EP4355518A1 - Dispositif de fabrication additive - Google Patents

Dispositif de fabrication additive

Info

Publication number
EP4355518A1
EP4355518A1 EP22741340.8A EP22741340A EP4355518A1 EP 4355518 A1 EP4355518 A1 EP 4355518A1 EP 22741340 A EP22741340 A EP 22741340A EP 4355518 A1 EP4355518 A1 EP 4355518A1
Authority
EP
European Patent Office
Prior art keywords
powder
enclosure
effector
dispenser
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22741340.8A
Other languages
German (de)
English (en)
Inventor
Hugo Sistach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP4355518A1 publication Critical patent/EP4355518A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/222Driving means for motion along a direction orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/224Driving means for motion along a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/52Hoppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This document relates to an additive manufacturing device, in particular by fusion on a powder bed.
  • Additive manufacturing devices allow the manufacture of parts by selective melting of powder, using a laser additive manufacturing process known as Laser Beam Melting.
  • a laser additive manufacturing process known as Laser Beam Melting.
  • Such a method consists in manufacturing a part by melting successive layers of powder by means of a laser beam controlled by an information processing system in which the three-dimensional coordinates of the points of the successive layers to be produced have been recorded.
  • a first layer of powder is deposited by a powder dispenser on the bottom of a tank formed by a plate movable in vertical translation, using a scraper.
  • the layer then has a lower surface corresponding to the upper surface of the plate and an upper surface on which the laser beam is directed and moved.
  • the energy provided by this beam causes local melting of the powder which, on solidifying, forms a first layer of the metal part.
  • the plate After formation of this first layer, the plate is lowered by a distance corresponding to the thickness of one layer, then a second layer of powder is brought by the scraper onto the previous layer.
  • a second layer of the metal part is formed by melting using the laser beam or the electron beam. These operations are repeated until the part is completely manufactured.
  • the powder dispenser is fixed in the enclosure and deposits a quantity of powder at the same place on the plate, generally in front of the scraper, at one of the edges of the manufacturing plate. The scraper pushes the amount of powder deposited on the entire plate and thus spreads it over the entire surface of the build plate.
  • This document proposes a device for additive manufacturing by melting on a powder bed, the device comprising an enclosure comprising, in a lower part of the enclosure, a manufacturing plate and a means for spreading powder capable of traversing the manufacturing plate. to spread powder thereon previously deposited on the manufacturing plate and comprising in an upper part of the enclosure a window facing the manufacturing plate and allowing the passage of laser rays, the device comprising at least one effector arranged in the enclosure and connected to at least two actuators configured to move said effector between the upper part of the enclosure and a target position at the manufacturing platform.
  • the device makes it possible to reach a target position at the level of the plate and thus makes it possible to operate locally at the level of the target position.
  • At least one effector can be equipped with a powder dispenser.
  • the powder dispenser can be removably mounted to said effector. This makes it possible to locally deposit powder at a target powder deposit position. This powder can be locally distributed at the level of a target zone by the spreading means.
  • At least one effector can be equipped with a powder extractor.
  • the powder extractor can be removably mounted to said effector.
  • the cleaning of the enclosure is thus automated.
  • the device also saves time when depowdering the enclosure because the powder aspirator can be brought locally to a place on the manufacturing plate containing powder.
  • the device may comprise a flexible pipe connecting the vacuum cleaner to an air outlet opening provided in one of the walls of the enclosure.
  • the powder dispenser or the powder aspirator can be snap-fitted or screwed into the effector. Such assembly can be automated or manual.
  • the enclosure may be parallelepipedal.
  • the top may include a top wall of the enclosure which may be square or rectangular.
  • the enclosure may be airtight when closed.
  • the top wall may be opaque to laser rays.
  • the window can be arranged in the upper wall and can comprise a pane adapted for the passage of laser beams.
  • the device may include a laser configured to emit laser beams perpendicular to the build plate.
  • the window can have dimensions smaller than the dimensions of the build plate and the laser can be oriented to emit laser beams to reach the entire build plate.
  • the manufacturing plate can extend along a first direction and a second direction perpendicular to each other.
  • the powder spreading means may be movable in the first direction.
  • Each effector can be actuated by dedicated actuators.
  • the actuators can be configured to drive at least two effectors in parallel.
  • the device can comprise four actuators arranged in the upper part of the enclosure and each connected by a cable to said effector.
  • the actuators can be linear motors configured to wind or unwind one of the cables.
  • the cables may extend in the first direction.
  • an actuator can be arranged at a corner of the upper wall.
  • the upper part can be arranged at a non-zero distance from the lower part in the third direction.
  • the upper part can be arranged at a distance of about 40 cm from the lower part or about 1.5 times the width of the tabletop.
  • the lower part can be formed by an area around the build plate in the third direction, for example up to 2 cm above the build plate, in other words in the direction of the upper wall.
  • the build plate may be movable in a third direction perpendicular to the first direction and the second direction.
  • the third direction can be vertical.
  • the build plate can be lowered in the third direction away from the top.
  • the build plate can be lowered by a height corresponding to one layer of the part being built.
  • Such a thickness can be between 20 and 60 microns, in particular equal to 40 microns.
  • the actuators can be configured to move said effector in the first direction and/or the second direction.
  • the actuators can be configured to move said effector in the third direction.
  • the device may comprise at least two effectors each equipped with a powder dispenser.
  • the powder dispensers can include different powders. This makes it possible to deposit on a certain layer of the part being manufactured or on certain zones of the manufacturing plate, several materials.
  • the device may comprise at least two effectors each equipped with a powder extractor.
  • a specific powder vacuum cleaner can be provided for each type of powder used to recover said powder
  • a universal powder vacuum cleaner can be provided for recovering different types of waste in the enclosure.
  • each specific powder vacuum can be arranged where the specific powder is deposited while the universal powder vacuum cleaner can be arranged at transition points between two places where specific powder is deposited. This arrangement makes it possible to recycle the powder and saves material.
  • the powder dispensers can comprise the same type of powder.
  • the device may comprise several effectors each equipped with a powder dispenser and/or several effectors each equipped with a powder aspirator.
  • the device may comprise a first effector equipped with a powder dispenser and a second effector equipped with a powder aspirator.
  • the powder spreading means can be a scraper or a roller.
  • the scraper can be formed by an iron blade.
  • the device may comprise means for actuating the powder spreading means in the first direction to move the latter upstream of the target position in the direction of scanning of the manufacturing plate.
  • the powder spreading means can be brought to a distance between 1mm and 1cm upstream of the target position.
  • the powder can be deposited progressively in front of the powder spreading means, following its progress.
  • the powder spreading means makes it possible to make the thickness of the layer of powder homogeneous.
  • the powder spreading means may have a dimension in the second direction equal to or greater than the dimension of the manufacturing plate in the second direction.
  • the enclosure may include, in the upper part, one or more waiting zones for the effector.
  • the waiting area(s) may be an area of the upper wall outside the window.
  • the enclosure may comprise in the upper part, one or more tool change areas, in which a powder dispenser and/or a powder extractor can be removed/mounted from/into the effector.
  • the tool change area or areas may be areas of the top wall outside the window, for example at an edge of the top wall. A tool change area can be confused with a waiting area.
  • a powder dispenser may comprise a buffer stock container comprising powder and communicating with a cylinder fitted with a cross opening into a powder dispensing opening.
  • the cross makes it possible to dose the deposit of the powder.
  • the powder dispensing opening may have dimensions between 2 and 10 mm, in particular around 4 mm so that the powder does not remain blocked in the cylinder.
  • the amount of powder deposited can be adjusted according to the speed of advance of the dispenser and of the powder spreading means and the speed of rotation of the cross inside the dispenser.
  • the quantity of powder to be deposited at the target position can be determined according to the volume of material of the layer to be manufactured.
  • the buffer stock bin may have a rectangular shape with asymmetrical side slopes forming an angle of minus 30° with respect to the third direction or the vertical to allow the descent of the powder.
  • the buffer stock bin can have a capacity of 2L.
  • the enclosure may include a means for reloading the powder dispenser into powder.
  • Such means may be an opening connected to a powder storage container.
  • the opening can be arranged in the waiting area or the tool change area.
  • the powder storage bin can have a capacity of 50L.
  • the actuators can be configured to route the dispenser at a height between 1 mm and 10 mm from the build plate opposite the target powder deposit position in the build plate. manufacturing.
  • the device may include means for calibrating the actuators to associate the reference of the actuators with a reference position of the effector(s).
  • Such calibration means can comprise a stop sensor.
  • the powder may be a metallic powder.
  • the device can be configured to manufacture a part of a turbomachine.
  • This document also relates to a use of a manufacturing device as mentioned above, comprising the steps: mounting a powder dispenser to an effector of the device, moving the powder dispenser to the target position of the manufacturing platform, depositing a predetermined quantity of powder, and sweeping the build plate with the powder spreading means.
  • Multiple powder dispensers can be mounted in the enclosure so that each end effector is equipped with a powder dispenser.
  • Each powder dispenser may include a different powder and may be at a predetermined target position.
  • the use may further include the steps: exposing the build plate to a laser beam, and lowering the build plate after exposure by the laser beam.
  • Use may include the steps of replacing the powder dispenser with a vacuum, and vacuuming the vacuum around a target position on the build plate.
  • the replacement and suction steps can be performed before lowering the build plate.
  • FIG. 1 is a schematic representation of a first embodiment of an additive manufacturing device in a first operating configuration.
  • FIG. 2 is a schematic representation of the device of FIG. 1 in a second operating configuration.
  • FIG. 3 is a schematic representation of the device of FIG. 1 in a third operating configuration.
  • FIG. 4 is a schematic representation of a second embodiment of an additive manufacturing device in a first operating configuration.
  • FIG. 5 is a schematic representation of the device of FIG. 4 in a second operating configuration.
  • the additive manufacturing device 100 comprises a parallelepiped enclosure 102 comprising an upper wall 104 and a lower wall 106.
  • the upper wall 104 comprises a window 108 provided with a window allowing the passage of laser rays 110 while the rest of the upper wall is opaque to laser rays.
  • a build plate 112 is connected to bottom wall 106 and extends in the XY plane. The build plate 112 can move along the Z axis, particularly in the -Z direction.
  • the device 100 comprises a scraper 114 formed by an iron blade and arranged movable along the Y axis.
  • the scraper 114 is arranged above the build plate 112 and can sweep the surface of the build plate 112 along the -Y direction. .
  • the width of the scraper 114 along the X axis is equal to the width of the build plate 112 along the X axis.
  • the scraper 114 can be replaced by a roller capable of sweeping the surface of the build plate. 112.
  • the device 100 further comprises an effector equipped with a powder dispenser 116 connected to motors 120 by four cables 117 and 118 extending along the Y axis.
  • the cables 117 are arranged upstream of the dispenser in the -Y direction.
  • displacement of the scraper 114 and the cables 118 are arranged downstream of the dispenser 116 in the -Y direction of displacement of the scraper 114.
  • Each motor 120 is arranged at a corner of the upper wall 104. The winding of the cables 118 and the unwinding cables 117 move scraper 116 in the -Y direction, and vice versa.
  • the cables 117 and 118 can be metallic or nylon cables allowing the mass of the dispenser to be held.
  • the scraper 114 is brought upstream of a powder deposit target position in the -Y direction.
  • the scraper is arranged at a distance of approximately 5 mm upstream from the target powder deposit position.
  • Dispenser 116 is then moved by motors 120 to the target powder deposit position.
  • the dispenser 116 can be arranged at a distance of 1 mm from the manufacturing plate in the direction Z opposite the projection of the target deposit position in the XY plane.
  • the dispenser 116 comprises a buffer stock container filled with powder and communicating with a cylinder in which is arranged a dispensing cross.
  • the cylinder leads to a powder dispensing opening, which can have a width or a diameter of between 2 and 10mm, in particular around 4mm.
  • the buffer stock bin can have a capacity of 2L.
  • the dispenser 116 is actuated to deposit powder as it moves along the -Y direction in front of the scraper 114.
  • the latter can move simultaneously with the movement of the dispenser 116 and makes it possible to spread the powder by forming a powder bed 122 with a homogeneous layer thickness.
  • the quantity of powder deposited by the dispenser 116 is regulated according to the speed of advance of the dispenser 16 and the scraper 114, and the speed of rotation of the cross inside the cylinder of the dispenser 116.
  • the dispenser 116 is moved to a waiting zone 124 at the level of the upper wall 102 set back from the window 108 so as not to obstruct the passage of the laser rays. 110.
  • the scraper 114 is also moved to an initial position, for example at an edge of the build plate 112. The initial position of the scraper 114 may be outside the build plate 112 on the bottom wall 106 of the enclosure. 102.
  • the powder bed 122 is then exposed to laser rays 110 for a predetermined duration, which causes it to melt and form a layer of material after it has solidified.
  • the manufacturing plate 112 is lowered in the -Z direction by a distance equivalent to the thickness of the layer formed, for example approximately 40 microns. Powder can again be deposited on build plate 112 to form the next layer on top of the layer already formed.
  • the dispenser 116 can be removed from its support connecting it to the cables 117 and 118.
  • a vacuum cleaner (not shown in FIGS. 1 to 3) can be mounted on the support in place of the dispenser 116.
  • the vacuum cleaner can sweep the layer formed to depowder the enclosure before depositing a new layer of powder.
  • the vacuum cleaner can be connected to a discharge bag outside the enclosure, by a flexible hose.
  • the dismantling of the dispenser 116 can be carried out at the level of the waiting zone 116. This change can be automated or manual.
  • the enclosure 102 may include a powder intake opening, for example arranged at the level of the waiting area 116. This powder intake opening may be connected to a powder storage tank of greater capacity. than the dispenser buffer stock tank 116, for example with a capacity of 50L, and makes it possible to refill the dispenser buffer stock tank 116 when it is empty or at an insufficient level.
  • the device 100 may comprise means for actuating the dispenser 116 along the X axis.
  • Such means may comprise motors mounted on the fixing support of the dispenser 116 and connected by cables, extending along the X axis, to dispenser 116.
  • the additive manufacturing device 200 comprises the same elements as the device 100.
  • the device 200 comprises a first dispenser 1161 and a second dispenser 1162.
  • Each of the dispensers 116 is connected by cables 118 and 117 to motors 120.
  • Each dispenser 116 moves independently of the other dispenser 116.
  • the tray of the first dispenser 1161 comprises a first powder and the tray of the second dispenser 1162 comprises a second powder separate from the first powder.
  • the first dispenser 1161 is moved to a first powder deposit target position and the second dispenser 1162 is moved to a second powder deposit target position.
  • the scraper 114 is actuated to sweep the entire surface of the manufacturing plate 112 and thus forms a first powder bed 122i and a second powder bed 1222.
  • a means for cleaning the scraper 114 can be provided between the first and second powder depositing target positions, to avoid mixing the first powder and the second powder. Exposing the build plate 112 allows two layers of different materials to be formed.
  • the first powder and the second powder can be metallic powders.
  • the waiting area 124 can simultaneously accommodate the first dispenser 1161 and the second dispenser 1162.
  • the waiting area 124 can accommodate only one of the first dispenser 1161 and the second dispenser 1162, the enclosure which may include another waiting area, arranged for example opposite the waiting area 124 with respect to the window 108, to accommodate the other of the first dispenser 1161 and the second dispenser 1162.
  • the second dispenser 1162 can be replaced by a vacuum cleaner 126 connected by a flexible pipe 130 to an opening 128 provided in a side wall 132 of the enclosure. Opening 128 can be connected to a powder collection bag.
  • the vacuum cleaner 126 can sweep the whole of the enclosure 102 to depowder it or only an area around the second target position for depositing powder. The vacuum cleaner 126 can thus be used to recover any waste in the enclosure or only the remains of the second powder after exposure to laser beams.
  • the scraper 114 is arranged in the initial position.
  • the first dispenser 1161 can be replaced by a vacuum cleaner which can be used to recover only the remains of the first powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

Le présent document concerne un dispositif (100) pour la fabrication additive par fusion sur lit de poudre, le dispositif comprenant une enceinte (102) comprenant dans une partie inférieure de l'enceinte un plateau de fabrication (112) et un moyen d'étalement (114) de poudre apte à parcourir le plateau de fabrication pour y étaler de la poudre préalablement déposée sur le plateau de fabrication et comprenant dans une partie supérieure de l'enceinte une fenêtre (108) en regard du plateau de fabrication et permettant le passage de rayons laser (110), le dispositif (100) comprenant au moins un effecteur agencé dans l'enceinte et relié à au moins deux actionneurs (120) configurés pour déplacer ledit effecteur entre la partie supérieure de l'enceinte et une position cible au niveau du plateau de fabrication (112).

Description

DESCRIPTION
TITRE : Dispositif de fabrication additive
Domaine technique de l’invention
Le présent document concerne un dispositif de fabrication additive, en particulier par fusion sur un lit de poudre.
Etat de la technique antérieure
Les dispositifs de fabrication additive permettent la fabrication de pièces par fusion sélective de poudre, à l’aide d’un procédé de fabrication additive par laser connu sous le nom de Laser Beam Melting. Un tel procédé consiste à fabriquer une pièce par fusion de couches successives de poudre au moyen d'un faisceau laser commandé par un système de traitement de l'information dans lequel on a enregistré les coordonnées tridimensionnelles des points des couches successives à réaliser. De façon pratique, on dépose par un dispenseur de poudre sur le fond d’une cuve formée par un plateau mobile en translation verticale, une première couche de poudre à l’aide d’un racleur. La couche présente alors une surface inférieure correspondant à la surface supérieure du plateau et une surface supérieure sur laquelle est dirigé et déplacé le faisceau laser. L'énergie apportée par ce faisceau provoque la fusion locale de la poudre qui, en se solidifiant, forme une première couche de la pièce métallique.
Après formation de cette première couche, le plateau est descendu d’une distance correspondant à l’épaisseur d’une couche, puis une seconde couche de poudre est amenée par le racleur sur la couche précédente. De la même manière que précédemment, une seconde couche de la pièce métallique est formée par fusion à l’aide du faisceau laser ou du faisceau d’électrons. Ces opérations sont répétées jusqu’à fabrication complète de la pièce. Le dispenseur de poudre est fixe dans l’enceinte et dépose une quantité de la poudre à un même endroit du plateau, généralement devant le racleur, au niveau d’un des bords du plateau de fabrication. Le racleur pousse la quantité de poudre déposée sur l’ensemble du plateau et l’étale ainsi sur toute la surface du plateau de fabrication. Il n’est pas possible, avec les dispositifs actuels, de déposer de la poudre localement sur une zone prédéterminée du plateau de fabrication car ces dispositifs étalent la poudre sur l’ensemble du plateau à chaque dépôt de poudre. En outre, ces dispositifs ne permettent pas d’utiliser plusieurs matériaux différents dans la même enceinte. Enfin, la quantité de poudre à déposer pour fabriquer les pièces est importante et nécessite de nombreuses opérations de manutention, puisqu’il est nécessaire d’étaler la poudre sur l’ensemble du plateau, notamment si peu de pièces doivent être réalisées.
Il existe un besoin d’amélioration des dispositifs de fabrication additive. Résumé de l’invention
Le présent document propose un dispositif pour la fabrication additive par fusion sur lit de poudre, le dispositif comprenant une enceinte comprenant dans une partie inférieure de l’enceinte un plateau de fabrication et un moyen d’étalement de poudre apte à parcourir le plateau de fabrication pour y étaler de la poudre préalablement déposée sur le plateau de fabrication et comprenant dans une partie supérieure de l’enceinte une fenêtre en regard du plateau de fabrication et permettant le passage de rayons laser, le dispositif comprenant au moins un effecteur agencé dans l’enceinte et relié à au moins deux actionneurs configurés pour déplacer ledit effecteur entre la partie supérieure de l’enceinte et une position cible au niveau du plateau de fabrication.
Le dispositif permet d’atteindre une position cible au niveau du plateau et permet ainsi d’opérer localement au niveau de la position cible.
Au moins un effecteur peut être équipé d’un dispenseur de poudre. En particulier, le dispenseur de poudre peut être monté de façon amovible audit effecteur. Ceci permet de déposer localement de la poudre au niveau d’une position cible de dépose de poudre. Cette poudre pourra être localement distribuée au niveau d’une zone cible par le moyen d’étalement.
Au moins un effecteur peut être équipé d’un aspirateur de poudre. Par exemple, l’aspirateur de poudre peut être monté de façon amovible audit effecteur. Ainsi, le nettoyage de l’enceinte est ainsi automatisé. Le dispositif permet aussi un gain de temps lors du dépoudrage de l’enceinte car l’aspirateur de poudre peut être amené localement à un endroit du plateau de fabrication comprenant de la poudre.
Le dispositif peut comprendre un tuyau flexible reliant l’aspirateur à une ouverture de sortie d’air aménagée dans une des parois de l’enceinte.
Le dispenseur de poudre ou l’aspirateur de poudre peut être monté par encliquetage ou par vissage dans l’effecteur. Un tel montage peut être automatisé ou manuel.
L’enceinte peut être parallélépipédique. La partie supérieure peut comprendre une paroi supérieure de l’enceinte qui peut être carrée ou rectangulaire. L’enceinte peut être hermétique lorsqu’elle est fermée.
La paroi supérieure peut être opaque aux rayons laser. La fenêtre peut être aménagée dans la paroi supérieure et peut comprendre une vitre adaptée pour le passage de rayons laser.
Le dispositif peut comprendre un laser configuré pour émettre des rayons laser perpendiculaire au plateau de fabrication.
La fenêtre peut avoir des dimensions inférieures aux dimensions du plateau de fabrication et le laser peut être orienté pour émettre des rayons laser pour atteindre l’ensemble du plateau de fabrication. Le plateau de fabrication peut s’étendre selon une première direction et une seconde direction perpendiculaires entre elles.
Le moyen d’étalement de poudre peut être déplaçable selon la première direction.
Chaque effecteur peut être actionné par des actionneurs dédiés. Alternativement, les actionneurs peuvent être configurés pour piloter au moins deux effecteurs en parallèle.
Pour chaque effecteur, le dispositif peut comprendre quatre actionneurs agencés dans la partie supérieure de l’enceinte et reliés chacun par un câble audit effecteur.
Les actionneurs peuvent être des moteurs linéaires configurés pour enrouler ou dérouler un des câbles.
Les câbles peuvent s’étendre selon la première direction.
Pour chaque effecteur, un actionneur peut être agencé à un coin de la paroi supérieure.
La partie supérieure peut être agencée à une distance non nulle de la partie inférieure suivant la troisième direction. Par exemple, la partie supérieure peut être agencée à une distance d’environ 40 cm de la partie inférieure ou d’environ 1,5 fois la largeur du plateau.
La partie inférieure peut être formée par une zone autour du plateau de fabrication suivant la troisième direction, par exemple jusqu’à 2 cm au-dessus du plateau de fabrication, autrement dit en direction de la paroi supérieure.
Le plateau de fabrication peut être déplaçable selon une troisième direction perpendiculaire à la première direction et la seconde direction. Par exemple, la troisième direction peut être verticale. En particulier, le plateau de fabrication peut être abaissé selon la troisième direction en s’éloignant de la partie supérieure. Par exemple, le plateau de fabrication peut être abaissé d’une hauteur correspondant à une couche de la pièce en cours de fabrication. Une telle épaisseur peut être comprise entre 20 et 60 microns, en particulier égale à 40 microns.
Pour chaque effecteur, les actionneurs peuvent être configurés pour déplacer ledit effecteur selon la première direction et/ou la seconde direction.
Pour chaque effecteur, les actionneurs peuvent être configurés pour déplacer ledit effecteur selon la troisième direction.
Le dispositif peut comprendre au moins deux effecteurs chacun muni d’un dispenseur de poudre. Les dispenseurs de poudre peuvent comprendre des poudres différentes. Ceci permet de déposer sur une certaine couche de la pièce en cours de fabrication ou sur certaines zones du plateau de fabrication, plusieurs matériaux.
Le dispositif peut comprendre au moins deux effecteurs chacun muni d’un aspirateur de poudre. Par exemple, un aspirateur de poudre spécifique peut être prévu par type de poudre utilisée pour récupérer ladite poudre, et un aspirateur de poudre universel peut être prévu pour récupérer différents déchets dans l’enceinte. Par exemple, chaque aspirateur de poudre spécifique peut être agencé à l’endroit où la poudre spécifique est déposée tandis que l’aspirateur de poudre universel peut être agencé à des endroits de transition entre deux endroits où de la poudre spécifique est déposée. Cet agencement permet de recycler la poudre et permet un gain de matériau.
Alternativement, les dispenseurs de poudre peuvent comprendre un même type de poudre. Le dispositif peut comprendre plusieurs effecteurs équipés chacun d’un dispenseur de poudre et/ou plusieurs effecteurs équipés chacun d’un aspirateur de poudre.
Le dispositif peut comprendre un premier effecteur équipé d’un dispenseur de poudre et un second effecteur équipé d’un aspirateur de poudre.
Le moyen d’étalement de poudre peut être un racleur ou un rouleau. Le racleur peut être formé par une lame en fer.
Le dispositif peut comprendre des moyens d’actionnement du moyen d’étalement de poudre selon la première direction pour déplacer ce dernier en amont de la position cible suivant la direction du balayage du plateau de fabrication. Par exemple, le moyen d’étalement de poudre peut être amené à une distance entre 1mm et 1cm en amont de la position cible.
La poudre peut être déposée au fur et à mesure devant le moyen d’étalement de poudre en suivant son avancée. Le moyen d’étalement de poudre permet de rendre l’épaisseur de couche de poudre homogène.
Le moyen d’étalement de poudre peut présenter une dimension selon la seconde direction égale ou supérieure à la dimension du plateau de fabrication selon la seconde direction. L’enceinte peut comprendre dans la partie supérieure, une ou plusieurs zones d’attente de l’effecteur. Par exemple, la ou les zones d’attente peuvent être une zone de la paroi supérieure en dehors de la fenêtre.
L’enceinte peut comprendre dans la partie supérieure, une ou plusieurs zones de changement d’outil, dans laquelle un dispenseur de poudre et/ou un aspirateur de poudre peut être retiré/monté de/dans l’effecteur. Par exemple, la ou les zones de changement d’outil peuvent être des zones de la paroi supérieure en dehors de la fenêtre, par exemple au niveau d’un bord de la paroi supérieure. Une zone de changement d’outil peut être confondue avec une zone d’attente.
Par exemple, un dispenseur de poudre peut comprendre un bac de stock tampon comprenant de la poudre et communiquant avec un cylindre muni d’une croix débouchant sur une ouverture de distribution de poudre. La croix permet de doser la dépose de la poudre. L’ouverture de distribution de poudre peut être avoir des dimensions entre 2 et 10 mm, en particulier d’environ 4 mm pour que la poudre ne reste pas bloquée dans le cylindre. La quantité de poudre déposée peut être ajustée en fonction de la vitesse d’avance du dispenseur et du moyen d’étalement de poudre et la vitesse de rotation de la croix à l’intérieur du dispenseur. La quantité de poudre à déposer au niveau de la position cible peut être déterminée en fonction du volume de matière de la couche à fabriquer. De plus, le bac de stock tampon peut avoir une forme rectangulaire avec des pentes latérales asymétriques formant un angle de moins 30° par rapport à la troisième direction ou la verticale pour permettre la descente de la poudre. Le bac de stock tampon peut avoir une capacité de 2L.
L’enceinte peut comprendre un moyen de rechargement du dispenseur de poudre en poudre. Un tel moyen peut être une ouverture reliée à un bac de stockage de poudre. L’ouverture peut être agencée dans la zone d’attente ou la zone de changement d’outil. Le bac de stockage de poudre peut avoir une capacité de 50L.
Lorsque l’effecteur est équipé d’un dispenseur de poudre, les actionneurs peuvent être configurés pour acheminer le dispenseur à une hauteur entre 1 mm et 10 mm du plateau de fabrication en regard de la position cible de dépose de la poudre dans le plateau de fabrication.
Le dispositif peut comprendre des moyens de calibration des actionneurs pour associer la référence des actionneurs à une position de référence de ou des effecteurs. De tels moyens de calibration peuvent comprendre un capteur de butée.
La poudre peut être une poudre métallique.
Le dispositif peut être configuré pour fabriquer une pièce d’une turbomachine.
Le présent document concerne encore une utilisation d’un dispositif de fabrication tel que précité, comprenant les étapes : monter un dispenseur de poudre à un effecteur du dispositif, déplacer le dispenseur de poudre à la position cible du plateau de fabrication, déposer une quantité prédéterminée de poudre, et balayer le plateau de fabrication à l’aide du moyen d’étalement de poudre.
Plusieurs dispenseurs de poudre peuvent être montés dans l’enceinte de sorte que chaque effecteur est équipé d’un dispenseur de poudre.
Chaque dispenseur de poudre peut comprendre une poudre différente et peut être à une position cible prédéterminée.
L’utilisation peut encore comprendre les étapes : exposer le plateau de fabrication à un rayon laser, et abaisser le plateau de fabrication à l’issue de l’exposition par le rayon laser.
L’utilisation peut comprendre les étapes : remplacer le dispenseur de poudre par un aspirateur, et aspirer à l’aide de l’aspirateur autour d’une position cible sur le plateau de fabrication.
En particulier, les étapes de remplacement et d’aspiration peuvent être réalisées avant d’abaisser le plateau de fabrication.
Brève description des figures [Fig. 1] est une représentation schématique d’un premier exemple de réalisation d’un dispositif de fabrication additive dans une première configuration de fonctionnement.
[Fig. 2] est une représentation schématique du dispositif de la figure 1 dans une seconde configuration de fonctionnement.
[Fig. 3] est une représentation schématique du dispositif de la figure 1 dans une troisième configuration de fonctionnement.
[Fig. 4] est une représentation schématique d’un second exemple de réalisation d’un dispositif de fabrication additive dans une première configuration de fonctionnement.
[Fig. 5] est une représentation schématique du dispositif de la figure 4 dans une seconde configuration de fonctionnement.
Description détaillée de l’invention
En référence aux figures 1 à 3, le dispositif 100 de fabrication additive comprend une enceinte 102 parallélépipédique comprenant une paroi supérieure 104 et une paroi inférieure 106. La paroi supérieure 104 comprend une fenêtre 108 munie d’une vitre permettant le passage de rayons laser 110 tandis que le reste de la paroi supérieure est opaque aux rayons laser. Un plateau de fabrication 112 est relié à la paroi inférieure 106 et s’étend dans le plan XY. Le plateau de fabrication 112 peut se déplacer selon l’axe Z, en particulier dans la direction -Z.
Le dispositif 100 comprend un racleur 114 formé par une lame de fer et agencé mobile suivant l’axe Y. Le racleur 114 est agencé par-dessus le plateau de fabrication 112 et peut balayer la surface du plateau de fabrication 112 suivant la direction -Y. La largeur du racleur 114 suivant l’axe X est égale à la largeur du plateau de fabrication 112 suivant l’axe X. Selon un mode de réalisation, le racleur 114 peut être remplacé par un rouleau apte à balayer la surface du plateau de fabrication 112.
Le dispositif 100 comprend en outre un effecteur équipé d’un dispenseur de poudre 116 relié à des moteurs 120 par quatre câbles 117 et 118 s’étendant suivant l’axe Y. Les câbles 117 sont agencés en amont du dispenseur dans la direction -Y de déplacement du racleur 114 et les câbles 118 sont agencés en aval du dispenseur 116 dans la direction -Y de déplacement du racleur 114. Chaque moteur 120 est agencé à un coin de la paroi supérieure 104. L’enroulement des câbles 118 et le déroulement des câble 117 assure le déplacement du racleur 116 dans la direction -Y, et inversement.
Les câbles 117 et 118 peuvent être des câbles métalliques ou en nylon permettant une tenue de la masse du dispenseur.
En fonctionnement, le racleur 114 est amené en amont d’une position cible de dépose de poudre suivant la direction -Y. Par exemple, le racleur est agencé à une distance d’environ 5 mm en amont de la position cible de dépose de poudre. Le dispenseur 116 est ensuite déplacé par les moteurs 120 à la position cible de dépose de poudre. Le dispenseur 116 peut être agencé à une distance de 1 mm du plateau de fabrication selon la direction Z en regard de la projection de la position cible de dépose dans le plan XY.
Le dispenseur 116 comprend un bac de stock tampon rempli de poudre et communiquant avec un cylindre dans lequel est agencé une croix de distribution. Le cylindre débouche sur une ouverture de distribution de poudre, qui peut avoir une largeur ou un diamètre compris entre 2 et 10mm, en particulier d’environ 4mm. Le bac de stock tampon peut avoir une capacité de 2L.
Le dispenseur 116 est actionné pour déposer de la poudre au fur et à mesure qu’il se déplace suivant la direction -Y devant le racleur 114. Ce dernier peut se déplacer simultanément au déplacement du dispenseur 116 et permet d’étaler la poudre en formant un lit de poudre 122 avec une épaisseur de couche homogène.
La quantité de poudre déposée par le dispenseur 116 est régulée en fonction de la vitesse d’avance du dispenseurl 16 et du racleur 114, et de la vitesse de rotation de la croix à l’intérieur du cylindre du dispenseur 116.
Tel que montré sur la figure 3, une fois le lit de poudre formé, le dispenseur 116 est déplacé à une zone d’attente 124 au niveau de la paroi supérieure 102 en retrait de la fenêtre 108 pour ne pas gêner le passage des rayons laser 110. Le racleur 114 est aussi déplacé à une position initiale, par exemple à un bord du plateau de fabrication 112. La position initiale du racleur 114 peut être à l’extérieur du plateau de fabrication 112 sur la paroi inférieure 106 de l’enceinte 102.
Le lit de poudre 122 est ensuite exposé aux rayons laser 110 pendant une durée prédéterminée ce qui entraine sa fusion et forme une couche de matériau après sa solidification.
A la fin de cette opération, le plateau de fabrication 112 est abaissé suivant la direction -Z d’une distance équivalente à l’épaisseur de la couche formée, par exemple d’environ 40 microns. De la poudre peut à nouveau être déposée sur le plateau de fabrication 112 pour former la couche suivante par-dessus la couche déjà formée.
Le dispenseur 116 peut être démonté de son support le reliant aux câbles 117 et 118. Un aspirateur (non représenté sur les figures 1 à 3) peut être monté sur le support à la place du dispenseur 116. L’aspirateur peut balayer la couche formée pour dépoudrer l’enceinte avant de déposer une nouvelle couche de poudre. L’aspirateur peut être relié à un sac de décharge à l’extérieur de l’enceinte, par un tuyau flexible.
Le démontage du dispenseur 116 peut être réalisé au niveau de la zone d’attente 116. Ce changement peut être automatisé ou manuel. L’enceinte 102 peut comprendre une ouverture d’admission de poudre, par exemple agencée au niveau de la zone d’attente 116. Cette ouverture d’admission de poudre peut être reliée à un bac de stockage de poudre d’une plus grande capacité que le bac de stock tampon dispenseur 116, par exemple d’une capacité de 50L, et permet de recharger le bac de stock tampon du dispenseur 116 lorsqu’il est vide ou à un niveau insuffisant.
Le dispositif 100 peut comprendre des moyens d’actionnement du dispenseur 116 selon l’axe X. De tels moyens peuvent comprendre des moteurs montés sur le support de fixation du dispenseur 116 et reliés par des câbles, s’étendant suivant l’axe X, au dispenseur 116.
En référence aux figures 4 et 5, le dispositif 200 de fabrication additive comprend les mêmes éléments que le dispositif 100. En plus, le dispositif 200 comprend un premier dispenseur 1161 et un second dispenseur 1162. Chacun des dispenseurs 116 est relié par des câbles 118 et 117 à des moteurs 120. Chaque dispenseur 116 se déplace indépendamment de l’autre dispenseur 116. Le bac du premier dispenseur 1161 comprend une première poudre et le bac du second dispenseur 1 1 62 comprend une seconde poudre distincte de la première poudre.
Tel que représenté sur la figure 4, le premier dispenseur 1161 est amené à une première position cible de dépose de poudre et le second dispenseur 1 162 est amené à une seconde position cible de dépose de poudre. Une fois les première et seconde poudres déposées, le racleur 114 est actionné pour balayer toute la surface du plateau de fabrication 112 et forme ainsi un premier lit de poudre 122i et un second lit de poudre 1222. Un moyen de nettoyage du racleur 114 peut être prévu entre les première et seconde positions cible de dépose de poudre, pour éviter de mélanger la première poudre et la seconde poudre. L’exposition du plateau de fabrication 112 permet de former deux couches de différent matériaux. La première poudre et la seconde poudre peuvent être des poudres métalliques.
La zone d’attente 124 peut accueillir simultanément le premier dispenseur 1161 et le second dispenseur 1162. Alternativement, la zone d’attente 124 peut accueillir uniquement l’un du premier dispenseur 1 1 61 et du second dispenseur 1 1 62, l’enceinte pouvant comprendre une autre zone d’attente, agencée par exemple en regard de la zone d’attente 124 par rapport à la fenêtre 108, pour accueillir l’autre du premier dispenseur 1 161 et du second dispenseur 1 1 62.
Comme montré à la figure 5, le second dispenseur 1162 peut être remplacé par un aspirateur 126 relié par un tuyau flexible 130 à une ouverture 128 aménagée dans une paroi latérale 132 de l’enceinte. L’ouverture 128 peut être raccordée à un sac de récupération de poudre. L’aspirateur 126 peut balayer l’ensemble de l’enceinte 102 pour la dépoudrer ou uniquement une zone autour de la second position cible de dépose de poudre. L’aspirateur 126 peut ainsi être utilisé pour récupérer tout déchet dans l’enceinte ou uniquement les restes de la seconde poudre après exposition aux rayons laser. Pendant le nettoyage de l’enceinte, le racleur 114 est agencé à la position initiale.
De même, le premier dispenseur 1161 peut être remplacer par un aspirateur qui peut être utilisé pour récupérer uniquement les restes de la première poudre.

Claims

REVENDICATIONS
1. Dispositif (100,200) pour la fabrication additive par fusion sur lit de poudre, le dispositif comprenant une enceinte (102) comprenant dans une partie inférieure de l’enceinte un plateau de fabrication (112) et un moyen d’étalement (114) de poudre apte à parcourir le plateau de fabrication pour y étaler de la poudre préalablement déposée sur le plateau de fabrication et comprenant dans une partie supérieure de l’enceinte une fenêtre (108) en regard du plateau de fabrication et permettant le passage de rayons laser (110), le dispositif (100,200) comprenant au moins un effecteur agencé dans l’enceinte et relié à au moins deux actionneurs (120) configurés pour déplacer ledit effecteur entre la partie supérieure de l’enceinte et une position cible au niveau du plateau de fabrication (112) le dispositif comprenant en outre au moins deux effecteurs chacun muni d’un dispenseur de poudre (116), et dans lequel les dispenseurs de poudre (116) comprennent des poudres différentes.
2. Dispositif (200) selon la revendication 1 , dans lequel au moins un effecteur est équipé d’un aspirateur de poudre (124).
3. Dispositif (100,200) selon l’une des revendications précédentes, comprenant, pour chaque effecteur, quatre actionneurs (120) agencés dans la partie supérieure de l’enceinte (102) et reliés chacun par un câble (118,117) audit effecteur.
4. Dispositif (100,200) selon l’une des revendications précédentes, dans lequel le plateau de fabrication (112) s’étend selon une première direction (Y) et une seconde direction (X) perpendiculaires entre elles, et le plateau de fabrication (112) est déplaçable selon une troisième direction (Z) perpendiculaire à la première direction et la seconde direction.
5. Dispositif (100,200) selon la revendication 4, dans lequel, pour chaque effecteur, les actionneurs (120) sont configurés pour déplacer ledit effecteur selon la première direction (Y) et/ou la seconde direction (X).
6. Dispositif (100,200) selon l’une des revendications précédentes, dans lequel le moyen d’étalement de poudre est un racleur (114) ou un rouleau.
7. Utilisation d’un dispositif de fabrication (100,200) selon l’une des revendications précédentes, comprenant : monter un dispenseur de poudre (116) à un effecteur du dispositif (100,200), déplacer le dispenseur de poudre (116) à la position cible du plateau de fabrication (112), déposer une quantité prédéterminée de poudre, et balayer le plateau de fabrication (112) à l’aide du moyen d’étalement de poudre (114).
8. Utilisation selon la revendication précédente, comprenant les étapes : remplacer le dispenseur de poudre (116) par un aspirateur (126), et aspirer à l’aide de l’aspirateur (126) autour d’une position cible sur le plateau de fabrication
EP22741340.8A 2021-06-15 2022-06-14 Dispositif de fabrication additive Pending EP4355518A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2106334A FR3123815B1 (fr) 2021-06-15 2021-06-15 Dispositif de fabrication additive
PCT/FR2022/051142 WO2022263768A1 (fr) 2021-06-15 2022-06-14 Dispositif de fabrication additive

Publications (1)

Publication Number Publication Date
EP4355518A1 true EP4355518A1 (fr) 2024-04-24

Family

ID=77710948

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22741340.8A Pending EP4355518A1 (fr) 2021-06-15 2022-06-14 Dispositif de fabrication additive

Country Status (4)

Country Link
EP (1) EP4355518A1 (fr)
CN (1) CN117980094A (fr)
FR (1) FR3123815B1 (fr)
WO (1) WO2022263768A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0821660D0 (en) * 2008-11-27 2008-12-31 Univ Exeter The Manufacturing device and method
US11583930B2 (en) * 2017-04-26 2023-02-21 The University Of Manchester Apparatus for and process of additive manufacturing
US20180345371A1 (en) * 2017-05-31 2018-12-06 General Electric Company Apparatus and method for angular and rotational additive manufacturing
JP6961461B2 (ja) * 2017-10-27 2021-11-05 三菱重工業株式会社 積層造形装置

Also Published As

Publication number Publication date
FR3123815B1 (fr) 2023-11-24
WO2022263768A1 (fr) 2022-12-22
CN117980094A (zh) 2024-05-03
FR3123815A1 (fr) 2022-12-16

Similar Documents

Publication Publication Date Title
EP2879819B1 (fr) Machine et procédé pour la fabrication additive à base de poudre
EP1235650B1 (fr) Dispositif de depose de couches minces de matiere en poudre ou pulverulente et procede adapte
EP3393698B1 (fr) Machine de fabrication additive comprenant un système de distribution de poudre à tiroir et injecteur
EP3369555A1 (fr) Procede et machine de fabrication de pieces par la technique des procedes additifs par voie pateuse avec amenee de pate perfectionnee
WO2005002764A1 (fr) Dispositif de realisation de couches minces de poudre notamment a hautes temperatures lors d'un procede base sur l'action d'un laser sur de la matiere
EP3452270A1 (fr) Machine de fabrication additive comprenant un système d'extraction et procédé de fabrication additive par la mise en uvre d'une telle machine
LU88144A1 (fr) Installation pour garnir d'une maçonnerie de briques une paroi intérieure d'une enceinte
EP3478444B1 (fr) Machine de decoupe laser pour le travail de matiere se presentant en feuille et/ou en bobine
WO2018087087A1 (fr) Dispositif combine de transvasement et de tamisage de poudre de fabrication additive
EP3043900B1 (fr) Dispositif mobile de remplissage de reacteurs catalytiques tubulaires
WO2017108867A1 (fr) Procede de fabrication additive comprenant une etape de distribution de poudre par un injecteur
EP4355518A1 (fr) Dispositif de fabrication additive
FR2859397A1 (fr) Centrale d'alimentation d'une installation de poudrage electrostatique
FR2710580A1 (fr) Maintien d'une charge dans un emballage et dispositif de coupe d'emballage.
EP3880594A1 (fr) Procede et installation d'alimentation en produits elastomeriques
EP3787877A1 (fr) Machine de fabrication additive comprenant un dispositif de distribution de poudre par doseur a vis sur une surface mobile
EP1035956B1 (fr) Dispositif de surfacage
WO2024126953A1 (fr) Dispositif et procede de fabrication additive avec depoudrage d'un chariot d'etalement de poudre
EP3672719B1 (fr) Dispositif mobile de remplissage d'enceintes de réacteurs catalytiques
EP4045211B1 (fr) Machine de fabrication additive comprenant une distribution de poudre mobile et regulee
FR2853573A1 (fr) Installation de decoupage laser de materiau en feuille ou en plaque, notamment de decoupage de toles en continu
EP3892575B1 (fr) Dispositif de fourniture de film à une fardeleuse, avec au moins deux dévidoirs pourvus chacun d'un carter de recouvrement
FR2759668A1 (fr) Dispositif de distribution de comprimes et gelules a lyre pour machine de mise sous blister a avance discontinue et procede utilisant le dispositif
FR2948922A1 (fr) Installation d'emballage comprenant au moins deux modules distincts dont un au moins est mobile par rapport a une direction de convoyage des produits a emballer
FR2489279A1 (fr) Dispositif de reception et d'empilage de produits en plaques, et procede de changement de pile au moyen de ce dispositif

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR