EP4327037A1 - Device for liquefying gaseous dihydrogen for offshore or onshore structure - Google Patents

Device for liquefying gaseous dihydrogen for offshore or onshore structure

Info

Publication number
EP4327037A1
EP4327037A1 EP22722310.4A EP22722310A EP4327037A1 EP 4327037 A1 EP4327037 A1 EP 4327037A1 EP 22722310 A EP22722310 A EP 22722310A EP 4327037 A1 EP4327037 A1 EP 4327037A1
Authority
EP
European Patent Office
Prior art keywords
dihydrogen
pass
heat exchanger
branch
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22722310.4A
Other languages
German (de)
French (fr)
Inventor
Bernard Aoun
Pavel BORISEVICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP4327037A1 publication Critical patent/EP4327037A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/90Boil-off gas from storage

Definitions

  • the present invention relates to the field of floating structures or terrestrial structures of which at least one consumer is powered by dihydrogen. These structures make it possible to store and/or transport dihydrogen in the liquid state. It relates more particularly to a device for the liquefaction of gaseous dihydrogen used as fuel for at least one consumer of a structure, in particular floating or terrestrial.
  • the dihydrogen In order to transport and/or store dihydrogen more easily, the dihydrogen is generally in the liquid state by cooling it to cryogenic temperatures below the vaporization temperature of the dihydrogen at atmospheric pressure.
  • Dihydrogen is, for example, cooled to -253°C at atmospheric pressure to pass to the liquid state. This liquefied hydrogen is then loaded into dedicated tanks in the structure.
  • Part of the dihydrogen present in the tank in gaseous form can be used to supply a consumer, such as a fuel cell, intended to meet the energy needs for the operation of the structure, in particular for its propulsion and/or the production of electricity for on-board equipment.
  • Another part of the dihydrogen in gaseous form can be reliquefied in order to limit the increase in pressure inside the tank instead of using the vent and thus losing dihydrogen.
  • These liquefaction devices have the drawback of being complex and difficult to implement, in particular because of the properties of dihydrogen. The liquefaction yield is low so that the transport of dihydrogen in the liquid state remains expensive and not very profitable.
  • the object of the present invention is to overcome at least one of the aforementioned drawbacks and also to lead to other advantages by proposing a new device for the liquefaction of gaseous dihydrogen resulting from the evaporation of dihydrogen in the liquid state.
  • the present invention proposes a device for the liquefaction of gaseous dihydrogen resulting from the evaporation of dihydrogen in the liquid state stored in at least one tank, the liquefaction device comprising at least one heat exchanger with several passes, at least one branch of feed configured to supply at least a portion of the hydrogen gas from the vessel to a consumer of the hydrogen gas, a part of the feed branch passing through the heat exchanger via a first pass inside which is disposed a catalyst involved in the conversion of the para isomer of dihydrogen into the ortho isomer of dihydrogen, the liquefaction device comprising at least one cooling branch configured to liquefy at least a portion of the gaseous dihydrogen, the cooling branch comprising at least one compression member , a portion of the cooling branch passing through the heat exchanger via a second pass available dared after the compression unit, the second pass exchanging calories with the first pass in order to liquefy at least part of the dihydrogen circulating in the cooling branch.
  • the liquefaction device is configured to implement, within a heat exchanger, calorie exchanges between gaseous dihydrogen at cryogenic temperatures intended to be used as fuel by a consumer and gaseous dihydrogen at temperatures cryogenic intended to be liquefied at least in part, the dihydrogen gas at cryogenic temperatures being issued from one or more tanks.
  • cryogenic means a temperature below -40°C, or even below -90°C, and preferably below -150°C.
  • Dihydrogen occurs in two forms called nuclear spin isomers, otherwise known as orthohydrogen and parahydrogen.
  • Orthohydrogen is dihydrogen composed of molecules in which the two protons, one in each atom of the molecule, have spins that are parallel and in the same direction with each other.
  • Parahydrogen is dihydrogen composed of molecules in which the two protons, one in each atom of the molecule, have antiparallel spins.
  • Dihydrogen in the liquid state that is to say for a temperature less than or equal to - 253°C at atmospheric pressure, is made up of 99.8% parahydrogen.
  • dihydrogen consists of about 75% orthohydrogen and 25% parahydrogen.
  • the enthalpy of the isomerization reaction of parahydrogen to orthohydrogen is equal to +525 kj/kg indicating an endothermic reaction.
  • the enthalpy of vaporization of dihydrogen is only 476 kj/kg.
  • the isomerization reaction of parahydrogen to orthohydrogen is of the order of a few days. It is understood in this context that even if the dihydrogen is gaseous and at 25° C., the proportion of parahydrogen can still be very largely predominant.
  • the gaseous dihydrogen resulting from the evaporation of dihydrogen stored in the liquid state in the tank is intended to be used as fuel by the consumer and circulates in a first pass of the heat exchanger.
  • the first pass includes a catalyst which makes it possible to accelerate the reaction of isomerization of parahydrogen into orthohydrogen and therefore makes it possible to take advantage of the energy absorption capacity of the isomerization reaction during the exchange of calories with the second pass. pass from the heat exchanger.
  • the dihydrogen gas at cryogenic temperatures intended to be liquefied passes through a compression device then into the second pass of the heat exchanger to be liquefied there, at least in part.
  • the compressed hydrogen gas gives up its calories to the gaseous hydrogen present in the first pass.
  • the gaseous dihydrogen which circulates in the first pass isomerizes rapidly in the presence of the catalyst, in addition to warm up, with the absorption of calories received from the second pass.
  • the compressed dihydrogen gas circulating in the second pass cools until it condenses.
  • the liquefaction device thus makes it possible to recover the evaporation of the nominal cargo of dihydrogen in the liquid state stored in one or more tanks.
  • the catalyst is chosen from nickel, copper, iron or metal hydride gels, nickel, copper or iron films, hydroxides of iron, cobalt, nickel, chromium, manganese, iron oxides, nickel-silicon complexes, an activated carbon and/or at least one of their combinations.
  • the supply branch comprises at least one compression device arranged after an output of the first pass.
  • the compression device is placed between an outlet of the first pass and the dihydrogen consumer. Therefore, when the hydrogen gas circulates in the supply leg, it passes through the compression device after leaving the first pass of the heat exchanger and before reaching the consumer.
  • the compression device makes it possible in particular to put the gaseous dihydrogen into forced circulation in the supply branch, the pressure of the dihydrogen possibly also being high.
  • another portion of the cooling branch passes through the heat exchanger via a third pass, an outlet of the third pass being connected to an inlet of the second pass by a connecting portion of the cooling branch, the connecting portion comprising the compression member.
  • the second pass of the heat exchanger is arranged so as to exchange calories with the first pass and the third pass of the heat exchanger.
  • the liquefaction device comprises a gas-liquid separator arranged on the cooling branch after an outlet from the second pass.
  • the dihydrogen When the dihydrogen circulates in the cooling branch after leaving successively the third pass and then the second pass of the heat exchanger, the dihydrogen may not be completely liquefied.
  • it can be in the form of a two-phase fluid, that is to say that part of the dihydrogen is in liquid form and part in gaseous form after having gone through the second pass, the two phases then being mixed.
  • the gas-liquid separator will in particular make it possible to separate the liquid form of dihydrogen from the gaseous form of dihydrogen.
  • the cooling branch comprises an expansion device arranged between an outlet of the second pass of the heat exchanger and an inlet of the gas-liquid separator.
  • the liquefaction device is configured to place a liquid outlet of the gas-liquid separator in fluid communication with a tank.
  • the fluid communication between the liquid outlet of the gas-liquid separator and a tank can be ensured by a third portion of the cooling pipe.
  • the liquefied hydrogen can be returned to the tank where the gaseous hydrogen was taken or it can be sent to a storage tank for hydrogen gas in the liquid state different from the tank where the gaseous hydrogen was taken.
  • a gas outlet of the gas-liquid separator is in fluid communication with the cooling branch before an inlet of the third pass of the heat exchanger. More specifically, fluid communication between the gas outlet of the gas-liquid separator is ensured by a connection branch connecting the gas outlet of the gas-liquid separator and a junction point arranged on the cooling branch. The junction point is before an inlet of the third pass of the heat exchanger. Consequently, the gaseous phase of the dihydrogen in the gas-liquid separator can be sent to the cooling branch in order to be upgraded there.
  • the liquefaction device comprises a bypass branch connecting a convergence point arranged on the supply branch before an inlet of the first pass of the heat exchanger and a junction point arranged on the cooling branch before the compression member (25).
  • the junction point is arranged on the cooling branch before an inlet of the third pass of the heat exchanger.
  • the point of convergence is between a gas outlet of a tank from which the gaseous dihydrogen is taken and the heat exchanger, when the dihydrogen circulates in the cooling branch.
  • this makes it possible to use dihydrogen from the same tank as that circulating in the supply branch.
  • the junction point is arranged on the cooling branch between an outlet of the third pass of the heat exchanger and an inlet of the compression member.
  • a fourth pass of the heat exchanger constitutes the bypass branch.
  • the fourth pass of the heat exchanger is arranged so as to exchange calories with the second pass and the third pass of the heat exchanger.
  • the second pass of the heat exchanger is arranged to exchange calories with the first pass of the heat exchanger and the fourth pass of the heat exchanger.
  • the invention also relates to a structure, in particular floating or terrestrial, comprising at least one tank intended for the transport and/or storage of dihydrogen in the liquid state, the structure comprising at least one consumer of dihydrogen as as fuel and at least one liquefaction device having at least one of the characteristics described above, the at least one consumer being configured to be supplied with fuel by the dihydrogen in the gaseous state flowing at least in part in said liquefaction device.
  • the consumer may for example be an engine comprising at least one fuel cell.
  • the tank can form a fuel tank for the consumer.
  • a flow of dihydrogen in the first pass of the heat exchanger is oriented in a direction opposite to a flow of dihydrogen in the second pass of the heat exchanger.
  • the flow of the dihydrogen in the first pass of the heat exchanger takes place countercurrent to the flow of the dihydrogen in the second pass.
  • the exchanges of calories between the first pass and the second pass of the heat exchanger are increased.
  • a flow of dihydrogen in the first pass of the heat exchanger is oriented in the same direction as a flow of dihydrogen in the third pass of the heat exchanger.
  • the flow of dihydrogen in the first pass of the heat exchanger is co-current with the flow of dihydrogen in the third pass.
  • the flow of dihydrogen in the third pass of the heat exchanger is countercurrent to the flow of dihydrogen in the second pass.
  • a flow of dihydrogen in the fourth pass of the heat exchanger is oriented in the same direction as a flow of dihydrogen in the third pass.
  • the flow of dihydrogen in the fourth pass of the heat exchanger is co-current with the flow of dihydrogen in the third pass.
  • the flow of dihydrogen in the fourth pass of the heat exchanger is countercurrent to the flow of dihydrogen in the second pass.
  • the invention also proposes a transfer system for dihydrogen in the liquid state, the system comprising a structure having at least the above characteristics, insulated pipes arranged so as to connect the tank installed on the structure, in particular in the shell of the structure, to a floating or onshore storage facility and a pump to drive a flow of cold dihydrogen product through the insulated pipes from or to the floating or onshore storage facility to or from the tank of the 'work.
  • the invention also offers a method for loading or unloading a structure having at least one of the preceding characteristics, during which dihydrogen in the liquid state is conveyed through insulated pipes from or to a floating storage installation. or land to or from the structure tank.
  • the invention also proposes a process for the liquefaction of gaseous dihydrogen resulting from the evaporation of dihydrogen in the liquid state stored in at least one tank by a liquefaction device having at least one of the characteristics described above, the process comprising at least a step of compressing the dihydrogen gas, a step of exchanging calories between the compressed dihydrogen gas and the dihydrogen gas withdrawn from the tank so that the compressed dihydrogen gas liquefies, the conversion, in the presence of the catalyst, of the para isomer into the ortho isomer for the dihydrogen gas withdrawn taking place during the calorie exchange step.
  • the liquefaction process comprises a step of compressing the hydrogen gas withdrawn from the tank after the calorie exchange step in order to supply a consumer with hydrogen.
  • Figure 1 is a schematic representation of a first embodiment of a liquefaction device according to the invention, the liquefaction device being configured to liquefy gaseous dihydrogen resulting from the evaporation of dihydrogen in the liquid state stored in at least one tank of a floating structure;
  • FIG. 2 is a schematic representation of a second embodiment of a liquefaction device according to the invention, the liquefaction device being configured to liquefy gaseous dihydrogen resulting from the evaporation of dihydrogen at the liquid state stored in at least one tank of a floating structure;
  • FIG. 3 is a cutaway schematic representation of the floating structure for transporting liquid dihydrogen in figure 1 and of a terminal for loading/unloading the tanks of the floating structure.
  • FIG. 1 represents a device 11 for liquefying liquid dihydrogen stored in at least one tank 3, 5 of a floating structure for transporting and/or storing dihydrogen.
  • the liquefaction device 11 is configured to cooperate with the tanks 3, 5 and with at least one consumer 7 of the floating structure.
  • the tank or tanks 3, 5 contain dihydrogen in liquid form 9, that is to say dihydrogen in the liquid state. As the thermal insulation of the tanks is not perfect, part of the hydrogen in the liquid state 9 evaporates naturally. Consequently, the tanks 3, 5 of the floating structure comprise both dihydrogen in liquid form 9 and dihydrogen in gaseous form 10.
  • the liquefaction device 11 supplies the consumer 7 with dihydrogen coming from at least one of the tanks 3, 5.
  • the consumer 7 comprises at least one fuel cell, but it can also be of a combustion engine or a turbine.
  • the liquefaction device 11 comprises at least one heat exchanger 13 with several passes 15, 17, 19, at least one supply branch 21 configured to bring at least a portion of the gaseous dihydrogen 10 from one of the tanks 3, 5 to the gaseous dihydrogen consumer 7 and at least one cooling branch 23 configured to liquefy at least a part of the gaseous dihydrogen 10 from one of the tanks 3, 5.
  • a first part of the supply branch 21 crosses the heat exchanger 13 via a first pass 15 inside which is placed a catalyst 151 involved in the conversion of the para isomer of dihydrogen into the ortho isomer of dihydrogen.
  • Catalyst 151 is chosen from gels of nickel, copper, iron or metal hydride, films of nickel, copper or iron, hydroxides of iron, cobalt, nickel, chromium, manganese, iron oxides, nickel-silicon complexes, activated carbon and/or at least one of their combinations.
  • the supply branch 21 comprises at least one compression device 27 arranged on a second part of the supply branch 21 which connects an output of the first pass 15 of the heat exchanger 13 to the consumer 7 of dihydrogen.
  • the compression device 27 is therefore arranged on the supply branch after an outlet 155 of the first pass 15, that is to say downstream of the latter, according to the direction of circulation of the dihydrogen in the branch of food 21.
  • the supply branch 21 comprises a third part which connects at least one dihydrogen storage tank 3, 5 to an inlet 153 of the first pass 15 so that the gaseous dihydrogen 10 retained in at least one of the tanks 3, 5 can flow in the supply branch 21 to the consumer 7.
  • the third part of the supply branch 21 comprises a first sub-branch 211 connected to a first tank 3 and a second sub-branch 213 connected to a second tank 5.
  • the first sub-branch 211 and the second sub-branch 213 meet at a point of convergence 33 of the supply branch 21 which is connected to the inlet 153 of the first pass 15 of the heat exchanger 13 by a connecting pipe.
  • the supply branch 21 may include a valve placed at the point of convergence 33 in order to be able to choose the origin of the gaseous dihydrogen, that is to say select the dihydrogen gas 10 from the first tank 3 and/or the dihydrogen gas 10 from the second tank 5.
  • the dihydrogen gas 10 from at least one of these tanks 3, 5 is forced into circulation in the supply branch 21 by the compression device 27.
  • the gaseous dihydrogen then flows from the tank to the entry 153 of the first pass 15 of the heat exchanger 13, then passes through the first pass 15 of the heat exchanger 13.
  • the dihydrogen By flowing from the inlet 153 of the first pass 15 to the outlet 155 of the first pass, the dihydrogen will exchange calories with a second pass 17 of the heat exchanger 13. The gaseous dihydrogen flowing in the first pass 15 will then be warmed up.
  • the dihydrogen gas has a temperature of -240° C. at 1.1 bar absolute at the inlet 153 of the first pass 15 and a temperature of +25° C. at 1.1 bar at the outlet 155 of the first pass 15.
  • the presence of the catalyst 151 inside the first pass 15 of the heat exchanger 13 makes it possible to accelerate the reaction of isomerization of parahydrogen into orthohydrogen, such a reaction being endothermic.
  • the dihydrogen gas circulating in the first pass 15 can absorb even more calories coming from the second pass 17 of the heat exchanger 13. The heat transfer from the second pass 17 to the first pass 15 is greatly increased.
  • the cooling branch 23 comprises at least one compression member 25 of dihydrogen.
  • a first portion of the cooling branch 23 passes through the heat exchanger 13 via a second pass 17 arranged after the compression member 25.
  • the gaseous dihydrogen which circulates in the cooling branch 23 is thus compressed by the compression member 25 , before its cooling within the second pass 17, as explained above. This rise in pressure promotes the liquefaction of the dihydrogen within the second pass 17, and subsequent thereto.
  • a second portion of the cooling branch 23 passes through the heat exchanger 13 via a third pass 19.
  • An outlet 195 of the third pass 19 is connected to the inlet 173 of the second pass 17 by a connecting portion 231 of the cooling branch 23.
  • the connecting portion 231 carries the compression member 25.
  • the second pass 17 of the heat exchanger 13 is arranged so as to exchange calories with the first pass 15 and the third pass 19 of the heat exchanger 13.
  • the liquefaction device 11 further comprises a bypass branch 31 connecting the point of convergence 33 of the supply branch 21 and a junction point 35 arranged on the cooling branch 23. the same tank in the supply branch 21 and in the cooling branch 23.
  • the junction point 35 is arranged before the compression member 25. More specifically, in the first embodiment shown in Figure 1, the junction point is arranged before the inlet 193 of the third pass 19 of the heat exchanger 13.
  • the dihydrogen gas 10 from at least one of the tanks flows from one of the tanks 3, 5 to the inlet 193 of the third pass 15 of the heat exchanger 13 then crosses the third pass 19 of the heat exchanger thermal 13.
  • the dihydrogen is compressed by the compression member 25 and sent to the inlet 173 of the second pass of the heat exchanger 13.
  • the pressure of the dihydrogen after passing through the compression member 25 is greater than the pressure of the dihydrogen before it passes through the compression member 25.
  • the compression member 25 due to its function allows the forced circulation of gaseous dihydrogen 10 from at least one of the tanks 3,
  • the compressed dihydrogen flows into the second pass 17 of the heat exchanger 13 where it yields calories to the dihydrogen flowing in the third pass 19 of the heat exchanger 13 and to the dihydrogen flowing in the first pass 15 of the heat exchanger 13.
  • the dihydrogen circulating in the second pass 17 will therefore change state, to at least partly pass to the liquid state.
  • at the outlet 175 of the second pass 17 of the heat exchanger 13 at least part of the dihydrogen is liquefied, preferably all the dihydrogen is liquefied.
  • the flow of dihydrogen in the second pass 17 takes place countercurrent to the flow of dihydrogen in the first pass 15.
  • the flow of dihydrogen in the second pass 17 takes place countercurrent to the flow of dihydrogen in the third pass 19. that the dihydrogen in the first pass 15 flows in the same direction as the direction of circulation of the dihydrogen within the third pass 19.
  • dihydrogen has a temperature of -250° C. at the inlet 193 of the third pass 19 of the heat exchanger 13 and a temperature of +25° C. at the outlet 195 of the third pass 19 of the heat exchanger 13.
  • the compression member 25 compresses the dihydrogen to a pressure of between 35 and 45 bars for a temperature of +43°C.
  • the dihydrogen has a temperature of +43°C at the inlet 173 of the second pass 17 of the heat exchanger 13 and a temperature of -240°C at the outlet 175 of the second pass 17 of the heat exchanger 13.
  • the dihydrogen is at least partly liquefied.
  • the dihydrogen can present a liquid phase and a gaseous phase after having traveled through the second pass 17 of the heat exchanger 13. The two phases are then mixed.
  • the liquefaction device 11 comprises a gas-liquid separator 29 arranged on the cooling branch 23.
  • the separator is arranged after the outlet 175 of the second pass 17.
  • the at least partially liquefied hydrogen flows to an inlet 293 of the gas-liquid separator 29.
  • An expansion device can be arranged between the outlet 175 of the second pass 17 and the inlet 293 of the gas-liquid separator 29 so as to reduce the pressure of the fluid entering the gas separator. - liquid 29.
  • a liquid outlet 295 from the gas-liquid separator 29 is in fluid communication with at least one of the tanks 3, 5, such fluid communication being ensured by a third portion 41 of the cooling pipe 23.
  • a gas outlet 297 of the gas-liquid separator 29 is in fluid communication with the cooling branch 23 before an inlet 193 of the third pass 19 of the heat exchanger 13.
  • dihydrogen has a temperature of - 254°C at the gas outlet 297 of the gas-liquid separator 29.
  • the fluidic communication of the gas outlet 297 of the gas-liquid separator 29 with the cooling branch 23 is provided by a connecting branch 299 connecting the gas outlet 297 of the gas-liquid separator 29 with the junction point 35 arranged on the cooling branch 23.
  • the dihydrogen circulates in the liquefaction device 11, after leaving the second pass 17 of the heat exchanger 13, the dihydrogen is sent to the gas-liquid separator 29 so that the liquid phase of the dihydrogen is separated from the gaseous phase. .
  • the liquid phase of dihydrogen contained in the gas-liquid separator 29 can be sent into the liquid phase 9 of the dihydrogen stored in one of the tanks 3, 5 via the third portion 41 of the cooling pipe 23.
  • the gaseous phase of dihydrogen contained in the gas-liquid separator 29 can be introduced into the cooling branch 23 at the junction point 35 via the connecting branch 299 to be liquefied there.
  • Figure 2 illustrates a second embodiment of the liquefaction device according to the invention.
  • the second embodiment differs from the first embodiment in that the junction point 35 is between the output 195 of the third pass 19 and the member compression 25 on the cooling branch 23, and in that the bypass branch 31 passes through the heat exchanger 13 via a fourth pass 20.
  • Identical elements are designated by the same references. Reference will be made to the description above for more details on these identical elements.
  • the fourth pass 20 of the heat exchanger 13 is constitutive of the bypass branch 31 which connects the point of convergence 33 and the junction point 35.
  • the point of convergence 31 is on the branch of supply 21 before input 153 of the first pass 15.
  • the junction point 35 is on the cooling branch 23.
  • the junction point 35 is arranged between the front of the compression member 25. As shown in Figure 2, the junction point 35 is arranged between the outlet 195 of the third pass 19 and the inlet 173 of the second pass 17, more precisely before an inlet of the compression member 25.
  • the gas outlet 297 of the gas-liquid separator 29 is in fluid communication with the inlet 193 of the third pass 19 via the connecting branch 299.
  • the connecting branch 299 is, in this second embodiment constituting the second portion of the cooling branch 23.
  • the dihydrogen entering the third pass 19 has a temperature identical to the gaseous phase of dihydrogen leaving the gas-liquid separator 29, that is to say ⁇ 254° C. in this second embodiment.
  • the fourth pass 20 of the heat exchanger 13 is constitutive of the bypass branch 31.
  • the fourth pass 20 is arranged so as to exchange calories with the second pass 17 and the third pass 19 of the heat exchanger 13. Consequently , the second pass 17 of the heat exchanger 13 is arranged so as to exchange calories with the first pass 15 of the heat exchanger 13 and the fourth pass 20 of the heat exchanger 13.
  • a flow of gaseous dihydrogen in the fourth pass 20 of the heat exchanger 13 is oriented in the same direction as a flow of gaseous dihydrogen in the third pass 19.
  • the flow of dihydrogen in the fourth pass 20 of the heat exchanger 13 is co-current with the flow of dihydrogen in the third pass 19.
  • the flow of gaseous dihydrogen in the fourth pass 20 of the heat exchanger 13 is countercurrent to the flow of dihydrogen in the third pass 19. flow of dihydrogen in the second pass 17.
  • the dihydrogen comes out compressed and cooled from the second pass 17 of the heat exchanger 13.
  • the dihydrogen from the pipe cooling 23 enters the gas-liquid separator 29, it undergoes an expansion which has the effect of creating a liquid phase of dihydrogen and a gaseous phase of dihydrogen in the gas-liquid separator 29.
  • An expansion device 28 can, optionally, be arranged between the outlet 175 of the second pass 17 and the inlet 293 of the gas-liquid separator 29 so as to reduce the pressure of the fluid entering the gas-liquid separator 29.
  • the liquid phase of dihydrogen in the gas-liquid separator 29 can be returned to one of the tanks 3, 5. More specifically, the liquid phase of dihydrogen is directly delivered into the liquid phase 9 contained in the tank 5 via the third portion 41 of the cooling pipe 23 which extends from the liquid outlet 295 of the gas-liquid separator 29 into the tank 5 so that one end of the third portion 41 is immersed in the liquid dihydrogen contained in the tank 5.
  • the gaseous phase of dihydrogen in the gas-liquid separator 29 is, for its part, sent to the cooling branch 23 passing through the third pass 19 of the heat exchanger 13.
  • the dihydrogen at the inlet 193 of the third pass 19 of the heat exchanger 13, which is in the gaseous state coming from the gas-liquid separator 29, is colder than the dihydrogen at the inlet 203 of the fourth pass 20.
  • the second embodiment then makes it possible to take advantage of the calorie absorption capacity of the gaseous phase coming from the gas-liquid separator 29 thanks to the fourth pass 20 of the heat exchanger 13.
  • the dihydrogen at the outlet 195 of the third pass 19 is colder than in the case of the first embodiment where the liquefaction device 1 has no fourth pass.
  • the dihydrogen at the inlet 173 of the second pass 17 in this second embodiment is therefore colder and will therefore be even more cooled at the outlet 175 of the second pass 17 than in the first embodiment.
  • the dihydrogen being colder at the outlet 175 of the second pass 17 than in the first embodiment, it creates less gas phase in the gas-liquid separator 29. Consequently, the quantity of dihydrogen to be recycled via the connecting branch 299 is less and the energy consumption of the liquefaction device is reduced compared to the first embodiment.
  • a cutaway view of a floating structure 70 shows a sealed and thermally insulated tank 3, 5 of generally prismatic shape mounted in a double hull 72 of the floating structure 70, which can be a ship or a floating platform.
  • a wall of the tank 3, 5 comprises a primary tight barrier intended to be in contact with the dihydrogen in the liquid state contained in the tank 3, 5, a secondary tight barrier arranged between the primary tight barrier and the double shell 72 of the ship, and two thermally insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double hull 72.
  • the floating structure 70 comprises a single hull.
  • the dihydrogen tanks are spherical tanks insulated under vacuum.
  • Loading/unloading pipes 73 arranged on an upper deck of the floating structure 70 can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of dihydrogen in the liquid state from or to the tank. 3, 5.
  • FIG. 3 represents an example of a maritime terminal comprising a loading and/or unloading station 75, an underwater pipeline 76 and a shore installation 77.
  • the loading and/or unloading station 75 is a fixed installation off- shore comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading/unloading pipes 73.
  • the movable arm 74 is orientable and adapts to all the templates of floating structures 70.
  • a connecting pipe, not shown, is extends inside the tower 78.
  • the loading and/or unloading station 75 allows the loading and/or unloading of the floating structure 70 from or to the shore installation 77.
  • This comprises dihydrogen storage tanks in the liquid state 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading and/or unloading station 75.
  • the underwater pipe 76 allows the transfer of the dihydrogen to the liquid state between the loading and/or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the floating structure 70 at a great distance from the coast during the operations of loading and/or unloading.
  • pumps on board the floating structure 70 and/or pumps fitted to the shore installation 77 and/or pumps fitted to the loading and unloading station 75 are used.
  • the dihydrogen can be discharged by pressure effect, i.e. by increasing the pressure in tank 3.5.
  • the unloading of dihydrogen can be carried out without a pump.
  • the invention is not limited to the examples which have just been described and many adjustments can be made to these examples without departing from the scope of the invention.
  • the two embodiments of the liquefaction device according to the invention have been described in the context of a floating structure. However, they can be implemented in a land structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

The present invention relates to a device (11) for liquefying gaseous dihydrogen resulting from the evaporation of dihydrogen in the liquid state (9) stored in at least one tank (3, 5). The liquefaction device (11) comprising at least one heat exchanger (13), at least one feed branch (21) configured to convey at least one portion of the gaseous dihydrogen from the tank (3, 5) to a gaseous dihydrogen consumer (7), a part of the feed branch passing through the heat exchanger inside of which is placed a catalyst (151) that is involved in the conversion of the parahydrogen to orthohydrogen, at least one cooling branch (23) comprising at least one compression member (25); a portion of the cooling branch (23) passing through the heat exchanger (13) exchanges heat with the first pass (15) in order to liquefy at least one portion of the dihydrogen circulating in the cooling branch and to heat the dihydrogen circulating in the feed branch (21).

Description

DESCRIPTION DESCRIPTION
Titre de l'invention : Dispositif de liquéfaction de dihydrogène gazeux pour ouvrage flottant ou terrestre Title of the invention: Gaseous dihydrogen liquefaction device for floating or terrestrial structure
La présente invention se rapporte au domaine des ouvrages flottants ou des ouvrages terrestres dont au moins un consommateur est alimenté par du dihydrogène. Ces ouvrages permettent de stocker et/ou de transporter du dihydrogène à l’état liquide. Elle concerne plus particulièrement un dispositif de liquéfaction de dihydrogène gazeux utilisé en tant que carburant pour l’au moins un consommateur d’un ouvrage, notamment flottant ou terrestre. The present invention relates to the field of floating structures or terrestrial structures of which at least one consumer is powered by dihydrogen. These structures make it possible to store and/or transport dihydrogen in the liquid state. It relates more particularly to a device for the liquefaction of gaseous dihydrogen used as fuel for at least one consumer of a structure, in particular floating or terrestrial.
Afin de transporter et/ou de stocker plus facilement du dihydrogène, le dihydrogène est généralement à l’état liquide en le refroidissant à des températures cryogéniques inférieures à la température de vaporisation du dihydrogène à pression atmosphérique.In order to transport and/or store dihydrogen more easily, the dihydrogen is generally in the liquid state by cooling it to cryogenic temperatures below the vaporization temperature of the dihydrogen at atmospheric pressure.
Le dihydrogène est, par exemple, refroidi à -253°C à pression atmosphérique pour passer à l’état liquide. Ce dihydrogène liquéfié est ensuite chargé dans des cuves dédiées de l’ouvrage. Dihydrogen is, for example, cooled to -253°C at atmospheric pressure to pass to the liquid state. This liquefied hydrogen is then loaded into dedicated tanks in the structure.
De telles cuves ne sont néanmoins jamais parfaitement isolées thermiquement de sorte qu’une évaporation naturelle du dihydrogène à l’état liquide est inévitable. Le phénomène d’évaporation naturelle est appelé Boil-Off en anglais et le gaz issu de cette évaporation naturelle est appelé Boil-Off Gas en anglais, dont l’acronyme est BOG. Les cuves de l’ouvrage comprennent ainsi à la fois du dihydrogène sous forme liquide et du dihydrogène sous forme gazeuse. However, such tanks are never perfectly thermally insulated, so that natural evaporation of the dihydrogen in the liquid state is inevitable. The phenomenon of natural evaporation is called Boil-Off in English and the gas resulting from this natural evaporation is called Boil-Off Gas in English, whose acronym is BOG. The tanks of the structure thus contain both hydrogen in liquid form and hydrogen in gaseous form.
Une partie du dihydrogène présent dans la cuve sous forme gazeuse peut être utilisée pour alimenter un consommateur, tel qu’une pile à combustible, prévu pour pourvoir aux besoins énergétiques de fonctionnement de l’ouvrage, notamment pour sa propulsion et/ou la production d'électricité pour les équipements de bord de l’ouvrage. Une autre partie du dihydrogène sous forme gazeuse peut être reliquéfié afin de limiter l’augmentation de la pression à l’intérieur de la cuve au lieu d’utiliser l’évent et ainsi perdre du dihydrogène. Ces dispositifs de liquéfaction présentent l’inconvénient d’être complexe et difficile à mettre en œuvre notamment en raison des propriétés du dihydrogène. Le rendement de liquéfaction est faible de sorte que le transport de dihydrogène à l’état liquide reste onéreux et peu rentable. Part of the dihydrogen present in the tank in gaseous form can be used to supply a consumer, such as a fuel cell, intended to meet the energy needs for the operation of the structure, in particular for its propulsion and/or the production of electricity for on-board equipment. Another part of the dihydrogen in gaseous form can be reliquefied in order to limit the increase in pressure inside the tank instead of using the vent and thus losing dihydrogen. These liquefaction devices have the drawback of being complex and difficult to implement, in particular because of the properties of dihydrogen. The liquefaction yield is low so that the transport of dihydrogen in the liquid state remains expensive and not very profitable.
La présente invention a pour objet de palier au moins un des inconvénients précités et de conduire en outre à d’autres avantages en proposant un nouveau dispositif de liquéfaction de dihydrogène gazeux issu de l’évaporation de dihydrogène à l’état liquide.The object of the present invention is to overcome at least one of the aforementioned drawbacks and also to lead to other advantages by proposing a new device for the liquefaction of gaseous dihydrogen resulting from the evaporation of dihydrogen in the liquid state.
La présente invention propose un dispositif de liquéfaction de dihydrogène gazeux issu de l’évaporation de dihydrogène à l’état liquide stocké dans au moins une cuve, le dispositif de liquéfaction comprenant au moins un échangeur thermique à plusieurs passes, au moins une branche d’alimentation configurée pour amener au moins une portion du dihydrogène gazeux depuis la cuve jusqu’à un consommateur de dihydrogène gazeux, une partie de la branche d’alimentation traversant l’échangeur thermique via une première passe à l’intérieur de laquelle est disposé un catalyseur intervenant dans la conversion de l’isomère para du dihydrogène en isomère ortho du dihydrogène, le dispositif de liquéfaction comprenant au moins une branche de refroidissement configurée pour liquéfier au moins une partie du dihydrogène gazeux, la branche de refroidissement comportant au moins un organe de compression, une portion de la branche de refroidissement traversant l’échangeur thermique via une deuxième passe disposée après l’organe de compression, la deuxième passe échangeant des calories avec la première passe afin de liquéfier au moins une partie du dihydrogène circulant dans la branche de refroidissement. The present invention proposes a device for the liquefaction of gaseous dihydrogen resulting from the evaporation of dihydrogen in the liquid state stored in at least one tank, the liquefaction device comprising at least one heat exchanger with several passes, at least one branch of feed configured to supply at least a portion of the hydrogen gas from the vessel to a consumer of the hydrogen gas, a part of the feed branch passing through the heat exchanger via a first pass inside which is disposed a catalyst involved in the conversion of the para isomer of dihydrogen into the ortho isomer of dihydrogen, the liquefaction device comprising at least one cooling branch configured to liquefy at least a portion of the gaseous dihydrogen, the cooling branch comprising at least one compression member , a portion of the cooling branch passing through the heat exchanger via a second pass available dared after the compression unit, the second pass exchanging calories with the first pass in order to liquefy at least part of the dihydrogen circulating in the cooling branch.
Dans la présente invention, le dispositif de liquéfaction est configuré pour mettre en œuvre, au sein d’un échangeur thermique, des échanges de calories entre du dihydrogène gazeux à températures cryogéniques destiné à être utilisé comme carburant par un consommateur et du dihydrogène gazeux à températures cryogéniques destiné à être liquéfié au moins en partie, le dihydrogène gazeux à températures cryogéniques étant issu d’une ou plusieurs cuves. On entend par « cryogénique » une température inférieure à -40°C, voire inférieure à -90°C, et de préférence inférieure à -150°C. Le dihydrogène se présente sous deux formes appelées isomères de spin nucléaire, autrement nommés orthohydrogène et parahydrogène. L'orthohydrogène est du dihydrogène composé de molécules dans lesquelles les deux protons, un dans chaque atome de la molécule, ont des spins parallèles et de même sens entre eux. Le parahydrogène est du dihydrogène composé de molécules dans lesquelles les deux protons, un dans chaque atome de la molécule, ont des spins antiparallèles. In the present invention, the liquefaction device is configured to implement, within a heat exchanger, calorie exchanges between gaseous dihydrogen at cryogenic temperatures intended to be used as fuel by a consumer and gaseous dihydrogen at temperatures cryogenic intended to be liquefied at least in part, the dihydrogen gas at cryogenic temperatures being issued from one or more tanks. The term "cryogenic" means a temperature below -40°C, or even below -90°C, and preferably below -150°C. Dihydrogen occurs in two forms called nuclear spin isomers, otherwise known as orthohydrogen and parahydrogen. Orthohydrogen is dihydrogen composed of molecules in which the two protons, one in each atom of the molecule, have spins that are parallel and in the same direction with each other. Parahydrogen is dihydrogen composed of molecules in which the two protons, one in each atom of the molecule, have antiparallel spins.
Le dihydrogène à l’état liquide, c’est-à-dire pour une température inférieure ou égale à - 253°C à pression atmosphérique, est constitué à 99,8% de parahydrogène. En revanche à température ambiante et à l'équilibre thermique, le dihydrogène se compose d'environ 75% d'orthohydrogène et 25% de parahydrogène. Dihydrogen in the liquid state, that is to say for a temperature less than or equal to - 253°C at atmospheric pressure, is made up of 99.8% parahydrogen. On the other hand, at room temperature and at thermal equilibrium, dihydrogen consists of about 75% orthohydrogen and 25% parahydrogen.
L’enthalpie de la réaction d’isomérisation du parahydrogène en orthohydrogène est égale à +525 kj/kg indiquant une réaction endothermique. Par comparaison, l’enthalpie de vaporisation du dihydrogène n’est que de 476 kj/kg. Toutefois, la réaction d’isomérisation du parahydrogène en orthohydrogène est de l’ordre de quelques jours. On comprend dans ce contexte que même si le dihydrogène est gazeux et à 25°C, la proportion de parahydrogène peut être toujours très largement majoritaire. The enthalpy of the isomerization reaction of parahydrogen to orthohydrogen is equal to +525 kj/kg indicating an endothermic reaction. By comparison, the enthalpy of vaporization of dihydrogen is only 476 kj/kg. However, the isomerization reaction of parahydrogen to orthohydrogen is of the order of a few days. It is understood in this context that even if the dihydrogen is gaseous and at 25° C., the proportion of parahydrogen can still be very largely predominant.
Le dihydrogène gazeux issu de l’évaporation de dihydrogène stocké à l’état liquide dans la cuve est destiné à être utilisé comme carburant par le consommateur et circule dans une première passe de l’échangeur thermique. La première passe comprend un catalyseur qui permet d’accélérer la réaction d’isomérisation du parahydrogène en orthohydrogène et donc permet de profiter de la capacité d’absorption d’énergie de la réaction d’isomérisation lors de l’échange de calories avec la deuxième passe de l’échangeur thermique. The gaseous dihydrogen resulting from the evaporation of dihydrogen stored in the liquid state in the tank is intended to be used as fuel by the consumer and circulates in a first pass of the heat exchanger. The first pass includes a catalyst which makes it possible to accelerate the reaction of isomerization of parahydrogen into orthohydrogen and therefore makes it possible to take advantage of the energy absorption capacity of the isomerization reaction during the exchange of calories with the second pass. pass from the heat exchanger.
Le dihydrogène gazeux à températures cryogéniques destiné à être liquéfié passe par un organe de compression puis dans la deuxième passe de l’échangeur thermique pour y être liquéfié, au moins en partie. The dihydrogen gas at cryogenic temperatures intended to be liquefied passes through a compression device then into the second pass of the heat exchanger to be liquefied there, at least in part.
Dans la seconde passe, le dihydrogène gazeux comprimé cède ses calories au dihydrogène gazeux présent dans la première passe. Le dihydrogène gazeux qui circule dans la première passe s’isomérise rapidement en présence du catalyseur, en plus de se réchauffer, avec l’absorption des calories reçues de la deuxième passe. Le dihydrogène gazeux comprimé qui circule dans la deuxième passe se refroidit jusqu’à se condenser.In the second pass, the compressed hydrogen gas gives up its calories to the gaseous hydrogen present in the first pass. The gaseous dihydrogen which circulates in the first pass isomerizes rapidly in the presence of the catalyst, in addition to warm up, with the absorption of calories received from the second pass. The compressed dihydrogen gas circulating in the second pass cools until it condenses.
Le dispositif de liquéfaction permet ainsi de valoriser l’évaporation de la cargaison nominale de dihydrogène à l’état liquide stocké dans une ou plusieurs cuves. The liquefaction device thus makes it possible to recover the evaporation of the nominal cargo of dihydrogen in the liquid state stored in one or more tanks.
Selon un mode de réalisation, le catalyseur est choisi parmi les gels de nickel, de cuivre, de fer ou d'hydrure métallique, de films de nickel, de cuivre ou de fer, des hydroxydes de fer, de cobalt, de nickel, de chrome, de manganèse, des oxydes de fer, des complexes nickel-silicium, un charbon actif et/ ou au moins une de leurs associations. According to one embodiment, the catalyst is chosen from nickel, copper, iron or metal hydride gels, nickel, copper or iron films, hydroxides of iron, cobalt, nickel, chromium, manganese, iron oxides, nickel-silicon complexes, an activated carbon and/or at least one of their combinations.
Selon un mode de réalisation, la branche d’alimentation comprend au moins un dispositif de compression agencé après une sortie de la première passe. En d’autres mots, le dispositif de compression est disposé entre une sortie de la première passe et le consommateur de dihydrogène. Par conséquent, lorsque le dihydrogène gazeux circule dans la branche d’alimentation, il passe au travers du dispositif de compression après être sorti de la première passe de l’échangeur thermique et avant de rejoindre le consommateur. Le dispositif de compression permet notamment de mettre en circulation forcée le dihydrogène gazeux dans la branche d’alimentation, la pression du dihydrogène étant éventuellement également élevée. According to one embodiment, the supply branch comprises at least one compression device arranged after an output of the first pass. In other words, the compression device is placed between an outlet of the first pass and the dihydrogen consumer. Therefore, when the hydrogen gas circulates in the supply leg, it passes through the compression device after leaving the first pass of the heat exchanger and before reaching the consumer. The compression device makes it possible in particular to put the gaseous dihydrogen into forced circulation in the supply branch, the pressure of the dihydrogen possibly also being high.
Selon un mode de réalisation, une autre portion de la branche de refroidissement traverse l’échangeur thermique via une troisième passe, une sortie de la troisième passe étant reliée à une entrée de la deuxième passe par une portion de liaison de la branche de refroidissement, la portion de liaison comprenant l’organe de compression. Ainsi, lorsque le dihydrogène circule dans la branche de refroidissement, il passe dans la troisième passe de l’échangeur thermique, puis il passe au travers du dispositif de compression et ensuite il traverse la deuxième passe de l’échangeur thermique pour y être liquéfié, au moins partiellement. According to one embodiment, another portion of the cooling branch passes through the heat exchanger via a third pass, an outlet of the third pass being connected to an inlet of the second pass by a connecting portion of the cooling branch, the connecting portion comprising the compression member. Thus, when the dihydrogen circulates in the cooling branch, it passes through the third pass of the heat exchanger, then it passes through the compression device and then it passes through the second pass of the heat exchanger to be liquefied there, at least partially.
Selon un mode de réalisation, la deuxième passe de l’échangeur thermique est agencée de manière à échanger des calories avec la première passe et la troisième passe de l’échangeur thermique. Selon un mode de réalisation, le dispositif de liquéfaction comprend un séparateur gaz- liquide agencé sur la branche de refroidissement après une sortie de la deuxième passe. Lorsque le dihydrogène circule dans la branche de refroidissement après être sorti successivement de la troisième passe puis de la deuxième passe de l’échangeur thermique, le dihydrogène peut ne pas être complètement liquéfié. Ainsi, il peut se présenter sous la forme d’un fluide diphasique c’est-à-dire qu’une partie du dihydrogène est sous forme liquide et une partie sous forme gazeux après avoir parcouru la deuxième passe, les deux phases étant alors mélangées. Le séparateur gaz-liquide va notamment permettre de séparer la forme liquide du dihydrogène de la forme gazeuse du dihydrogène. According to one embodiment, the second pass of the heat exchanger is arranged so as to exchange calories with the first pass and the third pass of the heat exchanger. According to one embodiment, the liquefaction device comprises a gas-liquid separator arranged on the cooling branch after an outlet from the second pass. When the dihydrogen circulates in the cooling branch after leaving successively the third pass and then the second pass of the heat exchanger, the dihydrogen may not be completely liquefied. Thus, it can be in the form of a two-phase fluid, that is to say that part of the dihydrogen is in liquid form and part in gaseous form after having gone through the second pass, the two phases then being mixed. . The gas-liquid separator will in particular make it possible to separate the liquid form of dihydrogen from the gaseous form of dihydrogen.
Selon un mode de réalisation, la branche de refroidissement comprend un dispositif de détente agencé entre une sortie de la deuxième passe de l’échangeur thermique et une entrée du séparateur gaz-liquide. According to one embodiment, the cooling branch comprises an expansion device arranged between an outlet of the second pass of the heat exchanger and an inlet of the gas-liquid separator.
Selon un mode de réalisation, le dispositif de liquéfaction est configuré pour mettre en communication fluidique une sortie de liquide du séparateur gaz-liquide avec une cuve. La communication fluidique entre la sortie de liquide du séparateur gaz-liquide et une cuve peut être assurée par une troisième portion de la conduite de refroidissement. Ainsi, le dihydrogène liquéfié peut être renvoyée dans la cuve où le dihydrogène gazeux a été prélevé ou il peut être envoyé dans une cuve de stockage de dihydrogène à l’état liquide différente de la cuve où le dihydrogène gazeux a été prélevé. According to one embodiment, the liquefaction device is configured to place a liquid outlet of the gas-liquid separator in fluid communication with a tank. The fluid communication between the liquid outlet of the gas-liquid separator and a tank can be ensured by a third portion of the cooling pipe. Thus, the liquefied hydrogen can be returned to the tank where the gaseous hydrogen was taken or it can be sent to a storage tank for hydrogen gas in the liquid state different from the tank where the gaseous hydrogen was taken.
Selon un mode de réalisation, une sortie de gaz du séparateur gaz-liquide est en communication fluidique avec la branche de refroidissement avant une entrée de la troisième passe de l’échangeur thermique. Plus précisément, la communication fluidique entre la sortie de gaz du séparateur gaz-liquide est assurée par une branche de liaison reliant la sortie de gaz du séparateur gaz-liquide et un point de jonction agencé sur la branche de refroidissement. Le point de jonction est avant une entrée de la troisième passe de l’échangeur thermique. Par conséquent, la phase gazeuse du dihydrogène dans le séparateur gaz-liquide peut être envoyée dans la branche de refroidissement afin d’y être valorisée. Selon un mode de réalisation, le dispositif de liquéfaction comprend une branche de dérivation reliant un point de convergence agencé sur la branche d’alimentation avant une entrée de la première passe de l’échangeur thermique et un point de jonction agencé sur la branche de refroidissement avant l’organe de compression (25). According to one embodiment, a gas outlet of the gas-liquid separator is in fluid communication with the cooling branch before an inlet of the third pass of the heat exchanger. More specifically, fluid communication between the gas outlet of the gas-liquid separator is ensured by a connection branch connecting the gas outlet of the gas-liquid separator and a junction point arranged on the cooling branch. The junction point is before an inlet of the third pass of the heat exchanger. Consequently, the gaseous phase of the dihydrogen in the gas-liquid separator can be sent to the cooling branch in order to be upgraded there. According to one embodiment, the liquefaction device comprises a bypass branch connecting a convergence point arranged on the supply branch before an inlet of the first pass of the heat exchanger and a junction point arranged on the cooling branch before the compression member (25).
Selon un mode de réalisation, le point de jonction est agencé sur la branche de refroidissement avant une entrée de la troisième passe de l’échangeur thermique. Autrement dit, le point de convergence est entre une sortie de gaz d’une cuve d’où est prélevé le dihydrogène gazeux et l’échangeur thermique, lorsque le dihydrogène circule dans la branche de refroidissement. Cela permet notamment d’utiliser du dihydrogène venant de la même cuve que celui circulant dans la branche d’alimentation. According to one embodiment, the junction point is arranged on the cooling branch before an inlet of the third pass of the heat exchanger. In other words, the point of convergence is between a gas outlet of a tank from which the gaseous dihydrogen is taken and the heat exchanger, when the dihydrogen circulates in the cooling branch. In particular, this makes it possible to use dihydrogen from the same tank as that circulating in the supply branch.
Selon un mode de réalisation, le point de jonction est agencé sur la branche de refroidissement entre une sortie de la troisième passe de l’échangeur thermique et une entrée de l’organe de compression. According to one embodiment, the junction point is arranged on the cooling branch between an outlet of the third pass of the heat exchanger and an inlet of the compression member.
Selon un mode de réalisation, une quatrième passe de l’échangeur thermique est constitutive de la branche de dérivation. According to one embodiment, a fourth pass of the heat exchanger constitutes the bypass branch.
Selon un mode de réalisation, la quatrième passe de l’échangeur thermique est agencée de manière à échanger des calories avec la deuxième passe et la troisième passe de l’échangeur thermique. Ainsi, la deuxième passe de l’échangeur thermique est disposée de manière à échanger des calories avec la première passe de l’échangeur thermique et la quatrième passe de l’échangeur thermique. Un des avantages d’une telle architecture est de refroidir le dihydrogène provenant de la branche de dérivation et traversant la quatrième passe de l’échangeur thermique avant d’être mélangé au dihydrogène provenant de la branche de liaison et traversant la troisième passe de l’échangeur thermique. Du dihydrogène plus froid est ainsi obtenu à l’entrée de la seconde passe. On améliore donc le rendement de reliquéfaction du dispositif de liquéfaction. De plus, la consommation énergétique du dispositif de liquéfaction est diminuée. According to one embodiment, the fourth pass of the heat exchanger is arranged so as to exchange calories with the second pass and the third pass of the heat exchanger. Thus, the second pass of the heat exchanger is arranged to exchange calories with the first pass of the heat exchanger and the fourth pass of the heat exchanger. One of the advantages of such an architecture is to cool the dihydrogen coming from the bypass branch and crossing the fourth pass of the heat exchanger before being mixed with the dihydrogen coming from the connecting branch and crossing the third pass of the heat exchanger. Colder dihydrogen is thus obtained at the inlet of the second pass. The reliquefaction efficiency of the liquefaction device is therefore improved. In addition, the energy consumption of the liquefaction device is reduced.
L’invention a par ailleurs pour objet un ouvrage, notamment flottant ou terrestre, comprenant au moins une cuve destinée au transport et/ou au stockage de dihydrogène à l’état liquide, l’ouvrage comprenant au moins un consommateur de dihydrogène en tant que carburant et au moins un dispositif de liquéfaction présentant au moins une des caractéristiques précédemment décrites, l’au moins un consommateur étant configuré pour être alimenté en carburant par le dihydrogène à l’état gazeux circulant au moins en partie dans ledit dispositif de liquéfaction. Le consommateur peut-être par exemple un moteur comprenant au moins une pile à combustible. La cuve peut former un réservoir de carburant pour le consommateur. The invention also relates to a structure, in particular floating or terrestrial, comprising at least one tank intended for the transport and/or storage of dihydrogen in the liquid state, the structure comprising at least one consumer of dihydrogen as as fuel and at least one liquefaction device having at least one of the characteristics described above, the at least one consumer being configured to be supplied with fuel by the dihydrogen in the gaseous state flowing at least in part in said liquefaction device. The consumer may for example be an engine comprising at least one fuel cell. The tank can form a fuel tank for the consumer.
Selon un mode de réalisation, un écoulement du dihydrogène dans la première passe de l’échangeur thermique est orienté dans un sens opposé à un écoulement du dihydrogène dans la deuxième passe de l’échangeur thermique. Autrement dit, lorsque le dihydrogène circule dans le dispositif de liquéfaction, l’écoulement du dihydrogène dans la première passe de l’échangeur thermique s’effectue à contrecourant de l’écoulement du dihydrogène dans la deuxième passe. Ainsi, les échanges des calories entre la première passe et la deuxième passe de l’échangeur thermique sont augmentés. According to one embodiment, a flow of dihydrogen in the first pass of the heat exchanger is oriented in a direction opposite to a flow of dihydrogen in the second pass of the heat exchanger. In other words, when the dihydrogen circulates in the liquefaction device, the flow of the dihydrogen in the first pass of the heat exchanger takes place countercurrent to the flow of the dihydrogen in the second pass. Thus, the exchanges of calories between the first pass and the second pass of the heat exchanger are increased.
Selon un mode de réalisation, un écoulement du dihydrogène dans la première passe de l’échangeur thermique est orienté dans la même direction qu’un écoulement de dihydrogène dans la troisième passe de l’échangeur thermique. Autrement dit, lorsque le dihydrogène circule dans le dispositif de liquéfaction, l’écoulement du dihydrogène dans la première passe de l’échangeur thermique est co-courant à l’écoulement du dihydrogène dans la troisième passe. Dans ce contexte, on comprend que l’écoulement de dihydrogène dans la troisième passe de l’échangeur thermique est à contrecourant de l’écoulement du dihydrogène dans la deuxième passe. According to one embodiment, a flow of dihydrogen in the first pass of the heat exchanger is oriented in the same direction as a flow of dihydrogen in the third pass of the heat exchanger. In other words, when the dihydrogen circulates in the liquefaction device, the flow of dihydrogen in the first pass of the heat exchanger is co-current with the flow of dihydrogen in the third pass. In this context, it is understood that the flow of dihydrogen in the third pass of the heat exchanger is countercurrent to the flow of dihydrogen in the second pass.
Selon un mode de réalisation, un écoulement de dihydrogène dans la quatrième passe de l’échangeur thermique est orienté dans la même direction qu’un écoulement de dihydrogène dans la troisième passe. Autrement dit, lorsque le dihydrogène circule dans le dispositif de liquéfaction, l’écoulement du dihydrogène dans la quatrième passe de l’échangeur thermique est co-courant à l’écoulement du dihydrogène dans la troisième passe. Dans ce contexte, on comprend que l’écoulement de dihydrogène dans la quatrième passe de l’échangeur thermique est à contrecourant de l’écoulement du dihydrogène dans la deuxième passe. L’invention propose d’autre part un système de transfert pour du dihydrogène à l’état liquide, le système comportant un ouvrage présentant au moins des caractéristiques précédentes, des canalisations isolées agencées de manière à relier la cuve installée sur l’ouvrage, notamment dans la coque de l’ouvrage, à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit dihydrogène froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve de l’ouvrage. According to one embodiment, a flow of dihydrogen in the fourth pass of the heat exchanger is oriented in the same direction as a flow of dihydrogen in the third pass. In other words, when the dihydrogen circulates in the liquefaction device, the flow of dihydrogen in the fourth pass of the heat exchanger is co-current with the flow of dihydrogen in the third pass. In this context, it is understood that the flow of dihydrogen in the fourth pass of the heat exchanger is countercurrent to the flow of dihydrogen in the second pass. The invention also proposes a transfer system for dihydrogen in the liquid state, the system comprising a structure having at least the above characteristics, insulated pipes arranged so as to connect the tank installed on the structure, in particular in the shell of the structure, to a floating or onshore storage facility and a pump to drive a flow of cold dihydrogen product through the insulated pipes from or to the floating or onshore storage facility to or from the tank of the 'work.
L’invention offre en outre un procédé de chargement ou de déchargement d’un ouvrage présentant au moins une des caractéristiques précédentes, au cours duquel on achemine du dihydrogène à l’état liquide à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve de l’ouvrage. The invention also offers a method for loading or unloading a structure having at least one of the preceding characteristics, during which dihydrogen in the liquid state is conveyed through insulated pipes from or to a floating storage installation. or land to or from the structure tank.
L’invention propose par ailleurs un procédé de liquéfaction de dihydrogène gazeux issu de l’évaporation de dihydrogène à l’état liquide stocké dans au moins une cuve par un dispositif de liquéfaction présentant au moins une des caractéristiques précédemment décrites, le procédé comprenant au moins une étape de compression du dihydrogène gazeux, une étape d’échange de calories entre le dihydrogène gazeux comprimé et du dihydrogène gazeux soutiré de la cuve afin que le dihydrogène gazeux comprimé se liquéfie, la conversion, en présence du catalyseur, de l’isomère para en l’isomère ortho pour le dihydrogène gazeux soutiré se déroulant pendant l’étape d’échange de calories.The invention also proposes a process for the liquefaction of gaseous dihydrogen resulting from the evaporation of dihydrogen in the liquid state stored in at least one tank by a liquefaction device having at least one of the characteristics described above, the process comprising at least a step of compressing the dihydrogen gas, a step of exchanging calories between the compressed dihydrogen gas and the dihydrogen gas withdrawn from the tank so that the compressed dihydrogen gas liquefies, the conversion, in the presence of the catalyst, of the para isomer into the ortho isomer for the dihydrogen gas withdrawn taking place during the calorie exchange step.
Selon un mode de réalisation, le procédé de liquéfaction comprend une étape de compression du dihydrogène gazeux soutiré de la cuve après l’étape d’échange de calories afin d’alimenter en dihydrogène un consommateur. According to one embodiment, the liquefaction process comprises a step of compressing the hydrogen gas withdrawn from the tank after the calorie exchange step in order to supply a consumer with hydrogen.
D’autres caractéristiques et avantages de l’invention apparaîtront encore au travers de la description qui suit d’une part, et de plusieurs exemples de réalisation donnés à titre indicatif et non limitatif en référence aux dessins schématiques annexés d’autre part, sur lesquels : Other characteristics and advantages of the invention will become apparent through the description which follows on the one hand, and several embodiments given by way of indication and not limiting with reference to the appended diagrammatic drawings on the other hand, on which :
[fig 1] La figure 1 est une représentation schématique d’un premier mode de réalisation d’un dispositif de liquéfaction selon l’invention, le dispositif de liquéfaction étant configuré pour liquéfier du dihydrogène gazeux issu de l’évaporation de dihydrogène à l’état liquide stocké dans au moins une cuve d’un ouvrage flottant ; [fig 1] Figure 1 is a schematic representation of a first embodiment of a liquefaction device according to the invention, the liquefaction device being configured to liquefy gaseous dihydrogen resulting from the evaporation of dihydrogen in the liquid state stored in at least one tank of a floating structure;
[fig 2] La figure 2 est une représentation schématique d’un deuxième mode de réalisation d’un dispositif de liquéfaction selon l’invention, le dispositif de liquéfaction étant configuré pour liquéfier du dihydrogène gazeux issu de l’évaporation de dihydrogène à l’état liquide stocké dans au moins une cuve d’un ouvrage flottant ;[fig 2] Figure 2 is a schematic representation of a second embodiment of a liquefaction device according to the invention, the liquefaction device being configured to liquefy gaseous dihydrogen resulting from the evaporation of dihydrogen at the liquid state stored in at least one tank of a floating structure;
[fig 3] La figure 3 est une représentation schématique écorchée de l’ouvrage flottant de transport de dihydrogène liquide de la figure 1 et d'un terminal de chargement/déchargement des cuves de l’ouvrage flottant. [fig 3] Figure 3 is a cutaway schematic representation of the floating structure for transporting liquid dihydrogen in figure 1 and of a terminal for loading/unloading the tanks of the floating structure.
Il faut tout d’abord noter que si les figures exposent l’invention de manière détaillée pour sa mise en œuvre, elles peuvent bien entendu servir à mieux définir l’invention le cas échéant. Il est également à noter que, sur l’ensemble des figures, les éléments similaires et/ou remplissant la même fonction sont indiqués par la même numérotation.It should first be noted that if the figures expose the invention in detail for its implementation, they can of course be used to better define the invention if necessary. It should also be noted that, in all the figures, similar elements and/or fulfilling the same function are indicated by the same numbering.
La figure 1 représente un dispositif de liquéfaction 11 de dihydrogène liquide stocké dans au moins une cuve 3, 5 d’un ouvrage flottant de transport et/ou de stockage de dihydrogène. Le dispositif de liquéfaction 11 est configuré pour coopérer les cuves 3, 5 et avec au moins un consommateur 7 de l’ouvrage flottant. FIG. 1 represents a device 11 for liquefying liquid dihydrogen stored in at least one tank 3, 5 of a floating structure for transporting and/or storing dihydrogen. The liquefaction device 11 is configured to cooperate with the tanks 3, 5 and with at least one consumer 7 of the floating structure.
La ou les cuves 3, 5 contiennent du dihydrogène sous forme liquide 9, c’est-à-dire du dihydrogène à l’état liquide. L’isolation thermique des cuves n’étant pas parfaite, une partie dihydrogène à l’état liquide 9 s’évapore naturellement. Par conséquent, les cuves 3, 5 de l’ouvrage flottant comprennent à la fois du dihydrogène sous forme liquide 9 et du dihydrogène sous forme gazeuse 10. The tank or tanks 3, 5 contain dihydrogen in liquid form 9, that is to say dihydrogen in the liquid state. As the thermal insulation of the tanks is not perfect, part of the hydrogen in the liquid state 9 evaporates naturally. Consequently, the tanks 3, 5 of the floating structure comprise both dihydrogen in liquid form 9 and dihydrogen in gaseous form 10.
Le dispositif de liquéfaction 11 assure l’alimentation du consommateur 7 en dihydrogène provenant d’au moins une des cuves 3, 5. A titre d’exemple, le consommateur 7 comprend au moins une pile à combustible, mais il peut également s’agir d’un moteur à combustion ou une turbine. The liquefaction device 11 supplies the consumer 7 with dihydrogen coming from at least one of the tanks 3, 5. By way of example, the consumer 7 comprises at least one fuel cell, but it can also be of a combustion engine or a turbine.
Le dispositif de liquéfaction 11 comprend au moins un échangeur thermique 13 à plusieurs passes 15, 17, 19, au moins une branche d’alimentation 21 configurée pour amener au moins une portion du dihydrogène gazeux 10 depuis une des cuves 3, 5 jusqu’au consommateur 7 de dihydrogène gazeux et au moins une branche de refroidissement 23 configurée pour liquéfier au moins une partie du dihydrogène gazeux 10 d’une des cuves 3, 5. The liquefaction device 11 comprises at least one heat exchanger 13 with several passes 15, 17, 19, at least one supply branch 21 configured to bring at least a portion of the gaseous dihydrogen 10 from one of the tanks 3, 5 to the gaseous dihydrogen consumer 7 and at least one cooling branch 23 configured to liquefy at least a part of the gaseous dihydrogen 10 from one of the tanks 3, 5.
Une première partie de la branche d’alimentation 21 traverse l’échangeur thermique 13 via une première passe 15 à l’intérieur de laquelle est disposé un catalyseur 151 intervenant dans la conversion de l’isomère para du dihydrogène en isomère ortho du dihydrogène. Le catalyseur 151 est choisi parmi les gels de nickel, de cuivre, de fer ou d'hydrure métallique, de films de nickel, de cuivre ou de fer, des hydroxydes de fer, de cobalt, de nickel, de chrome, de manganèse, des oxydes de fer, des complexes nickel- silicium, du charbon actif et/ou au moins une de leurs associations. A first part of the supply branch 21 crosses the heat exchanger 13 via a first pass 15 inside which is placed a catalyst 151 involved in the conversion of the para isomer of dihydrogen into the ortho isomer of dihydrogen. Catalyst 151 is chosen from gels of nickel, copper, iron or metal hydride, films of nickel, copper or iron, hydroxides of iron, cobalt, nickel, chromium, manganese, iron oxides, nickel-silicon complexes, activated carbon and/or at least one of their combinations.
La branche d’alimentation 21 comprend au moins un dispositif de compression 27 agencé sur une deuxième partie de la branche d’alimentation 21 qui relie une sortie de la première passe 15 de l’échangeur thermique 13 au consommateur 7 de dihydrogène. Le dispositif de compression 27 est donc disposée sur la branche d’alimentation après une sortie 155 de la première passe 15, c’est-à-dire en aval de celle-ci, selon le sens de circulation du dihydrogène dans la branche d’alimentation 21. The supply branch 21 comprises at least one compression device 27 arranged on a second part of the supply branch 21 which connects an output of the first pass 15 of the heat exchanger 13 to the consumer 7 of dihydrogen. The compression device 27 is therefore arranged on the supply branch after an outlet 155 of the first pass 15, that is to say downstream of the latter, according to the direction of circulation of the dihydrogen in the branch of food 21.
La branche d’alimentation 21 comprend une troisième partie qui relie au moins une cuve 3, 5 de stockage de dihydrogène à une entrée 153 de la première passe 15 de manière à ce que le dihydrogène gazeux 10 retenu dans au moins une des cuves 3, 5 puisse s’écouler dans la branche d’alimentation 21 jusqu’au consommateur 7. The supply branch 21 comprises a third part which connects at least one dihydrogen storage tank 3, 5 to an inlet 153 of the first pass 15 so that the gaseous dihydrogen 10 retained in at least one of the tanks 3, 5 can flow in the supply branch 21 to the consumer 7.
La troisième partie de la branche d’alimentation 21 comprend une première sous- branche 211 reliée à une première cuve 3 et une deuxième sous-branche 213 reliée à une deuxième cuve 5. La première sous-branche 211 et la deuxième sous-branche 213 se rejoignent à un point de convergence 33 de la branche d’alimentation 21 qui est reliée à l’entrée 153 de la première passe 15 de l’échangeur thermique 13 par une conduite de raccordement. The third part of the supply branch 21 comprises a first sub-branch 211 connected to a first tank 3 and a second sub-branch 213 connected to a second tank 5. The first sub-branch 211 and the second sub-branch 213 meet at a point of convergence 33 of the supply branch 21 which is connected to the inlet 153 of the first pass 15 of the heat exchanger 13 by a connecting pipe.
La branche d’alimentation 21 peut comprendre une vanne placée au point de convergence 33 afin de pouvoir choisir la provenance du dihydrogène gazeux c’est-à-dire sélectionner le dihydrogène gazeux 10 de la première cuve 3 et/ ou le dihydrogène gazeux 10 de la deuxième cuve 5. The supply branch 21 may include a valve placed at the point of convergence 33 in order to be able to choose the origin of the gaseous dihydrogen, that is to say select the dihydrogen gas 10 from the first tank 3 and/or the dihydrogen gas 10 from the second tank 5.
Le dihydrogène gazeux 10 issu d’au moins une de ces cuves 3, 5 est mis en circulation forcée dans la branche d’alimentation 21 par le dispositif de compression 27. Le dihydrogène gazeux s’écoule alors depuis la cuve jusqu’à l’entrée 153 de la première passe 15 de l’échangeur thermique 13, puis traverse la première passe 15 de l’échangeur thermique 13. The dihydrogen gas 10 from at least one of these tanks 3, 5 is forced into circulation in the supply branch 21 by the compression device 27. The gaseous dihydrogen then flows from the tank to the entry 153 of the first pass 15 of the heat exchanger 13, then passes through the first pass 15 of the heat exchanger 13.
En s’écoulant de l’entrée 153 de la première passe 15 à la sortie 155 de la première passe, le dihydrogène va échanger des calories avec une deuxième passe 17 de l’échangeur thermique 13. Le dihydrogène gazeux s’écoulant dans la première passe 15 va alors être réchauffé. A titre d’exemple, le dihydrogène gazeux présente une température de -240°C à 1,1 bars absolus à l’entrée 153 de la première passe 15 et une température de +25°C à 1,1 bar à la sortie 155 de la première passe 15. By flowing from the inlet 153 of the first pass 15 to the outlet 155 of the first pass, the dihydrogen will exchange calories with a second pass 17 of the heat exchanger 13. The gaseous dihydrogen flowing in the first pass 15 will then be warmed up. By way of example, the dihydrogen gas has a temperature of -240° C. at 1.1 bar absolute at the inlet 153 of the first pass 15 and a temperature of +25° C. at 1.1 bar at the outlet 155 of the first pass 15.
La présence du catalyseur 151 à l’intérieur de la première passe 15 de l’échangeur thermique 13 permet d’accélérer la réaction d’isomérisation du parahydrogène en orthohydrogène, une telle réaction étant endothermique. Ainsi, le dihydrogène gazeux circulant dans la première passe 15 peut absorber encore plus de calories provenant de la deuxième passe 17 de l’échangeur thermique 13. Le transfert thermique de la deuxième passe 17 à la première passe 15 est grandement augmenté. The presence of the catalyst 151 inside the first pass 15 of the heat exchanger 13 makes it possible to accelerate the reaction of isomerization of parahydrogen into orthohydrogen, such a reaction being endothermic. Thus, the dihydrogen gas circulating in the first pass 15 can absorb even more calories coming from the second pass 17 of the heat exchanger 13. The heat transfer from the second pass 17 to the first pass 15 is greatly increased.
En référence à la figure 1, la branche de refroidissement 23 comporte au moins un organe de compression 25 de dihydrogène. Une première portion de la branche de refroidissement 23 traverse l’échangeur thermique 13 via une deuxième passe 17 disposée après l’organe de compression 25. Le dihydrogène gazeux qui circule dans la branche de refroidissement 23 est ainsi comprimé par l’organe de compression 25, avant son refroidissement au sein de la deuxième passe 17, tel que cela a été expliqué ci-dessus. Cette élévation de pression favorise la liquéfaction du dihydrogène au sein de la deuxième passe 17, et postérieurement à celle-ci. Referring to Figure 1, the cooling branch 23 comprises at least one compression member 25 of dihydrogen. A first portion of the cooling branch 23 passes through the heat exchanger 13 via a second pass 17 arranged after the compression member 25. The gaseous dihydrogen which circulates in the cooling branch 23 is thus compressed by the compression member 25 , before its cooling within the second pass 17, as explained above. This rise in pressure promotes the liquefaction of the dihydrogen within the second pass 17, and subsequent thereto.
Tel que cela est illustré sur la figure 1, mais de manière optionnelle, une deuxième portion de la branche de refroidissement 23 traverse l’échangeur thermique 13 via une troisième passe 19. Une sortie 195 de la troisième passe 19 est reliée à l’entrée 173 de la deuxième passe 17 par une portion de liaison 231 de la branche de refroidissement 23. La portion de liaison 231 porte l’organe de compression 25. As illustrated in Figure 1, but optionally, a second portion of the cooling branch 23 passes through the heat exchanger 13 via a third pass 19. An outlet 195 of the third pass 19 is connected to the inlet 173 of the second pass 17 by a connecting portion 231 of the cooling branch 23. The connecting portion 231 carries the compression member 25.
La deuxième passe 17 de l’échangeur thermique 13 est agencée de manière à échanger des calories avec la première passe 15 et la troisième passe 19 de l’échangeur thermique 13. The second pass 17 of the heat exchanger 13 is arranged so as to exchange calories with the first pass 15 and the third pass 19 of the heat exchanger 13.
Le dispositif de liquéfaction 11 comprend en outre une branche de dérivation 31 reliant le point de convergence 33 de la branche d’alimentation 21 et un point de jonction 35 agencé sur la branche de refroidissement 23. Cela permet notamment de faire circuler du dihydrogène gazeux d’une même cuve dans la branche d’alimentation 21 et dans la branche de refroidissement 23. Le point de jonction 35 est disposé avant l’organe de compression 25. Plus précisément, dans le premier mode de réalisation représenté sur la figure 1, le point de jonction est agencé avant l’entrée 193 de la troisième passe 19 de l’échangeur thermique 13. The liquefaction device 11 further comprises a bypass branch 31 connecting the point of convergence 33 of the supply branch 21 and a junction point 35 arranged on the cooling branch 23. the same tank in the supply branch 21 and in the cooling branch 23. The junction point 35 is arranged before the compression member 25. More specifically, in the first embodiment shown in Figure 1, the junction point is arranged before the inlet 193 of the third pass 19 of the heat exchanger 13.
Le dihydrogène gazeux 10 issu d’au moins une des cuves s’écoule depuis une des cuves 3, 5 jusqu’à l’entrée 193 de la troisième passe 15 de l’échangeur thermique 13 puis traverse la troisième passe 19 de l’échangeur thermique 13. The dihydrogen gas 10 from at least one of the tanks flows from one of the tanks 3, 5 to the inlet 193 of the third pass 15 of the heat exchanger 13 then crosses the third pass 19 of the heat exchanger thermal 13.
A la sortie 195 de la troisième passe 19, le dihydrogène est comprimé par l’organe de compression 25 et envoyé à l’entrée 173 de la deuxième passe de l’échangeur thermique 13. Dit autrement, La pression du dihydrogène après son passage par l’organe de compression 25 est supérieure à la pression du dihydrogène avant son passage par l’organe de compression 25. At the outlet 195 of the third pass 19, the dihydrogen is compressed by the compression member 25 and sent to the inlet 173 of the second pass of the heat exchanger 13. In other words, the pressure of the dihydrogen after passing through the compression member 25 is greater than the pressure of the dihydrogen before it passes through the compression member 25.
Dans ce contexte, on comprend que l’organe de compression 25 du fait de sa fonction permet la circulation forcée du dihydrogène gazeux 10 issu d’au moins une des cuves 3,In this context, it is understood that the compression member 25 due to its function allows the forced circulation of gaseous dihydrogen 10 from at least one of the tanks 3,
5 dans la branche de refroidissement 23 par l’organe de compression 25. 5 in the cooling branch 23 by the compression member 25.
Puis, le dihydrogène compressé s’écoule dans la deuxième passe 17 de l’échangeur thermique 13 où il cède des calories au dihydrogène s’écoulant dans la troisième passe 19 de l’échangeur thermique 13 et au dihydrogène s’écoulant dans la première passe 15 de l’échangeur thermique 13. Le dihydrogène circulant dans la deuxième passe 17 va par conséquent changer d’état, pour au moins en partie passer à l’état liquide. Ainsi, à la sortie 175 de la deuxième passe 17 de l’échangeur thermique 13, au moins une partie du dihydrogène est liquéfié, préférentiellement tout le dihydrogène est liquéfié. Then, the compressed dihydrogen flows into the second pass 17 of the heat exchanger 13 where it yields calories to the dihydrogen flowing in the third pass 19 of the heat exchanger 13 and to the dihydrogen flowing in the first pass 15 of the heat exchanger 13. The dihydrogen circulating in the second pass 17 will therefore change state, to at least partly pass to the liquid state. Thus, at the outlet 175 of the second pass 17 of the heat exchanger 13, at least part of the dihydrogen is liquefied, preferably all the dihydrogen is liquefied.
Afin d’optimiser les échanges de calories entre les passes 15, 17 de l’échangeur thermique 13, l’écoulement de dihydrogène dans la seconde passe 17 s’effectue à contre-courant de l’écoulement de dihydrogène dans la première passe 15. Pour encore améliorer le transfert thermique entre les passes 17, 19 de l’échangeur thermique 13, l’écoulement de dihydrogène dans la seconde passe 17 s’effectue à contre-courant de l’écoulement de dihydrogène dans la troisième passe 19. On comprend que le dihydrogène dans la première passe 15 s’écoule dans le même sens que le sens de circulation du dihydrogène au sein de la troisième passe 19. In order to optimize the heat exchanges between the passes 15, 17 of the heat exchanger 13, the flow of dihydrogen in the second pass 17 takes place countercurrent to the flow of dihydrogen in the first pass 15. To further improve the heat transfer between the passes 17, 19 of the heat exchanger 13, the flow of dihydrogen in the second pass 17 takes place countercurrent to the flow of dihydrogen in the third pass 19. that the dihydrogen in the first pass 15 flows in the same direction as the direction of circulation of the dihydrogen within the third pass 19.
A titre d’exemple, le dihydrogène présente une température de -250°C à l’entrée 193 de la troisième passe 19 de l’échangeur thermique 13 et une température de +25°C à la sortie 195 de la troisième passe 19 de l’échangeur thermique 13. L’organe de compression 25 comprime le dihydrogène à une pression comprise entre 35 et 45 bars pour une température de +43°C. Le dihydrogène présente une température de +43°C à l’entrée 173 de la deuxième passe 17 de l’échangeur thermique 13 et une température de -240°C à la sortie 175 de la deuxième passe 17 de l’échangeur thermique 13. By way of example, dihydrogen has a temperature of -250° C. at the inlet 193 of the third pass 19 of the heat exchanger 13 and a temperature of +25° C. at the outlet 195 of the third pass 19 of the heat exchanger 13. The compression member 25 compresses the dihydrogen to a pressure of between 35 and 45 bars for a temperature of +43°C. The dihydrogen has a temperature of +43°C at the inlet 173 of the second pass 17 of the heat exchanger 13 and a temperature of -240°C at the outlet 175 of the second pass 17 of the heat exchanger 13.
A la sortie 175 de la deuxième passe 17 de l’échangeur thermique 13, le dihydrogène est au moins en partie liquéfié. En d’autres mots, le dihydrogène peut présenter une phase liquide et une phase gazeuse après avoir parcouru la deuxième passe 17 de l’échangeur thermique 13. Les deux phases sont alors mélangées. At the outlet 175 of the second pass 17 of the heat exchanger 13, the dihydrogen is at least partly liquefied. In other words, the dihydrogen can present a liquid phase and a gaseous phase after having traveled through the second pass 17 of the heat exchanger 13. The two phases are then mixed.
Dans le mode de réalisation représenté sur la figure 1 , le dispositif de liquéfaction 11 comprend un séparateur gaz-liquide 29 agencé sur la branche de refroidissement 23. Le séparateur est agencé après la sortie 175 de la deuxième passe 17. Après être sorti de la deuxième passe 17 de l’échangeur thermique 14, le dihydrogène au moins en partie liquéfié s’écoule vers une entrée 293 du séparateur gaz-liquide 29. Un dispositif de détente, non représenté dans ce premier mode de réalisation, peut être agencé entre la sortie 175 de la deuxième passe 17 et l’entrée 293 du séparateur gaz- liquide 29 de sorte à diminuer la pression du fluide entrant dans le séparateur gaz- liquide 29. In the embodiment represented in FIG. 1, the liquefaction device 11 comprises a gas-liquid separator 29 arranged on the cooling branch 23. The separator is arranged after the outlet 175 of the second pass 17. After leaving the second pass 17 of the heat exchanger 14, the at least partially liquefied hydrogen flows to an inlet 293 of the gas-liquid separator 29. An expansion device, not shown in this first embodiment, can be arranged between the outlet 175 of the second pass 17 and the inlet 293 of the gas-liquid separator 29 so as to reduce the pressure of the fluid entering the gas separator. - liquid 29.
Une sortie de liquide 295 du séparateur gaz-liquide 29 est en communication fluidique avec au moins une des cuves 3, 5, une telle communication fluidique étant assurée par une troisième portion 41 de la conduite de refroidissement 23. A liquid outlet 295 from the gas-liquid separator 29 is in fluid communication with at least one of the tanks 3, 5, such fluid communication being ensured by a third portion 41 of the cooling pipe 23.
Une sortie de gaz 297 du séparateur gaz-liquide 29 est en communication fluidique avec la branche de refroidissement 23 avant une entrée 193 de la troisième passe 19 de l’échangeur thermique 13. A titre d’exemple, le dihydrogène présente une température de -254°C à la sortie de gaz 297 du séparateur gaz-liquide 29. A gas outlet 297 of the gas-liquid separator 29 is in fluid communication with the cooling branch 23 before an inlet 193 of the third pass 19 of the heat exchanger 13. By way of example, dihydrogen has a temperature of - 254°C at the gas outlet 297 of the gas-liquid separator 29.
La communication fluidique de la sortie de gaz 297 du séparateur gaz-liquide 29 avec la branche de refroidissement 23 est assurée par une branche de liaison 299 reliant la sortie de gaz 297 du séparateur gaz-liquide 29 avec le point de jonction 35 agencé sur la branche de refroidissement 23. The fluidic communication of the gas outlet 297 of the gas-liquid separator 29 with the cooling branch 23 is provided by a connecting branch 299 connecting the gas outlet 297 of the gas-liquid separator 29 with the junction point 35 arranged on the cooling branch 23.
Lorsque le dihydrogène circule dans le dispositif de liquéfaction 11, après être sorti de la deuxième passe 17 de l’échangeur thermique 13, le dihydrogène est envoyé dans le séparateur gaz-liquide 29 pour que la phase liquide du dihydrogène soit séparée de la phase gazeuse. When the dihydrogen circulates in the liquefaction device 11, after leaving the second pass 17 of the heat exchanger 13, the dihydrogen is sent to the gas-liquid separator 29 so that the liquid phase of the dihydrogen is separated from the gaseous phase. .
La phase liquide de dihydrogène contenu dans le séparateur gaz-liquide 29 peut être envoyée dans la phase liquide 9 du dihydrogène stocké dans une des cuves 3, 5 via la troisième portion 41 de la conduite de refroidissement 23. La phase gazeuse de dihydrogène contenu dans le séparateur gaz-liquide 29 peut être introduit dans la branche de refroidissement 23 au niveau de point de jonction 35 via la branche de liaison 299 pour y être liquéfié. The liquid phase of dihydrogen contained in the gas-liquid separator 29 can be sent into the liquid phase 9 of the dihydrogen stored in one of the tanks 3, 5 via the third portion 41 of the cooling pipe 23. The gaseous phase of dihydrogen contained in the gas-liquid separator 29 can be introduced into the cooling branch 23 at the junction point 35 via the connecting branch 299 to be liquefied there.
La figure 2 illustre un deuxième mode de réalisation du dispositif de liquéfaction selon l’invention. Le deuxième mode de réalisation diffère du premier mode de réalisation en ce que le point de jonction 35 est entre la sortie 195 de la troisième passe 19 et l’organe de compression 25 sur la branche de refroidissement 23, et en ce que la branche de dérivation 31 traverse l’échangeur thermique 13 via une quatrième passe 20. Les éléments identiques sont désignés par les mêmes références. On se référera à la description ci-dessus pour plus de précisions sur ces éléments identiques. Figure 2 illustrates a second embodiment of the liquefaction device according to the invention. The second embodiment differs from the first embodiment in that the junction point 35 is between the output 195 of the third pass 19 and the member compression 25 on the cooling branch 23, and in that the bypass branch 31 passes through the heat exchanger 13 via a fourth pass 20. Identical elements are designated by the same references. Reference will be made to the description above for more details on these identical elements.
En référence à la figure 2, la quatrième passe 20 de l’échangeur thermique 13 est constitutive de la branche de dérivation 31 qui relie le point de convergence 33 et le point de jonction 35. Le point de convergence 31 est sur la branche d’alimentation 21 avant l’entrée 153 de la première passe 15. Referring to Figure 2, the fourth pass 20 of the heat exchanger 13 is constitutive of the bypass branch 31 which connects the point of convergence 33 and the junction point 35. The point of convergence 31 is on the branch of supply 21 before input 153 of the first pass 15.
Le point de jonction 35 est sur la branche de refroidissement 23. Le point de jonction 35 est disposé entre avant l’organe de compression 25. Tel que cela est représenté sur la figure 2, le point de jonction 35 est agencé entre la sortie 195 de la troisième passe 19 et l’entrée 173 de la deuxième passe 17, plus précisément avant une entrée de l’organe de compression 25. The junction point 35 is on the cooling branch 23. The junction point 35 is arranged between the front of the compression member 25. As shown in Figure 2, the junction point 35 is arranged between the outlet 195 of the third pass 19 and the inlet 173 of the second pass 17, more precisely before an inlet of the compression member 25.
La sortie de gaz 297 du séparateur gaz-liquide 29 est en communication fluidique avec l’entrée 193 de la troisième passe 19 via la branche de liaison 299. La branche de liaison 299 est, dans ce deuxième mode de réalisation constitutive de la deuxième portion de la branche de refroidissement 23. Ainsi le dihydrogène entrant dans la troisième passe 19 présente une température identique à la phase gazeuse de dihydrogène sortant du séparateur gaz-liquide 29 c’est à dire -254°C dans ce deuxième mode de réalisation.The gas outlet 297 of the gas-liquid separator 29 is in fluid communication with the inlet 193 of the third pass 19 via the connecting branch 299. The connecting branch 299 is, in this second embodiment constituting the second portion of the cooling branch 23. Thus the dihydrogen entering the third pass 19 has a temperature identical to the gaseous phase of dihydrogen leaving the gas-liquid separator 29, that is to say −254° C. in this second embodiment.
La quatrième passe 20 de l’échangeur thermique 13 est constitutive de la branche de dérivation 31. La quatrième passe 20 est agencée de manière à échanger des calories avec la deuxième passe 17 et la troisième passe 19 de l’échangeur thermique 13. Par conséquent, la deuxième passe 17 de l’échangeur thermique 13 est disposée de manière à échanger des calories avec la première passe 15 de l’échangeur thermique 13 et la quatrième passe 20 de l’échangeur thermique 13. The fourth pass 20 of the heat exchanger 13 is constitutive of the bypass branch 31. The fourth pass 20 is arranged so as to exchange calories with the second pass 17 and the third pass 19 of the heat exchanger 13. Consequently , the second pass 17 of the heat exchanger 13 is arranged so as to exchange calories with the first pass 15 of the heat exchanger 13 and the fourth pass 20 of the heat exchanger 13.
En référence à la figure 2, un écoulement de dihydrogène gazeux dans la quatrième passe 20 de l’échangeur thermique 13 est orienté dans la même direction qu’un écoulement de dihydrogène gazeux dans la troisième passe 19. Autrement dit, lorsque le dihydrogène gazeux circule dans le dispositif de liquéfaction 11 , l’écoulement du dihydrogène dans la quatrième passe 20 de l’échangeur thermique 13 est co-courant à l’écoulement du dihydrogène dans la troisième passe 19. En outre, l’écoulement de dihydrogène gazeux dans la quatrième passe 20 de l’échangeur thermique 13 est à contrecourant de l’écoulement du dihydrogène dans la deuxième passe 17. Referring to Figure 2, a flow of gaseous dihydrogen in the fourth pass 20 of the heat exchanger 13 is oriented in the same direction as a flow of gaseous dihydrogen in the third pass 19. In other words, when the gaseous dihydrogen circulates in the liquefaction device 11, the flow of dihydrogen in the fourth pass 20 of the heat exchanger 13 is co-current with the flow of dihydrogen in the third pass 19. In addition, the flow of gaseous dihydrogen in the fourth pass 20 of the heat exchanger 13 is countercurrent to the flow of dihydrogen in the third pass 19. flow of dihydrogen in the second pass 17.
Lorsque le dispositif de liquéfaction 1 selon le deuxième mode de réalisation illustré sur la figure 2 est parcouru par du dihydrogène, le dihydrogène sort comprimé et refroidi de de la deuxième passe 17 de l’échangeur thermique 13. Ainsi, lorsque le dihydrogène de la conduite de refroidissement 23 entre dans le séparateur gaz-liquide 29, il subit une détente qui a pour conséquence de créer une phase liquide de dihydrogène et une phase gazeuse de dihydrogène dans le séparateur gaz-liquide 29. When the liquefaction device 1 according to the second embodiment illustrated in FIG. 2 is traversed by dihydrogen, the dihydrogen comes out compressed and cooled from the second pass 17 of the heat exchanger 13. Thus, when the dihydrogen from the pipe cooling 23 enters the gas-liquid separator 29, it undergoes an expansion which has the effect of creating a liquid phase of dihydrogen and a gaseous phase of dihydrogen in the gas-liquid separator 29.
Un dispositif de détente 28 peut, de manière optionnelle, être agencé entre la sortie 175 de la deuxième passe 17 et l’entrée 293 du séparateur gaz-liquide 29 de sorte à diminuer la pression du fluide entrant dans le séparateur gaz-liquide 29. An expansion device 28 can, optionally, be arranged between the outlet 175 of the second pass 17 and the inlet 293 of the gas-liquid separator 29 so as to reduce the pressure of the fluid entering the gas-liquid separator 29.
La phase liquide de dihydrogène dans le séparateur gaz-liquide 29 peut être renvoyée dans une des cuves 3, 5. Plus précisément, la phase liquide de dihydrogène est directement délivrée dans la phase liquide 9 contenue dans la cuve 5 via la troisième portion 41 de la conduite de refroidissement 23 qui s’étend depuis la sortie de liquide 295 du séparateur gaz-liquide 29 jusque dans la cuve 5 de sorte qu’une extrémité de la troisième portion 41 est immergée dans le dihydrogène liquide contenu dans la cuve 5.The liquid phase of dihydrogen in the gas-liquid separator 29 can be returned to one of the tanks 3, 5. More specifically, the liquid phase of dihydrogen is directly delivered into the liquid phase 9 contained in the tank 5 via the third portion 41 of the cooling pipe 23 which extends from the liquid outlet 295 of the gas-liquid separator 29 into the tank 5 so that one end of the third portion 41 is immersed in the liquid dihydrogen contained in the tank 5.
La phase gazeuse de dihydrogène dans le séparateur gaz-liquide 29 est, quant à elle, envoyée dans la branche de refroidissement 23 en passant dans la troisième passe 19 de l’échangeur thermique 13. The gaseous phase of dihydrogen in the gas-liquid separator 29 is, for its part, sent to the cooling branch 23 passing through the third pass 19 of the heat exchanger 13.
Le dihydrogène à l’entrée 193 de la troisième passe 19 de l’échangeur thermique 13, qui est à l’état gazeuse en provenance du séparateur gaz-liquide 29, est plus froid que le dihydrogène à l’entrée 203 de la quatrième passe 20. Le deuxième mode de réalisation permet alors de profiter de la capacité d’absorption de calories de la phase gazeuse provenant du séparateur gaz-liquide 29 grâce à la quatrième passe 20 de l’échangeur thermique 13. Ainsi, le dihydrogène à la sortie 195 de la troisième passe 19 est plus froid que dans le cas du premier mode de réalisation où le dispositif de liquéfaction 1 est dépourvu de quatrième passe. Le dihydrogène à l’entrée 173 de la deuxième passe 17 dans ce deuxième mode de réalisation est donc plus froid et sera donc encore plus refroidi à la sortie 175 de la deuxième passe 17 que dans le premier mode de réalisation. The dihydrogen at the inlet 193 of the third pass 19 of the heat exchanger 13, which is in the gaseous state coming from the gas-liquid separator 29, is colder than the dihydrogen at the inlet 203 of the fourth pass 20. The second embodiment then makes it possible to take advantage of the calorie absorption capacity of the gaseous phase coming from the gas-liquid separator 29 thanks to the fourth pass 20 of the heat exchanger 13. Thus, the dihydrogen at the outlet 195 of the third pass 19 is colder than in the case of the first embodiment where the liquefaction device 1 has no fourth pass. The dihydrogen at the inlet 173 of the second pass 17 in this second embodiment is therefore colder and will therefore be even more cooled at the outlet 175 of the second pass 17 than in the first embodiment.
Dans ce deuxième mode de réalisation, le dihydrogène étant plus froid à la sortie 175 de la deuxième passe 17 que dans le premier mode de réalisation, il crée moins de phase gazeuse dans le séparateur gaz-liquide 29. Par conséquent, la quantité de dihydrogène à recycler via la branche de liaison 299 est moindre et la consommation énergétique du dispositif de liquéfaction est diminuée comparativement au premier mode de réalisation.In this second embodiment, the dihydrogen being colder at the outlet 175 of the second pass 17 than in the first embodiment, it creates less gas phase in the gas-liquid separator 29. Consequently, the quantity of dihydrogen to be recycled via the connecting branch 299 is less and the energy consumption of the liquefaction device is reduced compared to the first embodiment.
En référence à la figure 3, une vue écorchée d'un ouvrage flottant 70 montre une cuve 3, 5 étanche et thermiquement isolée de forme générale prismatique montée dans une double coque 72 de l’ouvrage flottant 70, qui peut être un navire ou une plateforme flottante. Une paroi de la cuve 3, 5 comporte une barrière étanche primaire destinée à être en contact avec le dihydrogène à l’état liquide contenu dans la cuve 3, 5, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières thermiquement isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72. Dans une version simplifiée, l’ouvrage flottant 70 comporte une simple coque. Alternativement, les cuves de dihydrogène sont des cuves sphériques isolées sous vide. Referring to Figure 3, a cutaway view of a floating structure 70 shows a sealed and thermally insulated tank 3, 5 of generally prismatic shape mounted in a double hull 72 of the floating structure 70, which can be a ship or a floating platform. A wall of the tank 3, 5 comprises a primary tight barrier intended to be in contact with the dihydrogen in the liquid state contained in the tank 3, 5, a secondary tight barrier arranged between the primary tight barrier and the double shell 72 of the ship, and two thermally insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double hull 72. In a simplified version, the floating structure 70 comprises a single hull. Alternatively, the dihydrogen tanks are spherical tanks insulated under vacuum.
Des canalisations de chargement/déchargement 73 disposées sur un pont supérieur de l’ouvrage flottant 70 peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de dihydrogène à l’état liquide depuis ou vers la cuve 3, 5. Loading/unloading pipes 73 arranged on an upper deck of the floating structure 70 can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of dihydrogen in the liquid state from or to the tank. 3, 5.
La figure 3 représente un exemple de terminal maritime comportant un poste de chargement et/ou de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et/ou de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/ déchargement 73. Le bras mobile 74 est orientable et s'adapte à tous les gabarits d’ouvrage flottant 70. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et/ou de déchargement 75 permet le chargement et/ou le déchargement de l’ouvrage flottant 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de dihydrogène à l’état liquide 80 et des conduites de liaison 81 reliées par la conduite sous- marine 76 au poste de chargement et/ou de déchargement 75. La conduite sous-marine 76 permet le transfert du dihydrogène à l’état liquide entre le poste de chargement et/ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder l’ouvrage flottant 70 à grande distance de la côte pendant les opérations de chargement et/ou de déchargement. FIG. 3 represents an example of a maritime terminal comprising a loading and/or unloading station 75, an underwater pipeline 76 and a shore installation 77. The loading and/or unloading station 75 is a fixed installation off- shore comprising a movable arm 74 and a tower 78 which supports the movable arm 74. The movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading/unloading pipes 73. The movable arm 74 is orientable and adapts to all the templates of floating structures 70. A connecting pipe, not shown, is extends inside the tower 78. The loading and/or unloading station 75 allows the loading and/or unloading of the floating structure 70 from or to the shore installation 77. This comprises dihydrogen storage tanks in the liquid state 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading and/or unloading station 75. The underwater pipe 76 allows the transfer of the dihydrogen to the liquid state between the loading and/or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the floating structure 70 at a great distance from the coast during the operations of loading and/or unloading.
Pour engendrer la pression nécessaire au transfert du dihydrogène, on met en œuvre des pompes embarquées dans l’ouvrage flottant 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.To generate the pressure necessary for the transfer of dihydrogen, pumps on board the floating structure 70 and/or pumps fitted to the shore installation 77 and/or pumps fitted to the loading and unloading station 75 are used.
Alternativement, le dihydrogène peut être déchargé par effet de pression c’est-à-dire par augmentation de pression dans la cuve 3,5. Ainsi, le déchargement du dihydrogène peut s’effectuer sans pompe. Alternatively, the dihydrogen can be discharged by pressure effect, i.e. by increasing the pressure in tank 3.5. Thus, the unloading of dihydrogen can be carried out without a pump.
Bien sûr, l’invention n’est pas limitée aux exemples qui viennent d’être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invention. Par exemple, les deux modes de réalisation dispositif de liquéfaction selon l’invention ont été décrits dans le cadre d’un ouvrage flottant. Cependant, ils peuvent être implémentés dans un ouvrage terrestre. Of course, the invention is not limited to the examples which have just been described and many adjustments can be made to these examples without departing from the scope of the invention. For example, the two embodiments of the liquefaction device according to the invention have been described in the context of a floating structure. However, they can be implemented in a land structure.

Claims

REVENDICATIONS
1- Dispositif de liquéfaction (11) de dihydrogène gazeux issu de l’évaporation de dihydrogène à l’état liquide (9) stocké dans au moins une cuve (3, 5), le dispositif de liquéfaction (11) comprenant au moins un échangeur thermique (13) à plusieurs passes (15, 17, 19), au moins une branche d’alimentation (21) configurée pour amener au moins une portion du dihydrogène gazeux depuis la cuve (3, 5) jusqu’à un consommateur (7) de dihydrogène gazeux, une partie de la branche d’alimentation traversant l’échangeur thermique (13) via une première passe (15) à l’intérieur de laquelle est disposé un catalyseur (151) intervenant dans la conversion de l’isomère para du dihydrogène en isomère ortho du dihydrogène, le dispositif de liquéfaction (11) comprenant au moins une branche de refroidissement (23) configurée pour liquéfier au moins une partie du dihydrogène gazeux, la branche de refroidissement (23) comportant au moins un organe de compression (25), une portion de la branche de refroidissement (23) traversant l’échangeur thermique (13) via une deuxième passe (17) disposée après l’organe de compression (25), la deuxième passe (17) échangeant des calories avec la première passe (15) afin de liquéfier au moins une partie du dihydrogène circulant dans la branche de refroidissement (23). 1- Liquefaction device (11) of gaseous dihydrogen resulting from the evaporation of dihydrogen in the liquid state (9) stored in at least one tank (3, 5), the liquefaction device (11) comprising at least one exchanger (13) with several passes (15, 17, 19), at least one supply branch (21) configured to supply at least a portion of the dihydrogen gas from the tank (3, 5) to a consumer (7 ) gaseous dihydrogen, part of the feed branch passing through the heat exchanger (13) via a first pass (15) inside which is arranged a catalyst (151) involved in the conversion of the para isomer dihydrogen to the ortho isomer of dihydrogen, the liquefaction device (11) comprising at least one cooling branch (23) configured to liquefy at least a portion of the gaseous dihydrogen, the cooling branch (23) comprising at least one compression member (25), a portion of the cooling branch (23) passing through the heat exchanger (13) via a second pass (17) arranged after the compression member (25), the second pass (17) exchanging calories with the first pass (15) in order to liquefy at least a part of the dihydrogen circulating in the cooling branch (23).
2- Dispositif de liquéfaction (11) selon la revendication précédente, dans lequel le catalyseur (151) est choisi parmi les gels de nickel, de cuivre, de fer ou d'hydrure métallique, de films de nickel, de cuivre ou de fer, des hydroxydes de fer, de cobalt, de nickel, de chrome, de manganèse, des oxydes de fer, des complexes nickel-silicium, du charbon actif et/ou au moins une de leurs associations. 2- Liquefaction device (11) according to the preceding claim, in which the catalyst (151) is chosen from nickel, copper, iron or metal hydride gels, nickel, copper or iron films, hydroxides of iron, cobalt, nickel, chromium, manganese, iron oxides, nickel-silicon complexes, activated carbon and/or at least one of their combinations.
3- Dispositif de liquéfaction (11) selon l’une quelconque des revendications précédentes, dans lequel la branche d’alimentation (21) comprend un dispositif de compression (27) agencé après une sortie (155) de la première passe (15). 3- Liquefaction device (11) according to any one of the preceding claims, wherein the supply branch (21) comprises a compression device (27) arranged after an outlet (155) of the first pass (15).
4- Dispositif de liquéfaction (11) selon l’une quelconque des revendications précédentes, dans lequel une autre portion de la branche de refroidissement (23) traverse l’échangeur thermique (13) via une troisième passe (19), une sortie (195) de la troisième passe (19) étant reliée à une entrée (173) de la deuxième passe (17) par une portion de liaison (231) de la branche de refroidissement (23), la portion de liaison (231) comprenant l’organe de compression (25). 4- liquefaction device (11) according to any one of the preceding claims, wherein another portion of the cooling branch (23) passes through the heat exchanger (13) via a third pass (19), an outlet (195 ) of the third pass (19) being connected to an input (173) of the second pass (17) by a portion of connection (231) of the cooling branch (23), the connection portion (231) comprising the compression member (25).
5- Dispositif de liquéfaction (11) selon la revendication précédente, dans lequel la deuxième passe (17) de l’échangeur thermique (13) est agencée de manière à échanger des calories avec la première passe (15) et la troisième passe (19) de l’échangeur thermique (13). 5- liquefaction device (11) according to the preceding claim, wherein the second pass (17) of the heat exchanger (13) is arranged to exchange calories with the first pass (15) and the third pass (19 ) of the heat exchanger (13).
6- Dispositif de liquéfaction (11) selon l’une quelconque des revendications précédentes, comprenant un séparateur gaz-liquide (29) agencé sur la branche de refroidissement (23) après une sortie (175) de la deuxième passe (17). 6- Liquefaction device (11) according to any one of the preceding claims, comprising a gas-liquid separator (29) arranged on the cooling branch (23) after an outlet (175) of the second pass (17).
7- Dispositif de liquéfaction (11) selon la revendication précédente configuré pour mettre en communication fluidique une sortie de liquide (295) du séparateur gaz-liquide (29) avec une cuve (3, 5). 7- Liquefaction device (11) according to the preceding claim configured to put in fluid communication a liquid outlet (295) of the gas-liquid separator (29) with a tank (3, 5).
8- Dispositif de liquéfaction (11) selon l’une des revendications 6 à 7 prise en combinaison avec la revendication 4, dans lequel une sortie de gaz (297) du séparateur gaz-liquide (29) est en communication fluidique avec la branche de refroidissement (23) avant une entrée (193) de la troisième passe (19) de l’échangeur thermique (13). 8- Liquefaction device (11) according to one of claims 6 to 7 taken in combination with claim 4, wherein a gas outlet (297) of the gas-liquid separator (29) is in fluid communication with the branch of cooling (23) before an inlet (193) of the third pass (19) of the heat exchanger (13).
9- Dispositif de liquéfaction (11) selon l’une quelconque des revendications précédentes prise en combinaison avec la revendication 4, comprenant une branche de dérivation (31) reliant un point de convergence (33) agencé sur la branche d’alimentation (21) avant une entrée (153) de la première passe (155) de l’échangeur thermique (13) et un point de jonction (35) agencé sur la branche de refroidissement (23) avant l’organe de compression (25). 9- Liquefaction device (11) according to any one of the preceding claims taken in combination with claim 4, comprising a bypass branch (31) connecting a convergence point (33) arranged on the supply branch (21) before an inlet (153) of the first pass (155) of the heat exchanger (13) and a junction point (35) arranged on the cooling branch (23) before the compression member (25).
10- Ouvrage (70) destiné au transport et/ou au stockage de dihydrogène à l’état liquide qui comprend au moins une cuve (3, 5) contenant du dihydrogène liquide, l’ouvrage flottant (71) comprenant au moins un consommateur (7) de dihydrogène et au moins un dispositif de liquéfaction (11) selon l’une quelconque des revendications précédentes, l’au moins un consommateur (7) étant configuré pour être alimenté en carburant par le dihydrogène à l’état gazeux circulant au moins en partie dans ledit dispositif de liquéfaction (11). 10- Structure (70) intended for the transport and/or storage of dihydrogen in the liquid state which comprises at least one tank (3, 5) containing liquid dihydrogen, the floating structure (71) comprising at least one consumer ( 7) of dihydrogen and at least one liquefaction device (11) according to any one of the preceding claims, the at least one consumer (7) being configured to be supplied with fuel by dihydrogen in the gaseous state circulating at least partly in said liquefaction device (11).
11- Ouvrage (70) selon la revendication précédente, dans lequel un écoulement du dihydrogène dans la première passe (15) de l’échangeur thermique (13) est orienté dans un sens opposé à un écoulement du dihydrogène dans la deuxième passe (17) de l’échangeur thermique (13). 11- Work (70) according to the preceding claim, wherein a flow of dihydrogen in the first pass (15) of the heat exchanger (13) is oriented in a direction opposite to a flow of dihydrogen in the second pass (17) of the heat exchanger (13).
12 Ouvrage (70) selon l’une des revendication 10 à 11 prise en combinaison avec la revendication 4, dans lequel un écoulement du dihydrogène dans la première passe (15) de l’échangeur thermique (13) est orienté dans la même direction qu’un écoulement de dihydrogène dans la troisième passe (19) de l’échangeur thermique (13). 12 Work (70) according to one of claims 10 to 11 taken in combination with claim 4, wherein a flow of dihydrogen in the first pass (15) of the heat exchanger (13) is oriented in the same direction as a flow of dihydrogen in the third pass (19) of the heat exchanger (13).
13- Système de transfert pour du dihydrogène à l’état liquide, le système comportant un ouvrage (70) selon l’une des revendications 10 à 12, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve installée (3, 5) sur l’ouvrage (70) à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre (77) vers ou depuis la cuve (3, 5) de l’ouvrage (70). 13- Transfer system for dihydrogen in the liquid state, the system comprising a structure (70) according to one of claims 10 to 12, insulated pipes (73, 79, 76, 81) arranged so as to connect the tank installed (3, 5) on the structure (70) to a floating or onshore storage facility (77) and a pump for driving a flow of cold liquid product through the insulated pipes from or to the floating storage facility or land (77) to or from the tank (3, 5) of the structure (70).
14 Procédé de chargement ou de déchargement d’un ouvrage (70) selon l’une des revendications 10 à 12, au cours duquel on achemine du dihydrogène à l’état liquide à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve (3, 5) de l’ouvrage (70). 14 A method of loading or unloading a structure (70) according to one of claims 10 to 12, during which dihydrogen is conveyed in the liquid state through insulated pipes (73, 79, 76, 81) from or to a floating or onshore storage facility (77) to or from the tank (3, 5) of the structure (70).
15- Procédé de liquéfaction de dihydrogène gazeux issu de l’évaporation de dihydrogène à l’état liquide stocké dans au moins une cuve (3, 5) par un dispositif de liquéfaction (11) selon l’une quelconque des revendications 1 à 9, le procédé comprenant une étape de compression du dihydrogène gazeux par l’organe de compression (25) et une étape d’échange de calories dans l’échangeur thermique (13) entre le dihydrogène gazeux comprimé et du dihydrogène gazeux soutiré de la cuve (3, 5), afin que le dihydrogène gazeux comprimé se liquéfie au moins en partie, la conversion, en présence du catalyseur, de l’isomère para en l’isomère ortho pour le dihydrogène gazeux soutiré se déroulant pendant l’étape d’échange de calories. 15- Process for the liquefaction of gaseous dihydrogen resulting from the evaporation of dihydrogen in the liquid state stored in at least one tank (3, 5) by a liquefaction device (11) according to any one of claims 1 to 9, the method comprising a step of compressing the dihydrogen gas by the compression member (25) and a step of exchanging calories in the heat exchanger (13) between the compressed dihydrogen gas and the dihydrogen gas withdrawn from the tank (3 , 5), so that the compressed dihydrogen gas liquefies at least in part, the conversion, in the presence of the catalyst, of the para isomer into the ortho isomer for the gaseous hydrogen withdrawn taking place during the stage of exchange of calories.
EP22722310.4A 2021-04-21 2022-04-14 Device for liquefying gaseous dihydrogen for offshore or onshore structure Pending EP4327037A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2104153A FR3122250B1 (en) 2021-04-21 2021-04-21 Gaseous dihydrogen liquefaction device for floating or terrestrial structure
PCT/FR2022/050701 WO2022223909A1 (en) 2021-04-21 2022-04-14 Device for liquefying gaseous dihydrogen for offshore or onshore structure

Publications (1)

Publication Number Publication Date
EP4327037A1 true EP4327037A1 (en) 2024-02-28

Family

ID=76283974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22722310.4A Pending EP4327037A1 (en) 2021-04-21 2022-04-14 Device for liquefying gaseous dihydrogen for offshore or onshore structure

Country Status (10)

Country Link
US (1) US20240200866A1 (en)
EP (1) EP4327037A1 (en)
JP (1) JP2024516170A (en)
KR (1) KR20230175223A (en)
CN (1) CN117295921A (en)
AU (1) AU2022262269A1 (en)
CA (1) CA3214186A1 (en)
CL (1) CL2023003101A1 (en)
FR (1) FR3122250B1 (en)
WO (1) WO2022223909A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL235432A (en) * 1958-01-29
FR2663714B1 (en) * 1990-06-20 1992-09-11 Air Liquide PROCESS AND PLANT FOR TRANSFERRING LIQUID HYDROGEN.
JPH09291832A (en) * 1996-04-26 1997-11-11 Toshiba Corp Liquefied hydrogen producing device utilizing combined cycle
JP2004210597A (en) * 2003-01-06 2004-07-29 Toshiba Corp Waste-heat-using hydrogen/oxygen system and method for producing liquid hydrogen
KR102062484B1 (en) * 2019-03-13 2020-02-11 사단법인 한국선급 Hydrogen Re-liquefaction System

Also Published As

Publication number Publication date
CA3214186A1 (en) 2022-10-27
KR20230175223A (en) 2023-12-29
AU2022262269A1 (en) 2023-11-02
CN117295921A (en) 2023-12-26
FR3122250B1 (en) 2023-05-26
FR3122250A1 (en) 2022-10-28
CL2023003101A1 (en) 2024-05-03
WO2022223909A1 (en) 2022-10-27
JP2024516170A (en) 2024-04-12
US20240200866A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
EP1853846B1 (en) Plant for regasification of liquefied natural gas
EP3743652A1 (en) Cryogenic heat pump and use thereof in the treatment of liquefied gas
EP3271635B1 (en) Method for cooling a liquefied gas
FR2967484A1 (en) METHOD AND SYSTEM FOR TRANSPORTING LIQUEFIED NATURAL GAS
AU2006241566B2 (en) Large distance offshore LNG export terminal with boil-off vapour collection and utilization capacities
WO2017162977A1 (en) Facility for feeding fuel gas to a member consuming gas and for liquefying said fuel gas
FR2785034A1 (en) PROCESS FOR ELIMINATE THE EVAPORATION OF A LIQUEFIED GAS STORED IN A WATERPROOF AND ISOTHERMAL TANK, AND DEVICE FOR ITS IMPLEMENTATION
EP4327037A1 (en) Device for liquefying gaseous dihydrogen for offshore or onshore structure
WO2017009341A1 (en) Process for expansion and storage of a flow of liquefied natural gas from a natural gas liquefaction plant, and associated plant
FR2916485A1 (en) "CRYOTECHNIC DEVICE FOR PROPULSION IN SPACE AND ITS CONTROL METHOD"
WO2022208003A1 (en) Method for cooling a heat exchanger of a gas supply system of a gas consuming apparatus of a ship
WO2022157446A1 (en) Gas supply system for high- and low-pressure gas consuming appliances
WO2021064318A1 (en) Refrigerant fluid intended for a refrigerant fluid circuit of a natural gas treatment system
EP4018119A1 (en) System for treating gas contained within a tank for storing and/or transporting gas in the liquid state and the gaseous state, the system being fitted on a ship
EP4062046A1 (en) System for supplying gas to at least one gas-consuming appliance equipping a ship
WO2005105669A1 (en) Method for liquefying solid carbon dioxide
WO2022234206A1 (en) Floating structure comprising a system for supplying a consumer with a fuel prepared from liquefied natural gas or a mixture of methane and an alkane comprising at least two carbon atoms
FR3122706A1 (en) System for supplying a consumer configured to be supplied with a fuel prepared from a gas resulting from the evaporation of a cryogenic liquid comprising at least methane
WO2022069833A1 (en) Gas supply system for high- and low-pressure gas consuming appliances
WO2021064319A1 (en) System for treating a gas contained in a tank for storing and/or transporting gas in the liquid and gaseous state
WO2024084154A1 (en) Method for managing a fluid in liquid form contained in a vessel
WO2023052708A1 (en) System for treating a natural gas coming from a tank of a floating structure configured to supply natural gas as fuel to a natural gas consuming apparatus
WO2022122982A1 (en) Methods for gassing up and for gas tests in a storage facility for liquefied gas
KR200281594Y1 (en) A heating equipment for gasification in LNG carrier
FR2869404A1 (en) Liquefying gaseous carbon dioxide, useful for treating combustion gases for carbon dioxide disposal, uses an intermediate liquid for heat exchange and liquefied natural gas for reliquefaction of the intermediate

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR