EP4323789A1 - Système et procédé de positionnement d'au moins un mobile récepteur - Google Patents

Système et procédé de positionnement d'au moins un mobile récepteur

Info

Publication number
EP4323789A1
EP4323789A1 EP22723465.5A EP22723465A EP4323789A1 EP 4323789 A1 EP4323789 A1 EP 4323789A1 EP 22723465 A EP22723465 A EP 22723465A EP 4323789 A1 EP4323789 A1 EP 4323789A1
Authority
EP
European Patent Office
Prior art keywords
transmitting
base
mobile
bases
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22723465.5A
Other languages
German (de)
English (en)
Inventor
Antoine CARRABIN
Pierre-Arnaud COQUELIN
Stéphane David-Grignot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wheere
Original Assignee
Wheere
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wheere filed Critical Wheere
Publication of EP4323789A1 publication Critical patent/EP4323789A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • G01S1/0428Signal details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/045Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/20Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems
    • G01S1/30Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems the synchronised signals being continuous waves or intermittent trains of continuous waves, the intermittency not being for the purpose of determining direction or position line and the transit times being compared by measuring the phase difference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0273Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves using multipath or indirect path propagation signals in position determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems

Definitions

  • the invention relates to a system and a method for positioning at least one receiving mobile.
  • the technical field of the invention is that of the positioning of a receiving mobile, by the mobile itself, in an environment both outside (outdoor in English) and inside buildings (indoor in English).
  • the system comprises, in addition to the receiving mobile, fixed transmitting bases or antennas which are configured to transmit radio frequency signals to the receiving mobile.
  • the calculation of the transmission time or flight time, by the receiving mobile during the transmission of these signals, allows it to determine the distance at which it is from each base, and therefore to deduce its position.
  • GPS system Global Positioning System
  • a location system in an outdoor or indoor environment most often comprises, in addition to the mobile to be positioned, a set of at least three beacons. These beacons are particularized in that their position is known. In addition, they are most often fixed.
  • the beacons control the transmissions: a beacon transmits for the attention of a mobile, the mobile responds by retransmitting for the attention of the beacon.
  • the measurement of the transmission time by differential measurement of the date of transmission relative to the date of reception, makes it possible to determine the distance between the beacon and the mobile.
  • a remote server can deduce the position of the mobile, and therefore does not allow the mobile to carry out its positioning itself.
  • radiolocation systems use modulated radio frequency signals, emitted by beacons or fixed antennas, to transmit, for example, positioning data or random data to a receiver.
  • Such random data for example known to the receiver in advance, serves to help the latter to synchronize on the random data by carrying out signal correlations.
  • Such systems involve the use of a large frequency transmission bandwidth, typically a bandwidth of several tens or hundreds of MHz for meter or sub-meter precision positioning systems. Such operation is particularly costly.
  • radiolocation systems do not allow dual operation, both in outdoor and indoor environments.
  • US patent document 2020/0209337 A1 describes such a positioning system.
  • the system comprises at least two fixed transmitter bases which transmit radiofrequency signals.
  • the system also comprises a mobile receiver, capable of determining the position of one of the fixed transmitting bases. To do this, the receiving mobile becomes a master device which transmits a signal comprising a sinusoidal portion.
  • the transmitter base whose position is to be determined becomes a slave device which measures the phase and the amplitude of the signal upon receipt. It returns this information to the master device along with a similar sinusoidal portion to enable the master device to detect the phase and amplitude of the received signal.
  • the master device then applies a discrete Fourier transform to the measured signals, in the time domain, in order to determine the distance and thus the position of the slave device.
  • a determination is made by time-of-flight measurement.
  • the mobile receiver is obliged in this case to successively determine the position of at least three fixed transmitting bases, then to cross these measurements to deduce its position therefrom.
  • Such a determination is long, tedious and therefore expensive.
  • the system described in this document implements super-resolution algorithms.
  • the implementation of such a system results in a relatively large noise band, which affects the sensitivity of the system.
  • the transmission of information caused by this system implies having a relatively large channel width, and therefore the receiver is obliged to take into account the entire channel to retrieve the information. The accuracy of the localization may thus be affected.
  • An object of the present invention is to at least partially overcome the aforementioned drawbacks.
  • an objective of the present invention is to provide a positioning system for at least one receiver mobile having both a large range (typically greater than 10 km) and operating both in an outdoor and indoor environment, allowing the mobile itself to position itself precisely, and making it possible to limit the spectral occupancy while having increased sensitivity and an equivalent noise band reduced to the maximum.
  • Another objective of the present invention is to provide a system for positioning at least one receiving mobile allowing the mobile itself to position itself precisely, by discriminating the signals in line of sight direct from a transmitter base, various signal bounces (multi-path).
  • the subject of the invention is a system for positioning at least one receiving mobile, the system comprising, in addition to the mobile, at least two fixed transmitting bases, each transmitting base being configured to transmit radio frequency signals, the transmitting bases being synchronized with each other to transmit their respective signals, the receiving mobile being configured to receive and process said radiofrequency signals and to deduce its position therefrom by calculating the time-of-flight difference(s) between the receiving mobile and the transmitting bases, the mobile receiver comprising means for storing position data of the fixed transmitter bases, in which each transmitter base is configured to transmit a sum of at least two unmodulated pure carrier signals of distinct frequencies, each pure carrier signal being in the form of an unmodulated continuous wave, preferably sinusoidal; and the receiving mobile further comprises:
  • calculation means connected to the measuring means and to the storage means, and configured to: o apply, for each transmitting base, a Fourier transform on a signal consisting of the different measured phases of the radiofrequency signals coming from said base; o determine, for each transmitting base, from the Fourier transform calculated for said base, a time of flight between the receiving mobile and said base; o calculate at least one flight time difference between the mobile and two transmitting bases, said difference being calculated as the difference between the flight times determined for said bases; o determine the position of the receiving mobile, from the calculated time-of-flight difference(s) and the position data of the transmitting bases.
  • the positioning system according to the invention applies a Fourier transform to a signal consisting of phases of signals of different frequencies.
  • a Fourier transform to a signal consisting of phases of signals of different frequencies.
  • the receiving mobile to be able to distinguish the bounces from the main signal, the latter being the first to arrive at the receiving mobile (the bounces arriving next).
  • the transmitter bases of the positioning system according to the invention do not transmit any modulated data, unlike many systems of the prior art. This reduces the spectral occupancy and therefore the cost and complexity of the system.
  • the frequency difference between the minimum frequency and the maximum frequency of the pure carrier signals transmitted by said base is greater than 50 MHz.
  • the resolution of the Fourier transform thus reduced then makes it possible to improve the separation or discrimination between the signal in direct line of sight coming from a transmitting base on the one hand, and the various rebounds of the signal (multi-paths) from somewhere else. Indeed, such a separation or discrimination is possible provided that the resolution of the Fourier transform is sufficiently fine, more precisely provided that it is less than the time interval separating the main signal (in direct line of sight) of the rebound considered.
  • the positioning system according to the invention makes it possible to obtain a location accuracy for the receiving mobile of less than 1 m, even inside buildings or in an urban environment, and this without resorting to signals of the GPS or GNSS type ( from English Global Navigation Satellite System).
  • each pure carrier signal transmitted by a transmitter base has a frequency situated in the band of very high frequencies, in other words has a frequency comprised in the range going from 30 MHz to 300 MHz.
  • the fixed transmitter bases are configured to transmit the same number of unmodulated pure carrier signals.
  • the fixed transmitter bases are configured so as to transmit their sums of unmodulated pure carrier signals in a frequency-shifted manner, with a predetermined frequency shift between two successive transmitter bases. This allows the receiving mobile to be able to distinguish the sums of unmodulated pure carrier signals originating from each of the transmitting bases.
  • the frequency shift is in the range from 100 Hz to 1 kHz.
  • Such a frequency offset value allows the sums of unmodulated pure carrier signals to be easily separated by the receiving mobile, while remaining in the same frequency channel (of frequency width equal to 12.5 kHz, in the very high frequency band). This makes it possible to limit the number of occupied frequency channels, and consequently to reduce the cost of implementing the system.
  • the fixed transmitting bases are antennas, preferably antennas distributed in such a way that the distance between two adjacent antennas is greater than or equal to 5 km.
  • the receiving mobile is a chip or an electronic card or else a mobile communication device such as a mobile telephone.
  • each fixed transmitting base is configured to synchronize between them the unmodulated pure carrier signals transmitted by the base.
  • each fixed transmitting base is configured to transmit a sum S1 of N unmodulated sinusoidal signals of distinct frequencies wi, said sum S1 satisfying the form of the following equation:
  • the invention also relates to a method for positioning at least one receiving mobile, implemented by a positioning system comprising, in addition to the mobile, at least two fixed transmitting bases, each transmitting base being configured to transmit radiofrequency signals , the transmitting bases being synchronized with each other to transmit their respective signals, the receiving mobile comprising signal phase measuring means, data storage means, and calculation means connected to the measuring means and to the storage means, the method comprising an initial step of transmitting position data from the fixed transmitting bases to the storage means of the receiving mobile, in which the method also comprises the following steps: a transmission, by each of the transmitting bases, of a sum of at least two unmodulated pure carrier signals of distinct frequencies, each pure carrier signal being in the form of an unmodulated continuous wave, preferably sinusoidal;
  • the Fourier transform is a discrete Fourier transform.
  • the calculation means of the receiving mobile use the time of flight as an independent variable for the applied Fourier transform.
  • FIG. 1 shows a diagram of a positioning system for a receiving mobile according to the invention
  • FIG. 2 shows a flowchart representing a method of positioning a receiving mobile according to the invention, implemented by the system of FIG. 1, and
  • FIG. 3 shows a graph representing two Fourier transforms as a function of time of flight, each Fourier transform corresponding to a distinct transmitting base and having been applied by the receiving mobile to a signal consisting of the different measured phases of the radiofrequency signals originating from this base .
  • a system 1 for positioning a mobile receiver 2 comprises, in addition to the mobile receiver 2, at least two fixed transmitting bases 4.
  • the system 1 comprises two fixed transmitting bases 4A, 4B.
  • the invention applies in the same way to any positioning system comprising a number of transmitter bases greater than or equal to two, and preferably greater than or equal to three. The provision of at least three transmitter bases in the positioning system ensures better robustness for the system.
  • the mobile receiver 2 is configured to receive and process radio frequency signals SdA, SdB, s r A, s r B from the fixed transmitting bases 4A, 4B, and to deduce its position therefrom by calculating the time-of-flight difference(s). between the receiving mobile 2 and the transmitting bases 4A, 4B (as will be described later). This differential time-of-flight calculation makes it possible to avoid any time synchronization constraint between the receiving mobile 2 and the transmitting bases 4A, 4B.
  • the mobile receiver 2 comprises storage means (not shown), configured to store position data from the fixed transmitting bases 4A, 4B.
  • the storage means typically consist of a memory, typically a non-volatile memory.
  • the mobile receiver 2 also comprises means for measuring radiofrequency signal phases, these measuring means not being shown in the figures for reasons of clarity.
  • the receiving mobile 2 also includes calculation means (not shown) connected to the measuring means and to the storage means.
  • the measurement and calculation means typically consist of a processing unit, for example formed of one or more processors, or integrated within an electronic chip.
  • the mobile receiver 2 typically consists of a chip or an electronic card, for example integrated into a portable device; or a mobile communication device such as a cell phone. In the case where the mobile receiver 2 consists of an electronic chip or a mobile communication device of the portable telephone type, the latter is typically provided with an analog-digital converter.
  • Each transmitting base 4A, 4B is typically an antenna for transmitting radio frequency signals S1A, S1 B, SdA, SdB, s r A, s r B.
  • the transmitting bases 4A, 4B are antennas, the latter are distributed so that the distance between two adjacent antennas is greater than or equal to 5 km.
  • the transmitting bases 4A, 4B of the positioning system 1 are synchronized with each other to transmit their respective signals.
  • synchronized with each other is meant that the phase difference between the signals transmitted by the different transmitting bases 4A, 4B is constant, in order to avoid drifts in the signals, and thus to avoid distorting the measurement made by the mobile receiver 2 for its positioning.
  • Each transmitting base 4A, 4B is configured to transmit a sum S1 A , S1 B of at least two unmodulated pure carrier signals of distinct frequencies.
  • Each pure carrier signal is in the form of an unmodulated continuous wave, preferably sinusoidal.
  • each unmodulated pure carrier signal is a pure sinusoidal signal
  • each fixed transmitting base 4A, 4B is configured to transmit a sum S1 A , S1 B of N unmodulated sinusoidal signals of distinct frequencies wi ⁇ .
  • Each sum S1 A , S1 B of signals verifies the form of the following general equation:
  • the frequency difference between the minimum frequency and the maximum frequency among the frequencies wi of the pure carrier signals transmitted by each transmitting base 4A, 4B is greater than 50 MHz.
  • each pure carrier signal transmitted by a transmitter base 4A, 4B has a frequency situated in the band of very high frequencies, in other words has a frequency comprised in the range going from 30 MHz to 300 MHz. Frequency bands belonging to the very high VHF frequencies (Very High Frequencies) are thus allocated to the fixed transmitting bases 4A, 4B of the positioning system 1.
  • the fixed transmitter bases 4 are configured to transmit the same number N of unmodulated pure carrier signals.
  • the transmitter bases 4 are configured so as to transmit their sums S1 of unmodulated pure carrier signals in a frequency-shifted manner, with a predetermined frequency shift Dw between two successive transmitter bases 4.
  • a first transmitter base 4A respectively a second transmitter base 4B, is configured to transmit a sum S1 A , respectively S1 B , of unmodulated sinusoidal signals verifying the following equation:
  • the sums S1 A and S1 B of sinusoidal signals are thus shifted in frequency, by a frequency shift Dw (expressed for example in rad/s).
  • the frequency shift Dw is preferably within the range from 100 Hz to 1 kHz.
  • Each transmitter base 4A, 4B is advantageously configured to synchronize between them the sinusoidal signals that it transmits.
  • the environment in which the mobile receiver 2 operates comprises a first obstacle 01 and a second obstacle 02.
  • the two obstacles 01 and 02 are here buildings, but could alternatively be formed of any other type of structure without affecting the reasoning which will follow.
  • the radiofrequency signals received by the mobile receiver 2 and coming from this base 4A, 4B are divided into two types: a first type consists of the signals S dA , S dB arriving in direct line of sight, and a second type consists of the signals S rA , S rB arriving at the mobile receiver 2 following a rebound on an obstacle 01, 02.
  • the signals SdA, s r A, respectively SdB, s r B each correspond to the sum S1 A , respectively S1 B , of unmodulated pure carrier signals, but take different paths.
  • Called DA, respectively DB the distance in direct line of sight between the mobile receiver 2 and the first transmitting base 4A, respectively the second transmitting base 4B, traversed by the signals S dA , respectively S dB .
  • the method comprises an initial step 10 of transmitting position data from the fixed transmitting bases 4A, 4B to the storage means of the receiving mobile 2.
  • the transmission 10 can for example consist of a transmission by each transmitting base 4A, 4B of its position coordinates to the mobile receiver 2, or else in a prior implantation of the position coordinates of the bases within the mobile receiver 2, at the time of its manufacture or of its configuration.
  • the storage means of the mobile receiver 2 store the position data of the transmitting bases 4A, 4B.
  • the method comprises a following step 12 during which each transmitting base 4A, 4B transmits the sum S1A, S1 B of unmodulated pure carrier signals of distinct frequencies ui k .
  • the phase difference between the signals S1A, S1B emitted by the different emitting bases 4A, 4B is constant.
  • the sums S1A and S1B of pure carrier signals transmitted by the bases 4A, 4B are thus shifted in frequency by a frequency shift Dw.
  • the various frequencies ui k used by the bases 4A, 4B, as well as the frequency shift Dw, are known by the mobile receiver 2 (pre-established in or transmitted to the latter).
  • the mobile receiver 2 receives the radiofrequency signals SdA, SdB, s r A, s r B coming from the transmitting bases 4A, 4B.
  • These signals SdA,s r A, respectively SdB,s r B each correspond to the sum S1A, respectively S1B, of unmodulated pure carrier signals, but take different paths. Thanks to the fact that the sums S1A, S1 B of signals are shifted in frequency with a predetermined frequency shift (known to the mobile receiver 2), the mobile receiver 2 can distinguish the signals S dA , s rA coming from the first base 4A of on the one hand, signals SdB,s r B coming from the second transmitting base 4B on the other hand.
  • the mobile receiver 2 determines via its measurement means, for each given signal frequency k and for each transmitting base 4A, 4B, the phase of the signal consisting of the various signals S dA , s rA ; respectively Sd B , s rB , coming from this base 4A, 4B and having the frequency U k .
  • the two signals S dA (co k ) and Sr A (tO k ) are received by the receiver mobile 2 while being mixed.
  • phase measured by the mobile receiver 2 for the frequency co k corresponds to the phase of the signal consisting of the sum of the direct signal S dA and the rebound signal s r A.
  • this phase measurement may consist in the measurement means applying, for each frequency co k , a multiplier coefficient e iüJk to each signal consisting of the various signals S dA , S, A; respectively S d B, s r B, from the first base 4A, respectively from the second base 4B. This makes it possible to isolate the phase of each unmodulated pure carrier signal forming part of the signals SdA, s r A, respectively SdB, s r B.
  • the mobile receiver 2 applies, via its calculation means and for each of the transmitting bases 4A, 4B, a Fourier transform on a signal consisting of the various measured phases of the radio frequency signals received from this base.
  • a Fourier transform on a signal consisting of the various measured phases of the radio frequency signals received from this base.
  • the Fourier transform applied during step 18 is typically a discrete Fourier transform, and in particular a discrete Fourier transform with complex coefficients.
  • the calculation means can during a following step 20 isolate different peaks corresponding to each signal LotA, s r A OR SdB, s r B, and deduce therefrom the time of flight of each of these signals.
  • the calculation means of the mobile receiver 2 determine the flight time between the mobile receiver 2 and each of the bases 4A, 4B. To do this, the calculation means isolate the peak P1A, P1B having the shortest flight time. This peak P1A,
  • the peak P1A corresponding to the signal S dA has a time of flight TV1A substantially equal to 230 ns.
  • the time of flight TV1A between the mobile receiver 2 and the first base 4A is therefore substantially 230 ns.
  • the peak P1 B corresponding to the signal S dB has a flight time TV1 B substantially equal to 310 ns.
  • the time of flight TV1B between the mobile receiver 2 and the second base 4B is therefore substantially 310 ns.
  • the second peak P2A, P2B which has a lower amplitude than that of the first peak P2A, P2B and a longer time of flight, corresponds to the signal s r A, s r B having undergone a rebound on an obstacle 01, 02.
  • This peak P2A, P2B can therefore be advantageously isolated from the first peak P1A, P1B, and not be taken into account in the following calculations.
  • the receiving mobile 2 calculates at least one time-of-flight difference TV diff between the mobile 2 and two transmitting bases 4A, 4B.
  • the time-of-flight difference TV diff is calculated as the difference between the times-of-flight TV1A, TV1B determined for the transmitting bases 4A, 4B during step 20.
  • the time of flight time difference TV diff is substantially equal to 80 ns (310 ns - 230 ns).
  • the mobile receiver 2 calculates several time-of-flight differences between the mobile and the transmitting bases taken two by two, each time-of-flight difference being calculated between mobile 2 and two separate transmitting bases.
  • the calculation means of the mobile receiver 2 determine the position of the mobile receiver 2 from the difference(s) of flight time TV dif r calculated(s) and position data of the transmitting bases 4A, 4B, previously stored in the storage means. From the known position data of the transmitting bases 4A, 4B, the absolute position of the receiving mobile is easily given by the conventional relationship between the speed of the waves and the difference in flight time. In the case where the positioning system comprises a number of transmitting bases greater than or equal to three, the calculation means of the receiver mobile 2 cross the various measurements of time-of-flight differences in order to determine the position of the receiver mobile 2.
  • the system 1 advantageously makes it possible to achieve sub-metric precision (less than 1 m) for positioning mobile 2, even inside buildings or in an urban environment.
  • the mobile receiver 2 carries out its own positioning autonomously.
  • the positioning system 1 has both a large range (typically greater than 10 km), operates both in an outdoor and indoor environment, and has a limited spectral occupancy, an increased sensitivity and a reduced equivalent noise band at the maximum. All these characteristics, obtained together in the same system, are new and particularly advantageous compared to the various positioning systems of the prior art. ;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

L'invention concerne un système (1) de positionnement d'au moins un mobile récepteur (2), comprenant au moins deux bases émettrices fixes (4, 4A, 4B). Chaque base émettrice (4, 4A, 4B) est configurée pour émettre des signaux radiofréquences (S1A, S1B, SdA, Sdb, Sr A, SrB) et pour émettre une somme (S1A, S1B) d'au moins deux signaux à porteuse pure non modulée de fréquences distinctes; et le mobile récepteur (2) comprend en outre : • des moyens de mesure de phases des signaux; et • des moyens de calcul configurés pour : - appliquer une transformée de Fourier sur un signal constitué des différentes phases mesurées des signaux radiofréquences; - déterminer un temps de vol entre le mobile récepteur (2) et chaque base (4A, 4B); - calculer au moins une différence de temps de vol entre le mobile (2) et deux bases émettrices (4A, 4B); - déterminer la position du mobile récepteur (2), à partir de la ou des différence(s) de temps de vol calculée(s).

Description

Description
Titre de l'invention : Système et procédé de positionnement d’au moins un mobile récepteur
[Domaine technique
L’invention concerne un système et un procédé de positionnement d’au moins un mobile récepteur. Le domaine technique de l’invention est celui du positionnement d’un mobile récepteur, par le mobile lui-même, dans un environnement aussi bien extérieur (outdoor en anglais), qu’à l’intérieur des bâtiments (indoor en anglais). Le système comprend, outre le mobile récepteur, des bases émettrices fixes ou antennes qui sont configurées pour émettre des signaux radiofréquences à destination du mobile récepteur. Le calcul du temps de transmission ou temps de vol, par le mobile récepteur lors de la transmission de ces signaux, lui permet de déterminer la distance à laquelle il se trouve de chaque base, et donc d’en déduire sa position.
Technique antérieure
La localisation de mobiles récepteurs en environnement extérieur a connu un important saut technologique avec le déploiement du système GPS (de l’anglais Global Positioning System) dans les années 80. Toutefois, la technologie GPS ne fonctionne pas en environnement intérieur, typiquement à l’intérieur des bâtiments, et relativement mal dans les environnements urbains. Les deux principales contraintes des environnements intérieurs ou urbains sont en effet :
- la pénétration des bâtiments et divers obstacles par les signaux d’intérêt (qui constitue un facteur limitant pour la portée du système de positionnement) ; et
- l’existence de multi-trajets impactant l’onde émise, qui se traduit par de nombreuses répliques du signal original décalées dans le temps et d’amplitude variable arrivant au mobile récepteur, de tels signaux multi-trajets étant appelés rebonds.
Il existe donc un besoin pour des systèmes de positionnement de mobiles récepteurs qui présentent à la fois une grande portée (typiquement supérieure à 10 km) et qui fonctionnent aussi bien en environnement extérieur qu’intérieur. De manière connue, un système de localisation en environnement extérieur ou intérieur comprend le plus souvent, en plus du mobile à positionner, un jeu d’au moins trois balises. Ces balises sont particularisées en ce que leur position est connue. De plus elles sont le plus souvent fixes. Dans une telle configuration de système, les balises maîtrisent les transmissions : une balise émet à l’attention d’un mobile, le mobile répond en réémettant à l’attention de la balise. La mesure du temps de transmission, par mesure différentielle de la date d’émission relativement à la date de réception, permet de déterminer la distance entre la balise et le mobile. Toutefois un tel système nécessite une rémission de signaux de la part du mobile récepteur vers les balises, afin qu’un serveur distant en déduise la position du mobile, et ne permet donc pas au mobile d’effectuer lui-même son positionnement.
De manière connue également, des systèmes de radiolocalisation utilisent des signaux radiofréquences modulés, émis par des balises ou antennes fixes, pour transmettre par exemple des données de positionnement ou des données aléatoires à un récepteur. De telles données aléatoires, par exemple connues à l’avance du récepteur, servent à aider ce dernier à se synchroniser sur les données aléatoires en effectuant des corrélations de signaux. Toutefois, de tels systèmes impliquent l’utilisation d’une grande largeur de bande d’émission de fréquences, typiquement une largeur de bande de plusieurs dizaines ou centaines de MHz pour des systèmes de positionnement à la précision métrique ou sub-métrique. Un tel fonctionnement est particulièrement coûteux. En outre, de tels systèmes de radiolocalisation ne permettent pas un fonctionnement dual, aussi bien en environnement extérieur qu’intérieur.
Il est également connu de l’état de la technique des systèmes de positionnement d’un objet, mettant en œuvre une méthode par interférométrie de phase, qui utilise l’amplitude et la phase. Le document brevet US 2020/0209337 A1 décrit un tel système de positionnement. Le système comprend au moins deux bases émettrices fixes qui émettent des signaux radiofréquences. Le système comprend également un mobile récepteur, apte à déterminer la position d’une des bases émettrices fixes. Pour ce faire, le mobile récepteur devient un dispositif maître qui émet un signal comprenant une portion sinusoïdale. La base émettrice dont la position est à déterminer devient un dispositif esclave qui mesure la phase et l’amplitude du signal à réception. Elle retourne cette information au dispositif maître ainsi qu’une portion sinusoïdale similaire pour permettre au dispositif maître de détecter la phase et l’amplitude du signal reçu. Le dispositif maître applique alors une transformée de Fourier discrète sur les signaux mesurés, dans le domaine temporel, afin de déterminer la distance et ainsi la position du dispositif esclave. Une telle détermination est effectuée par mesure de temps de vol. Toutefois, un tel système de positionnement ne permet pas au mobile récepteur de déterminer rapidement et facilement son propre positionnement. En effet, le mobile récepteur est obligé dans ce cas de déterminer successivement la position d’au moins trois bases émettrices fixes, puis de croiser ces mesures pour en déduire sa position. Une telle détermination est longue, fastidieuse et donc coûteuse. En outre, afin d’éviter la perturbation des mesures due à la présence de multi-trajets, le système décrit dans ce document met en œuvre des algorithmes à super résolution. Toutefois, la mise en en œuvre d’un tel système entraîne une bande de bruit relativement importante, ce qui nuit à la sensibilité du système. En effet, la transmission d’informations occasionnée par ce système (transmission de signaux modulés), implique d’avoir une largeur de canal relativement importante, et donc que le récepteur est obligé de prendre en compte tout le canal pour retrouver l’information. La précision de la localisation peut ainsi s’en trouver affectée.
Résumé de l'invention
Un but de la présente invention est de pallier au moins partiellement les inconvénients précités.
En particulier, un objectif de la présente invention est de fournir un système de positionnement d’au moins un mobile récepteur présentant à la fois une grande portée (typiquement supérieure à 10 km) et fonctionnant aussi bien en environnement extérieur qu’intérieur, permettant au mobile lui-même de se positionner de manière précise, et permettant de limiter l’occupation spectrale tout en présentant une sensibilité augmentée et une bande de bruit équivalent réduite au maximum.
Un autre objectif de la présente invention est de fournir un système de positionnement d’au moins un mobile récepteur permettant au mobile lui-même de se positionner de manière précise, en discriminant les signaux en ligne de vue directe provenant d’une base émettrice, des différents rebonds de signaux (multi- trajets).
Pour cela, l’invention a pour objet un système de positionnement d’au moins un mobile récepteur, le système comprenant, outre le mobile, au moins deux bases émettrices fixes, chaque base émettrice étant configurée pour émettre des signaux radiofréquences, les bases émettrices étant synchronisées entre elles pour émettre leurs signaux respectifs, le mobile récepteur étant configuré pour recevoir et traiter lesdits signaux radiofréquences et pour en déduire sa position par calcul de différence(s) de temps de vol entre le mobile récepteur et les bases émettrices, le mobile récepteur comprenant des moyens de stockage de données de position des bases émettrices fixes, dans lequel chaque base émettrice est configurée pour émettre une somme d’au moins deux signaux à porteuse pure non modulée de fréquences distinctes, chaque signal à porteuse pure se présentant sous la forme d’une onde entretenue non modulée, de préférence sinusoïdale ; et le mobile récepteur comprend en outre :
• des moyens de mesure, pour chaque fréquence de signal donnée et pour chaque base émettrice respective, de la phase du signal constitué des différents signaux issus de ladite base et présentant ladite fréquence ; et
• des moyens de calcul reliés aux moyens de mesure et aux moyens de stockage, et configurés pour : o appliquer, pour chaque base émettrice, une transformée de Fourier sur un signal constitué des différentes phases mesurées des signaux radiofréquences issus de ladite base ; o déterminer, pour chaque base émettrice, à partir de la transformée de Fourier calculée pour ladite base, un temps de vol entre le mobile récepteur et ladite base ; o calculer au moins une différence de temps de vol entre le mobile et deux bases émettrices, ladite différence étant calculée comme la différence entre les temps de vol déterminés pour lesdites bases ; o déterminer la position du mobile récepteur, à partir de la ou des différence(s) de temps de vol calculée(s) et des données de position des bases émettrices.
L’utilisation par le système de signaux à porteuse pure se présentant sous la forme d’ondes entretenues non modulées permet de limiter l’occupation spectrale, et donc d’assurer une très bonne sensibilité du système en réduisant au maximum la bande de bruit équivalent. De tels signaux présentent en effet une occupation spectrale réduite au minimum. Ceci permet d’obtenir un système de positionnement de mobile récepteur présentant une grande portée ainsi qu’un faible coût de fonctionnement, fonctionnant aussi bien en environnement extérieur qu’intérieur, et permettant au mobile lui-même de se positionner de manière précise. Une telle approche par émission de sommes de signaux à porteuse pure non modulée n’est pas utilisée dans les systèmes de positionnement et de radiolocalisation de l’art antérieur, en particulier à cause des multi-trajets (rebonds du signal émis qui arrivent au mobile récepteur avec un décalage temporel) qui sont difficiles à dissocier du signal original en ligne de vue directe, lorsqu’un tel signal est une onde entretenue non modulée. L’utilisation par le système selon l’invention d’une transformée de Fourier appliquée sur un signal constitué des différentes phases mesurées des signaux radiofréquences permet au mobile récepteur de discriminer les rebonds du signal principal, et de mesurer ainsi les temps de vol (entre le mobile et les bases) non entachés d’erreurs dues au multi-trajet. A la différence de certains systèmes de positionnement de l’art antérieur, qui appliquent une transformée de Fourier sur un signal temporel, le système de positionnement selon l’invention applique une transformée de Fourier sur un signal constitué de phases de signaux de différentes fréquences. Une telle approche permet au mobile récepteur de pouvoir distinguer les rebonds du signal principal, ce dernier étant le premier à arriver au mobile récepteur (les rebonds arrivant ensuite). En outre, les bases émettrices du système de positionnement selon l’invention ne transmettent aucune donnée modulée, contrairement à beaucoup de systèmes de l’art antérieur. Ceci permet de réduire l’occupation spectrale et donc le coût et la complexité du système.
Avantageusement, pour chaque base émettrice, l’écart fréquentiel entre la fréquence minimale et la fréquence maximale des signaux à porteuse pure émis par ladite base est supérieur à 50 MHz. Ceci permet de réduire la résolution de la transformée de Fourier, et donc d’obtenir une précision de localisation améliorée, typiquement inférieure à 1 m. La résolution de la transformée de Fourier ainsi réduite permet alors d’améliorer la séparation ou discrimination entre le signal en ligne de vue directe provenant d’une base émettrice d’une part, et les différents rebonds du signal (multi-trajets) d’autre part. En effet, une telle séparation ou discrimination est possible à condition que la résolution de la transformée de Fourier soit suffisamment fine, plus précisément à condition qu’elle soit inférieure à l’intervalle de temps séparant le signal principal (en ligne de vue directe) du rebond considéré. Le système de positionnement selon l’invention permet d’obtenir une précision de localisation pour le mobile récepteur inférieure à 1 m, même à l’intérieur de bâtiments ou en environnement urbain, et ce sans recourir à des signaux de type GPS ou GNSS (de l’anglais Global Navigation Satellite System).
Selon un mode préféré, chaque signal à porteuse pure émis par une base émettrice présente une fréquence située dans la bande des très hautes fréquences, autrement dit présente une fréquence comprise dans la plage allant de 30 MHz à 300 MHz.
Ceci permet d’obtenir le meilleur compromis entre pénétrabilité des signaux à l’intérieur de bâtiments, limitation des phénomènes de multi-trajets, et dimensions des antennes d’émission et de réception. En outre, l’utilisation de tels signaux limite fortement la bande passante utilisée. La bande des très hautes fréquences offre par ailleurs un large choix quant à l’utilisation de signaux sinusoïdaux purs.
De préférence, les bases émettrices fixes sont configurées pour émettre le même nombre de signaux à porteuse pure non modulée.
Avantageusement, les bases émettrices fixes sont configurées de sorte à émettre leurs sommes de signaux à porteuse pure non modulée de manière décalée en fréquence, avec un décalage fréquentiel prédéterminé entre deux bases émettrices successives. Ceci permet au mobile récepteur de pouvoir distinguer les sommes de signaux à porteuse pure non modulée issues de chacune des bases émettrices.
De préférence, le décalage fréquentiel est compris dans la plage allant de 100 Hz à 1 kHz. Une telle valeur de décalage fréquentiel permet aux sommes de signaux à porteuse pure non modulée de pouvoir être facilement séparées par le mobile récepteur, tout en restant dans le même canal fréquentiel (de largeur fréquentielle égale à 12,5 kHz, dans la bande des très hautes fréquences). Ceci permet de limiter le nombre de canaux fréquentiels occupés, et de réduire par conséquent le coût de mise en œuvre du système.
Selon une caractéristique technique particulière de l’invention, les bases émettrices fixes sont des antennes, de préférence des antennes réparties de telle sorte que la distance entre deux antennes adjacentes est supérieure ou égale à 5 kms.
Selon une autre caractéristique technique particulière de l’invention, le mobile récepteur est une puce ou une carte électronique ou encore un appareil de communication mobile tel qu’un téléphone portable.
De préférence, chaque base émettrice fixe est configurée pour synchroniser entre eux les signaux à porteuse pure non modulée émis par la base.
Selon une caractéristique technique particulière de l’invention, chaque base émettrice fixe est configurée pour émettre une somme S1 de N signaux sinusoïdaux non modulés de fréquences wi distinctes, ladite somme S1 vérifiant la forme de l’équation suivante :
[Math 1]
L’invention a également pour objet un procédé de positionnement d’au moins un mobile récepteur, mis en œuvre par un système de positionnement comprenant, outre le mobile, au moins deux bases émettrices fixes, chaque base émettrice étant configurée pour émettre des signaux radiofréquences, les bases émettrices étant synchronisées entre elles pour émettre leurs signaux respectifs, le mobile récepteur comprenant des moyens de mesure de phases de signaux, des moyens de stockage de données, et des moyens de calcul reliés aux moyens de mesure et aux moyens de stockage, le procédé comprenant une étape initiale de transmission de données de position des bases émettrices fixes aux moyens de stockage du mobile récepteur, dans lequel le procédé comprend en outre les étapes suivantes : une émission, par chacune des bases émettrices, d’une somme d’au moins deux signaux à porteuse pure non modulée de fréquences distinctes, chaque signal à porteuse pure se présentant sous la forme d’une onde entretenue non modulée, de préférence sinusoïdale ;
• une réception, par le mobile récepteur, des signaux radiofréquences issus des bases émettrices ;
• une mesure, par le mobile récepteur, pour chaque fréquence de signal donnée et pour chaque base émettrice respective, de la phase du signal constitué des différents signaux issus de ladite base et présentant ladite fréquence ;
• une application, par le mobile récepteur et pour chaque base émettrice, d’une transformée de Fourier sur un signal constitué des différentes phases mesurées des signaux radiofréquences reçus de ladite base ;
• une détermination, par le mobile récepteur et pour chaque base émettrice, à partir de la transformée de Fourier calculée pour ladite base, d’un temps de vol entre le mobile récepteur et ladite base ;
• un calcul, par le mobile récepteur, d’au moins une différence de temps de vol entre le mobile et deux bases émettrices, ladite différence étant calculée comme la différence entre les temps de vol déterminés pour lesdites bases ;
• une détermination, par le mobile récepteur, de sa position à partir de la ou des différence(s) de temps de vol calculée(s) et des données de position des bases émettrices.
Selon une caractéristique technique particulière de l’invention, lors de l’étape d’application d’une transformée de Fourier, la transformée de Fourier est une transformée de Fourier discrète.
Avantageusement, lors de l’étape d’application d’une transformée de Fourier, les moyens de calcul du mobile récepteur utilisent le temps de vol comme variable indépendante pour la transformée de Fourier appliquée.
Brève description des dessins
L’invention sera mieux comprise à la lecture de la description qui suit, faite uniquement à titre d’exemple, et en référence aux figures en annexe dans lesquelles : [Fig. 1] montre un schéma d’un système de positionnement d’un mobile récepteur selon l’invention,
[Fig. 2] montre un organigramme représentant un procédé de positionnement d’un mobile récepteur selon l’invention, mis en œuvre par le système de la figure 1, et
[Fig. 3] montre un graphique représentant deux transformées de Fourier en fonction du temps de vol, chaque transformée de Fourier correspondant à une base émettrice distincte et ayant été appliquée par le mobile récepteur sur un signal constitué des différentes phases mesurées des signaux radiofréquences issus de cette base.
Description des modes de réalisation
Dans la suite, il est divulgué un système 1 de positionnement d’un mobile récepteur 2. Le système 1 comprend, outre le mobile récepteur 2, au moins deux bases émettrices fixes 4. Dans l’exemple de réalisation particulier de la figure 1, sur laquelle est représenté un tel système de positionnement 1 , le système 1 comprend deux bases émettrices fixes 4A, 4B. Cependant, l’invention s’applique de la même manière à tout système de positionnement comportant un nombre de bases émettrices supérieur ou égal à deux, et de préférence supérieur ou égal à trois. Le fait de prévoir au moins trois bases émettrices dans le système de positionnement permet d’assurer une meilleure robustesse pour le système.
Le mobile récepteur 2 est configuré pour recevoir et traiter des signaux radiofréquences SdA, SdB, srA, srB issus des bases émettrices fixes 4A, 4B, et pour en déduire sa position par calcul de différence(s) de temps de vol entre le mobile récepteur 2 et les bases émettrices 4A, 4B (comme cela sera décrit par la suite). Ce calcul de temps de vol différentiel permet d’éviter toute contrainte de synchronisation temporelle entre le mobile récepteur 2 et les bases émettrices 4A, 4B.
Le mobile récepteur 2 comprend des moyens de stockage (non représentés), configurés pour stocker des données de position des bases émettrices fixes 4A, 4B. Les moyens de stockage sont typiquement constitués d’une mémoire, typiquement une mémoire non volatile. Le mobile récepteur 2 comprend en outre des moyens de mesure de phases de signaux radiofréquences, ces moyens de mesure n’étant pas représentés sur les figures pour des raisons de clarté. Le mobile récepteur 2 comprend également des moyens de calcul (non représentés) reliés aux moyens de mesure et aux moyens de stockage. Les moyens de mesure et de calculs sont typiquement constitués d’une unité de traitement, par exemple formée d’un ou plusieurs processeurs, ou intégrée au sein d’une puce électronique. A titre d’exemples non limitatifs, le mobile récepteur 2 est typiquement constitué d’une puce ou d’une carte électronique, par exemple intégrées dans un appareil portatif ; ou encore d’un appareil de communication mobile tel qu’un téléphone portable. Dans le cas où le mobile récepteur 2 est constitué d’une puce électronique ou d’un appareil de communication mobile de type téléphone portable, celle-ci ou celui-ci est typiquement muni d’un convertisseur analogique-numérique.
Chaque base émettrice 4A, 4B est typiquement une antenne d’émission de signaux radiofréquences S1A, S1 B, SdA, SdB, srA, srB. De préférence, lorsque les bases émettrices 4A, 4B sont des antennes, ces dernières sont réparties de telle sorte que la distance entre deux antennes adjacentes est supérieure ou égale à 5 kms. Les bases émettrices 4A, 4B du système de positionnement 1 sont synchronisées entre elles pour émettre leurs signaux respectifs. Par « synchronisées entre elles » on entend que le déphasage entre les signaux émis par les différentes bases émettrices 4A, 4B est constant, ceci afin d’éviter des dérives dans les signaux, et d’éviter ainsi de fausser la mesure effectuée par le mobile récepteur 2 pour son positionnement.
Chaque base émettrice 4A, 4B est configurée pour émettre une somme S1A, S1B d’au moins deux signaux à porteuse pure non modulée de fréquences distinctes. Chaque signal à porteuse pure se présente sous la forme d’une onde entretenue non modulée, de préférence sinusoïdale. Selon un mode de réalisation préférentiel, chaque signal à porteuse pure non modulée est un signal sinusoïdal pur, et chaque base émettrice fixe 4A, 4B est configurée pour émettre une somme S1A, S1 B de N signaux sinusoïdaux non modulés de fréquences wi< distinctes. Chaque somme S1A, S1 B de signaux vérifie la forme de l’équation générale suivante :
[Math 2] De préférence, l’écart fréquentiel entre la fréquence minimale et la fréquence maximale parmi les fréquences wi des signaux à porteuse pure émis par chaque base émettrice 4A, 4B est supérieur à 50 MHz. De préférence encore, chaque signal à porteuse pure émis par une base émettrice 4A, 4B présente une fréquence située dans la bande des très hautes fréquences, autrement dit présente une fréquence comprise dans la plage allant de 30 MHz à 300 MHz. Des bandes de fréquences appartenant aux très hautes fréquences VHF (de l’anglais Very High Fréquences) sont ainsi attribuées aux bases émettrices fixes 4A, 4B du système de positionnement 1.
De préférence, les bases émettrices fixes 4 sont configurées pour émettre le même nombre N de signaux à porteuse pure non modulée. Selon un mode de réalisation préférentiel, les bases émettrices 4 sont configurées de sorte à émettre leurs sommes S1 de signaux à porteuse pure non modulée de manière décalée en fréquence, avec un décalage fréquentiel prédéterminé Dw entre deux bases émettrices successives 4. Ainsi, dans l’exemple de réalisation illustré sur la figure 1, une première base émettrice 4A, respectivement une deuxième base émettrice 4B, est configurée pour émettre une somme S1A, respectivement S1B, de signaux sinusoïdaux non modulés vérifiant l’équation suivante :
[Math 3]
[Math 4]
Les sommes S1A et S1B de signaux sinusoïdaux sont ainsi décalées en fréquence, d’un décalage fréquentiel Dw (exprimé par exemple en rad/s). Le décalage fréquentiel Dw est préférentiellement compris dans la plage allant de 100 Hz à 1 kHz. Chaque base émettrice 4A, 4B est avantageusement configurée pour synchroniser entre eux les signaux sinusoïdaux qu’elle émet. En référence à la figure 1, on suppose dans la suite de la description que l’environnement dans lequel évolue le mobile récepteur 2 comprend un premier obstacle 01 et un second obstacle 02. Les deux obstacles 01 et 02 sont ici des bâtiments, mais pourraient en variante être formés de toute autre type de structure sans affecter pour autant le raisonnement qui va suivre. Pour chaque base émettrice 4A, 4B, les signaux radiofréquences reçus par le mobile récepteur 2 et issus de cette base 4A, 4B se répartissent en deux types : un premier type consiste en les signaux SdA, SdB arrivant en ligne de vue directe, et un second type consiste en les signaux SrA, SrB arrivant sur le mobile récepteur 2 suite à un rebond sur un obstacle 01, 02. Les signaux SdA, srA, respectivement SdB, srB, correspondent chacun à la somme S1A, respectivement S1B, de signaux à porteuse pure non modulée, mais empruntent des trajets différents. On appelle DA, respectivement DB, la distance en ligne de vue directe entre le mobile récepteur 2 et la première base émettrice 4A, respectivement la seconde base émettrice 4B, parcourue par les signaux SdA, respectivement SdB.
On appelle DrA, respectivement DrB, la distance parcourue par les signaux srA, respectivement sre après rebond sur un obstacle 01, respectivement 02. A des fins de simplification on ne prend en compte par la suite, pour la première base émettrice 4A, que les signaux radiofréquences issus de cette base et ayant rebondi sur l’obstacle 01 le plus proche de cette base 4A (l’impact des signaux issus de cette base et ayant rebondi sur l’autre obstacle 02 étant considéré comme négligeable). De même, on ne prend en compte, pour la seconde base émettrice 4B, que les signaux radiofréquences issus de cette base et ayant rebondi sur l’obstacle 02 le plus proche de cette base 4B (l’impact des signaux issus de cette base et ayant rebondi sur l’autre obstacle 01 étant considéré comme négligeable). On suppose en outre pour simplifier que les signaux radiofréquences n’effectuent qu’un seul rebond sur un des obstacles 01, 02.
Le procédé de positionnement du mobile récepteur 2, mis en œuvre par le système de positionnement 1 , va maintenant être décrit en détail, en référence notamment à la figure 2.
Le procédé comporte une étape initiale 10 de transmission de données de position des bases émettrices fixes 4A, 4B aux moyens de stockage du mobile récepteur 2. La transmission 10 peut par exemple consister en une transmission par chaque base émettrice 4A, 4B de ses coordonnées de position au mobile récepteur 2, ou encore en une implantation préalable des coordonnées de position des bases au sein du mobile récepteur 2, au moment de sa fabrication ou de son paramétrage. A l’issue de cette étape initiale 10, les moyens de stockage du mobile récepteur 2 stockent les données de position des bases émettrices 4A, 4B.
Le procédé comporte une étape suivante 12 au cours de laquelle chaque base émettrice 4A, 4B émet la somme S1A, S1 B de signaux à porteuse pure non modulée de fréquences uik distinctes. Le déphasage entre les signaux S1A, S1 B émis par les différentes bases émettrices 4A, 4B est constant. Les sommes S1A et S1B de signaux à porteuse pure émises par les bases 4A, 4B sont ainsi décalées en fréquence, d’un décalage fréquentiel Dw. Les différentes fréquences uik utilisées par les bases 4A, 4B, ainsi que le décalage fréquentiel Dw, sont connus par le mobile récepteur 2 (préimplantés dans ou transmis à ce dernier).
Au cours d’une étape suivante 14, le mobile récepteur 2 reçoit les signaux radiofréquences SdA,SdB,srA,srB provenant des bases émettrices 4A, 4B. Ces signaux SdA,srA, respectivement SdB,srB, correspondent chacun à la somme S1A, respectivement S1B, de signaux à porteuse pure non modulée, mais empruntent des trajets différents. Grâce au fait que les sommes S1A, S1 B de signaux sont décalées en fréquence avec un décalage fréquentiel prédéterminé (connu du mobile récepteur 2), le mobile récepteur 2 peut distinguer les signaux SdA, srA issus de la première base 4A d’une part, des signaux SdB,srB issus de la seconde base émettrice 4B d’autre part.
Au cours d’une étape suivante 16, le mobile récepteur 2 détermine via ses moyens de mesure, pour chaque fréquence de signal k donnée et pour chaque base émettrice 4A, 4B, la phase du signal constitué des différents signaux SdA, srA ; respectivement SdB, srB, issus de cette base 4A, 4B et présentant la fréquence Uk. En effet, par exemple pour la première base 4A et pour une fréquence ujk donnée, les deux signaux SdA(cok) et SrA(tOk) sont reçus par le mobile récepteur 2 en étant mélangés. La phase mesurée par le mobile récepteur 2 pour la fréquence cok correspond alors à la phase du signal constitué de la somme du signal direct SdA et du signal rebond srA. Le même raisonnement s’applique pour les signaux SdB,srB issus de la seconde base 4B. Selon un exemple de réalisation particulier, cette mesure de phase peut consister en ce que les moyens de mesure appliquent, pour chaque fréquence cok, un coefficient multiplicateur eiüJk sur chaque signal constitué des différents signaux SdA, S,A ; respectivement SdB, srB, issus de la première base 4A, respectivement de la seconde base 4B. Ceci permet d’isoler la phase de chaque signal à porteuse pure non modulée faisant partie des signaux SdA, srA, respectivement SdB, srB.
Au cours d’une étape suivante 18 le mobile récepteur 2 applique, via ses moyens de calcul et pour chacune des bases émettrices 4A, 4B, une transformée de Fourier sur un signal constitué des différentes phases mesurées des signaux radiofréquences reçus de cette base. En effet, le principe utilisé par l’invention est que pour un retard temporel donné, le déphasage que subit un signal à porteuse pure non modulée dépend de la fréquence de ce signal. La transformée de Fourier appliquée au cours de l’étape 18 est typiquement une transformée de Fourier discrète, et notamment une transformée de Fourier discrète à coefficients complexes.
Pour chaque base émettrice 4A, 4B, la transformée de Fourier TF appliquée sur les phases mesurées des signaux issus de cette base s’exprime alors mathématiquement via la fonction suivante :
[Math 5] où r(üJk) est la phase des signaux issus de la base et ayant pour fréquence k, telle que mesurée au cours de l’étape précédente 16 ; et représente le temps de vol d’un signal issu de la base émettrice 4A, 4B en question et reçu par le mobile récepteur 2. Les coefficients complexes de la transformée de Fourier TF sont alors :
6-iw^ |_a variable indépendante de la transformée de Fourier TF ainsi exprimée est alors le temps de vol .
De cette façon, en représentant graphiquement, pour chaque base émettrice 4A, 4B, le résultat de la transformée de Fourier appliquée au cours de l’étape 18, les moyens de calcul peuvent au cours d’une étape suivante 20 isoler différents pics correspondants à chaque signal SdA, srA OU SdB, srB, et en déduire le temps de vol de chacun de ces signaux. Ceci est illustré sur le graphique de la figure 3, sur lequel deux fonctions graphiques 30A, 30B ont été représentées. Ces deux fonctions 30A, 30B correspondent respectivement au calcul de la transformée de Fourier pour la première base émettrice 4A, et pour la seconde base émettrice 4B, représenté en fonction du temps de vol (qui se lit donc sur l’axe des abscisses). Au cours de cette étape 20, les moyens de calcul du mobile récepteur 2 déterminent le temps de vol entre le mobile récepteur 2 et chacune des bases 4A, 4B. Pour ce faire, les moyens de calcul isolent le pic P1A, P1B ayant le temps de vol le plus court. Ce pic P1A,
P1B correspond au signal SdA, S<JB en ligne de vue directe. Dans l’exemple de réalisation représenté, pour la première base 4A, le pic P1A correspondant au signal SdA présente un temps de vol TV1A sensiblement égal à 230 ns. Le temps de vol TV1A entre le mobile récepteur 2 et la première base 4A est donc de sensiblement 230 ns. Pour la seconde base 4B, le pic P1 B correspondant au signal SdB présente un temps de vol TV1 B sensiblement égal à 310 ns. Le temps de vol TV1 B entre le mobile récepteur 2 et la seconde base 4B est donc de sensiblement 310 ns. Pour chacune des bases 4A, 4B, le second pic P2A, P2B, qui a une amplitude plus faible que celle du premier pic P2A, P2B et un temps de vol plus long, correspond au signal srA, srB ayant subi un rebond sur un obstacle 01 , 02. Ce pic P2A, P2B peut donc être avantageusement isolé du premier pic P1A, P1 B, et ne pas être pris en compte dans la suite des calculs.
Au cours d’une étape suivante 22, le mobile récepteur 2 calcule au moins une différence de temps de vol TVdiff entre le mobile 2 et deux bases émettrices 4A, 4B. La différence de temps de vol TVdiff est calculée comme la différence entre les temps de vol TV1A, TV1 B déterminés pour les bases émettrices 4A, 4B lors de l’étape 20. Dans l’exemple de réalisation représenté sur la figure 3, la différence de temps de temps de vol TVdiff est sensiblement égale à 80 ns (310 ns - 230 ns). Dans le cas où le système de positionnement comporte un nombre de bases émettrices supérieur ou égal à trois, le mobile récepteur 2 calcule plusieurs différences de temps de vol, entre le mobile et des bases émettrices prises deux à deux, chaque différence de temps de vol étant calculée entre le mobile 2 et deux bases émettrices distinctes.
Au cours d’une étape finale 24, les moyens de calcul du mobile récepteur 2 déterminent la position du mobile récepteur 2 à partir de la ou des différence(s) de temps de vol TVdifr calculée(s) et des données de position des bases émettrices 4A, 4B, préalablement stockées dans les moyens de stockage. A partir des données de position connues des bases émettrices 4A, 4B, la position absolue du mobile récepteur est facilement donnée par la relation classique entre célérité des ondes et différence de temps de vol. Dans le cas où le système de positionnement comporte un nombre de bases émettrices supérieur ou égal à trois, les moyens de calcul du mobile récepteur 2 croisent les différentes mesures de différences de temps de vol afin de déterminer la position du mobile récepteur 2.
Du fait que l’ordre de grandeur de la ou des différences(s) de temps de vol ainsi déterminées est autour de la nanoseconde, on comprend à la lecture de ce qui précède que le système 1 selon l’invention permet avantageusement d’atteindre une précision sub-métrique (inférieure à 1 m) pour le positionnement du mobile 2, et ce même à l’intérieur de bâtiments ou en environnement urbain. En outre, le mobile récepteur 2 procède à son propre positionnement de manière autonome. Enfin, le système de positionnement 1 présente à la fois une grande portée (typiquement supérieure à 10 km), fonctionne aussi bien en environnement extérieur qu’intérieur, et présente une occupation spectrale limitée, une sensibilité augmentée et une bande de bruit équivalent réduite au maximum. Toutes ces caractéristiques, obtenues ensemble dans un même système, sont inédites et particulièrement avantageuses comparativement aux différents systèmes de positionnement de l’art antérieur. ;

Claims

Revendications
[Revendication 1] Système (1) de positionnement d’au moins un mobile récepteur (2), le système (1) comprenant, outre le mobile (2), au moins deux bases émettrices fixes (4, 4A, 4B), chaque base émettrice (4, 4A, 4B) étant configurée pour émettre des signaux radiofréquences (S1A, S1B, SdA, SdB, srA, srB), les bases émettrices (4, 4A, 4B) étant synchronisées entre elles pour émettre leurs signaux respectifs, le mobile récepteur (2) étant configuré pour recevoir et traiter lesdits signaux radiofréquences (SdA, SdB, SrA, srB) et pour en déduire sa position par calcul de différence(s) de temps de vol entre le mobile récepteur (2) et les bases émettrices (4, 4A, 4B), le mobile récepteur (2) comprenant des moyens de stockage de données de position des bases émettrices fixes (4, 4A, 4B), caractérisé en ce que chaque base émettrice (4, 4A, 4B) est configurée pour émettre une somme (S1A, S1 B) d’au moins deux signaux à porteuse pure non modulée de fréquences distinctes, chaque signal à porteuse pure se présentant sous la forme d’une onde entretenue non modulée, de préférence sinusoïdale ; et en ce que le mobile récepteur (2) comprend en outre :
• des moyens de mesure, pour chaque fréquence de signal donnée et pour chaque base émettrice respective (4A, 4B), de la phase du signal constitué des différents signaux (S<JA, SHA ; SdB, srB) issus de ladite base et présentant ladite fréquence ; et
• des moyens de calcul reliés aux moyens de mesure et aux moyens de stockage, et configurés pour : o appliquer, pour chaque base émettrice (4A, 4B), une transformée de Fourier sur un signal constitué des différentes phases mesurées des signaux radiofréquences issus de ladite base (4A, 4B) ; o déterminer, pour chaque base émettrice (4A, 4B), à partir de la transformée de Fourier calculée pour ladite base, un temps de vol entre le mobile récepteur (2) et ladite base (4A, 4B) ; o calculer au moins une différence de temps de vol entre le mobile (2) et deux bases émettrices (4A, 4B), ladite différence étant calculée comme la différence entre les temps de vol déterminés pour lesdites bases (4A, 4B) ; o déterminer la position du mobile récepteur (2), à partir de la ou des différence(s) de temps de vol calculée(s) et des données de position des bases émettrices (4A, 4B).
[Revendication 2] Système (1) selon la revendication précédente, caractérisé en ce que, pour chaque base émettrice (4, 4A, 4B), l’écart fréquentiel entre la fréquence minimale et la fréquence maximale des signaux à porteuse pure émis par ladite base (4, 4A, 4B) est supérieur à 50 MHz.
[Revendication 3] Système (1) selon la revendication 1 ou 2, caractérisé en ce que chaque signal à porteuse pure émis par une base émettrice (4, 4A, 4B) présente une fréquence située dans la bande des très hautes fréquences, autrement dit présente une fréquence comprise dans la plage allant de 30 MHz à 300 MHz.
[Revendication 4] Système (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que les bases émettrices fixes (4, 4A, 4B) sont configurées pour émettre le même nombre de signaux à porteuse pure non modulée.
[Revendication 5] Système (1) selon la revendication précédente, caractérisé en ce que les bases émettrices fixes (4, 4A, 4B) sont configurées de sorte à émettre leurs sommes (S1A, S1 B) de signaux à porteuse pure non modulée de manière décalée en fréquence, avec un décalage fréquentiel prédéterminé entre deux bases émettrices successives (4).
[Revendication 6] Système (1) selon la revendication précédente, caractérisé en ce que le décalage fréquentiel est compris dans la plage allant de 100 Hz à 1 kHz.
[Revendication 7] Système (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que les bases émettrices fixes (4, 4A, 4B) sont des antennes, de préférence des antennes réparties de telle sorte que la distance entre deux antennes adjacentes est supérieure ou égale à 5 kms.
[Revendication 8] Système (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que le mobile récepteur (2) est une puce ou une carte électronique ou encore un appareil de communication mobile tel qu’un téléphone portable.
[Revendication 9] Système (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que chaque base émettrice fixe (4, 4A, 4B) est configurée pour synchroniser entre eux les signaux à porteuse pure non modulée émis par la base (4, 4A, 4B).
[Revendication 10] Système (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que chaque base émettrice fixe (4, 4A, 4B) est configurée pour émettre une somme S1 de N signaux sinusoïdaux non modulés de fréquences wk distinctes, ladite somme S1 vérifiant la forme de l’équation suivante :
[Math 6]
[Revendication 11] Procédé de positionnement d’au moins un mobile récepteur (2), mis en œuvre par un système de positionnement (1) comprenant, outre le mobile (2), au moins deux bases émettrices fixes (4, 4A, 4B), chaque base émettrice (4, 4A, 4B) étant configurée pour émettre des signaux radiofréquences (S1A, S1 B, SdA, SdB, srA, SrB), les bases émettrices (4, 4A, 4B) étant synchronisées entre elles pour émettre leurs signaux respectifs, le mobile récepteur (2) comprenant des moyens de mesure de phases de signaux, des moyens de stockage de données, et des moyens de calcul reliés aux moyens de mesure et aux moyens de stockage, le procédé comprenant une étape initiale (10) de transmission de données de position des bases émettrices fixes (4A, 4B) aux moyens de stockage du mobile récepteur (2), caractérisé en ce qu’il comprend en outre les étapes suivantes :
• une émission (12), par chacune des bases émettrices (4A, 4B), d’une somme (S1A, S1 B) d’au moins deux signaux à porteuse pure non modulée de fréquences distinctes, chaque signal à porteuse pure se présentant sous la forme d’une onde entretenue non modulée, de préférence sinusoïdale ;
• une réception (14), par le mobile récepteur (2), des signaux radiofréquences (SdA, SdB, SrA, SrB) issus des bases émettrices (4A, 4B) ;
• une mesure (16), par le mobile récepteur (2), pour chaque fréquence de signal donnée et pour chaque base émettrice respective (4A, 4B), de la phase du signal constitué des différents signaux (SdA, srA ; SdB, srB) issus de ladite base et présentant ladite fréquence ;
• une application (18), par le mobile récepteur (2) et pour chaque base émettrice (4A, 4B), d’une transformée de Fourier sur un signal constitué des différentes phases mesurées des signaux radiofréquences reçus de ladite base (4A, 4B) ;
• une détermination (20), par le mobile récepteur (2) et pour chaque base émettrice (4A, 4B), à partir de la transformée de Fourier calculée pour ladite base (4A, 4B), d’un temps de vol (TV1A, TV1B) entre le mobile récepteur (2) et ladite base (4A, 4B) ;
• un calcul (22), par le mobile récepteur (2), d’au moins une différence de temps de vol (TVdiff) entre le mobile (2) et deux bases émettrices (4A, 4B), ladite différence (TVdiff) étant calculée comme la différence entre les temps de vol (TV1A, TV1 B) déterminés pour lesdites bases (4A, 4B) ;
• une détermination (24), par le mobile récepteur (2), de sa position à partir de la ou des différence(s) de temps de vol (TVdiff) calculée(s) et des données de position des bases émettrices (4A, 4B).
[Revendication 12] Procédé selon la revendication 11 , caractérisé en ce que, lors de l’étape (18) d’application d’une transformée de Fourier, la transformée de Fourier est une transformée de Fourier discrète.
[Revendication 13] Procédé selon la revendication 11 ou 12, caractérisé en ce que, lors de l’étape (18) d’application d’une transformée de Fourier, les moyens de calcul du mobile récepteur (2) utilisent le temps de vol comme variable indépendante pour la transformée de Fourier appliquée.
EP22723465.5A 2021-04-13 2022-04-13 Système et procédé de positionnement d'au moins un mobile récepteur Pending EP4323789A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2103806A FR3121756B1 (fr) 2021-04-13 2021-04-13 Système et procédé de positionnement d’au moins un mobile récepteur
PCT/FR2022/050695 WO2022219286A1 (fr) 2021-04-13 2022-04-13 Système et procédé de positionnement d'au moins un mobile récepteur

Publications (1)

Publication Number Publication Date
EP4323789A1 true EP4323789A1 (fr) 2024-02-21

Family

ID=77180083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22723465.5A Pending EP4323789A1 (fr) 2021-04-13 2022-04-13 Système et procédé de positionnement d'au moins un mobile récepteur

Country Status (4)

Country Link
US (1) US20240125883A1 (fr)
EP (1) EP4323789A1 (fr)
FR (1) FR3121756B1 (fr)
WO (1) WO2022219286A1 (fr)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150201309A1 (en) * 2008-06-12 2015-07-16 Board Of Trustees Of Northern Illinois University System and method for wireless positioning and location determination
US20200209337A1 (en) 2018-12-26 2020-07-02 Texas Instruments Incorporated Super resolution radio frequency location determination

Also Published As

Publication number Publication date
US20240125883A1 (en) 2024-04-18
FR3121756A1 (fr) 2022-10-14
WO2022219286A1 (fr) 2022-10-20
FR3121756B1 (fr) 2023-04-14

Similar Documents

Publication Publication Date Title
EP2368133B1 (fr) Procede de localisation par estimation multi-voies des tdoa et fdoa des multi-trajets d&#39;une source avec ou sans aoa
CA2885324C (fr) Procede et systeme de calibration pour l&#39;estimation d&#39;une difference de marche d&#39;un signal cible emis par un engin spatial ou aerien
EP1851568B1 (fr) Procede de detection en mode bi-statique par exploitation passive d&#39;emissions radioelectriques non cooperantes
FR2959571A1 (fr) Systeme distribue de mesure de distance pour la localisation d&#39;un satellite geostationnaire.
EP2122388A1 (fr) Dispositif et procede de localisation d&#39;un mobile a l&#39;approche d&#39;une surface reflechissant les ondes electromagnetiques
EP2612166A1 (fr) Procédé et dispositif de localisation d&#39;au moins un obstacle dans un réseau de communication, programme d&#39;ordinateur correspondant
EP2381270A1 (fr) Localisation continue de grande précision
FR2648570A1 (fr) Dispositif et procede pour mesurer l&#39;azimut et le site d&#39;un objet
FR2801682A1 (fr) Procede de localisation d&#39;emetteur parasite pour systeme de telecommunications par satellite
EP2587691B1 (fr) Procédé de traitement coordonné de signaux émis par des balises
EP0852734B1 (fr) Procede et dispositif de geodesie et/ou d&#39;imagerie par traitement de signaux satellitaires
EP2959308B1 (fr) Procédé et système d&#39;estimation de direction d&#39;arrivée d&#39;un signal cible par rapport à un satellite
WO2022219286A1 (fr) Système et procédé de positionnement d&#39;au moins un mobile récepteur
EP3345013B1 (fr) Charge utile d&#39;un satellite de mesure d&#39;un système de localisation et procédé de localisation
EP3399328B1 (fr) Procédé et système de localisation distribué phdoa, pwdoa, de sources émettrices
EP2342576B1 (fr) Système et procédé de détermination d&#39;un récepteur, et récepteur associé
EP0938683B1 (fr) Recepteur de signaux de satellites avec detecteur d&#39;incoherence entre mesures phase de code et de porteuse
FR2834069A1 (fr) Procede d&#39;amelioration de la determination de l&#39;attitude d&#39;un vehicule a l&#39;aide de signaux de radionavigation par satellite
EP3769105A1 (fr) Procédé et système de géolocalisation de terminaux évoluant en groupe
EP2392940A2 (fr) Système de positionnement d&#39;un satellite géostationnaire
EP4119971A1 (fr) Procede de calibration d&#39;un appareil de goniometrie aeroporte pour les basses frequences
FR3134459A1 (fr) surveillance de l’espace à l’aide d’un radar bistatique dont le système récepteur est au moins partiellement embarqué dans un satellite
EP2151697B1 (fr) Système et procédé de localisation d&#39;un objet mobile communicant
FR2965632A1 (fr) Telemetre hyperfrequence a commutation de retards

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)