EP4323711A1 - Dispositif diphasique de transfert de chaleur à réservoir d'excédent de liquide - Google Patents

Dispositif diphasique de transfert de chaleur à réservoir d'excédent de liquide

Info

Publication number
EP4323711A1
EP4323711A1 EP22814485.3A EP22814485A EP4323711A1 EP 4323711 A1 EP4323711 A1 EP 4323711A1 EP 22814485 A EP22814485 A EP 22814485A EP 4323711 A1 EP4323711 A1 EP 4323711A1
Authority
EP
European Patent Office
Prior art keywords
capillary
phase
zone
additional
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22814485.3A
Other languages
German (de)
English (en)
Inventor
Matthieu MARTINELLI
Laura Fourgeaud
Typhaine COQUARD
Christophe Figus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space SAS
Original Assignee
Airbus Defence and Space SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space SAS filed Critical Airbus Defence and Space SAS
Publication of EP4323711A1 publication Critical patent/EP4323711A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Definitions

  • the present disclosure falls within the field of two-phase heat transfer devices, containing a saturated two-phase fluid circulating between a cold source and a hot source, and thus making it possible to evacuate the heat generated by the hot source. It finds a particular application in the space field, in particular for the thermal control of equipment of a spacecraft, such as for example a satellite.
  • a two-phase heat transfer device conventionally comprises a closed cavity containing a two-phase fluid at saturation, a portion of which is in the liquid phase and another in the gas phase.
  • the heat transfer device is in a heat exchange relationship on the one hand with a so-called hot source, and on the other hand with a so-called cold source, relatively colder than the heat source.
  • Patent application WO2016/058966 entitled flat heat pipe with reservoir function teaches a liquid reservoir arranged at one end of the condensation channels and under a capillary structure.
  • a two-phase heat transfer device comprising a closed cavity comprising at least one evaporation zone in a heat exchange situation with at least one hot source and at least one condensation zone in a heat exchange with at least one cold source, the closed cavity containing a two-phase fluid in the state of liquid-vapor equilibrium and comprising at least one circulation channel for the two-phase fluid in the vapor phase and at least one main capillary structure adapted to allow the circulation of the diphasic fluid in liquid phase between said cold source and said hot source, the diphasic device being characterized in that it also comprises at least one additional capillary medium allowing storage and restitution of an excess of liquid with respect to to a maximum capacity of liquid contained in the main capillary structure, said additional capillary medium and said main capillary structure being connected so as to ensure capillary continuity for the two-phase fluid in
  • said additional medium forming at least one capillary reservoir zone, while the main capillary structure comprises at least one capillary condensation zone and at least one capillary flow zone connected on the one hand to the capillary condensation zone and on the other hand to the evaporator.
  • the reservoir capillary zone has a characteristic capillary dimension less than a characteristic capillary dimension of the condensation capillary zone but greater than or equal to a characteristic capillary dimension of the flow capillary zone to which the zone capillary reservoir is connected.
  • the reservoir capillary zone has a characteristic capillary dimension less than a characteristic capillary dimension of the two-phase fluid circulation channel in the vapor phase but greater than a characteristic capillary dimension of the condensation capillary zone.
  • said reservoir capillary zone is connected directly to the flow zone or respectively to the evaporation zone and has a characteristic capillary dimension greater than a characteristic capillary dimension of the flow zone or respectively the evaporation zone.
  • the main capillary structure has a characteristic capillary dimension which decreases from the condensation zone towards the evaporation zone.
  • the additional capillary medium has a minimum characteristic capillary dimension at the level of the connection with the main capillary structure for the circulation of the two-phase fluid in the liquid phase.
  • the additional capillary medium is sized so as to have a filling rate strictly between 0 and 100%, preferably strictly between 5 and 95%, when the diphasic heat transfer device is Operating.
  • the volume available for the liquid in the additional capillary medium is between 10 and 40% of the volume available for the liquid in the main capillary structure of the cavity.
  • the additional capillary medium is a mesh and/or is formed from a porous material.
  • the heat transfer device advantageously comprises a liquid reservoir having a capillary structure and which is connected to the main capillary structure for the circulation of liquid between the condenser and the evaporator, the liquid reservoir being connected to the structure main capillary so as to ensure capillary continuity between them allowing liquid continuity to be maintained.
  • This avoids having a surplus of liquid which would disturb or even prevent the operation of the heat transfer device, for example if it were located in a place preventing the circulation of vapor to the cold source, or if it came partially or totally mask a heat exchange surface with the cold source.
  • an excess volume of liquid is lodged in the additional capillary medium, thus avoiding a useless and inactive excess volume, which would move according to local pressure variations induced by capillary forces, temperature gradients and hydrodynamic forces and which would disturb the operation of the heat transfer device.
  • the additional capillary medium does not need to be located in thermal contact with the cold source. More generally, constraints on design and use are reduced.
  • the device is suitable for use in a space environment but use on Earth, in the presence of gravity, is also possible.
  • the thermal performance of the heat transfer device relating to its transport capacity or to its heat exchange coefficient is advantageously optimized.
  • FIG. 1a represents a block diagram of a two-phase heat transfer device.
  • FIG. 1 b represents a sectional view of an evaporator of a device of figure 1a.
  • FIG. 2 is a partial and schematic perspective view of a two-phase heat transfer device according to one embodiment.
  • FIG. 3 is a perspective sectional view of the device of Figure 2.
  • FIG. 4 is a front sectional view of a condenser of a two-phase heat transfer device according to one embodiment.
  • FIG. 5 schematically represents the circulation of the two-phase fluid in a heat transfer device according to one embodiment.
  • FIG. 6 shows an example of a capillary structure that can form the excess liquid reservoir.
  • FIG.7 schematically represents another example of a two-phase device in which the additional capillary medium is located in the extension of the condenser.
  • FIG. 8a represents an example of a hierarchy of characteristic capillary dimensions of a device when in particular the device has no adiabatic zone and comprises an additional capillary medium forming an additional section of the device, adjacent to the condenser.
  • FIG. 8b represents an example of a hierarchy of capillary dimensions characteristic of a device when in particular the device comprises an adiabatic zone and an additional capillary medium forming an additional section of the device, adjacent to the condenser.
  • FIG. 8c represents an example of a hierarchy of characteristic capillary dimensions of a device when in particular the device comprises an adiabatic zone and an additional capillary medium connected to the condenser and to the adiabatic zone.
  • FIG. 8d represents an example of a hierarchy of capillary dimensions characteristic of a device when in particular the device does not include an adiabatic zone and includes an additional capillary medium connected to the condenser and to the evaporator.
  • FIGS. 1a and 1b two examples of a two-phase heat transfer device 1 have been shown.
  • the device has a substantially cylindrical shape.
  • the device has a substantially parallelepipedic shape.
  • the shape of the device is however not limiting and can be adapted according to the constraints of use, in particular according to the relative positions of the hot and cold sources between which the transfer of heat must be implemented.
  • the two-phase heat transfer device 1 comprises a closed cavity 10 in a sealed manner and delimited by an envelope 11, in which circulates a two-phase fluid at saturation comprising a vapor phase and a liquid phase.
  • the liquid part of the two-phase fluid evaporates in the vicinity of the heat source, and the vapor obtained moves towards the cold source where it liquefies, thus restoring the thermal energy, stored near the hot source, to the cold source.
  • two-phase heat transfer devices comprise for example a particular structure which is shaped to allow liquid flow by capillarity. These structures can take variable forms, such as for example a set of grooves, a porous structure or a lattice.
  • the circulation of the vapor phase is permitted by one or more channels allowing a dissociated flow of the vapor and the liquid.
  • the cavity 10 of the two-phase heat transfer device comprises at least one evaporation zone or evaporator 20, this zone being in a heat exchange situation, typically in thermal contact, with a hot source 2, such as for example equipment to be cooled.
  • a hot source 2 such as for example equipment to be cooled.
  • the liquid phase of the fluid contained in the cavity evaporates by absorbing the heat provided by the hot source.
  • the evaporation zone notably comprises a capillary evaporation zone, for example in the form of a capillary structure.
  • the evaporation zone notably comprises at least one capillary structure for the liquid and at least one vapor channel for the vapor.
  • the heat transfer device 1 can be used in a space environment, to cool one or more equipment items of a spacecraft such as a satellite.
  • This equipment can include optical equipment, such as for example a focal plane, telecommunications equipment or other equipment such as for example electrical actuator control equipment.
  • the heat transfer device 1 also comprises at least one condensation zone or condenser 30, this zone being in a heat exchange situation, typically in thermal contact, with a cold source 3.
  • a condensation zone or condenser 30 At the level of the condenser, the phase vapor of the fluid contained in the cavity condenses, thus restoring, to the cold source, the calories absorbed from the hot source.
  • the condenser zone notably comprises a capillary condensation zone, for example in the form of a capillary structure.
  • the condenser zone notably comprises at least one capillary structure for the liquid and at least one vapor channel for the vapor.
  • the cold source can for example comprise a radiator adapted to evacuate heat to space.
  • the heat transfer fluid contained in the cavity may for example be in the form of water, ammonia, methane, ethane, propylene, methanol or ethanol, in the state of equilibrium. liquid-gas.
  • the casing 11 is advantageously made, at least at the level of each evaporator and each condenser, in a thermally conductive material, such as for example a metal, or a metal alloy, for example based on aluminium.
  • the heat transfer device 1 may also include an adiabatic zone 12 located between an evaporator 20 and a condenser 30, that is to say a zone where heat transfers between the two-phase fluid present in the cavity and the environment of the heat transfer device are limited.
  • a zone can for example be provided in the case where the cold source 3 and the hot source 2 are relatively distant from each other and it is then desired to circulate the diphasic fluid between the two while limiting the transfers. heat with the environment.
  • a thermally insulating material can be used to ensure thermal insulation between the two-phase fluid and the environment of the heat transfer device 1, for example directly during the constitution of the envelope of the cavity, at the level of said adiabatic zone or by adding an additional insulating envelope around the adiabatic zone.
  • the adiabatic zone comprises in particular a capillary flow zone, for example in the form of a capillary structure.
  • the adiabatic zone notably comprises at least one capillary structure for the liquid and at least one vapor channel for the vapor.
  • the closed cavity 10 is shaped to allow the circulation of the two-phase fluid between the evaporator 20 and the condenser 30.
  • the closed cavity comprises at least one channel 13 for the circulation of the two-phase fluid in the vapor phase which allows, as represented by the arrows FV in FIG. 1a, to circulate the vapor obtained at the level of the evaporator towards the condenser.
  • the vapor circulation channel or channels 13, or a network formed by these channels therefore extend over the entire length of the cavity, going from the evaporator to the condenser.
  • the closed cavity also comprises a main capillary structure 14 adapted to allow the circulation of the liquid phase of the two-phase fluid, and in particular to allow the liquid condensed at the level of the condenser to reach the evaporator, as represented by the arrows FL in Figure 1a.
  • the main capillary structure 14 also extends over the entire length of the cavity, going from the evaporator to the condenser, to allow this circulation of liquid.
  • a capillary structure is a structure whose geometry is such that it generates surface tension effects, thus making it possible to retain and circulate the liquid by capillary action.
  • Surface tension effects may in particular predominate over gravity or inertia effects.
  • the hair structure can be made in different ways.
  • the capillary structure can be formed from a set of grooves 140 of small diameter, for example between 1 and 3 mm.
  • the capillary structure comprises a plurality of grooves which are distributed around a vapor circulation channel 13, extending parallel thereto.
  • the grooves 140 each have a side opening 141 extending in the main direction of the groove, the side opening opening into the steam circulation channel 13 to allow steam contained in a groove 140 to join the channel.
  • the profile of the grooves has an open profile rounded in Q. This type of profile favors in particular the appearance of capillary pressure.
  • a profile for example closes slightly according to a ratio of less than 2 (that is to say that the width of the opening is greater than half of the greatest width) so as to avoid the formation of a bridge and avoid trapping steam in the grooves.
  • vapor is not retained because of a liquid bridge which would form at the end, in particular in micro-gravity, which could make the two-phase structure unstable or even non-operational.
  • a teardrop or ⁇ profile promotes drainage of the cold surface.
  • the heat transfer device 1 may have a generally parallelepipedic shape, and include at least one vapor circulation channel 13 extending in the main direction of the transfer device 1 heat.
  • Grooves 140 for the circulation of the liquid phase can also extend parallel along the main direction of the heat transfer device, and comprise a lateral opening 141 extending in the main direction of each groove and opening into the channel 13 of steam circulation.
  • the main capillary structure 14 may be formed of a mesh, comprising a set of capillary fibers of small diameter, for example between 0.5 and 1 mm, interconnected to each other.
  • the capillary structure can be a porous medium, for example by being formed of a material consisting of a porous micro-structure making said material permeable to the fluid in question.
  • FIG. 1b the circulation of the two-phase fluid at the level of an evaporator 20 is schematically represented.
  • the liquid contained in the capillary structure and routed from the condenser 30 vaporizes under the effect of the heat transmitted by the hot source 2.
  • the vapor obtained joins the vapor circulation channel 13 and as visible in figure 1a, progresses in the cavity 10 until it reaches the condenser 30, where it condenses and the condensed liquid joins the main capillary structure 14 .
  • the heat transfer device 1 further comprises a reservoir 15 for storing an excess of two-phase fluid liquid, this reservoir being formed by an additional capillary medium.
  • the additional capillary medium 15 which stores and restores the fluid in the liquid phase is connected to the main capillary structure 14 so as to ensure capillary continuity for the fluid in the liquid phase.
  • the additional medium comprises a reservoir capillary zone and may also comprise a vapor channel.
  • Such a vapor channel can for example be useful in cases, as represented in FIGS. 8a and 8b, where the level of liquid filling in the tank varies between 0% and 100% or even between 5% and 95%, vapor being then also present in this reservoir zone.
  • FIGS. 8a and 8b Such a vapor channel can for example be useful in cases, as represented in FIGS. 8a and 8b, where the level of liquid filling in the tank varies between 0% and 100% or even between 5% and 95%, vapor being then also present in this reservoir zone.
  • FIGS. 8a and 8b Such
  • the additional capillary medium has no structural function for the heat transfer device 1, that is to say it does not contribute to its mechanical strength, unlike the cavity 10 and in particular to its envelope 11.
  • the vapor channels are for example all interconnected.
  • the interconnected vapor channels thus form a single continuous space.
  • the additional capillary medium 15 is adjacent to the vapor channel 13 of the cavity 10, it does not completely obstruct the section of this vapor channel.
  • capillary continuity for the fluid in the liquid phase or “capillary liquid continuity” means the fact that an exchange of fluid in the liquid phase can take place by capillarity, in one direction or the other, at each place where a capillary continuity is formed for the fluid in the liquid phase, in particular between the additional capillary medium and the main capillary structure.
  • the additional capillary medium is thus attached to the main capillary structure.
  • the fluid in the liquid phase can thus move towards the additional capillary medium or towards the capillary structure.
  • the main capillary structure 14 and the additional capillary medium 15 are preferably shaped so that there is no discontinuity between these two capillary media.
  • discontinuity is understood to mean one or more cavities whose dimension would exceed the larger characteristic capillary dimension of the two media.
  • the volume of two-phase fluid in liquid form will tend to increase and the additional capillary storage medium will fill passively and thus prevent the formation of a liquid plug.
  • the volume of two-phase fluid in liquid form will tend to decrease and the additional capillary storage medium will empty passively and thus prevent the main capillary structure from drying out.
  • the additional capillary medium 15 can store an excess of liquid which could not be contained in the main capillary structure 14 which is already full and which would disturb the operation of the heat transfer device by placing itself in the vapor channels. .
  • This storage makes it possible to make the heat transfer device operational, with optimized performance, whatever the position or configuration of the heat transfer device.
  • the additional capillary medium is sized, depending on the sizing of the heat transfer device 1 and the quantity of two-phase fluid, to present a filling rate strictly between 0 and 100%, of preferably strictly between 5 and 95% when the heat transfer device is in operation.
  • the filling rate corresponds to the ratio between the volume of liquid contained in the additional capillary medium, constituting the reservoir or reservoirs, and the total volume that can be contained in this medium.
  • the quantity of diphasic fluid in the cavity being constant but with a volume of liquid which can vary between a minimum volume and a maximum volume
  • the additional capillary medium can be advantageously dimensioned, as illustrated in FIGS.
  • volume_min Volume_min + Delta_Volume_t
  • Volume_max Volume_min+Delta_Volume_max.
  • the main capillary structure has, for example, a reception volume equal to Volume_min and all of the excess liquid, i.e. Delta_Volume_t> will be housed in the additional structure forming a reservoir.
  • the additional structure forming a reservoir must then be able to contain a volume corresponding to Delta_Volume_max.
  • an operating safety margin can be provided with, for example:
  • the reservoir 15 is for example filled according to a filling rate varying between 0% and 100% or even between 5% and 95%, while the rest of the capillary structure is always full. 100%.
  • the condenser 143 which has the largest capillary structure, will fill last, while all the other capillary structures receiving liquid are always 100% filled.
  • the degree of filling of the condenser varies for example between 0% and 100% or even between 5% and 95%.
  • the capillary structure of the condenser (which forms part of the main structure 14) is preferably not 100% full since the additional capillary structure 15 has a smaller dimension than that of the condenser. The additional capillary structure 15 will therefore tend to suck the liquid from the condenser.
  • the additional liquid storage volume represented by the additional capillary medium is for example less than the volume of the main capillary structure 14 and preferably less than 50% of the volume of the main capillary structure.
  • the storage volume available for the liquid in the additional capillary medium is between 10 and 40% of the volume available for the liquid in the main capillary structure.
  • the volume of the additional storage medium depends on the two-phase fluid considered as well as on the operational temperature range.
  • the term “characteristic capillary dimension” refers to the average dimension of the capillary cavities of the capillary structure considered. In the case where the capillary structure is porous, the characteristic capillary dimension may correspond to the average diameter of the pores. In the case where the capillary structure is formed of a mesh of solid fibers (fig 6), the characteristic capillary dimension may correspond to the diameter of the largest spherical particle which could pass through it. In the case where the capillary structure is formed of grooves, the characteristic capillary dimension may correspond to the hydraulic diameter of the opening 141 connecting a groove 140 to the vapor circulation channel 13.
  • the various capillary structures of the device 1 advantageously have a characteristic capillary dimension hierarchy making it possible to ensure the flow of the liquid to the evaporator.
  • the main capillary structure 14 may have different characteristic capillary dimensions along the cavity.
  • the capillary structure 14 can comprise at least one capillary condensation zone 143 in the condenser 30, a capillary evaporation zone 142 in the evaporator 20 and optionally a capillary flow zone 144 connected on the one hand to the capillary condensation zone and on the other hand to the evaporator, and the different zones of the capillary structure 14 can have different characteristic capillary dimensions.
  • the capillary structure 14 has a larger characteristic capillary dimension sc at the level of the condenser 30, that is to say in the capillary condensation zone 143, than at the level of the condenser 30.
  • evaporator level 20 eev
  • the cavity 10 further comprises an adiabatic zone 12 and the main capillary structure 14 comprises an evaporation capillary zone 142 having a characteristic capillary dimension ⁇ v less than the characteristic dimension of the adiabatic zone sa, which is itself less than the characteristic capillary dimension EC of the capillary condensation zone 143.
  • the additional capillary medium 15 may have a characteristic capillary dimension cr greater than or equal to the maximum characteristic capillary dimension of the main capillary structure 14.
  • the additional capillary medium 15 may have a characteristic capillary dimension cr less than a characteristic capillary dimension EC of the capillary condensation zone 143, but greater than or equal to a characteristic capillary dimension £a of the capillary flow zone 144 and/or of that ⁇ v of the capillary zone d evaporation 142.
  • the additional capillary storage medium 15 may also have a variable characteristic capillary dimension and in this case, the minimum characteristic capillary dimension of the additional capillary storage medium is located at the level of the connection with the main capillary structure.
  • This minimum characteristic capillary dimension of the storage medium may for example be greater than or equal to the maximum characteristic capillary dimension of the main capillary structure.
  • the cavity 10 may comprise one or more steam circulation channels 13. These channels 13 may also have different sections, the minimum section channels being located at the level of the evaporation zone.
  • the maximum characteristic capillary dimension of the additional capillary storage medium 15 is less than or equal to the minimum characteristic dimension of the vapor circulation channels 14, which corresponds typically to their hydraulic diameter.
  • the channels of the evaporation zone 20 alone can have a diameter less than a capillary dimension characteristic of the additional capillary medium.
  • the additional capillary storage medium 15 can be connected to the main capillary structure 14 at the level of the condensation zone 30.
  • the additional capillary storage medium can also be connected to the capillary structure at the level of an adiabatic zone 12, or even also at the level of the evaporation zone 20.
  • the condensation zone 30 being the coldest and furthest from the heat source, it is advantageous to have at least one connection between the main capillary structure 14 and an additional capillary storage medium 15 at the level of this condensation zone 30.
  • One or more additional capillary media can be provided, each connected by a single connection with the main capillary medium, the main capillary medium ensuring circulation of the liquid between the cold source and the hot source.
  • FIG. 5 shows the circulation of the two-phase fluid between the evaporator 20 and the condenser 30, the dotted arrows representing the possible connections between an additional capillary storage medium and the main capillary structure, the main capillary medium ensuring circulation of the liquid between the cold source and the hot source.
  • the evaporation at the level of the evaporator is represented by the arrow L->V and the condensation at the level of the condenser 30 is represented by the arrow
  • the additional capillary storage medium 15 is manufactured by additive manufacturing (3D printing), also designated by ALM, to enable the capillary structuring of this medium to be precisely produced.
  • the additional capillary storage medium can also be produced by extrusion or machining.
  • the additional capillary storage medium is for example made of metal, for example aluminum, titanium or invar.
  • FIG. 2 to 4 there is shown an example of configuration of an additional capillary medium for storing excess liquid.
  • the envelope 11 of the device is not shown, unlike Figure 4.
  • the heat transfer device has a substantially extended parallelepipedal shape, the condensation zone 30 of which occupies an end section.
  • the heat transfer device may comprise an adiabatic zone 12, corresponding to another section of the device, this adiabatic zone, as shown in Figure 2, can be arranged in the extension of the condensation zone 30.
  • the example heat transfer device according to Figure 2 also includes an evaporation section. This evaporation section, not shown in Figure 2, is connected to the adiabatic section.
  • the heat transfer device may comprise a vapor circulation channel 13 of parallelepipedal section extending along the main direction of the heat transfer device 1.
  • the vapor circulation channel 13 can be delimited, in the condenser, on one side, by the capillary structure of the condenser 30 and on other sides by the additional capillary medium 15.
  • the capillary structure of the condenser 30 comprises a set of grooves 140 extending parallel to the vapor circulation channel.
  • the grooves 140 include a side opening 141 extending in the main direction of the grooves and opening into the vapor circulation channel.
  • the additional capillary medium 15 is here shaped in a U to surround the vapor circulation channel 13, and to be connected, by the two free ends of the U, to the capillary structure of the condenser 30.
  • the additional capillary medium 15 can thus delimit, on three sides, the steam circulation channel 13.
  • the vapor channel can extend into the adiabatic zone by passing through the center of an adiabatic capillary structure extending around the periphery of the adiabatic zone.
  • the capillary continuity between on the one hand the capillary structure of the condenser 30 and on the other hand the additional capillary medium and possibly the capillary structure of the adiabatic zone, is achieved, for example, at the level of the ends of the grooves 140 of the capillary structure of the condenser 30.
  • a capillary continuity can also be achieved on one face of the U, between the additional capillary medium 15 and the capillary structure of the adiabatic zone.
  • the additional capillary medium 15 may be formed, for example, of a lattice or of a porous structure. An example of a truss is shown in Figure 6.
  • the additional capillary medium 15 can form an additional section at one end of a two-phase device 1 successively comprising an evaporation zone 142, optionally an adiabatic zone 144 and an condensation zone 143.
  • the additional section corresponding to the additional capillary medium 15 is preferably adjacent to the condensation zone 143 so that the additional capillary medium 15 is connected in liquid capillary continuity with the capillary condensation structure.
  • FV vapor circulation arrow
  • cev characteristic capillary dimension of the evaporation zone of the main capillary structure
  • EC characteristic capillary dimension of the condensation zone of the main capillary structure
  • Ea characteristic capillary dimension of the flow zone of the main capillary structure
  • Er characteristic capillary dimension of the additional capillary medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Il est décrit un dispositif diphasique de transfert de chaleur, comprenant une cavité fermée comprenant au moins une zone d'évaporation (20) en situation d'échange thermique avec au moins une source chaude et au moins une zone de condensation (30) en situation d'échange thermique avec au moins une source froide, la cavité fermée contenant un fluide diphasique à l'état d'équilibre liquide-vapeur et comprenant au moins un canal (13) de circulation du fluide diphasique en phase vapeur et au moins une structure capillaire (14) principale adaptée pour permettre la circulation du fluide diphasique en phase liquide entre ladite source froide et ladite source chaude, le dispositif diphasique étant caractérisé en ce qu'il comprend en outre au moins un milieu capillaire additionnel (15) permettant un stockage et une restitution d'un excédent de liquide par rapport à une capacité maximale de liquide contenu dans la structure capillaire principale, ledit milieu capillaire additionnel et ladite structure capillaire principale étant connectés de façon à assurer une continuité capillaire pour le fluide diphasique en phase liquide.

Description

Description
Titre : Dispositif diphasique de transfert de chaleur à réservoir d’excédent de liquide
Domaine technique
[0001] La présente divulgation relève du domaine des dispositifs diphasiques de transfert de chaleur, contenant un fluide diphasique à saturation en circulation entre une source froide et une source chaude, et permettant ainsi d’évacuer de la chaleur générée par la source chaude. Elle trouve une application particulière dans le domaine spatial, notamment pour le contrôle thermique d’équipements d’un engin spatial, comme par exemple un satellite.
Technique antérieure
[0002] Un dispositif diphasique de transfert de chaleur comprend classiquement une cavité fermée contenant un fluide diphasique à saturation, dont une portion se trouve en phase liquide et une autre en phase gazeuse. Le dispositif de transfert de chaleur est en relation d’échange thermique d’une part avec une source dite chaude, et d’autre part avec une source dite froide, relativement plus froide que la source de chaleur.
[0003] Dans un dispositif diphasique de transfert de chaleur, le volume de fluide en phase liquide, présent dans la cavité, varie selon la température de fonctionnement. Ainsi un surplus de liquide peut venir perturber le fonctionnement du dispositif diphasique de transfert de chaleur. La demande de brevet WO2016/058966 intitulée caloduc plat avec fonction réservoir enseigne un réservoir de liquide disposé à une extrémité des canaux de condensation et sous une structure capillaire.
[0004] Ce type de solution impose cependant des contraintes sur la conception et l’utilisation du caloduc. Une partie de la surface de la plaque froide est notamment utilisée pour réaliser le contact thermique avec le réservoir de liquide, ce qui diminue donc la surface utile disponible pour le condenseur et donc les performances du caloduc. Par ailleurs le fait de disposer le réservoir en contact thermique avec la plaque froide représente également une contrainte supplémentaire de conception dont on souhaite s’affranchir.
Résumé
[0005] La présente invention vise ainsi à proposer une structure diphasique, également désignée en anglais par « two phase heat transport equipment » ou TPHTE, plus performante et de conception plus simple. [0006] Il est ainsi proposé un dispositif diphasique de transfert de chaleur, comprenant une cavité fermée comprenant au moins une zone d’évaporation en situation d’échange thermique avec au moins une source chaude et au moins une zone de condensation en situation d’échange thermique avec au moins une source froide, la cavité fermée contenant un fluide diphasique à l’état d’équilibre liquide-vapeur et comprenant au moins un canal de circulation du fluide diphasique en phase vapeur et au moins une structure capillaire principale adaptée pour permettre la circulation du fluide diphasique en phase liquide entre ladite source froide et ladite source chaude, le dispositif diphasique étant caractérisé en ce qu’il comprend en outre au moins un milieu capillaire additionnel permettant un stockage et une restitution d’un excédent de liquide par rapport à une capacité maximale de liquide contenu dans la structure capillaire principale, ledit milieu capillaire additionnel et ladite structure capillaire principale étant connectés de façon à assurer une continuité capillaire pour le fluide diphasique en phase liquide.
[0007] Dans des modes de réalisation, ledit milieu additionnel formant au moins une zone capillaire réservoir, tandis que la structure capillaire principale comprend au moins une zone capillaire de condensation et au moins une zone capillaire d’écoulement reliée d’une part à la zone capillaire de condensation et d’autre part à l’évaporateur.
[0008] Dans des modes de réalisation, la zone capillaire réservoir présente une dimension capillaire caractéristique inférieure à une dimension capillaire caractéristique de la zone capillaire de condensation mais supérieure ou égale à une dimension capillaire caractéristique de la zone capillaire d’écoulement à laquelle la zone capillaire réservoir est reliée.
[0009] Dans des modes de réalisation, la zone capillaire réservoir présente une dimension capillaire caractéristique inférieure à une dimension capillaire caractéristique du canal de circulation du fluide diphasique en phase vapeur mais supérieure à une dimension capillaire caractéristique de la zone capillaire de condensation.
[0010] Dans des modes de réalisation ladite zone capillaire réservoir est reliée directement à la zone d’écoulement ou respectivement à la zone d’évaporation et présente une dimension capillaire caractéristique supérieure à une dimension capillaire caractéristique de la zone d’écoulement ou respectivement de la zone d’évaporation.
[0011] Dans des modes de réalisation, la structure capillaire principale présente une dimension capillaire caractéristique décroissante de la zone de condensation vers la zone d’évaporation. [0012] Dans des modes de réalisation, le milieu capillaire additionnel présente une dimension capillaire caractéristique minimale au niveau de la connexion avec la structure capillaire principale pour la circulation du fluide diphasique en phase liquide.
[0013] Dans des modes de réalisation, le milieu capillaire additionnel est dimensionné de manière à présenter un taux de remplissage compris strictement entre 0 et 100%, de préférence compris strictement entre 5 et 95%, lorsque le dispositif diphasique de transfert de chaleur est en fonctionnement.
[0014] Dans des modes de réalisation, le volume disponible pour le liquide dans le milieu capillaire additionnel est compris entre 10 et 40 % du volume disponible pour le liquide dans la structure capillaire principale de la cavité.
[0015] Dans des modes de réalisation, le milieu capillaire additionnel est un treillis et/ou est formé en un matériau poreux.
[0016] Le dispositif de transfert de chaleur comprend avantageusement un réservoir de liquide présentant une structure capillaire et qui est connecté à la structure capillaire principale pour la circulation de liquide entre le condenseur et l’évaporateur, le réservoir de liquide étant connecté à la structure capillaire principale de façon à assurer une continuité capillaire entre eux permettant de maintenir la continuité liquide. Ainsi on évite d’avoir un surplus de liquide qui perturberait voire empêcherait le fonctionnement du dispositif de transfert de chaleur, par exemple s’il était localisé dans un endroit empêchant la circulation de vapeur jusqu’à la source froide, ou s’il venait masquer partiellement ou totalement une surface d’échange thermique avec la source froide.
[0017] De façon avantageuse, un volume de liquide en excès se loge dans le milieu capillaire additionnel évitant ainsi un surplus de volume inutile et inactif, qui se déplacerait au gré des variations de pression locales induites par les forces capillaires, les gradients de température et les forces hydrodynamiques et qui perturberait le fonctionnement du dispositif de transfert de chaleur. Pour cela, le milieu capillaire additionnel n’a pas besoin d’être situé en contact thermique avec la source froide. Plus généralement, les contraintes sur la conception et l’utilisation sont réduites. Le dispositif est adapté pour une utilisation en milieu spatial mais une utilisation sur Terre, en présence de gravité, est également possible. Les performances thermiques du dispositif de transfert de chaleur relatives à sa capacité de transport ou à son coefficient d’échange thermique sont avantageusement optimisées.
[0018] Avantageusement encore, grâce à la continuité capillaire notamment en maîtrisant une hiérarchie des dimensions capillaires entre le réservoir de liquide et la structure capillaire principale, on peut assurer un stockage et une restitution de fluide diphasique en phase liquide de façon à conserver un volume optimum de fluide diphasique en phase liquide dans la structure capillaire principale.
Brève description des dessins
[0019] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
Fig. 1a
[0020] [Fig. 1a] représente un schéma de principe d’un dispositif diphasique de transfert thermique.
Fig. 1b
[0021] [Fig. 1 b] représente une vue en coupe d’un évaporateur d’un dispositif de la figure 1a.
Fig. 2
[0022] [Fig. 2] est une vue en perspective partielle et schématique d’un dispositif diphasique de transfert thermique selon un mode de réalisation.
Fig. 3
[0023] [Fig. 3] est une vue en coupe en perspective du dispositif de la figure 2.
Fig. 4
[0024] [Fig. 4] est une vue en coupe de face d’un condenseur d’un dispositif diphasique de transfert thermique selon un mode de réalisation.
Fig. 5
[0025] [Fig. 5] représente schématiquement la circulation du fluide diphasique dans un dispositif de transfert thermique selon un mode de réalisation.
Fig. 6
[0026] [Fig. 6] représente un exemple de structure capillaire pouvant former le réservoir de surplus de liquide.
Fig. 7
[0027] [Fig.7] représente schématiquement un autre exemple de dispositif diphasique dans lequel le milieu capillaire additionnel se situe dans le prolongement du condenseur.
Fig. 8a [0028] [Fig. 8a] représente un exemple de hiérarchie des dimensions capillaires caractéristiques d’un dispositif lorsque notamment le dispositif est dépourvu de zone adiabatique et comprend un milieu capillaire additionnel formant une section supplémentaire du dispositif, adjacente au condenseur.
Fig. 8b
[0029] [Fig. 8b] représente un exemple de hiérarchie des dimensions capillaires caractéristiques d’un dispositif lorsque notamment le dispositif comprend une zone adiabatique et un milieu capillaire additionnel formant une section supplémentaire du dispositif, adjacente au condenseur.
Fig. 8c
[0030] [Fig. 8c] représente un exemple de hiérarchie des dimensions capillaires caractéristiques d’un dispositif lorsque notamment le dispositif comprend une zone adiabatique et un milieu capillaire additionnel relié au condenseur et à la zone adiabatique.
Fig. 8d
[0031] [Fig. 8d] représente un exemple de hiérarchie des dimensions capillaires caractéristiques d’un dispositif lorsque notamment le dispositif ne comprend pas de zone adiabatique et comprend un milieu capillaire additionnel relié au condenseur et à l’évaporateur.
Description des modes de réalisation
[0032] En référence aux figures 1a à 5, on a représenté deux exemples d’un dispositif diphasique 1 de transfert de chaleur. Sur les figures 1a et 1b, le dispositif présente une forme sensiblement cylindrique. Dans l’exemple représenté sur les figures 2 à 4, le dispositif présente une forme sensiblement parallélépipédique. La forme du dispositif n’est cependant pas limitative et peut être adaptée en fonction des contraintes d’utilisation, en particulier en fonction des positions relatives des sources chaude et froide entre lesquelles le transfert de chaleur doit être mis en oeuvre.
[0033] Le dispositif diphasique de transfert de chaleur 1 comprend une cavité fermée 10 de façon étanche et délimitée par une enveloppe 11 , dans laquelle circule un fluide diphasique à saturation comprenant une phase vapeur et une phase liquide. La partie liquide du fluide diphasique s’évapore au voisinage de la source de chaleur, et la vapeur obtenue se déplace vers la source froide où elle se liquéfie, restituant ainsi l’énergie thermique, emmagasinée auprès de la source chaude, à la source froide. Pour permettre la circulation de la phase liquide au sein de la cavité, les dispositifs diphasiques de transfert de chaleur comprennent par exemple une structure particulière qui est conformée pour permettre un écoulement du liquide par capillarité. Ces structures peuvent prendre des formes variables, telles que par exemple un ensemble de rainures, une structure poreuse ou un treillis. La circulation de la phase vapeur est permise par un ou plusieurs canaux permettant un écoulement dissocié de la vapeur et du liquide.
[0034] Comme représenté schématiquement sur la figure 1a, la cavité 10 du dispositif diphasique de transfert de chaleur comprend au moins une zone d’évaporation ou évaporateur 20, cette zone étant en situation d’échange thermique, typiquement en contact thermique, avec une source chaude 2, comme par exemple un équipement à refroidir. Au niveau de l’évaporateur 20, la phase liquide du fluide contenu dans la cavité s’évapore en absorbant la chaleur fournie par la source chaude.
[0035] La zone d'évaporation comprend notamment une zone capillaire d'évaporation, par exemple sous la forme d’une structure capillaire. La zone d’évaporation comprend notamment au moins une structure capillaire pour le liquide et au moins un canal vapeur pour la vapeur.
[0036] Dans des modes de réalisation, le dispositif 1 de transfert de chaleur peut être utilisé en environnement spatial, pour refroidir un ou plusieurs équipements d’un engin spatial tel qu’un satellite. Ces équipements peuvent inclure des équipements optiques, comme par exemple un plan focal, des équipements de télécommunication ou d’autres équipements comme par exemple des équipements électriques de commande d’actionneur.
[0037] Le dispositif 1 de transfert de chaleur comprend également au moins une zone de condensation ou condenseur 30, cette zone étant en situation d’échange thermique, typiquement en contact thermique, avec une source froide 3. Au niveau du condenseur, la phase vapeur du fluide contenu dans la cavité se condense en restituant ainsi, à la source froide, les calories absorbées auprès de la source chaude. La zone condenseur comprend notamment une zone capillaire de condensation par exemple sous la forme d’une structure capillaire. La zone condenseur comprend notamment au moins une structure capillaire pour le liquide et au moins un canal vapeur pour la vapeur.
[0038] Dans le cas où le dispositif de transfert de chaleur est utilisé dans un contexte spatial, la source froide peut par exemple comprendre un radiateur adapté pour évacuer de la chaleur vers l’espace.
[0039] Le fluide caloporteur contenu dans la cavité peut par exemple se présenter sous la forme d’eau, d’ammoniac, de méthane, d’éthane, de propylène, de méthanol ou d’éthanol, à l’état d’équilibre liquide-gaz. [0040] Afin de permettre les échanges thermiques entre le fluide diphasique et la source chaude d’une part, et entre le fluide diphasique et la source froide d’autre part, l’enveloppe 11 est avantageusement réalisée, au moins au niveau de chaque évaporateur et de chaque condenseur, en un matériau thermiquement conducteur, comme par exemple un métal, ou un alliage métallique, par exemple à base d’aluminium.
[0041] Dans des modes de réalisation, et comme représenté par exemple sur la figure 1a, le dispositif 1 de transfert de chaleur peut également comprendre une zone adiabatique 12 située entre un évaporateur 20 et un condenseur 30, c’est-à-dire une zone où les transferts de chaleur entre le fluide diphasique présent dans la cavité et l’environnement du dispositif de transfert de chaleur sont limités. Une telle zone peut par exemple être prévue dans le cas où la source froide 3 et la source chaude 2 sont relativement éloignées l’une de l’autre et que l’on souhaite alors faire circuler le fluide diphasique entre les deux en limitant les transferts de chaleur avec l’environnement. A cet égard, un matériau thermiquement isolant peut être utilisé pour assurer une isolation thermique entre le fluide diphasique et l’environnement du dispositif 1 de transfert de chaleur, par exemple directement lors de la constitution de l’enveloppe de la cavité, au niveau de ladite zone adiabatique ou en ajoutant une enveloppe isolante additionnelle autour de la zone adiabatique. La zone adiabatique comprend notamment une zone capillaire d'écoulement par exemple sous la forme d’une structure capillaire. La zone adiabatique comprend notamment au moins une structure capillaire pour le liquide et au moins un canal vapeur pour la vapeur.
[0042] La cavité fermée 10 est conformée pour permettre la circulation du fluide diphasique entre l’évaporateur 20 et le condenseur 30. A cet égard, la cavité fermée comprend au moins un canal 13 de circulation du fluide diphasique en phase vapeur qui permet, comme représenté par les flèches FV sur la figure 1a, de faire circuler la vapeur obtenue au niveau de l’évaporateur vers le condenseur. Le ou les canaux de circulation de vapeur 13, ou un réseau formé par ces canaux, s’étendent donc sur toute la longueur de la cavité, en allant de l’évaporateur au condenseur. De plus, la cavité fermée comprend également une structure capillaire 14 principale adaptée pour permettre la circulation de la phase liquide du fluide diphasique, et en particulier pour permettre au liquide condensé au niveau du condenseur de parvenir jusqu’à l’évaporateur, comme représenté par les flèches FL sur la figure 1a. La structure capillaire 14 principale s’étend également sur toute la longueur de la cavité, en allant de l’évaporateur au condenseur, pour permettre cette circulation de liquide.
[0043] Une structure capillaire est une structure dont la géométrie est telle qu’elle engendre des effets de tension de surface permettant ainsi de retenir et de faire circuler le liquide par capillarité. Les effets de tension de surface peuvent notamment être prédominants sur les effets de gravité ou d’inertie. La structure capillaire peut être réalisée de différentes manières. Par exemple, et comme visible sur la figure 1b, la structure capillaire peut être formée d’un ensemble de rainures 140 de faible diamètre, par exemple compris entre 1 et 3 mm. Dans l’exemple de la figure 2, la structure capillaire comprend une pluralité de rainures qui sont réparties autour d’un canal de circulation de vapeur 13, en s’étendant parallèlement à celui-ci. Les rainures140 présentent chacune une ouverture latérale 141 s’étendant dans la direction principale de la rainure, l’ouverture latérale débouchant dans le canal de circulation 13 de vapeur pour permettre à de la vapeur contenue dans une rainure 140 de rejoindre le canal. Sur la figure 1 b, le profil des rainures présente un profil ouvert arrondi en Q. Ce type de profil favorise notamment l’apparition d’une pression capillaire.
[0044] En variante on pourrait avoir un profil ouvert en goutte d'eau ou en œ avec sa ou ses courbures larges disposées en vis-à-vis de la surface froide, à l’opposé de l’ouverture. Un tel profil se referme par exemple légèrement selon un ratio inférieur à 2 (c’est-à-dire que la largeur de l’ouverture est supérieure à la moitié de la plus grande largeur) de façon à éviter la formation d’un pont et éviter de piéger de la vapeur dans les rainures. Avantageusement avec un profil en goutte d'eau ou en œ, on évite de retenir de la vapeur à cause d’un pont liquide qui se formerait au niveau de l’extrémité, notamment en micro-gravité, pouvant rendre la structure diphasique instable voire non-opérationnelle. Avantageusement encore, un profil en goutte d'eau ou en œ favorise le drainage de la surface froide.
[0045] Le choix du profil sera par exemple effectué pour s’adapter au mieux au cas d’usage.
[0046] Dans un autre exemple, représenté en figure 4, le dispositif de transfert de chaleur 1 peut présenter une forme généralement parallélépipédique, et comprendre au moins un canal de circulation de vapeur 13 s’étendant selon la direction principale du dispositif 1 de transfert de chaleur. Des rainures 140 pour la circulation de la phase liquide peuvent également s’étendre parallèlement selon la direction principale du dispositif de transfert de chaleur, et comprendre une ouverture latérale 141 s’étendant dans la direction principale de chaque rainure et débouchant dans le canal 13 de circulation de vapeur. En variante, comme représenté sur la figure 6, la structure capillaire 14 principale peut être formée d’un treillis, comprenant un ensemble de fibres capillaires de faible diamètre, par exemple compris entre 0.5 et 1 mm, interconnectées les unes aux autres. Selon encore une autre variante, la structure capillaire peut être un milieu poreux, par exemple en étant formée d’un matériau constitué d’une micro-structure poreuse rendant ledit matériau perméable au fluide considéré.
[0047] Sur la figure 1 b on a représenté schématiquement la circulation du fluide diphasique au niveau d’un évaporateur 20. Le liquide contenu dans la structure capillaire et acheminé depuis le condenseur 30 se vaporise sous l’effet de la chaleur transmise par la source chaude 2. La vapeur obtenue rejoint le canal de circulation de vapeur 13 et comme visible sur la figure 1a, progresse dans la cavité 10 jusqu’à atteindre le condenseur 30, où elle se condense et le liquide condensé rejoint la structure capillaire 14 principale.
[0048] Le dispositif 1 de transfert de chaleur comprend en outre un réservoir 15 pour stocker un excédent de liquide du fluide diphasique, ce réservoir étant formé par un milieu capillaire additionnel. Le milieu capillaire additionnel 15 qui réalise un stockage et une restitution du fluide en phase liquide est connecté à la structure capillaire principale 14 de façon à assurer une continuité capillaire pour le fluide en phase liquide. Le milieu additionnel comprend une zone capillaire réservoir et peut comprendre également un canal vapeur. Un tel canal vapeur peut par exemple être utile dans les cas, comme représenté aux figures 8a et 8b, où le taux de remplissage en liquide dans le réservoir varie entre 0% et 100% voire entre 5% et 95%, de la vapeur étant alors également présente dans cette zone réservoir. Ainsi la présence d’un canal vapeur à proximité va permettre à la vapeur d'être évacuée plus facilement quand le liquide va pénétrer le réservoir.
[0049] Dans des modes de réalisation, le milieu capillaire additionnel n’a pas de fonction structurelle pour le dispositif 1 de transfert de chaleur, c’est-à-dire qu’il ne contribue pas à sa tenue mécanique, contrairement à la cavité 10 et notamment à son enveloppe 11.
[0050] Les canaux vapeurs sont par exemple tous reliés entre eux. Les canaux vapeurs interconnectés forment ainsi un unique espace continu. Dans des modes de réalisation, si le milieu capillaire additionnel 15 est adjacent au canal vapeur 13 de la cavité 10, il n’obstrue pas complètement la section de ce canal vapeur.
[0051] On entend par « continuité capillaire pour le fluide en phase liquide » ou par « continuité capillaire liquide » le fait qu’un échange de fluide en phase liquide puisse s’effectuer par capillarité, dans un sens comme dans l’autre, au niveau de chaque endroit où se forme une continuité capillaire pour le fluide en phase liquide, notamment entre le milieu capillaire additionnel et la structure capillaire principale. Le milieu capillaire additionnel est ainsi accolé à la structure capillaire principale. [0052] Le fluide en phase liquide peut ainsi se déplacer vers le milieu capillaire additionnel ou vers la structure capillaire. A cet égard, la structure capillaire principale 14 et le milieu capillaire additionnel 15 sont de préférence conformés de sorte qu’il n’y a pas, entre ces deux milieux capillaires, de discontinuité. On entend par discontinuité une ou plusieurs cavités dont la dimension dépasserait la dimension capillaire caractéristique la plus grande des deux milieux.
[0053] Ainsi lorsque le dispositif 1 s’échauffe, le volume de fluide diphasique sous forme liquide va avoir tendance à augmenter et le milieu capillaire additionnel de stockage va se remplir de manière passive et ainsi prévenir la formation de bouchon liquide. A contrario, lorsque le dispositif 1 va se refroidir, le volume de fluide diphasique sous forme liquide va avoir tendance à diminuer et le milieu capillaire additionnel de stockage va se vider de manière passive et ainsi prévenir l’assèchement de la structure capillaire principale.
[0054] De la sorte, le milieu capillaire additionnel 15 peut stocker un excès de liquide qui ne pourrait pas être contenu dans la structure capillaire principale 14 déjà pleine et qui perturberait le fonctionnement du dispositif de transfert de chaleur en se plaçant dans les canaux vapeur. Ce stockage permet de rendre le dispositif de transfert de chaleur opérationnel, avec des performances optimisées, quelle que soit la position ou la configuration du dispositif de transfert de chaleur.
[0055] Dans des modes de réalisation, le milieu capillaire additionnel est dimensionné, en fonction du dimensionnement du dispositif 1 de transfert de chaleur et de la quantité de fluide diphasique, pour présenter un taux de remplissage compris strictement entre 0 et 100%, de préférence compris strictement entre 5 et 95% lorsque le dispositif de transfert de chaleur est en fonctionnement. Le taux de remplissage correspond au ratio entre le volume de liquide contenu dans le milieu capillaire additionnel, constituant le ou les réservoirs, et le volume total pouvant être contenu dans ce milieu. En d’autres termes, la quantité de fluide diphasique dans la cavité étant constante mais avec un volume de liquide pouvant varier entre un volume minimum et un volume maximal, le milieu capillaire additionnel peut être avantageusement dimensionné, comme illustré aux figures 8a et 8b, de sorte que : lorsque le volume de liquide est minimal, la structure capillaire principale 14 est toujours pleine de liquide, et le milieu capillaire additionnel est faiblement rempli, de l’ordre de 0 à 5% de taux de remplissage, et lorsque le volume de liquide est maximal, la structure capillaire principale 14 est pleine de liquide et le milieu capillaire additionnel est complètement rempli, sans atteindre toutefois la saturation pour éviter une perturbation du fonctionnement du dispositif, c’est -à-dire avec un taux de remplissage de l’ordre de 95% à 100%.
[0056] Le volume de liquide dans la cavité peut varier entre Volume_min et Volume_max, de sorte qu’à tout instant le volume total de liquide est égal à Volume_t = Volume_min + Delta_Volume_t
[0057] Par ailleurs, Volume_max = Volume_min + Delta_Volume_max.
[0058] La structure capillaire principale présente, par exemple, un volume d’accueil égal à Volume_min et la totalité de l’excès de liquide, i.e. Delta_Volume_t> va se loger dans la structure additionnelle formant réservoir. La structure additionnelle formant réservoir doit alors pouvoir contenir un volume correspondant à Delta_Volume_max.
[0059] On peut ainsi prévoir un volume de la structure capillaire additionnelle formant réservoir supérieur ou égal à Delta_Volume_max.
[0060] Ainsi pour un volume total minimal, seule la structure principale 14 sera remplie, tandis que pour un volume total maximum, la structure principale 14 et la structure additionnelle formant réservoir 15 sont pleines.
[0061] En pratique on peut prévoir une marge de sécurité de fonctionnement avec par exemple :
- pour un volume minimum, la structure principale 14 pleine et la structure additionnelle formant réservoir 15 remplie à 5 % et
- pour un volume maximum, la structure principale 14 pleine et la structure additionnelle formant réservoir 15 remplie à 95%.
[0062] Dans les cas des figures 8a et 8b, le réservoir 15 est par exemple rempli selon un taux de remplissage variant entre 0% et 100% voire entre 5% et 95%, tandis que le reste de la structure capillaire est toujours plein à 100%.
[0063] Dans les cas des figures 8c et 8d, le condenseur 143, qui présente la structure capillaire la plus grosse, se remplira en dernier, tandis que toute les autres structures capillaires recevant du liquide sont toujours remplies à 100%. Le taux de remplissage du condenseur varie par exemple entre 0% et 100% voire entre 5% et 95%. La structure capillaire du condenseur (qui fait partie de la structure principale 14) n’est de préférence pas pleine à 100% puisque la structure capillaire additionnelle 15 a une dimension plus faible que celle du condenseur. La structure capillaire additionnelle 15 va donc avoir tendance à aspirer le liquide du condenseur. On a donc la structure évaporateur qui est pleine et la structure adiabatique qui est pleine, tandis que la structure capillaire du condenseur est partiellement remplie et varie par exemple entre 5 et 95 %. [0064] Le volume additionnel de stockage de liquide représenté par le milieu capillaire additionnel est par exemple inférieur au volume de la structure capillaire 14 principale et de préférence inférieur à 50% du volume de la structure capillaire principale.
[0065] Dans des modes de réalisation, le volume de stockage disponible pour le liquide dans le milieu capillaire additionnel est compris entre 10 et 40 % du volume disponible pour le liquide dans la structure capillaire principale. Le volume du milieu additionnel de stockage dépend de fluide diphasique considéré ainsi que de la plage de température opérationnelle.
[0066] En référence aux figures 8a à 8d, on va maintenant décrire des modes de réalisation du dimensionnement des différentes structures capillaires.
[0067] Dans la suite, on appelle « dimension capillaire caractéristique » la dimension moyenne des cavités capillaires de la structure capillaire considérée. Dans le cas où la structure capillaire est poreuse, la dimension capillaire caractéristique peut correspondre au diamètre moyen des pores. Dans le cas où la structure capillaire est formée d’un treillis de fibres solides (fig 6), la dimension capillaire caractéristique peut correspondre au diamètre de la plus grosse particule sphérique qui pourrait passer au travers. Dans le cas où la structure capillaire est formée de rainures, la dimension capillaire caractéristique peut correspondre au diamètre hydraulique de l’ouverture 141 reliant une rainure 140 au canal de circulation de vapeur 13.
[0068] Plus la dimension capillaire caractéristique est petite, et plus le phénomène de capillarité est important. Par conséquent, les différentes structures capillaires du dispositif 1 présentent avantageusement une hiérarchie de dimension capillaire caractéristique permettant d’assurer le cheminement du liquide jusqu’à l’évaporateur.
[0069] Ainsi, la structure capillaire 14 principale peut présenter des dimensions capillaires caractéristique différentes le long de la cavité. Par exemple, la structure capillaire 14 peut comprendre au moins une zone capillaire de condensation 143 dans le condenseur 30, une zone capillaire d’évaporation 142 dans l’évaporateur 20 et optionnellement une zone capillaire d’écoulement 144 reliée d’une part à la zone capillaire de condensation et d’autre part à l’évaporateur, et les différentes zones de la structure capillaire 14 peuvent présenter des dimensions capillaires caractéristiques différentes.
[0070] Dans un mode de réalisation représenté schématiquement en figure 8a, la structure capillaire 14 présente une dimension capillaire caractéristique sc plus importante au niveau du condenseur 30, c’est-à-dire dans la zone capillaire de condensation 143, qu’au niveau de l’évaporateur 20 (eev). [0071] Dans une variante représentée en figure 8b, la cavité 10 comprend en outre une zone adiabatique 12 et la structure capillaire principale 14 comprend une zone capillaire d’évaporation 142 présentant une dimension capillaire caractéristique æv inférieure à la dimension caractéristique de la zone adiabatique sa, qui est elle-même inférieure à la dimension capillaire caractéristique EC de la zone capillaire de condensation 143.
[0072] Dans des modes de réalisation, le milieu capillaire additionnel 15 peut présenter une dimension capillaire caractéristique cr supérieure ou égale à la dimension capillaire caractéristique maximale de la structure capillaire principale 14. Ainsi, lorsque la quantité de liquide diminue et que le liquide en excès stocké dans le réservoir doit être récupéré pour contribuer au fonctionnement du dispositif, cette hiérarchie de dimensions capillaires permet d’assurer que le liquide revienne dans la structure capillaire principale et ne reste pas stocké dans le réservoir. C’est le cas représenté schématiquement dans les figures 8a et 8b.
[0073] En variante représentée schématiquement sur les figures 8c et 8d, qui représentent un dispositif respectivement avec et sans zone adiabatique, dans le cas où la structure capillaire principale 14 présente des zones de dimensions capillaires caractéristiques variables, le milieu capillaire additionnel 15 peut présenter une dimension capillaire caractéristique cr inférieure à une dimension capillaire caractéristique EC de la zone capillaire de condensation 143, mais supérieure ou égale à une dimension capillaire caractéristique £a de la zone capillaire d’écoulement 144 et/ou de celle æv de la zone capillaire d’évaporation 142.
[0074] Le milieu capillaire de stockage additionnel 15 peut également présenter une dimension capillaire caractéristique variable et dans ce cas, la dimension capillaire caractéristique minimale du milieu capillaire de stockage additionnel est située au niveau de la connexion avec la structure capillaire principale.
[0075] Cette dimension capillaire caractéristique minimale du milieu de stockage peut être par exemple supérieure ou égale à la dimension capillaire caractéristique maximale de la structure capillaire principale.
[0076] Comme indiqué précédemment, la cavité 10 peut comprendre un ou plusieurs canaux de circulation de vapeur 13. Ces canaux 13 peuvent également présenter des sections différentes, les canaux de section minimale étant situés au niveau de la zone d’évaporation.
[0077] Dans des modes de réalisation, la dimension capillaire caractéristique maximale du milieu capillaire de stockage additionnel 15 est inférieure ou égale à la dimension caractéristique minimale des canaux de circulation de vapeur 14, qui correspond typiquement à leur le diamètre hydraulique. Les canaux de la zone d’évaporation 20 uniquement peuvent présenter un diamètre inférieur à une dimension capillaire caractéristique du milieu capillaire additionnel.
[0078] Dans des modes de réalisation, le milieu capillaire de stockage additionnel 15 peut être connecté à la structure capillaire 14 principale au niveau de la zone de condensation 30.
[0079] Dans des modes de réalisation, le milieu capillaire de stockage additionnel peut aussi être connecté à la structure capillaire au niveau d’une zone adiabatique 12, voire aussi au niveau de la zone d’évaporation 20. Cependant, la zone de condensation 30 étant la plus froide et la plus éloignée de la source de chaleur, il est avantageux d’avoir au moins une connexion entre la structure capillaire 14 principale et un milieu capillaire de stockage additionnel 15 au niveau de cette zone de condensation 30.
[0080] On peut prévoir un ou plusieurs milieux capillaires additionnels reliés chacun par une connexion unique avec le milieu capillaire principal, le milieu capillaire principal assurant une circulation du liquide entre la source froide et la source chaude.
[0081] On a représenté sur la figure 5 la circulation du fluide diphasique entre I’évaporateur 20 et le condenseur 30, les flèches en pointillés représentant les connexions possibles entre un milieu capillaire de stockage additionnel et la structure capillaire principale, le milieu capillaire principal assurant une circulation du liquide entre la source froide et la source chaude. L’évaporation au niveau de l’évaporateur est représentée par la flèche L->V et la condensation au niveau du condenseur 30 est représentée par la flèche
[0082] Dans des modes de réalisation, le milieu capillaire de stockage additionnel 15 est fabriqué par fabrication additive (impression 3D), également désignée par ALM, pour permettre de réaliser précisément la structuration capillaire de ce milieu.
[0083] En variante, le milieu capillaire de stockage additionnel peut également être réalisé par extrusion ou usinage.
[0084] Le milieu capillaire de stockage additionnel est par exemple réalisé en métal, par exemple en aluminium, en titane ou en invar.
[0085] En référence aux figures 2 à 4, on a représenté un exemple de configuration d’un milieu capillaire additionnel pour le stockage d’un excès de liquide. Sur les figures 2 et 3, l’enveloppe 11 du dispositif n’est pas représentée, contrairement à la figure 4. [0086] Sur ces figures 2 à 4, le dispositif de transfert de chaleur présente une forme sensiblement parallélépipédique étendue dont la zone de condensation 30 occupe une section d’extrémité.
[0087] Le dispositif de transfert de chaleur peut comprendre une zone adiabatique 12, correspondant à une autre section du dispositif, cette zone adiabatique, comme représenté à la figure 2, peut être disposée dans le prolongement de la zone de condensation 30.
[0088] L’exemple de dispositif de transfert de chaleur selon la figure 2 comprend également une section d’évaporation. Cette section d’évaporation, non représentée à la figure 2, est reliée à la section adiabatique.
[0089] Le dispositif de transfert de chaleur peut comprendre un canal 13 de circulation de vapeur de section parallélépipédique s’étendant selon la direction principale du dispositif 1 de transfert de chaleur. Le canal 13 de circulation de vapeur peut être délimité, dans le condenseur, d’un coté, par la structure capillaire du condenseur 30 et sur d’autres cotés par le milieu capillaire additionnel 15. Comme représenté à la figure 4, la structure capillaire du condenseur 30 comprend un ensemble de rainures 140 s’étendant parallèlement au canal de circulation de vapeur. Les rainures 140 comprennent une ouverture latérale 141 s’étendant dans la direction principale des rainures et débouchant dans le canal de circulation de vapeur. Le milieu capillaire additionnel 15 est ici conformé en U pour entourer le canal de circulation de vapeur 13, et être relié, par les deux extrémités libres du U, à la structure capillaire du condenseur 30. Le milieu capillaire additionnel 15 peut ainsi délimiter, sur trois côtés, le canal de circulation de vapeur 13.
[0090] Comme représenté sur la figure 2, le canal vapeur peut se prolonger dans la zone adiabatique en passant au centre d’une structure capillaire adiabatique s’étendant en périphérie de la zone adiabatique.
[0091] La continuité capillaire entre d’une part la structure capillaire du condenseur 30 et d’autre part le milieu capillaire additionnel et éventuellement la structure capillaire de la zone adiabatique, est réalisée, par exemple, au niveau des extrémités des rainures 140 de la structure capillaire du condenseur 30.
[0092] Une continuité capillaire peut aussi être réalisée sur une face du U, entre le milieu capillaire additionnel 15 et la structure capillaire de la zone adiabatique.
[0093] Le milieu capillaire additionnel 15 peut être formé par exemple d’un treillis ou d’une structure poreuse. Un exemple de treillis est représenté à la figure 6. [0094] Dans une variante de réalisation, représentée schématiquement en figure 7, le milieu capillaire additionnel 15 peut former une section supplémentaire à une extrémité d’un dispositif diphasique 1 comprenant successivement une zone d’évaporation 142, optionnellement une zone adiabatique 144 et une zone de condensation 143. La section supplémentaire correspondant au milieu capillaire additionnel 15 est de préférence adjacente à la zone de condensation 143 de sorte que le milieu capillaire additionnel 15 est relié en continuité capillaire liquide avec la structure capillaire de condensation.
Liste des signes de référence
[0095] 1 : dispositif de transfert de chaleur ou caloduc
[0096] 2 : source chaude
[0097] 3 : source froide
[0098] 10 : cavité
[0099] 11 : enveloppe
[0100] 12 : zone adiabatique
[0101] 13 : canal de circulation de vapeur
[0102] 14 : structure capillaire principale
[0103] 140 : rainure
[0104] 141 : ouverture latérale d’une rainure
[0105] 142 : zone d’évaporation de la structure capillaire principale
[0106] 143 : zone de condensation de la structure capillaire principale
[0107] 144 : zone d’écoulement de la structure capillaire principale
[0108] 15 : milieu capillaire de stockage additionnel
[0109] 150 : section du milieu capillaire additionnel
[0110] 20 : zone d’évaporation / évaporateur
[0111] 30 : zone de condensation / condenseur
[0112] FV : flèche de circulation de vapeur
[0113] FL : flèche de circulation de liquide
[0114] cev : dimension capillaire caractéristique de la zone d’évaporation de la structure capillaire principale [0115] EC : dimension capillaire caractéristique de la zone de condensation de la structure capillaire principale
[0116] Ea : dimension capillaire caractéristique de la zone d’écoulement de la structure capillaire principale [0117] Er : dimension capillaire caractéristique du milieu capillaire additionnel.

Claims

Revendications
[Revendication 1] Dispositif (1 ) diphasique de transfert de chaleur, comprenant une cavité fermée (10) comprenant au moins une zone d’évaporation (20) en situation d’échange thermique avec au moins une source chaude (2) et au moins une zone de condensation (30) en situation d’échange thermique avec au moins une source froide (3), la cavité fermée (10) contenant un fluide diphasique à l’état d’équilibre liquide-vapeur et comprenant au moins un canal (13) de circulation du fluide diphasique en phase vapeur et au moins une structure capillaire (14) principale adaptée pour permettre la circulation du fluide diphasique en phase liquide entre ladite source froide et ladite source chaude, le dispositif diphasique (1 ) étant caractérisé en ce qu’il comprend en outre au moins un milieu capillaire additionnel (15) permettant un stockage et une restitution d’un excédent de liquide par rapport à une capacité maximale de liquide contenu dans la structure capillaire principale (14), ledit milieu capillaire additionnel (15) et ladite structure capillaire principale (14) étant connectés de façon à assurer une continuité capillaire pour le fluide diphasique en phase liquide, ledit milieu additionnel (15) comprenant au moins une zone capillaire réservoir, la structure capillaire principale (14) comprenant au moins une zone capillaire de condensation (143) et une zone capillaire d’évaporation (142), les zones d’évaporation (142) et de condensation (143) de la structure capillaire principale, prises dans l’ordre, présentent des dimensions capillaires caractéristiques croissantes, lesdites dimensions capillaires étant inférieures au diamètre du canal de circulation de vapeur, et le milieu capillaire additionnel (15) présente une dimension capillaire caractéristique supérieure à celle de la zone d’évaporation et inférieure au diamètre du canal de circulation de vapeur.
[Revendication 2] Dispositif (1 ) diphasique selon la revendication 1 , dans lequel la zone capillaire réservoir est reliée directement à la zone capillaire de condensation et présente une dimension capillaire caractéristique (sr) supérieure à une dimension capillaire caractéristique (sc) de la zone capillaire de condensation (143).
[Revendication s] Dispositif (1) diphasique selon l’une des revendications 1 ou 2, dans lequel la structure capillaire principale (14) comprend en outre une zone capillaire d’écoulement reliée d’une part à la zone capillaire de condensation (143) et d’autre part à la zone capillaire d’évaporation (142), les zones, prises dans l’ordre, d’évaporation, d’écoulement, et de condensation présentant des dimensions capillaires caractéristiques croissantes, lesdites dimensions capillaires caractéristiques étant inférieures au diamètre du canal de circulation de vapeur.
[Revendication 4] Dispositif (1 ) diphasique selon la revendication 3, dans lequel ladite zone capillaire réservoir est reliée directement à la zone d’écoulement et présente une dimension capillaire caractéristique supérieure à une dimension capillaire caractéristique de la zone d’écoulement.
[Revendication s] Dispositif (1) diphasique selon l’une des revendications précédentes, dans lequel le milieu capillaire additionnel (15) est en contact d’une part avec le canal de circulation de vapeur (13) et d’autre part avec la structure capillaire principale (14)..
[Revendication 6] Dispositif (1 ) diphasique selon la revendication précédente, dans lequel le milieu capillaire additionnel (15) comprend la zone capillaire réservoir et un canal de circulation de vapeur.
[Revendication 7] Dispositif (1) diphasique selon l’une des revendications précédentes, le volume de fluide diphasique en phase liquide dans la cavité est variable entre un volume minimum Vmin et un volume maximum Vmax, le volume du milieu capillaire additionnel (15) est supérieur ou égal à l’écart de volume entre le volume maximum et le volume minimum, et inférieur à 50% du volume de la structure capillaire principale (14).
[Revendication s] Dispositif (1) diphasique selon l’une des revendications précédentes, dans lequel le milieu capillaire additionnel (15) présente une dimension capillaire caractéristique minimale au niveau de la connexion avec la structure capillaire principale (14) pour la circulation du fluide diphasique en phase liquide.
[Revendication s] Dispositif (1) diphasique selon l’une des revendications précédentes, dans lequel le milieu capillaire additionnel (15) est dimensionné de manière à présenter un taux de remplissage compris strictement entre 0 et 100%, de préférence compris strictement entre 5 et 95%, lorsque le dispositif (1) diphasique de transfert de chaleur est en fonctionnement.
[Revendication 10] Dispositif (1 ) diphasique selon l’une des revendications précédentes, dans lequel le volume disponible pour le liquide dans le milieu capillaire additionnel (15) est compris entre 10 et 40 % du volume disponible pour le liquide dans la structure capillaire principale (14) de la cavité (10).
[Revendication 11] Dispositif (1 ) diphasique selon l’une des revendications précédentes, dans lequel le milieu capillaire additionnel (15) est un treillis et/ou est formé en un matériau poreux.
EP22814485.3A 2021-10-07 2022-10-07 Dispositif diphasique de transfert de chaleur à réservoir d'excédent de liquide Pending EP4323711A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2110636 2021-10-07
PCT/FR2022/051900 WO2023057730A1 (fr) 2021-10-07 2022-10-07 Dispositif diphasique de transfert de chaleur à réservoir d'excédent de liquide

Publications (1)

Publication Number Publication Date
EP4323711A1 true EP4323711A1 (fr) 2024-02-21

Family

ID=80735682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22814485.3A Pending EP4323711A1 (fr) 2021-10-07 2022-10-07 Dispositif diphasique de transfert de chaleur à réservoir d'excédent de liquide

Country Status (2)

Country Link
EP (1) EP4323711A1 (fr)
WO (1) WO2023057730A1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082443A (en) * 1997-02-13 2000-07-04 The Furukawa Electric Co., Ltd. Cooling device with heat pipe
TW540989U (en) * 2002-10-04 2003-07-01 Via Tech Inc Thin planar heat distributor
DE202005008792U1 (de) * 2005-06-06 2005-08-25 Klotsche, Michael E. M., Dipl.-Ing. Flache Heatpipe mit Überhitzungsschutz
CN100480611C (zh) * 2005-11-17 2009-04-22 富准精密工业(深圳)有限公司 热管
CN102062553B (zh) * 2009-11-12 2013-12-04 富准精密工业(深圳)有限公司 平板式热管
FR3027379B1 (fr) 2014-10-15 2019-04-26 Euro Heat Pipes Caloduc plat avec fonction reservoir
US10018427B2 (en) * 2016-09-08 2018-07-10 Taiwan Microloops Corp. Vapor chamber structure

Also Published As

Publication number Publication date
WO2023057730A1 (fr) 2023-04-13

Similar Documents

Publication Publication Date Title
BE1009410A3 (fr) Dispositif de transport de chaleur.
EP3207324B1 (fr) Caloduc plat avec fonction reservoir
EP2956729B1 (fr) Dispositif de transport de chaleur à fluide diphasique
EP2032440B1 (fr) Dispositif de regulation thermique passive a base de boucle fluide diphasique a pompage capillaire avec capacite thermique
EP2181301B1 (fr) Dispositif passif de regulation thermique a micro boucle fluide a pompage capillaire
EP2795226B1 (fr) Dispositif de refroidissement
EP0772757B1 (fr) Systeme de transfert d'energie entre une source chaude et une source froide
EP0873457B1 (fr) Dispositif d'amortissement pour des elements d'une structure de genie civil
EP3004773A1 (fr) Dispositif de transport de chaleur à fluide diphasique
FR2783313A1 (fr) Dispositif de tranfert de chaleur
EP4323711A1 (fr) Dispositif diphasique de transfert de chaleur à réservoir d'excédent de liquide
EP2861928B1 (fr) Dispositif de contrôle thermique
EP3217137A1 (fr) Dispositif de refroidissement thermique d'un objet à partir d'une source froide telle qu'un bain de fluide cryogénique
WO2024104573A1 (fr) Structure diphasique à sens unique de transfert thermique
WO2024027962A1 (fr) Echangeur de chaleur
EP2981781B1 (fr) Caloduc comportant un bouchon gazeux de coupure
EP0021307A1 (fr) Dispositif pour le transfert de chaleur entre au moins deux sources de chaleur de manière à les maintenir à des niveaux thermiques différents
EP4109012A1 (fr) Boucle fluide diphasique à pompage mécanique comprenant un dispositif de contrôle du debit
WO2022243965A1 (fr) Conteneur pour matériau a changement de phase
FR3128281A1 (fr) Caloduc de type à pompage capillaire avec rainures réentrantes à gestion de liquide améliorée.
EP3566014A1 (fr) Dispositif de diffusion thermique
FR2783312A1 (fr) Boucle fluide a pompage capillaire
FR3065280A1 (fr) Systeme de distribution de fluide caloporteur pour un dispositif de stockage d'energie thermique comportant des systemes thermostatiques

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20240411

INTG Intention to grant announced

Effective date: 20240418