EP4343028A1 - Method for generating energy in an electrolysis system - Google Patents
Method for generating energy in an electrolysis system Download PDFInfo
- Publication number
- EP4343028A1 EP4343028A1 EP22196595.7A EP22196595A EP4343028A1 EP 4343028 A1 EP4343028 A1 EP 4343028A1 EP 22196595 A EP22196595 A EP 22196595A EP 4343028 A1 EP4343028 A1 EP 4343028A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- buoyancy
- electrolyte
- gas
- energy
- gas bubbles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 22
- 239000007789 gas Substances 0.000 claims abstract description 50
- 239000011244 liquid electrolyte Substances 0.000 claims abstract description 18
- 239000003792 electrolyte Substances 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 230000001133 acceleration Effects 0.000 claims description 2
- 230000005484 gravity Effects 0.000 claims description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims 1
- 230000001419 dependent effect Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 244000144619 Abrus precatorius Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/01—Electrolytic cells characterised by shape or form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/02—Other machines or engines using hydrostatic thrust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2210/00—Working fluid
- F05B2210/40—Flow geometry or direction
- F05B2210/401—Flow geometry or direction upwards due to the buoyancy of compressed air
Definitions
- the invention relates to a method for generating energy in an electrolysis plant.
- Electrolysis is a chemical process in which electric current causes a redox reaction. Electrolysis requires a DC voltage source that provides the required electrical energy. The energy requirement of an electrolysis system is comparatively high, so there is a need to increase the energy efficiency of an electrolysis system.
- buoyancy energy systems are already known. These are characterized by blowing air into buoyancy bodies, which are connected to mechanical rotation systems and can therefore convert buoyancy force and buoyancy speed into a rotational movement over a buoyancy path. This rotational movement can be used to generate energy.
- buoyancy energy systems also have a comparatively high energy consumption due to the need to blow in air, so that there is also a need to increase the energy efficiency of such buoyancy energy systems.
- an electrolysis device which has an electrode arrangement, a hydrogen riser, an oxygen riser and a buoyancy-forming unit.
- the riser pipes mentioned are submerged in ambient water.
- This ambient water can be a marine body of water, an inland body of water, a well or a diving pool.
- Such an immersed system with open vessels has the disadvantage that undesirable pressure equalization takes effect very quickly.
- the object of the invention is to provide a method for generating energy in an electrolysis plant in which the energy efficiency is increased.
- the entire buoyancy of the gas bubbles and thus the entire displacement of the liquid electrolyte is advantageously used to generate energy.
- the gas bubbles formed can be caught and collected and the entire buoyancy forces of the gas in the electrolyte can be transferred to an engine.
- the energy generated by this engine can be used to reduce the energy required to carry out the electrolysis or can be made available to other external energy consumers.
- Another advantage of this method is that it is independent of its structural environment. It can be applied to both systems submerged in water and solidly enclosed systems.
- the Figure 1 shows an exemplary embodiment to explain the essential features of the method according to the invention.
- FIG. 1 A chamber A and a chamber B connected to chamber A are shown.
- a cathode 1 is arranged in chamber A.
- An anode 2 is arranged in chamber B.
- a liquid electrolyte C is introduced into both chambers A and B, which is a reaction product of a previous electrolysis.
- Electrolysis with gas formation takes place in the two chambers A and B. This is in the Figure 2 illustrated. From the Figure 2 It can be seen that both in chamber A and in chamber B in the liquid electrolyte in an area above that from the Figure 1 visible electrodes 1 and 2 have formed gas bubbles. As will be explained further below, these rise upwards due to buoyancy forces in the area of a distance that corresponds to a column height H of the electrolyte-gas mixture
- the buoyancy of the gas bubbles occurs at a buoyancy velocity v A , which depends on the volume of the gas bubbles.
- the Figure 3 shows an exemplary embodiment to explain a buoyancy energy generation system. This is in the Figure 3 only one of the two chambers A or B is illustrated.
- the anode 2 is shown at the bottom left, which is positioned in a liquid electrolyte. Gas bubbles are formed at this anode. This Gas bubbles are subjected to a concentration process in a gas bubble concentrator 3 and then continue to rise. On their further upward journey, the gas bubbles are collected in a collecting device 4.
- this collecting device is designed similarly to a rotating paternoster, which has buoyancy bodies 5 in which concentrated gas bubbles 6 rise upwards over a buoyancy path. At the upper end of the buoyancy path, the gas bubbles that are transported upwards are released from the buoyancy bodies. At the end of the buoyancy path, the buoyancy bodies are redirected downwards again and at the lower end of the buoyancy path they are filled again with newly formed gas bubbles, which in turn rise upwards.
- the collecting device can also have a turbine.
- Energy generation in a buoyancy energy generation system essentially depends on the gas bubble volume, the buoyancy speed of the gas bubbles, the buoyancy distance and the voltage at the anode and cathode. These dependencies can be subjected to a scaling operation.
- the invention described above replaces the properties of a buoyancy energy production system, which in known systems works with an injection of air, with gas-forming electrolysis.
- the energy efficiency of the electrolysis is increased because the buoyancy force contributes to energy gain.
- Gas-forming electrolysis when used in buoyancy power plants that were previously powered by compressed air increases efficiency because costly injection of air is no longer necessary.
- the process combines the electrolysis process and the energy-intensive compressed air-powered buoyancy power plants to create a new process with higher energy efficiency.
- the feed position of the liquid electrolyte must be chosen so that the feed pressure of the liquid electrolyte is greater than the hydrostatic pressure in the liquid column of the electrolyte. This is best achieved in tightly enclosed systems that are built at floor level by having the feed position at the level of the upper end area of liquid electrolyte, as in the Figure 3 is indicated with dashed lines. Submerged or submerged systems are even better in terms of energy efficiency than systems built at ground level.
- the transfer of the buoyancy force of the gases directly to an engine advantageously takes place on one or more rotating axes of the buoyancy force transmission unit used in each case.
- a turbine is used as a unit that generates buoyancy force, then the energy is transferred to an engine 7 implemented as a generator on the axis of rotation of the turbine, as in the Figure 4 is illustrated.
- buoyancy force-generating unit implemented in the form of a paternoster
- energy can be transferred to an engine 7 implemented as a generator on one of the two or both of the in the Figure 5 illustrated axes of rotation can be made.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur Energiegewinnung in einer Elektrolyseanlage, in welcher unter Verwendung einer eine Kathode und eine Anode aufweisenden Gleichspannungsquelle in einem flüssigen Elektrolyten Gase gebildet werden, die unter Blasenbildung im flüssigen Elektrolyten nach oben steigen, wobei die Auftriebskraft der Gase in einer Flüssigkeitssäule des Elektrolyten zur Energiegewinnung genutzt wird.The invention relates to a method for generating energy in an electrolysis plant in which, using a direct current source having a cathode and an anode, gases are formed in a liquid electrolyte which rise upwards in the liquid electrolyte with the formation of bubbles, the buoyancy force of the gases in a liquid column of the electrolyte being used to generate energy.
Description
Die Erfindung betrifft ein Verfahren zur Energiegewinnung in einer Elektrolyseanlage.The invention relates to a method for generating energy in an electrolysis plant.
Bei einer Elektrolyse handelt es sich um einen chemischen Prozess, bei welchem elektrischer Strom eine Redoxreaktion hervorruft. Eine Elektrolyse erfordert eine Gleichspannungsquelle, welche die benötigte elektrische Energie bereitstellt. Der Energiebedarf einer Elektrolyseanlage ist vergleichsweise hoch, so dass ein Bedarf besteht, die Energieeffizienz einer Elektrolyseanlage zu steigern.Electrolysis is a chemical process in which electric current causes a redox reaction. Electrolysis requires a DC voltage source that provides the required electrical energy. The energy requirement of an electrolysis system is comparatively high, so there is a need to increase the energy efficiency of an electrolysis system.
Des Weiteren sind bereits Auftriebsenergieanlagen bekannt. Diese zeichnen sich durch ein Einblasen von Luft in Auftriebskörper aus, welche mit mechanischen Rotationsanlagen verbunden sind und dadurch Auftriebskraft und Auftriebsgeschwindigkeit über eine Auftriebswegstrecke in eine Drehbewegung überführen können. Diese Drehbewegung kann zur Energiegewinnung genutzt werden. Auch derartige Auftriebsenergieanlagen haben wegen der Notwendigkeit des Einblasens von Luft einen vergleichsweise hohen Energieverbrauch, so dass auch bei derartigen Auftriebsenergieanlagen der Bedarf besteht, die Energieeffizienz zu steigern.Furthermore, buoyancy energy systems are already known. These are characterized by blowing air into buoyancy bodies, which are connected to mechanical rotation systems and can therefore convert buoyancy force and buoyancy speed into a rotational movement over a buoyancy path. This rotational movement can be used to generate energy. Such buoyancy energy systems also have a comparatively high energy consumption due to the need to blow in air, so that there is also a need to increase the energy efficiency of such buoyancy energy systems.
Aus der
Die Aufgabe der Erfindung besteht darin, ein Verfahren zur Energiegewinnung in einer Elektrolyseanlage anzugeben, bei welchem die Energieeffizienz erhöht ist.The object of the invention is to provide a method for generating energy in an electrolysis plant in which the energy efficiency is increased.
Diese Aufgabe wird durch ein Verfahren mit den im Patentanspruch 1 angegebenen Merkmalen gelöst.This task is achieved by a method with the features specified in
Bei diesem Verfahren zur Energiegewinnung in einer Elektrolyseanlage werden unter Verwendung einer eine Kathode und eine Anode aufweisenden Gleichspannungsquelle in einem flüssigen Elektrolyten Gase gebildet, die unter Blasenbildung im flüssigen Elektrolyten nach oben steigen, wobei die Auftriebskraft der Gase in einer Flüssigkeitssäule des Elektrolyten zur Energiegewinnung genutzt wird.In this method for generating energy in an electrolysis system, using a DC voltage source having a cathode and an anode, gases are formed in a liquid electrolyte, which rise to form bubbles in the liquid electrolyte, the buoyancy of the gases in a liquid column of the electrolyte being used to generate energy .
Bei diesem Verfahren wird in vorteilhafter Weise der gesamte Auftrieb der Gasblasen und somit die gesamte Verdrängung des flüssigen Elektrolyten zur Energieerzeugung genutzt. Bei diesem Verfahren können folglich ein Auffangen und Sammeln der gebildeten Gasblasen und eine Übertragung der gesamten Auftriebskräfte des Gases in dem Elektrolyten auf eine Kraftmaschine erfolgen. Die mittels dieser Kraftmaschine erzeugte Energie kann zur Reduzierung der zur Durchführung der Elektrolyse benötigten Energie verwendet werden oder anderen, externen Energieverbrauchern zur Verfügung gestellt werden.In this process, the entire buoyancy of the gas bubbles and thus the entire displacement of the liquid electrolyte is advantageously used to generate energy. With this method, the gas bubbles formed can be caught and collected and the entire buoyancy forces of the gas in the electrolyte can be transferred to an engine. The energy generated by this engine can be used to reduce the energy required to carry out the electrolysis or can be made available to other external energy consumers.
Ein weiterer Vorteil dieses Verfahrens besteht darin, dass es unabhängig von seiner konstruktiven Umgebung ist. Es kann sowohl bei in Gewässern eingetauchten Anlagen als auch bei fest umhüllten Anlagen angewendet werden.Another advantage of this method is that it is independent of its structural environment. It can be applied to both systems submerged in water and solidly enclosed systems.
Weitere vorteilhafte Eigenschaften der Erfindung ergeben sich aus deren nachfolgender beispielhafter Beschreibung anhand der Figuren.Further advantageous properties of the invention result from the following exemplary description based on the figures.
Es zeigt
-
ein Ausführungsbeispiel zur Erläuterung der wesentlichen Merkmale des erfindungsgemäßen Verfahrens,Figur 1 -
ein Ausführungsbeispiel zur Veranschaulichung von in einem flüssigen Elektrolyten gebildeten Gasblasen,Figur 2 -
ein Ausführungsbeispiel zur Erläuterung einer Auftriebsenergiegewinnungsanlage,Figur 3 -
ein erstes Ausführungsbeispiel zur Veranschaulichung der Übertragung der Auftriebskraft der Gase auf eine Kraftmaschine undFigur 4 -
ein zweites Ausführungsbeispiel zur Veranschaulichung der Übertragung der Auftriebskraft der Gase auf eine Kraftmaschine.Figur 5
-
Figure 1 an exemplary embodiment to explain the essential features of the method according to the invention, -
Figure 2 an exemplary embodiment to illustrate gas bubbles formed in a liquid electrolyte, -
Figure 3 an exemplary embodiment to explain a buoyancy energy generation system, -
Figure 4 a first exemplary embodiment to illustrate the transfer of the buoyant force of the gases to an engine and -
Figure 5 a second exemplary embodiment to illustrate the transfer of the buoyant force of the gases to an engine.
Die
In der
In den beiden Kammern A und B erfolgt eine Elektrolyse mit Gasbildung. Dies ist in der
Bei der in der
Bei der Elektrolyse mit Gasbildung steigen die gebildeten Gase getrennt in der Kammer A über der Kathode 1 und der Kammer B über der Anode 2 im flüssigen Elektrolyten nach oben. Dieses Aufsteigen der Gase in der Flüssigkeit nach oben erfolgt aufgrund einer Auftriebskraft FA. Für diese Auftriebskraft FA gilt die folgende Beziehung:
- FA die Auftriebskraft,
- ρ die Dichte des Elektrolyten,
- g die Erdbeschleunigung und
- Vv das verdrängte Volumen des Elektrolyten ist.
- F A is the buoyancy force,
- ρ the density of the electrolyte,
- g the acceleration due to gravity and
- Vv is the displaced volume of the electrolyte.
Der Auftrieb der Gasblasen erfolgt mit einer Auftriebsgeschwindigkeit vA, die vom Volumen der Gasblasen abhängig ist.The buoyancy of the gas bubbles occurs at a buoyancy velocity v A , which depends on the volume of the gas bubbles.
Zwischen der Wegstrecke, die die Gasblasen in Abhängigkeit von ihrer Geschwindigkeit in der Flüssigkeitssäule nach oben zurücklegen und dem dabei verdrängten Volumen des flüssigen Elektrolyten gilt die folgende Beziehung:
- F eine Kraft,
- W die Wegstrecke der Gasblasen,
- t die Zeit,
- FA die Auftriebskraft und
- vA die Auftriebsgeschwindigkeit ist.
- F a force,
- W is the distance traveled by the gas bubbles,
- t the time,
- F A is the buoyancy force and
- v A is the buoyancy velocity.
Eine Auswertung dieser Beziehung ermöglicht eine Ermittlung eines Potentials zur Energiegewinnung.An evaluation of this relationship enables a potential for energy production to be determined.
Die
In der
Alternativ dazu kann die Auffangvorrichtung auch eine Turbine aufweisen.Alternatively, the collecting device can also have a turbine.
Die Energiegewinnung in einer Auftriebsenergiegewinnungsanlage ist im Wesentlichen abhängig vom Gasblasenvolumen, der Auftriebsgeschwindigkeit der Gasblasen, der Auftriebswegstrecke und der Spannung an der Anode und der Kathode. Diese Abhängigkeiten können einem Skalierungsvorgang unterworfen werden.Energy generation in a buoyancy energy generation system essentially depends on the gas bubble volume, the buoyancy speed of the gas bubbles, the buoyancy distance and the voltage at the anode and cathode. These dependencies can be subjected to a scaling operation.
Die vorstehend beschriebene Erfindung ersetzt nach alledem die Eigenschaften einer Auftriebsenergiegewinnungsanlage, welche bei bekannten Anlagen mit einer Einblasung von Luft arbeitet, durch eine gasbildende Elektrolyse.The invention described above replaces the properties of a buoyancy energy production system, which in known systems works with an injection of air, with gas-forming electrolysis.
Durch die Nutzung der bei der gasbildenden Elektrolyse entstehenden Gasblasen in einer Auftriebsenergiegewinnungsanlage zur Energiegewinnung wird die Energieeffizienz der Elektrolyse erhöht, weil die Auftriebskraft zu einem Energiegewinn beiträgt. Gasbildende Elektrolyse in Anwendung bei bisher druckluftbetriebenen Auftriebskraftwerken erhöht die Effizienz, weil ein kostenaufwendiges Einblasen von Luft nicht mehr notwendig ist. Das Verfahren kombiniert die Verfahren der Elektrolyse und die energieaufwendig druckluftbetriebenen Auftriebskraftwerke zu einem neuen Verfahren mit höherer Energieeffizienz.By using the gas bubbles created during gas-forming electrolysis in a buoyancy energy production system to generate energy, the energy efficiency of the electrolysis is increased because the buoyancy force contributes to energy gain. Gas-forming electrolysis when used in buoyancy power plants that were previously powered by compressed air increases efficiency because costly injection of air is no longer necessary. The process combines the electrolysis process and the energy-intensive compressed air-powered buoyancy power plants to create a new process with higher energy efficiency.
Die Einspeiseposition des flüssigen Elektrolyten ist zur Erhöhung der Energieeffizienz der Elektrolyseanlage so zu wählen, dass der Einspeisedruck des flüssigen Elektrolyten grösser ist als der hydrostatische Druck in der Flüssigkeitssäule des Elektrolyten. Dies wird bei fest umhüllten Anlagen, die auf Bodenniveau aufgebaut sind, dadurch am besten erreicht, dass sich die Einspeiseposition in Höhe des oberen Endbereiches flüssigen Elektrolyten befindet, wie es in der
Die Übertragung der Auftriebskraft der Gase direkt auf eine Kraftmaschine findet in vorteilhafter Weise an einer oder mehreren rotierenden Achsen der jeweils verwendeten Auftriebskraftübertragungseinheit statt.The transfer of the buoyancy force of the gases directly to an engine advantageously takes place on one or more rotating axes of the buoyancy force transmission unit used in each case.
Wird beispielsweise eine Turbine als auftriebskrafterzeugende Einheit verwendet, dann erfolgt die Energieübertagung an eine als Generator realisierte Kraftmaschine 7 an der Drehachse der Turbine, wie es in der
Wird hingegen eine in Form eines Paternosters realisierte auftriebskrafterzeugende Einheit verwendet, dann kann eine Energieübertragung an eine als Generator realisierte Kraftmaschine 7 an einer der beiden oder an beide der in der
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22196595.7A EP4343028A1 (en) | 2022-09-20 | 2022-09-20 | Method for generating energy in an electrolysis system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22196595.7A EP4343028A1 (en) | 2022-09-20 | 2022-09-20 | Method for generating energy in an electrolysis system |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4343028A1 true EP4343028A1 (en) | 2024-03-27 |
Family
ID=83398398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22196595.7A Pending EP4343028A1 (en) | 2022-09-20 | 2022-09-20 | Method for generating energy in an electrolysis system |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP4343028A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204677364U (en) * | 2015-05-11 | 2015-09-30 | 何华琼 | A kind of floating type novel energy conversion equipment |
DE202019004240U1 (en) | 2019-10-15 | 2021-01-18 | Thomas Lamla | Electrolyzer |
CN113374622A (en) * | 2021-07-09 | 2021-09-10 | 邓茂明 | Buoyancy energy recovery system for hydrogen gas produced by electrolysis |
WO2022106975A1 (en) * | 2020-11-19 | 2022-05-27 | Ws Slot Sa | Apparatus for the electrolytic production of hydrogen |
-
2022
- 2022-09-20 EP EP22196595.7A patent/EP4343028A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204677364U (en) * | 2015-05-11 | 2015-09-30 | 何华琼 | A kind of floating type novel energy conversion equipment |
DE202019004240U1 (en) | 2019-10-15 | 2021-01-18 | Thomas Lamla | Electrolyzer |
WO2022106975A1 (en) * | 2020-11-19 | 2022-05-27 | Ws Slot Sa | Apparatus for the electrolytic production of hydrogen |
CN113374622A (en) * | 2021-07-09 | 2021-09-10 | 邓茂明 | Buoyancy energy recovery system for hydrogen gas produced by electrolysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3317435B1 (en) | Reduction method and electrolysis system for electrochemical carbon dioxide utilization | |
DE2120875A1 (en) | Method and device for aerating a mass of liquid | |
DE69118210T2 (en) | Water pump device | |
DE102016211824A1 (en) | Arrangement for the carbon dioxide electrolysis | |
DE102016211822A1 (en) | Arrangement and method for carbon dioxide electrolysis | |
DE2514132B2 (en) | Bipolar chlor-alkali electrolyzer | |
DE102008058261B4 (en) | Apparatus for generating energy | |
DE3716093A1 (en) | Cyclic process for extracting technical work from the earth's gravitational field | |
EP4343028A1 (en) | Method for generating energy in an electrolysis system | |
DE102011116033B4 (en) | Apparatus for generating energy | |
EP2549095A1 (en) | Double-circuit power plant | |
EP3348671B1 (en) | Space craft having a fuel production apparatus | |
DE102007051230B4 (en) | electrolyzer | |
DE951863C (en) | Production of alkali chlorates by electrolysis | |
DE202019004240U1 (en) | Electrolyzer | |
DE2733444A1 (en) | MAGNETODYNAMIC AUTO ELECTROLYSIS | |
DE3343955A1 (en) | Tidal power station | |
DE102016008458A1 (en) | Buoyancy rotating structure | |
DE19615881C2 (en) | Miniature model of an electrolysis / fuel cell system | |
DE68912308T2 (en) | FORCED FEEDING SYSTEM FOR MATERIALS USING COMPRESSED AIR. | |
CH700395A2 (en) | Method for using gravitational force for e.g. vehicle, involves functionally applying direct current, gravitational force and gas such that usable energy surplus results, and producing hydrogen by ion exchanger i.e. electrolyzer | |
DE102010005395A1 (en) | Power station for power production from water waves, has floating chamber that moves along guidance by water waves and propels generator | |
DE102011012544A1 (en) | Method for creating energy from static characteristics of sufficient water accumulation for small power plant, involves utilizing hydrostatic pressure of column in order to obtain energy, where column is originated from bore hole | |
DE1528921C3 (en) | Dosing pump for electrolyzable liquid | |
DE672851C (en) | Device for electrolyte circulation in water decomposers, in particular pressure decomposers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |