EP4347749A1 - Procede de fabrication en continu d'une matiere combustible par decompression explosive s'operant par paliers - Google Patents

Procede de fabrication en continu d'une matiere combustible par decompression explosive s'operant par paliers

Info

Publication number
EP4347749A1
EP4347749A1 EP22723701.3A EP22723701A EP4347749A1 EP 4347749 A1 EP4347749 A1 EP 4347749A1 EP 22723701 A EP22723701 A EP 22723701A EP 4347749 A1 EP4347749 A1 EP 4347749A1
Authority
EP
European Patent Office
Prior art keywords
biomass
reactor
separation means
vapor
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22723701.3A
Other languages
German (de)
English (en)
Inventor
Frédéric MARTEL
Adriana QUINTERO-MARQUEZ
Jean-Luc DESPRES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Europeenne de Biomasse SAS
Original Assignee
Europeenne de Biomasse SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Europeenne de Biomasse SAS filed Critical Europeenne de Biomasse SAS
Publication of EP4347749A1 publication Critical patent/EP4347749A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/363Pellets or granulates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/442Wood or forestry waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/02Combustion or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/10Recycling of a stream within the process or apparatus to reuse elsewhere therein
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/14Injection, e.g. in a reactor or a fuel stream during fuel production
    • C10L2290/148Injection, e.g. in a reactor or a fuel stream during fuel production of steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/28Cutting, disintegrating, shredding or grinding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/30Pressing, compressing or compacting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/48Expanders, e.g. throttles or flash tanks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/50Screws or pistons for moving along solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/52Hoppers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/543Distillation, fractionation or rectification for separating fractions, components or impurities during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the field of the invention is that of the production of biomass-based fuels.
  • the invention relates to a process for the continuous production of a combustible material from lignocellulosic biomass.
  • the invention also finds an application in the manufacture of combustible material for boilers or for industrial furnaces, and for domestic boilers and stoves.
  • a drawback of the carbonization technique is that during the transformation a large mass quantity, generally of the order of 70 to up to 80%, of material is lost, which makes the fuels obtained by this technique expensive.
  • the losses of material are also significant, and approximately 10 to 20%, with the torrefaction technique, which moreover has the further disadvantage of being expensive to implement and of requiring implementation under an atmosphere inert to avoid a risk of combustion, which represents a danger.
  • the known techniques of continuous steam cracking or discontinuous “steam explosion” can make it possible to limit the mass losses of material.
  • a volatile matter rich in energy can be released and lost by this process, which can reduce quite greatly the final calorific value of the final product obtained by these known processes.
  • the document WO2006/006863 A1 describes a batch “steam explosion” technique in which the explosive decompression is carried out in two stages.
  • part of the steam contained in the reactor is transferred to a second reactor, in order to limit energy losses and in a second step, the biomass having undergone steam cracking is evacuated with the steam. residual water in a drain enclosure, under the effect of expansion.
  • This known technique has the disadvantage of being complex and costly to implement, because it requires two reactors and an enclosure having an internal volume approximately 13 to 19 times greater than that of the reactors in order to be able to provide expansion and which is capable of withstanding explosive shocks.
  • the object of the invention is therefore in particular to overcome the disadvantages of the prior art mentioned above. More specifically, the aim of the invention is to provide a technique for the continuous manufacture of combustible material from lignocellulosic biomass by "steam explosion" which makes it possible to improve the calorific value of the combustible material while limiting the losses of material in the form condensable volatile compounds with high carbon content.
  • An object of the invention is also to provide such a technique which makes it possible to obtain a combustible material capable of being transformed into granules, also commonly called “pellets”.
  • Another object of the invention is to provide such a technique which makes it possible to reduce the particle size of the combustible material.
  • An object of the invention is also to propose such a technique which makes it possible to increase the cohesion and the resistance to water of the combustible material.
  • Another object of the invention is to provide such a technique which is simple to implement and has a reduced cost price.
  • lignocellulosic biomass is understood to mean biomass of agricultural or forestry origin comprising cellulose, hemicellulose and lignin, such as raw wood, forest residues, waste or co-products from the wood processing industry (sawdust, wood shavings, splinters, etc.), treated wood, pallets, biomass from the exploitation of coppice, miscanthus, fescue, bamboo, etc., waste or ligneous co-products from agricultural crops (straw, grass, etc.) or from the food industry ( bagasse, etc.), or green, woody or recycled waste from landfills and any combination thereof.
  • such a method comprises: an explosive decompression step comprising a transfer of said biomass extracted from said reactor in a conduit to separation means in which the vapor pressure is between 7 and 8 bars; a separation step in said separation means of a portion of the steam extracted from said reactor with said biomass and from said biomass;
  • the invention proposes to carry out an explosive decompression of the material leaving the reactor in several stages, including a first in which the pressure is brought back to between 7 and 8 bars, which allows suitable defibrillation of the biomass. while substantially limiting the losses of material to losses of volatile compounds of low calorific value. Moreover, during the depressurization step, the quantity of residual vapor being reduced, a smaller quantity of recoverable organic compounds of interest is entrained with it.
  • said depressurization step down to atmospheric pressure comprises at least one additional explosive decompression step comprising a transfer in a conduit of said biomass from means of separation up to additional means of separation in which the vapor pressure is less than or equal to 4 bars and a stage of separation in said means of additional separation of a portion of the incoming vapor in said additional separation means and from said biomass.
  • said depressurization step down to atmospheric pressure comprises:
  • a first additional explosive decompression step comprising a transfer in a conduit of said biomass from the separation means to first additional separation means in which the vapor pressure is between 3.5 and 4 bars and a separation step in said first additional separation means a portion of the vapor entering said first additional separation means and said biomass,
  • a second additional explosive decompression step comprising a transfer in a conduit of said biomass from the first additional separation means to second additional separation means in which the vapor pressure is between 1.8 and 2 bars, and preferably is equal to 1.9 bars, and a separation step in said second additional separation means of a portion of the vapor entering said second additional separation means and of said biomass.
  • said step of depressurization down to atmospheric pressure further comprises a third step of additional explosive decompression comprising a transfer in a conduit of said biomass from said second additional separation means up to third additional separation means in which the vapor pressure is equal to 1 bar, and a stage of separation in said third additional separation means of a portion of the vapor entering said third additional separation means and of said biomass.
  • said means for separating a portion of vapor extracted from said reactor with said biomass extracted from the reactor comprise a cyclone or a centrifugal dynamic separator (turbine).
  • a method as described above comprises a step of circulating said vapor separated from said biomass in a heat exchanger, such as a condensation heat exchanger.
  • a method as described above comprises a step of combustion of said portion of vapor separated from said biomass.
  • the steam pressure then makes it possible to diffuse it in the hearth of the boiler to ensure suitable combustion of the volatile organic compounds and to recover the latent heat of the steam.
  • a method as described above comprises a step of condensing at least part of said portion of vapor separated from said biomass and a step of distilling said water vapor condensed to obtain a purified fraction of interest, such as furfural or furfuraldehyde, 5-hydroxymethylfurfuraldehyde, acetic acid, formic acid, methanol, levoglucosenone, levulinic acid, resinous or terpenic derivatives, for example.
  • a purified fraction of interest such as furfural or furfuraldehyde, 5-hydroxymethylfurfuraldehyde, acetic acid, formic acid, methanol, levoglucosenone, levulinic acid, resinous or terpenic derivatives, for example.
  • a method as described above comprises a step of condensing at least part of said portion of vapor separated from said biomass and a step of purifying said vapor of water condensed by application of an activated sludge treatment or by anaerobic digestion.
  • said methanization step is an acetoclastic methanization step.
  • the acetic acid is thus upgraded to methane.
  • said conduit has at least one of its ends a rotary valve or dynamic sealing means.
  • said biomass introduced into the reactor has a humidity level of between 5 and 25%.
  • said biomass comprises wood chips.
  • FIG. 1 represents an installation for manufacturing combustible material from lignocellulosic biomass suitable for implementing a process for manufacturing combustible material according to the invention
  • FIG. 2 illustrates the steps of another exemplary embodiment of a manufacturing method according to the invention, in the form of a block diagram.
  • FIG. 1 illustrates an installation for manufacturing combustible material from wood chips intended to implement an exemplary embodiment of a manufacturing method according to the invention.
  • the wood chips used are hardwood or softwood wood chips.
  • This installation 10 comprises a hammer mill 11 supplied with wood chips by means of an endless screw 12 which takes the wood chips from a ladder silo 13.
  • a large wood separator eliminates the oversized elements before the wood chips do not enter the grinder 11.
  • the wood chips are ground in the form of wood fragments of larger size mainly between 4 and 8 millimeters, up to 16 mm.
  • the silo 13 is filled by a bucket loader which picks up chips from piles formed on storage areas on the ground.
  • These wood fragments flow out of the grinder 11 onto a conveyor belt 14, equipped with a weighing belt, which transports them to the feed hopper of a hot air dryer 15 at low temperature.
  • the temperature of the hot air of the dryer is between 75 and 85°C.
  • This dryer 15 is in this particular embodiment of the invention a double layer belt dryer.
  • the fragments entering the dryer are evenly distributed by a first feed screw on a belt.
  • the layer of wood fragments formed is transported through the dryer on the belt before being discharged on the first discharge screw.
  • the wood fragments are transferred to a second feed screw which deposits a second layer on top of the first in the dryer.
  • the dried wood fragments After passing halfway through the dryer a second time, the dried wood fragments, whose moisture content is now below 10%, are separated, unloaded and conveyed to a buffer storage silo 16.
  • a humidity sensor continuously monitors the humidity content of the wood fragments leaving the dryer and the speed of advancement of the strip is automatically regulated in order to maintain the humidity level of the wood fragments constant at the exit of the dryer.
  • Heat exchangers are condensation exchangers in which part of the water vapor separated from the biomass during the explosive decompression of the biomass is condensed to recover its latent heat.
  • the dried wood fragments are extracted from silo 16 by a planetary screw and deposited on a conveyor belt which transports them to a silo supply 17 of a reactor 18 for treating 500 to 1000 kg per hour of wood fragments continuously.
  • Reactor 18 is a vertically oriented pressure reactor into the lower part of which 500 to 1000 kg/h of steam is injected at a temperature of 203°C to 250°C. The vapor stream is extracted from the reactor at the top of the reactor. At the reactor outlet, the steam is sent back to the CH boiler in which it was produced.
  • the temperature of the vapor is 203° C. and the pressure 17 bars.
  • a scraper mounted pivoting on a vertical axis pushes the fragments of wood, having stayed about 8 minutes in the reactor, towards an endless screw 20 allowing fragments to be extracted. of wood from reactor 18.
  • This discharge screw 20 pushes the wood fragments out of the reactor towards a valve 21 making it possible to control the flow rate of wood fragments extracted from the reactor continuously.
  • the separation unit 23 consists of a centrifugal dynamic separator. In a variant of this particular embodiment of the invention, it can also be envisaged to implement a static cyclone.
  • Part of this volume of steam is, as has already been specified above, directed to an ECHC condensation heat exchanger which makes it possible to provide part of the heat necessary for the preliminary drying of the wood fragments before their introduction into the the reactor.
  • the organic compounds in aqueous solution resulting from the condensation of the volatile organic compounds contained in the vapor are distilled in order to extract the first compounds of interest, such as furfural for example at this stage.
  • Another part of this volume of steam is directed to the boiler CH, where the organic compounds entrained with this part are burned and where the latent heat of this volume of steam is used to heat the steam introduced into the reactor.
  • the opening at regular intervals of a rotary valve 24i mounted at the base of the separation unit makes it possible to empty the biomass from the separation unit 23 into a buffer volume 25 under the pressure of the residual steam remaining in the separation unit, which generates a new explosive decompression of the biomass.
  • This buffer volume 25 feeds, through a second rotary valve 24 2 with controlled opening, a second separation unit 26, consisting of a static cyclone, in which the vapor pressure is 4 bars and the temperature is equal to 141°C.
  • a third then a fourth explosive decompression and separation stage are mounted at the outlet of the second separation unit 26.
  • This third and this fourth stage of explosive decompression and separation comprise a buffer volume 31,41 between two rotary valves with controlled opening 32 and 33 or 42 and 43, in which a new defibrillation of the biomass takes place, which supplies a third unit separation unit 34, respectively a fourth separation unit 44.
  • the vapor pressure in the third separation unit 34 is 1.9 bar and the temperature 117°C.
  • 4m 3 of steam per hour, corresponding to 4 kg/h of steam, are separated from the biomass, entraining 1 kg/h of volatile organic compounds of a third type.
  • This vapor is condensed and the acetic acid present in the condensed organic compounds of the third type is transformed into methane in a methanizer 35 via the acetoclastic route.
  • the methane produced is then stored in a storage tank 36 used to supply the burners of the boiler CH.
  • the heat coming from the condensation of the steam is recovered and used for drying the combustible material at the outlet of the installation 10.
  • the cyclone 44 which is at atmospheric pressure, makes it possible to separate the residual vapor from the biomass.
  • 1 kg/h of steam at 100° C. is extracted from cyclone 44, entraining volatile organic compounds of a fourth type.
  • This vapor is condensed and distilled or purified by a chromatography process in a processing unit 45 to extract fractions of interest, such as 5-hydroxymethylfurfuraldehyde, formic acid, methanol, levoglucosenone or levulinic acid.
  • pellet mill 210 For this they are transported using a chain conveyor, or a pneumatic conveyor, to a pellet mill 210 where they are compacted in the form of pellets.
  • the pellets obtained, with a density equal to 710 kg/m 3 , are then sent to a bulk loading station for trucks or to a bagging-palletizing station.
  • FIG. 2 shows the steps of another process for the continuous manufacture of combustible material from lignocellulosic biomass, in synoptic form.
  • a first step 201 600 kg/h of lignocellulosic biomass is continuously introduced into a reactor and exposed for 7.5 minutes, during a step 202, to steam at a pressure of 17.5 bars.
  • 600 kg/h of lignocellulosic biomass contained in the reactor is continuously extracted from the reactor, after having undergone steam cracking, in a step 203 and propelled under the steam pressure through a valve with controlled opening in an expansion line, in which a first explosive decompression occurs, up to a static cyclone in which the vapor pressure is equal to 7.2 bars (step 204).
  • this first separation unit approximately 1150 kg/h of steam is separated per hour from the biomass, entraining 54 kg/h of a first type of volatile organic compounds (step 205).
  • This vapor enriched with a first type of volatile organic compounds passes through a heat exchanger and is then directed into a boiler where the volatile compounds are burned (step 206).
  • a step 207 the biomass contained in the first separation unit is expelled at regular intervals into a buffer volume under the pressure of the residual vapor remaining in the first separation unit by controlling the opening of a rotary valve, which generates a new explosive decompression of the biomass.
  • the biomass is then transferred from the buffer volume into a dynamic centrifugal separator in which the steam pressure is 3.8 bars, through a second rotary valve with controlled opening.
  • this second separation unit approximately 54 kg/h of steam is separated from the biomass, entraining 4.8 kg/h of a second type of volatile organic compound (step 208), the quantity of steam extracted then being condensed and then distilled in a distillation column (step 209).
  • the residual biomass contained in the second separation unit is then transferred under the residual vapor pressure into an expansion line along which the pressure gradually decreases to atmospheric pressure (step 211).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Wood Science & Technology (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

L'invention concerne un procédé de fabrication en continu d'une matière combustible à partir de biomasse comprenant : - exposition de la biomasse introduite en continu dans un réacteur à de ladite vapeur d'eau à une pression comprise entre 15,3 et 22,9 bars pendant une durée suffisante pour obtenir un vapocraquage; - extraction en continu dudit réacteur d'une partie de la biomasse contenue dans le réacteur. Selon l'invention, un tel procédé comprend : - un transfert de ladite biomasse extraite dudit réacteur dans un conduit jusqu'à des moyens de séparation dans lesquels la pression de vapeur est comprise entre 7 et 8 bars; - une étape de séparation d'une portion de la vapeur extraite dudit réacteur avec ladite biomasse et de ladite biomasse; - une étape de dépressurisation de ladite biomasse séparée de ladite portion de vapeur jusqu'à la pression atmosphérique.

Description

Procédé de fabrication en continu d'une matière combustible par décompression explosive s'opérant par paliers
1. Domaine de l'invention
Le domaine de l'invention est celui de la production de combustibles à base de biomasse.
Plus précisément, l'invention concerne un procédé de fabrication en continu d'une matière combustible à partir de biomasse lignocellulosique.
L'invention trouve également une application dans la fabrication de matière combustible pour chaudières ou pour fours industriels, et pour des chaudières et poêles domestiques.
2. Etat de la technique
La biomasse, et en particulier la biomasse lignocellulosique provenant de l'exploitation forestière ou la production agricole, est à l'état brut une matière peu dense, périssable et qui présente de grandes disparités. Il est donc nécessaire de la transformer pour pouvoir l'utiliser dans des chaudières ou des fours industriels, mais aussi pour faciliter son transport et son stockage.
Il est connu de mettre en oeuvre des techniques de carbonisation, de torréfaction, ou encore par des techniques dites de « steam explosion » combinant un vapocraquage avec une décompression explosive, discontinue ou continue, pour transformer de la biomasse lignocellulosique en un combustible stable et de qualité sensiblement constante, possédant un pouvoir calorifique important.
Un inconvénient de la technique de carbonisation est que lors de la transformation une quantité massique importante, généralement de l'ordre de 70 à jusqu'à 80%, de matière est perdue, ce qui rend les combustibles obtenus par cette technique onéreux.
Les pertes de matière sont également importantes, et d'environ 10 à 20%, avec la technique de torréfaction, qui par ailleurs présente en outre l'inconvénient d'être coûteuse à mettre en oeuvre et de nécessiter une mise en oeuvre sous une atmosphère inerte pour éviter un risque de combustion, qui représente un danger. Les techniques connues de vapocraquage continu ou de « steam explosion » discontinue peuvent permettre de limiter les pertes massiques de matière. Toutefois, on constate qu'une matière volatile riche en énergie peut être libérée et perdue par ce procédé, ce qui peut réduire assez fortement le pouvoir final calorifique du produit final obtenu par ces procédés connus.
Le document W02006/006863 Al décrit une technique de « steam explosion » en batch dans laquelle la décompression explosive est réalisée en deux étapes. Dans une première étape, une partie de la vapeur d'eau contenue dans le réacteur est transférée dans un second réacteur, afin de limiter les pertes d'énergie et dans une seconde étape, la biomasse ayant subie un vapocraquage est évacuée avec la vapeur d'eau résiduelle dans une enceinte de vidange, sous l'effet de la détente.
Cette technique connue présente l'inconvénient d'être complexe et coûteuse à mettre en oeuvre, du fait qu'elle nécessite deux réacteurs et une enceinte présentant un volume interne environ 13 à 19 fois supérieur à celui des réacteurs pour pouvoir assurer la détente et qui soit apte à résister aux chocs explosifs.
Par ailleurs, la productivité de cette technique de production connue est limitée, car il est nécessaire de vider l'enceinte de vidange après le traitement de chaque lot de matière, avant d'introduire de la nouvelle matière à traiter dans les réacteurs.
On connaît également du document WO 2017/089648 Al une technique de traitement de biomasse par « steam explosion » en continu, dans laquelle la matière sortant du réacteur subit une décompression explosive au cours de laquelle la pression est abaissée en dessous de 5 bars en une seule étape, ceci afin de permettre une défibrillation convenable de la matière traitée. Un inconvénient de cette technique connue est qu'une quantité de matière encore trop importante est entraînée avec la vapeur rejetée.
3. Objectifs de l'invention
L'invention a donc notamment pour objectif de pallier les inconvénients de l'état de la technique cités ci-dessus. Plus précisément l'invention a pour objectif de fournir une technique de fabrication en continu de matière combustible à partir de biomasse lignocellulosique par « steam explosion » qui permette d'améliorer le pouvoir calorifique de la matière combustible tout en limitant les pertes de matière sous forme de composés volatils condensables à taux de carbone important.
Un objectif de l'invention est également de fournir une telle technique qui permette d'obtenir une matière combustible apte à être transformée en granulés, aussi communément appelés « pellets ».
Un autre objectif de l'invention est de fournir une telle technique qui permette de réduire la granulométrie de la matière combustible.
Un objectif de l'invention est également de proposer une telle technique qui permette d'augmenter la cohésion et la résistance à l'eau de la matière combustible.
Encore un objectif de l'invention est de fournir une telle technique qui soit simple à mettre en oeuvre, et d'un coût de revient réduit.
4. Exposé de l'invention
Ces objectifs, ainsi que d'autres qui apparaîtront par la suite sont atteints à l'aide d'un procédé de fabrication en continu d'une matière combustible, destinée notamment à une chaudière industrielle, à partir de biomasse lignocellulosique comprenant les étapes suivantes :
- introduction en continu d'une masse prédéterminée par minute de ladite biomasse dans un réacteur sous pression, ledit réacteur étant alimenté en vapeur d'eau sensiblement saturée, dont la pression est comprise entre 15,3 et 22,9 bars et/ou la température est comprise entre 200 et 220°C une fois introduite dans le réacteur ;
- exposition de la biomasse introduite dans ledit réacteur à ladite vapeur d'eau pendant une durée suffisante pour obtenir un vapocraquage ;
- extraction en continu dudit réacteur d'une partie de la biomasse contenue dans le réacteur par minute.
Dans le cadre de l'invention, on entend par biomasse lignocellulosique de la biomasse d’origine agricole ou forestière comprenant de la cellulose, de l'hémicellulose et de la lignine, telle que du bois brut, des résidus forestiers, des déchets ou co-produits de l'industrie de transformation du bois (sciure, copeaux de bois, éclats ...), des bois traités, des palettes, de la biomasse issue de l'exploitation de taillis, de miscanthus, de fétuque, de bambou, ... , des déchets ou coproduits ligneux des cultures agricoles (paille, herbe, ...) ou de l'industrie agroalimentaire (bagasse, ...), ou des déchets verts, ligneux ou destinés à être recyclés provenant des déchetteries et toute combinaison de ceux-ci.
Selon l'invention, un tel procédé comprend : une étape de décompression explosive comprenant un transfert de ladite biomasse extraite dudit réacteur dans un conduit jusqu'à des moyens de séparation dans lesquels la pression de vapeur est comprise entre 7 et 8 bars ; une étape de séparation dans lesdits moyens de séparation d'une portion de la vapeur extraite dudit réacteur avec ladite biomasse et de ladite biomasse ;
- une étape de dépressurisation de ladite biomasse séparée de ladite portion de vapeur jusqu'à ce que la pression exercée sur la biomasse soit égale à la pression atmosphérique, ladite biomasse à pression atmosphérique formant ladite matière combustible.
Ainsi, de façon inédite, l'invention propose de procéder à une décompression explosive de la matière sortant du réacteur en plusieurs étapes, dont une première dans laquelle la pression est ramenée entre 7 et 8 bars, ce qui permet une défibrillation convenable de la biomasse tout en limitant sensiblement les pertes de matière à des pertes de composés volatils de faible pouvoir calorifique. Par ailleurs lors de l'étape de dépressurisation, la quantité de vapeur résiduelle étant réduite, une quantité plus faible de composés organiques valorisables d'intérêt est entraînée avec celle-ci.
Dans un mode de réalisation avantageux de l'invention, ladite étape de dépressurisation jusqu'à la pression atmosphérique comprend au moins une étape de décompression explosive supplémentaire comprenant un transfert dans un conduit de ladite biomasse des moyens de séparation jusqu'à des moyens de séparation supplémentaires dans lesquels la pression de vapeur est inférieure ou égale à 4 bars et une étape de séparation dans lesdits moyens de séparation supplémentaire d'une portion de la vapeur entrant dans lesdits moyens de séparation supplémentaire et de ladite biomasse.
Ainsi, en prévoyant une étape supplémentaire de décompression explosive, on extrait des composés d'intérêts plus riches en carbone que ceux extrait lors que la première étape de décompression explosive jusqu'à 7 à 8 bars, mais dans une quantité limitée, environ 10 fois plus faible que celle des composés extrait lors de la première étape, ce qui à nouveau limite les pertes de matière à fort pouvoir calorifique. Ces composés extraits peuvent par ailleurs être valorisés.
Dans un mode de réalisation particulier de l'invention, ladite étape de dépressurisation jusqu'à la pression atmosphérique comprend :
- une première étape de décompression explosive supplémentaire comprenant un transfert dans un conduit de ladite biomasse des moyens de séparation jusqu'à des premiers moyens de séparation supplémentaires dans lesquels la pression de vapeur est comprise entre 3,5 et 4 bars et une étape de séparation dans lesdits premiers moyens de séparation supplémentaires d'une portion de la vapeur entrant dans lesdits premiers moyens de séparation supplémentaires et de ladite biomasse,
- une deuxième étape de décompression explosive supplémentaire comprenant un transfert dans un conduit de ladite biomasse des premiers moyens de séparation supplémentaires jusqu'à des deuxièmes moyens de séparation supplémentaires dans lesquels la pression de vapeur est comprise entre 1,8 et 2 bars, et préférentiellement est égale à 1,9 bars, et une étape de séparation dans lesdits deuxièmes moyens de séparation supplémentaires d'une portion de la vapeur entrant dans lesdits deuxièmes moyens de séparation supplémentaires et de ladite biomasse.
Ainsi on réalise une décompression explosive en quatre étapes, qui permet de limiter à chaque étape les pertes de matière à fort pouvoir calorifique, et les composés organiques volatils obtenus dans les dernières étapes peuvent être condensés et distillés ou séparés par d'autres moyens comme les techniques membranaires de filtration pour extraire des molécules d'intérêt. Dans un mode de réalisation particulier de l'invention, ladite étape de dépressurisation jusqu'à la pression atmosphérique comprend en outre une troisième étape de décompression explosive supplémentaire comprenant un transfert dans un conduit de ladite biomasse desdits deuxièmes moyens de séparation supplémentaires jusqu'à des troisièmes moyens de séparation supplémentaires dans lesquels la pression de vapeur est égale à 1 bar, et une étape de séparation dans lesdits troisièmes moyens de séparation supplémentaires d'une portion de la vapeur entrant dans lesdits troisièmes moyens de séparation supplémentaires et de ladite biomasse.
Ainsi on réalise une dernière séparation à la pression atmosphérique, ce qui permet de récupérer des composés volatils plus riche en énergie qui pourront être valorisés.
Avantageusement, lesdits moyens de séparation d'une portion de vapeur extraite dudit réacteur avec ladite biomasse extraite du réacteur comprennent un cyclone ou un séparateur dynamique centrifuge (turbine). Dans un mode de réalisation particulier de l'invention, un procédé tel que décrit ci-dessus comprend une étape de circulation de ladite vapeur séparée de ladite biomasse dans un échangeur de chaleur, tel qu'un échangeur de chaleur à condensation.
On peut ainsi récupérer la chaleur sensible et la chaleur latente de la portion de vapeur séparée de la biomasse, pour par exemple sécher la biomasse avant de l'introduire dans le réacteur.
Dans un autre mode de réalisation particulier de l'invention, un procédé tel que décrit ci-dessus comprend une étape de combustion de ladite portion de vapeur séparée de ladite biomasse. La pression de vapeur permet alors de diffuser celle-ci dans le foyer de la chaudière pour assurer une combustion convenable des composés organiques volatils et pour récupérer la chaleur latente de la vapeur.
Selon un mode de réalisation particulier de l'invention, un procédé tel que décrit ci-dessus comprend une étape de condensation d'au moins une partie de ladite portion de vapeur séparée de ladite biomasse et une étape de distillation de ladite vapeur d'eau condensée permettant d'obtenir une fraction d'intérêt purifiée, telle que du furfural ou du furfuraldéhyde, du 5- hydroxyméthylfurfuraldéhyde, de l'acide acétique, de l'acide formique, du méthanol, de la lévoglucosénone, de l'acide lévulinique, des dérivés résineux ou terpéniques, par exemple.
Selon un mode de réalisation particulier de l'invention, un procédé tel que décrit ci-dessus comprend une étape de condensation d'au moins une partie de ladite portion de vapeur séparée de ladite biomasse et une étape d'épuration de ladite vapeur d'eau condensée par application d'un traitement à boues activées ou par méthanisation.
Selon un aspect particulier de l'invention, ladite étape de méthanisation est une étape de méthanisation acétoclastique.
On valorise ainsi l'acide acétique en méthane.
Il convient de noter que la mise en oeuvre de plusieurs étapes de décompression explosive permet d'extraire du furfuraldéhyde ou furfural, qui est un inhibiteur de la réaction de méthanisation de l'acide acétique, au cours de la ou des premières étapes de décompression explosive, puis de procéder à la méthanisation de l'acide acétique dans une étape ultérieure.
Selon un aspect particulier de l'invention, ledit conduit présente à au moins une de ses extrémités une vanne rotative ou des moyens d'étanchéité dynamique.
De préférence, ladite biomasse introduite dans le réacteur présente un taux d'humidité compris entre 5 et 25%.
Dans un mode de réalisation particulier de l'invention, ladite biomasse comprend des plaquettes de bois. 5. Liste des figures
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation de l'invention, donné à titre de simple exemple illustratif et non limitatif, et des figures annexées parmi lesquels : la figure 1 représente une installation de fabrication de matière combustible à partir de biomasse lignocellulosique convenant pour la mise en oeuvre d'un procédé de fabrication de matière combustible selon l'invention ; la figure 2 illustre les étapes d'un autre exemple de mode de réalisation d'un procédé de fabrication selon l'invention, sous forme de diagramme- bloc.
6. Description détaillée de l'invention
La figure 1 illustre une installation de fabrication de matière combustible à partir de plaquettes de bois destiné à mettre en oeuvre un exemple de mode de réalisation d'un procédé de fabrication selon l'invention.
Dans ce mode de réalisation particulier de l'invention les plaquettes de bois mises en oeuvre sont des plaquettes de bois feuillus ou résineux. Dans des variantes de ce mode de réalisation de l'invention, il peut être envisagé de mettre en oeuvre des plaquettes de bois naturel de toute essence convenable, tels que des bois de feuillus durs, des bois résineux, par exemple de l'épicéa, ... et/ou de bois de récupération, tel que des bois de classe A ou de classe B.
Cette installation 10 comprend un broyeur à marteaux 11 alimenté en plaquettes de bois à l'aide d'une vis sans fin 12 qui prélève les plaquettes dans un silo à échelles 13. Un séparateur de gros bois élimine les éléments hors dimensions avant que les plaquettes n'entrent dans le broyeur 11. Dans ce broyeur humide 11, les plaquettes de bois sont broyées sous la forme de fragments de bois de plus grande dimension comprise majoritairement entre 4 et 8 millimètres, jusqu'à 16 mm. Le remplissage du silo 13 est assuré par une chargeuse à godet qui prélève des plaquettes dans des tas formés sur des zones de stockage au sol. Ces fragments de bois se déversent en sortie du broyeur 11 sur un tapis convoyeur 14, équipé d'une bande peseuse, qui les transporte vers la trémie d'alimentation d'un sécheur à air chaud 15 à basse température. Dans ce mode de réalisation de l'invention, la température de l'air chaud du sécheur est comprise entre 75 et 85°C.
Ce sécheur 15 est dans ce mode de réalisation particulier de l'invention un sécheur à bande double couche. Les fragments entrants dans le sécheur sont répartis de manière homogène par une première vis d'alimentation sur une bande. La couche de fragments de bois formée est transportée à travers le sécheur sur la bande avant de se décharger sur la première vis de déchargement. Au moyen d'un convoyeur à vis supplémentaire, les fragments de bois sont transférés vers une deuxième vis d'alimentation qui vient déposer une seconde couche sur la première dans le sécheur. Après avoir parcouru une deuxième fois la moitié du sécheur, les fragments de bois séchés, dont le taux d'humidité est désormais inférieur à 10%, sont séparés, déchargés et convoyés vers un silo de stockage tampon 16.
Un capteur d'humidité contrôle en continu la teneur en humidité des fragments de bois en sortie du sécheur et la vitesse d'avancement de la bande est régulée automatiquement afin de maintenir le taux d'humidité des fragments de bois constant en sortie du sécheur.
Dans le sécheur, des ventilateurs d'extraction aspirent l'air ambiant à travers des échangeurs de chaleur dans lesquels l'air est chauffé en deux étapes avant de le souffler sur les fragments de bois. Grâce à ce flux d'air, les fragments de bois sont plaqués sur la bande et très peu de poussières s'en échappent. Les échangeurs de chaleur sont des échangeurs à condensation dans laquelle une partie de la vapeur d'eau séparée de la biomasse lors de la décompression explosive de la biomasse est condensée pour récupérer sa chaleur latente.
Les fragments de bois séchés sont extraits du silo 16 par une vis planétaire et déposés sur un tapis convoyeur qui les transporte jusqu'à un silo d'alimentation 17 d'un réacteur 18 permettant de traiter 500 à 1000 kg par heure de fragments de bois en continu.
Le réacteur 18 est un réacteur sous pression orienté verticalement dans la partie inférieure duquel on injecte 500 à 1000kg/h de vapeur d'eau à une température de 203°C à 250°C. Le flux de vapeur est extrait hors du réacteur au niveau de la partie supérieure du réacteur. En sortie du réacteur, la vapeur est renvoyée vers la chaudière CH dans laquelle elle a été produite.
On notera que dans le réacteur 18 la température de la vapeur est de 203°C et la pression de 17 bars.
Sur le fond du réacteur 18, un racleur monté pivotant sur un axe vertical (non représenté sur la figure 1) repousse les fragments de bois, ayant séjourné environ 8 minutes dans le réacteur, vers une vis sans fin 20 permettant d'extraire des fragments de bois du réacteur 18.
Cette vis de décharge 20 pousse les fragments de bois hors du réacteur vers une vanne 21 permettant de contrôler le débit de fragments de bois extraits du réacteur en continu.
Sous la poussée de la vapeur présente dans le réacteur et de la vis 20, des fragments de bois sont expulsés en continu au travers de la vanne 21, à très grande vitesse, dans une ligne de détente 22 et sont entraînés par le flux de vapeur sortant avec ces fragments de bois du réacteur dans la ligne de détente 22, dans laquelle ils subissent une première décompression explosive, jusqu'à une première unité de séparation 23, dans laquelle la pression est de 8 bars et la température est de 168°C.
Dans ce mode de réalisation particulier de l'invention, l'unité de séparation 23 est constituée d'un séparateur dynamique centrifuge. Dans une variante de ce mode de réalisation particulier de l'invention, il peut également être envisagé de mettre en oeuvre un cyclone statique.
Il convient par ailleurs de noter qu'en prévoyant une décompression jusqu'à une pression de 8 bars, l'expansion de la vapeur reste limitée à sensiblement le double du volume de vapeur sortant du réacteur, ce qui permet de mettre en œuvre une unité de séparation résistant à la pression de taille restreinte et moins coûteuse.
Dans l'unité de séparation 23, environ 233m3 de vapeur, qui correspondent à 950kg/h de vapeur, est séparée par heure de la biomasse en entraînant 45kg/h d'un premier type de composés organiques volatils.
Une partie de ce volume de vapeur est, comme il a déjà été précisé ci- dessus, dirigée vers un échangeur de chaleur à condensation ECHC qui permet d'apporter une partie de la chaleur nécessaire au séchage préalable des fragments de bois avant leur introduction dans le réacteur. Après condensation, les composés organiques en solution aqueuse issus de la condensation des composés organiques volatils contenu dans la vapeur sont distillés afin d'extraire des premiers composés d'intérêts, tel que du furfural par exemple à cette étape.
Une autre partie de ce volume de vapeur est dirigée vers la chaudière CH, dans laquelle les composés organiques entraînés avec cette partie sont brûlés et où la chaleur latente de ce volume de vapeur est utilisée pour chauffer la vapeur introduite dans le réacteur.
L'ouverture à intervalles réguliers d'une vanne rotative 24i montée à la base de l'unité de séparation permet de vider la biomasse de l'unité de séparation 23 dans un volume tampon 25 sous la poussée de la vapeur résiduelle subsistant dans l'unité de séparation, ce qui engendre une nouvelle décompression explosive de la biomasse.
Ce volume tampon 25 alimente, au travers d'une deuxième vanne rotative 242 à ouverture commandée, une deuxième unité de séparation 26, constituée d'un cyclone statique, dans laquelle la pression de vapeur est de 4 bars et la température est égale à 141°C.
Dans ce cyclone 26, environ 22 m3 de vapeur par heure, correspondant à 45kg/h de vapeur, est séparée de la biomasse en entraînant 4kg/h d'un deuxième type de composés organiques volatils. Cette vapeur est condensée puis distillée dans une colonne de distillation 27 ce qui permet d'extraire du furfural à partir des composés organiques condensés du deuxième type. Par ailleurs, on notera que la chaleur extraite lors de la condensation de la vapeur condensée est utilisée pour le séchage de la matière combustible à la sortie de l'installation 10.
Dans ce mode de réalisation particulier de l'invention, un troisième puis un quatrième étage de décompression explosive et de séparation sont montés à la sortie de la deuxième unité de séparation 26.
Ce troisième et ce quatrième étage de décompression explosive et de séparation comprennent un volume tampon 31,41 entre deux vannes rotatives à ouverture commandée 32 et 33 ou 42 et 43, dans lequel se produit une nouvelle défibrillation de la biomasse, qui alimente une troisième unité de séparation 34, respectivement une quatrième unité de séparation 44.
La pression de vapeur dans la troisième unité de séparation 34 est de 1,9 bar et la température de 117°C. Dans ce cyclone 34, 4m3 de vapeur par heure, correspondant à 4kg/h de vapeur, sont séparés de la biomasse en entraînant lkg/h de composés organiques volatils d'un troisième type.
Cette vapeur est condensée et l'acide acétique présent dans les composés organiques condensés du troisième type est transformé en méthane dans un méthaniseur 35 par la voie acétoclastique. Le méthane produit est ensuite stocké dans un réservoir de stockage 36 servant à alimenter des brûleurs de la chaudière CH. Tout comme à l'étage précédent, la chaleur provenant de la condensation de la vapeur est récupérée et utilisée pour le séchage de la matière combustible à la sortie de l'installation 10.
Le cyclone 44, qui est à la pression atmosphérique permet de séparer la vapeur résiduelle de la biomasse. Ainsi lkg/h de vapeur à 100°C est extraite du cyclone 44 en entraînant des composés organiques volatils d'un quatrième type. Cette vapeur est condensée et distillée ou purifiée par un procédé de chromatographie dans une unité de traitement 45 pour extraire des fractions d'intérêt, telles que du 5-hydroxyméthylfurfuraldéhyde, de l'acide formique, du méthanol, de la lévoglucosénone ou de l'acide lévulinique.
A la sortie du cyclone 44, 450kg/h de biomasse vapocraquée et défibrée se déversent via un conduit de décharge 29 dans un silo de stockage 28, en vue d'être transformés sous forme de pellets de diamètre sensiblement égal à 7 millimètres et de longueur moyenne égale à 22 millimètres.
Pour cela ils sont acheminés à l'aide d'un convoyeur à chaîne, ou d'un convoyeur pneumatique, vers une presse à granuler 210 où ils sont compactés sous forme de pellets.
Les pellets obtenus, d'une densité égale à 710 kg/m3, sont ensuite dirigés vers un poste de chargement en vrac de camions ou vers un poste d'ensachage-palettisation.
On a représenté sur la figure 2 les étapes d'un autre procédé de fabrication en continu de matière combustible à partir de biomasse lignocellulosique, sous forme synoptique.
Dans une première étape 201, 600kg/h de biomasse lignocellulosique est introduite en continu dans un réacteur et exposée pendant 7,5 minutes, lors d'une étape 202, à de la vapeur d'eau à une pression de 17,5 bars.
600 Kg/h de biomasse lignocellulosique contenue dans le réacteur est extraite en continu du réacteur, après avoir subi un vapocraquage, dans une étape 203 et propulsé sous la pression de vapeur au travers d'une vanne à ouverture contrôlée dans une ligne de détente, dans laquelle se produit une première décompression explosive, jusqu'à un cyclone statique dans lequel la pression de vapeur est égale à 7,2 bars (étape 204). Dans cette première unité de séparation, environ 1150kg/h de vapeur est séparée par heure de la biomasse en entraînant 54kg/h d'un premier type de composés organiques volatils (étape 205). Cette vapeur enrichie d'un premier type de composés organiques volatils transite dans un échangeur de chaleur et est ensuite dirigée dans une chaudière où les composés volatils sont brûlés (étape 206).
Dans une étape 207, la biomasse contenue dans la première unité de séparation est expulsée à intervalles réguliers dans un volume tampon sous la poussée de la vapeur résiduelle subsistant dans la première unité de séparation en commandant l'ouverture d'une vanne rotative, ce qui engendre une nouvelle décompression explosive de la biomasse. La biomasse est ensuite transférée du volume tampon dans un séparateur dynamique centrifuge dans lequel la pression de vapeur est de 3,8 bars, au travers d'une deuxième vanne rotative à ouverture commandée.
Dans cette deuxième unité de séparation environ 54kg/h de vapeur, est séparée de la biomasse en entraînant 4,8kg/h d'un deuxième type de composés organiques volatils (étape 208), la quantité de vapeur extraite étant ensuite condensée puis distillée dans une colonne de distillation (étape 209).
La biomasse résiduelle contenue dans la deuxième unité de séparation est ensuite transférée sous la pression de vapeur résiduelle dans une ligne de détente le long de laquelle la pression décroit progressivement jusqu'à la pression atmosphérique (étape 211).
Dans une dernière étape 212, ces 540kg de biomasse vapocraquée et défibrée obtenus par heure sont transformés en pellets.

Claims

REVENDICATIONS
1. Procédé de fabrication en continu d'une matière combustible, destinée notamment à une chaudière industrielle, à partir de biomasse lignocellulosique comprenant les étapes suivantes :
- introduction en continu d'une masse prédéterminée par minute de ladite biomasse dans un réacteur sous pression, ledit réacteur étant alimenté en vapeur d'eau sensiblement saturée, dont la pression est comprise entre 15,3 et 22,9 bars et/ou la température est comprise entre 200 et 220°C une fois introduite dans le réacteur ;
- exposition de la biomasse introduite dans ledit réacteur à ladite vapeur d'eau pendant une durée suffisante pour obtenir un vapocraquage ;
- extraction en continu dudit réacteur d'une partie de la biomasse contenue dans le réacteur par minute ; caractérisé en ce qu'il comprend :
- une étape de décompression explosive comprenant un transfert de ladite biomasse extraite dudit réacteur dans un conduit jusqu'à des moyens de séparation dans lesquels la pression de vapeur est comprise entre 7 et 8 bars ;
- une étape de séparation dans lesdits moyens de séparation d'une portion de la vapeur extraite dudit réacteur avec ladite biomasse et de ladite biomasse ; une étape de dépressurisation de ladite biomasse séparée de ladite portion de vapeur jusqu'à ce que la pression exercée sur la biomasse soit égale à la pression atmosphérique, ladite biomasse à pression atmosphérique formant ladite matière combustible.
2. Procédé de fabrication selon la revendication 1, caractérisé en ce que ladite étape de dépressurisation jusqu'à la pression atmosphérique comprend au moins une étape de décompression explosive supplémentaire comprenant un transfert dans un conduit de ladite biomasse des moyens de séparation jusqu'à des moyens de séparation supplémentaires dans lesquels la pression de vapeur est inférieure ou égale à 4 bars et une étape de séparation dans lesdits moyens de séparation supplémentaire d'une portion de la vapeur entrant dans lesdits moyens de séparation supplémentaire et de ladite biomasse.
3. Procédé de fabrication selon la revendication 2, caractérisé en ce que ladite étape de dépressurisation jusqu'à la pression atmosphérique comprend :
- une première étape de décompression explosive supplémentaire comprenant un transfert dans un conduit de ladite biomasse des moyens de séparation jusqu'à des premiers moyens de séparation supplémentaires dans lesquels la pression de vapeur est comprise entre 3,5 et 4 bars et une étape de séparation dans lesdits premiers moyens de séparation supplémentaires d'une portion de la vapeur entrant dans lesdits premiers moyens de séparation supplémentaires et de ladite biomasse.
- une deuxième étape de décompression explosive supplémentaire comprenant un transfert dans un conduit de ladite biomasse des premiers moyens de séparation supplémentaires jusqu'à des deuxièmes moyens de séparation supplémentaires dans lesquels la pression de vapeur est comprise entre 1,8 et 2 bars, et préférentiellement est égale à 1,9 bars, et une étape de séparation dans lesdits deuxièmes moyens de séparation supplémentaires d'une portion de la vapeur entrant dans lesdits deuxièmes moyens de séparation supplémentaires et de ladite biomasse.
4. Procédé de fabrication selon la revendication 3, caractérisé en ce que ladite étape de dépressurisation jusqu'à la pression atmosphérique comprend en outre une troisième étape de décompression explosive supplémentaire comprenant un transfert dans un conduit de ladite biomasse desdits deuxièmes moyens de séparation supplémentaires jusqu'à des troisièmes moyens de séparation supplémentaires dans lesquels la pression de vapeur est égale à 1 bar, et une étape de séparation dans lesdits troisièmes moyens de séparation supplémentaires d'une portion de la vapeur entrant dans lesdits troisièmes moyens de séparation supplémentaires et de ladite biomasse.
5. Procédé de fabrication selon la revendication 1, caractérisé en ce que lesdits moyens de séparation d'une portion de vapeur extraite dudit réacteur avec ladite biomasse extraite du réacteur comprennent un cyclone ou un séparateur dynamique centrifuge.
6. Procédé de fabrication selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend une étape de circulation de ladite vapeur séparée de ladite biomasse dans un échangeur de chaleur, tel qu'un échangeur de chaleur à condensation.
7. Procédé de fabrication selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend une étape de combustion de ladite portion de vapeur séparée de ladite biomasse.
8. Procédé de fabrication selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend une étape de condensation d'au moins une partie de ladite portion de vapeur séparée de ladite biomasse et une étape de distillation de ladite vapeur d'eau condensée permettant d'obtenir une fraction d'intérêt purifiée, telle que du furfural.
9. Procédé de fabrication selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend une étape de condensation d'au moins une partie de ladite portion de vapeur séparée de ladite biomasse et une étape d'épuration de ladite vapeur d'eau condensée par application d'un traitement à boues activées ou par méthanisation.
10. Procédé de fabrication selon la revendication 9, caractérisé en ce que ladite étape de méthanisation est une étape de méthanisation acétoclastique.
11. Procédé de fabrication selon l'une quelconque des revendications 1 à 10, caractérisé en ce que ledit conduit présente à au moins une de ses extrémités une vanne rotative ou des moyens d'étanchéité dynamique.
12. Procédé de fabrication selon l'une quelconque des revendications 1 à 11, caractérisé en ce que ladite biomasse introduite dans le réacteur présente un taux d'humidité compris entre 5 et 25%.
13. Procédé de fabrication selon l'une quelconque des revendications 1 à 12, caractérisé en ce que ladite biomasse comprend des plaquettes de bois.
EP22723701.3A 2021-05-25 2022-05-11 Procede de fabrication en continu d'une matiere combustible par decompression explosive s'operant par paliers Pending EP4347749A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2105436A FR3123362A1 (fr) 2021-05-25 2021-05-25 Procédé de fabrication en continu d’une matière combustible par décompression explosive s’opérant par paliers
PCT/EP2022/062840 WO2022248233A1 (fr) 2021-05-25 2022-05-11 Procede de fabrication en continu d'une matiere combustible par decompression explosive s'operant par paliers

Publications (1)

Publication Number Publication Date
EP4347749A1 true EP4347749A1 (fr) 2024-04-10

Family

ID=77180137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22723701.3A Pending EP4347749A1 (fr) 2021-05-25 2022-05-11 Procede de fabrication en continu d'une matiere combustible par decompression explosive s'operant par paliers

Country Status (3)

Country Link
EP (1) EP4347749A1 (fr)
FR (1) FR3123362A1 (fr)
WO (1) WO2022248233A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO320971B1 (no) 2004-07-08 2006-02-20 Norsk Pellets Vestmarka As Fremgangsmate for fremstilling av brenselspellets
FI126555B (en) 2015-11-26 2017-02-15 Valmet Technologies Oy Biomass-based fuel adapted to reduce the chemical and / or mechanical impact of the flue gas on heat transfer surfaces, and the process for its production
FR3087790B1 (fr) * 2018-10-29 2021-06-25 Europeenne De Biomasse Procede de fabrication en continu d'une matiere combustible pour chaudiere industrielle, matiere et installation correspondantes
SE543500C2 (en) * 2020-02-20 2021-03-09 Valmet Oy Recovery of energy and chemicals from a steam explosion process

Also Published As

Publication number Publication date
WO2022248233A1 (fr) 2022-12-01
FR3123362A1 (fr) 2022-12-02

Similar Documents

Publication Publication Date Title
FR3087790A1 (fr) Procede de fabrication en continu d'une matiere combustible pour chaudiere industrielle, matiere et installation correspondantes
US20130326935A1 (en) System for treating biomass
CN102245748A (zh) 产生颗粒或压块的方法
EP3307854B1 (fr) Procede et installation de preparation de biomasse
JP2010242035A (ja) バイオマス炭の製造方法
WO2007113330A1 (fr) Procédé de production d'énergie électrique à partir de biomasse
EP3963028A1 (fr) Procede de traitement de biomasse solide par vapocraquage integrant l'energie des coproduits
WO1989005847A1 (fr) Procede et dispositif de torrefaction de matiere ligneuse vegetale
EP4347749A1 (fr) Procede de fabrication en continu d'une matiere combustible par decompression explosive s'operant par paliers
EP3105306B1 (fr) Procédé de transformation d'une biomasse en au moins un biocharbon
WO2020126311A1 (fr) Reacteur tubulaire a vis convoyeuse
EP3810732B1 (fr) Procede de traitement de la biomasse par co-broyage avec une seconde charge de biomasse
EP3963029B1 (fr) Controle du vapocraquage en vue d'ameliorer le pci des granules noirs
FR3121445A1 (fr) Procede de traitement de biomasse solide integrant l’energie des co-produits pour le sechage des plaquettes avant vapocraquage
WO2023126394A1 (fr) Valorisation d'une matière riche en lignine polluée par intégration à une biomasse avant vapocraquage pour la production de granulés combustibles
EA042487B1 (ru) Способ непрерывного производства горючего материала для промышленного котла, соответствующий материал и установка
EP3878925A1 (fr) Procédé d'obtention de biohuiles par pyrolyse de rameaux d'olivier
OA20130A (en) Method for the continuous production of a combustible material for an industrial boiler, corresponding material and facility.
FR3133194A1 (fr) Procede et systeme pour le traitement d’une matiere de biomasse de lignocellulose
OA18515A (fr) Procédé et installation de préparation de biomasse.
OA17883A (fr) Procédé de transformation d'une biomasse en au moins un biocharbon.
FR2987434A1 (fr) Procede et dispositif de conditionnement de matiere, notamment de dechets, sous forme de combustible solide
WO2015091492A1 (fr) Procede de torrefaction d'une charge carbonee comprenant une etape de sechage optimisee

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)