagnetischen Abschirmung bedarf und mit einem wie hier beschriebenen Laminat verbunden. Diese Verbindung ist in der Regel stoffschlüssig. Dabei kann die Herstellung des Laminats und des Bauteils in separaten Schritten erfolgen. Alternativ können die das Laminat formenden Komponenten und die das abzuschirmende Bauteil formenden Komponenten in einem einzigen Schritt miteinander verbunden werden.
Polymermaterialien (c) im Sinne der Erfindung sind Materialien, die wenigstens ein Polymer enthalten oder aus wenigstens einem Polymer bestehen.
Zusätzlich zu wenigstens einem Polymer können die Polymermaterialien (c) wenigstens eine weitere Komponente enthalten, z. B. Füllstoffe, Verstärkungsstoffe oder davon verschiedene Additive. Die Polymermaterialien (c) liegen in einer speziellen Ausführung als Komposit (Verbundwerkstoff) vor.
Bevorzugt ist die Polymerkomponente des Polymermaterials (c) ausgewählt unter Polyurethanen, Silikonen, Fluorsilikonen, Polycarbonaten, Ethylen- Vinylacetaten, Acrylnitril-Butadien-Acrylaten, Acrylnitril-Butadien-Kautschuken, Acrylnitril-Butadien-Styrolen, Acrylnitril-Methylmethacrylaten, Acrylnitril-Styrol- Acrylaten, Celluloseacetaten, Celluloseacetatbutyraten, Polysulfonen, Poly(meth)acrylaten, Polyvinylchloriden, Polyphenylenethern, Polystyrolen, Polyamiden, Polyolefinen, Polyketonen, Polyetherketonen, Polyimiden, Polyetherimiden, Polyethylenterephthalaten, Polybutylenterephthalaten, Fluorpolymeren, Polyestern, Polyacetalen, Flüssigkristallpolymeren, Polyethersulfonen, Epoxidharzen, Phenolharzen, Chlorsulfonaten, Polybutadienen, Polybutylen, Polyneoprenen, Polynitrilen, Polyisoprenen, Naturkautschuken, Styrol-Isopren-Styrolen, Styrol-Butadien-Styrolen, Ethylen- Propylenen, Ethylen-Propylen-Dien-Kautschuken, Styrol-Butadien-Kautschuken sowie deren Copolymeren und Mischungen davon.
In einer bevorzugten Ausführung wird in Schritt i.1) das Polymermaterial (c) in Form eines Verbundwerkstoffs bereitgestellt, der die Polymerkomponente des Polymermaterials (c) und wenigstens eine weitere Komponente (K) umfasst, die vorzugsweise ausgewählt ist unter Polymeren, polymeren Werkstoffen, textilen Werkstoffen, keramischen Werkstoffen, mineralischen Werkstoffen und Kombinationen davon, besonders bevorzugt ausgewählt unter verstärkten und/oder gefüllten Kunststoffmaterialien, Polymerfolien, Polymerformkörpern und Kombinationen davon.
In einer speziellen Ausführung wird in Schritt i.1) das Polymermaterial (c) in Form eines Verbundwerkstoffs bereitgestellt, das wenigstens einen faserförmigen Verstärkungsstoff umfasst, wobei die Fasern vorzugsweise ausgewählt sind unter Glasfasern, Kohlenstofffasern, Aramidfasern, Polyesterfasern und Kombinationen davon.
In einerweiteren speziellen Ausführung wird in Schritt i.1) das Polymermaterial (c) in Form eines Verbundwerkstoffs bereitgestellt, der einen faserförmigen Verstärkungsstoff umfasst, der in eine thermoplastische Kunststoffmatrix eingebettet ist (Organoblech).
In Schritt ii.1 ) wird das Laminat und das Polymermaterial (c) oder dessen Vorstufe einer Formgebung unter Verbindung des Laminats und des Polymermaterials unterzogen.
In einer ersten bevorzugten Ausführungsform wird ein SMC-Verfahren (Fließpress-Verfahren, SMC = Sheet Molding Compound) zur Herstellung eines gegenüber elektromagnetischer Strahlung abgeschirmten Bauteils eingesetzt. Bei der SMC-Verarbeitung kann man so Vorgehen, dass man ein erfindungsgemäßes Laminat in der Kavität des Formwerkzeugs positioniert und gemeinsam mit wenigstens einem Polymermaterial einem Pressvorgang unterzieht. Dabei wird auch das Polymermaterial in Form eines flächigen Substrats eingesetzt, das durch Mischen und Konfektionieren wenigstens eines polymeren Binders, wenigstens eines Fasermaterials und gegebenenfalls wenigstes eines Additivs erhalten wird. So entsteht ein SMC-Halbzeug, das sich zusammen mit dem erfindungsgemäßen Laminat durch Fließpressen zu einem elektromagnetisch abgeschirmten Bauteil verarbeiten lässt.
In einerweiteren Ausführungsform wird ein Hinterspritz-Verfahren zur Herstellung eines gegenüber elektromagnetischer Strahlung abgeschirmten Bauteils eingesetzt. Beim Hinterspritzen werden Bauteile hergestellt, die aus einem polymeren Substrat und einem weiteren plastifizierbaren Polymermaterial bestehen. Als polymeres Substrat kann erfindungsgemäßes Laminat eingesetzt werden. Beim Hinterspritzen gibt es verschiedene Ausführungstechniken, wie Inmold decoration (IMD), Film insert molding (FIM), Inmold labeling (IML), Inmold coating (IMC) oder Inmold painting (IMP). Allen gemeinsam ist, dass das Laminat in ein Spritzgusswerkzeug eingelegt und mit einem weiteren Kunststoff hinterspritzt und geformt wird, so dass ein elektromagnetisch abgeschirmtes Bauteilteil entsteht.
In einerweiteren Ausführungsform wird ein Umform-Verfahren, speziell ein Thermoform-Verfahren, zur Herstellung eines gegenüber elektromagnetischer Strahlung abgeschirmten Bauteils eingesetzt.
Variante 2:
Nach einer zweiten Variante des Verfahrens zur Herstellung eines gegenüber elektromagnetischer Strahlung abgeschirmten Bauteils wird im Schritt i.2) ein Laminat, wie zuvor definiert, und wenigstens ein Bauteil bereitgestellt und nachfolgend im Schritt ii.2) das Bauteil teilweise oder vollständig mit dem Laminat beschichtet oder ummantelt.
Um das Bauteil mit dem Laminat zu drapieren kann das Laminat zunächst an die Geometrie des elektromagnetisch abzuschirmenden Bauteils angepasst werden. So kann das Laminat durch Schneiden und/oder Stanzen in die gewünschte Form gebracht werden. Dabei sind alle erdenklichen Konturen möglich. Auch ist es möglich, Falzungen vorzunehmen, z. B. um ein Gehäuse zu schaffen, in welches das Bauteil eingelegt werden kann.
Bevorzugt werden die beschriebenen Laminate, wie zuvor definiert, zur Abschirmung elektromagnetischer Strahlen, bevorzugt von stromführenden Systemen und Stromspeichern, besonders bevorzugt in elektronischen Gehäusen verwendet.
Die beschriebenen Laminate und daraus hergestellten gegenüber elektromagnetischer Strahlung abgeschirmten Bauteile eignen sich vorteilhaft für den Einsatz in Elektrofahrzeugen, Luftfahrzeugen und Raumfahrzeugen. Ein bevorzugter Einsatzbereich ist die Verwendung der erfindungsgemäßen und der nach dem erfindungsgemäßen Verfahren hergestellten Laminate in Elektrofahrzeugen und Drohnen. Ein Elektrofahrzeug ist ganz allgemein ein Verkehrsmittel, das zumindest zeitweise oder teilweise mit elektrischer Energie angetrieben wird. Dabei kann die Energie im Fahrzeug erzeugt, in Batterien gespeichert oder zeitweise oder permanent von außen zugeführt werden (z. B. durch Stromschienen, Oberleitung, Induktion, etc.), wobei Kombinationen von verschiedenen Formen der Energiezufuhr möglich sind. Batteriebetriebene Fahrzeuge werden international auch als Battery Electric Vehicle (BEV) bezeichnet. Beispiele für Elektrofahrzeuge sind Straßenfahrzeuge, Schienenfahrzeuge, Wasserfahrzeuge oder Luftfahrzeuge, wie Elektroautos, Elektromotorroller, Elektromotorräder, Elektrodreiräder, Batterie- und Oberleitungsbusse, Elektrolastkraftwagen, elektrische Bahnen (Eisen- und Straßenbahnen), Elektrofahrräder und Elektroroller. Elektrofahrzeuge im Sinne der Erfindung sind auch Hybridelektrofahrzeuge (Hybrid Electric Vehicle, HEV) und Brennstoffzellenfahrzeuge (Fuel Cell (Electric) Vehicle, FC(E)V). In Brennstoffzellenfahrzeugen wird elektrische Energie aus Wasserstoff oder Methanol durch eine Brennstoffzelle erzeugt und direkt mit dem Elektroantrieb in Bewegung umgewandelt oder zeitweise in einer Batterie gespeichert.
Bei der Elektromobilität unterscheidet man vier Kernbereiche, in denen die Abschirmung elektromagnetischer Strahlen von kritischer Bedeutung ist: die Leistungselektronik, die Batterie, der E-Motor und die Navigations- und Kommunikationseinrichtungen. Die erfindungsgemäß verwendeten Laminate eignen sich in vorteilhafter Weise für die Herstellung elektronischer Gehäuse für E-Mobility-Fahrzeuge in diesen vier Bereichen.
Moderne Elektrofahrzeuge basieren auf bürstenlosen Elektromotoren, wie zum Beispiel Asynchronmaschinen oder permanenterregte Synchronmaschinen (Brushless DC-Maschine). Die Kommutierung der Versorgungsspannung in den Phasen des Motors, und damit die Erzeugung des zum Betrieb nötigen Drehfeldes, erfolgt auf elektronischem Wege durch sogenannte Wechselrichter (Inverter). Beim Bremsen fungiert der Elektromotor als Generator und liefert eine Wechselspannung, die vom Inverter gleichgerichtet und der Traktionsbatterie zugeführt werden kann (Rekuperation). Sowohl Brennstoffzellen als auch die Batterien in Elektroautos liefern höhere Spannungen als die bisher im Automotive-Sektor bekannten 12 V Gleichstrom bzw. 24 V Gleichstrom. Für viele Bauteile der Bordelektronik ist auch weiterhin ein Niedervolt-Bordnetz notwendig. Dazu werden DC/DC-Wandler eingesetzt, die hohe Spannung der Batterie in eine entsprechend niedrigere Spannung umwandeln und Verbraucher wie Klimaanlage, Servolenkung, Beleuchtung, usw. speisen. Eine weitere wichtige Leistungselektronik-Komponente im Elektroauto ist das Onboard-Ladegerät. Stromtankstellen zur Versorgung von Elektrofahrzeugen stellen entweder einphasigen oder dreiphasigen Wechselstrom oder Gleichstrom zur Verfügung. Zur Ladung der Traktionsbatterien ist zwingend Gleichstrom notwendig, welcher mit Hilfe eines Onboard-Ladegerätes durch Gleichrichtung und Wandlung des Wechselstromes erzeugt wird. Die erfindungsgemäß verwendeten Substrate eignen sich speziell für die Abschirmung elektromagnetischer Strahlen von Invertern, DC/DC-Wandlern und Onboard-Ladegeräten. Die erfindungsgemäßen Laminate eignen sich speziell auch für die Abschirmung von Navigations- und Kommunikationseinrichtungen, wie speziell GPS- Systemen, vor elektromagnetischen Strahlen.
Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.
BEISPIELE
Beispiel 1 :
Zur Herstellung eines erfindungsgemäß verwendbaren Laminats wird ein thermisch verfestigtes Polyester-Spinnvlies (Komponente b) mit einem Flächengewicht von 100 g/m2 und eine Aluminiumfolie (Komponente a) mit einer Dicke von 50 pm mit Polypropylen als Binder laminiert. Das Polyester- Spinnvlies weist einen Quotienten der Höchstzugkraft, bestimmt nach ISO 9073-3: 1989(E), längs zu quer von 1,2 auf.
Hierzu wird auf die Aluminiumfolie mittels Dreifachextrusion unter Verwendung einer Breitschlitzdüse eine Polymerbeschichtung als Binder aufgebracht, die aus einer Schicht eines Haftvermittlerpolymers, gefolgt von einer Polypropylenschicht (PP) und einer zweiten Schicht eines Haftvermittlerpolymers, bestand. Die Temperatur am Austritt der Extruder beträgt 240 °C. Das Polyester-Spinnvlies wird der heißen Polymerschicht zugeführt und anschließend in einem Kalander aus zwei Walzen bei erhöhter Temperatur und einem Liniendruck von etwa 30 N/mm verpresst. Das erhaltene Laminat weist eine Höchstzugkraft, bestimmt nach ISO 9073- 3: 1989(E), längs von 450 N/5cm und quer von 395 N/5cm und eine Dehnung, bestimmt nach ISO 9073-3: 1989(E), von 11 % (längs) und 13,5 (quer) auf.
An dem erhaltenen Laminat werden die Schirmdämpfungswerte nach ASTM D- 4935-2010 bestimmt. Das Laminat weist, wie in der nachfolgenden Tabelle gezeigt, sehr gute Abschirmungswerte auf, die höher als die eines analog aufgebauten aber mit Einschnitten versehenen Laminats sind.
Beispiel 2:
Das in Beispiel 1 hergestellte Laminat wird einer Verformungsprüfung nach folgendem Schema unterzogen:
Es wird ein kreisrundes Muster mit einem Durchmesser von 24 cm in einen kreisrunden metallischen Haltering eingespannt, so dass die zu prüfende Fläche einen Durchmesser von 22 cm hat. Dieser Haltering wird in einer Vorrichtung eingespannt, wobei ein Verformungsraum ausreichender Größe vorgehalten wird. Das Muster wird mittels IR Heizung auf 180°C vorgeheizt und im Anschluss mit einer auf einem Stempel montierten Metallkugel verformt. Die Metallkugel ist ungeheizt, hat einer Durchmesser von 7cm und setzt mittig mit einer Geschwindigkeit von 40mm/sec auf. Die Eindringtiefe bis zum Reißen der Aluminiumfolie definiert die maximale Verformbarkeit unter diesen Bedingungen. Die Eindringtiefe der Kugel an Beispiel 1 beträgt 3 cm, die Eindringtiefe an der unlaminierten Alufolie aus Beispiel 1 beträgt 1,5 cm. Trotz seiner geringen Dehnung weist das Laminat folglich eine ausreichende Verformbarkeit auf. So können mit dem Laminat abgeschirmte Bauteile hergestellt werden, ohne dass die Laminate vorgeformt werden müssen. Ferner ist es möglich, die abzuschirmenden Bauteile in einem Vorgang zu formen und mit dem Laminat zur Abschirmung elektromagnetischer Strahlung zu verbinden. Hierzu können verschiedene Spritzgussverfahren, wie das Hinterspritzen und der Mehrkomponenten-Spritzguss, oder Umformverfahren, wie das Thermoformen verwendet werden. Insbesondere eignen sich die erfindungsgemäßen Laminate für den Einsatz in einem Verfahren zur Herstellung von Faser-Verbundwerkstoffen, speziell einem SMC-Verfahren (Fließpressen von Sheet Molding Compounds).
Ohne sich auf einen Mechanismus festzulegen, wird vermutet, dass die gute Verformbarkeit des Laminats zumindest anteillig durch die Erhöhung der Dehnung der Aluminiumfolie durch die Laminierung mit dem Vliesstoff (Dehnung Aluminiumfolie unlaminiert: längs 3,02%, quer 3,27% auf längs 11 % und quer 13,5 (Laminat)) bewirkt wird.

Claims

Patentansprüche
1. Verwendung eines Laminats, umfassend a) wenigstens eine Metallfolie, wobei die Metallfolie eine Dicke von 3 bis 250 pm aufweist, und b) ein flächiges Substrat, umfassend einen Vliesstoff mit einem Quotienten der Höchstzugkraft, bestimmt nach ISO 9073-
3: 1989(E), längs zu quer von 1 :2 bis 2:1 , wobei das Laminat eine Höchstzugkraft, längs und/oder quer bestimmt nach ISO 9073-3: 1989(E) im Bereich von 50 bis 800 N/5cm und eine Dehnung, längs und/oder quer bestimmt nach ISO 9073-3: 1989(E), von weniger als 30 % aufweist, zur Abschirmung elektromagnetischer Strahlen.
2. Verwendung nach Anspruch 1 , wobei das Laminat im Bereich seiner Grundfläche keinen oder höchstens einen Einschnitt (einer Länge von über 1 mm) pro 10 cm2 in die Grundfläche des Laminats aufweist.
3. Verwendung nach Anspruch 1 oder 2, wobei das Laminat als Bahnenware ausgebildet ist.
4. Verwendung nach einem der vorhergehenden Ansprüche, wobei die Metallfolie Aluminium umfasst oder aus Aluminium besteht.
5. Verwendung nach einem der vorhergehenden Ansprüche, wobei die Metallfolie eine Dicke von 5 bis 225 pm, insbesondere von 7 bis 200 pm, aufweist.
6. Verwendung nach einem der vorhergehenden Ansprüche, wobei das Substrat b) eine Dicke, gemessen nach ISO 9073-2: 1995(E), von 50 bis 1500 pm, bevorzugt von 100 bis 1000 pm, besonders bevorzugt von 150 bis 800 pm, aufweist.
7. Verwendung nach einem der vorhergehenden Ansprüche wobei das Laminat eine Weiterreißkraft, bestimmt nach DIN 53356 (1982-08-01, Form A), im Bereich von 1 bis 100 N, bevorzugt 2 bis 80 N, insbesondere 3 bis 40 N, aufweist.
8. Verwendung nach einem der vorhergehenden Ansprüche, wobei das Laminat eine Höchstzugkraft, längs und/oder quer bestimmt nach ISO 9073-3: 1989(E), im Bereich 100 bis 700 N/5cm, insbesondere 150 bis 600 N/5cm, aufweist.
9. Verwendung nach einem der vorhergehenden Ansprüche, wobei das Laminat eine Dehnung, längs und/oder quer bestimmt nach ISO 9073- 3: 1989(E), von 3 % bis 30 %, noch bevorzugter von 3 % bis 25 % und insbesondere von 5 % bis 20 %, aufweist.
10. Verwendung nach einem der vorhergehenden Ansprüche zur Abschirmung elektromagnetischer Strahlen von stromführenden Systemen und Stromspeichern, besonders bevorzugt in elektronischen Gehäusen, insbesondere in Elektrofahrzeugen, Luftfahrzeugen, Raumfahrzeugen und Drohnen.
11. Verwendung nach einem der vorhergehenden Ansprüche zur Abschirmung elektromagnetischer Strahlen im Frequenzbereich von 1 kHz bis 10 GHz.
12. Verwendung nach einem der vorhergehenden Ansprüche zur Abschirmung elektromagnetischer Strahlen im Bereich der Leistungselektronik, der Batterie, des E-Motors und zur Abschirmung von Navigations- und Kommunikationseinrichtungen, besonders bevorzugt zur Abschirmung elektromagnetischer Strahlen von Invertern, DC/DC- Wandlern, Onboard-Ladegeräten und zur Abschirmung von GPS- Systemen.
13. Verwendung nach einem der vorhergehenden Ansprüche umfassend die Herstellung eines gegenüber elektromagnetischer Strahlung abgeschirmten Bauteils, bei dem man:
1.1) das Laminat und wenigstens ein Polymermaterial (c) oder eine Vorstufe davon bereitstellt,
11.1) das Laminat und das Polymermaterial (c) oder dessen Vorstufe einer Formgebung unter Verbindung der Materialen unterzieht, und dabei, falls vorhanden, die Vorstufe zur Polymerisation bringt, oder
1.2) das Laminat und wenigstens ein Bauteil bereitstellt,
11.2) das Bauteil teilweise oder vollständig mit dem Laminat beschichtet oder ummantelt.
EP22729452.7A 2021-06-14 2022-05-11 Verwendung eines laminats zur abschirmung elektromagnetischer strahlung Pending EP4355570A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021115269.0A DE102021115269A1 (de) 2021-06-14 2021-06-14 Verwendung eines Laminats zur Abschirmung elektromagnetischer Strahlung
PCT/EP2022/062726 WO2022263063A1 (de) 2021-06-14 2022-05-11 Verwendung eines laminats zur abschirmung elektromagnetischer strahlung

Publications (1)

Publication Number Publication Date
EP4355570A1 true EP4355570A1 (de) 2024-04-24

Family

ID=82019804

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22729452.7A Pending EP4355570A1 (de) 2021-06-14 2022-05-11 Verwendung eines laminats zur abschirmung elektromagnetischer strahlung

Country Status (3)

Country Link
EP (1) EP4355570A1 (de)
DE (1) DE102021115269A1 (de)
WO (1) WO2022263063A1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732789B2 (ja) * 1993-10-18 1998-03-30 平岡織染株式会社 電磁波シールド性積層シート
KR100654114B1 (ko) 1998-10-30 2006-12-05 스미또모 가가꾸 가부시끼가이샤 전자파 차단판
DE10334714A1 (de) * 2002-08-07 2004-04-15 Henkel Kgaa Funktioneller, elektromagnetische Strahlung dämpfender Verbundstoff
DE102005001063A1 (de) 2005-01-07 2006-07-20 Johns Manville Europe Gmbh Verwendung von Schichtmaterialien zur Abschirmung von elektromagnetischen Wellen
KR100836746B1 (ko) 2007-04-17 2008-06-10 주식회사 나노인터페이스 테크놀로지 전자기파 차폐 방열 시트 및 이의 제조방법
TW200901871A (en) 2007-04-24 2009-01-01 Nano Interface Technology Laminate sheet for electromagnetic radiation shielding and grounding
DE102019131499A1 (de) 2019-11-21 2021-05-27 Carl Freudenberg Kg Flexibles Laminat zur Abschirmung elektromagnetischer Strahlung

Also Published As

Publication number Publication date
DE102021115269A1 (de) 2022-12-15
WO2022263063A1 (de) 2022-12-22

Similar Documents

Publication Publication Date Title
WO2021099163A1 (de) Flexibles laminat zur abschirmung elektromagnetischer strahlung
EP0793570B1 (de) Verfahren zur herstellung eines kaschierten warmformteils
EP2742558A2 (de) Batteriegehäuseteil zur aufnahme einer traktionsbatterie eines elektrofahrzeugs und verfahren zur herstellung des batteriegehäuseteils
WO2013020700A1 (de) Batteriegehäuseteil zur abschirmung elektromagnetischer strahlung für ein batteriegehäuse einer traktionsbatterie eines elektrofahrzeugs und verfahren zur herstellung des batteriegehäuseteils
DE102005037662A1 (de) Klebeband mit einem Träger aus einem Spinnvlies, der einseitig mit einem druckempfindlichen Kleber zumindest partiell beschichtet ist
DE102019118092A1 (de) Verfahren zur Herstellung eines gegenüber elektromagnetischer Strahlung abgeschirmten Bauteils
DE102012021887A1 (de) Kraftfahrzeug-Innenverkleidungsbauteil mit integrierter Heizfunktion, Herstellungsverfahren dafür und dabei eingesetztes Flächenheizelement
WO2005081267A1 (de) Dreidimensional geformtes flachkabel
DE102012021866A1 (de) Kraftfahrzeug-Innenverkleidungsbauteil mit integrierter Heizfunktion, Herstellungsverfahren dafür und dabei eingesetztes Flächenheizelement
EP0418772A2 (de) Dimensionsstabiler Verbundkörper und Verfahren zu seiner Herstellung
EP4355570A1 (de) Verwendung eines laminats zur abschirmung elektromagnetischer strahlung
EP3227096B1 (de) Faserverbundwerkstoff, verfahren zur herstellung eines verbundbauteils sowie dessen verwendung
CN107650398A (zh) 赋予中间层导电性的方法、复合材料及其制造方法
DE10222832B3 (de) Flexibles Band- oder Flachkabel
DE102018204407A1 (de) Funktionsintegrierte Temperierung in Stahl-Kunststoff-Hybriden durch wärmeleitfähige Füllstoffe
EP4050077A1 (de) Klebeband zum ummanteln von langgestrecktem gut wie insbesondere kabelsätzen und verfahren zur ummantelung
WO2012100997A2 (de) Faserverbundkunststoff sowie herstellungsverfahren dazu
EP1568050B1 (de) Dreidimensional geformtes flachkabel, verfahren zu seiner herstellung und seine verwendung
DE10315747A1 (de) Dreidimensional geformtes Flachkabel, Verfahren zu seiner Herstellung und seine Verwendung
EP4353471A1 (de) Brandschutzvorrichtung mit verbundsystem, verbundsystem und batterie-pack mit brandschutzvorrichtung
WO2022223401A1 (de) Bauteil und verfahren zur herstellung eines bauteils
DE102022121907A1 (de) Textiles Formteil mit Schirmung für elektromagnetische Strahlung und ein entsprechendes Herstellungsverfahren
DE202023100856U1 (de) Vliesstofflaminat
DE102019213768A1 (de) Toleranzausgleich durch Metall-Kunststoff-Hybridwerkstoff
DE202004020549U1 (de) Dreidimensional geformtes Flachkabel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)