EP4314104A1 - Verfahren zur reduktion von aromatischen (di-)aminen in polyurethanschaumstoffen - Google Patents

Verfahren zur reduktion von aromatischen (di-)aminen in polyurethanschaumstoffen

Info

Publication number
EP4314104A1
EP4314104A1 EP22712003.7A EP22712003A EP4314104A1 EP 4314104 A1 EP4314104 A1 EP 4314104A1 EP 22712003 A EP22712003 A EP 22712003A EP 4314104 A1 EP4314104 A1 EP 4314104A1
Authority
EP
European Patent Office
Prior art keywords
component
isocyanate
weight
din
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22712003.7A
Other languages
English (en)
French (fr)
Inventor
Joern Beaujean
Sebastian SCHLECHT
Matthaeus Gossner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Deutschland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland AG filed Critical Covestro Deutschland AG
Publication of EP4314104A1 publication Critical patent/EP4314104A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2018Heterocyclic amines; Salts thereof containing one heterocyclic ring having one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2027Heterocyclic amines; Salts thereof containing one heterocyclic ring having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/284Compounds containing ester groups, e.g. oxyalkylated monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/285Nitrogen containing compounds
    • C08G18/2875Monohydroxy compounds containing tertiary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/409Dispersions of polymers of C08G in organic compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/485Polyethers containing oxyethylene units and other oxyalkylene units containing mixed oxyethylene-oxypropylene or oxyethylene-higher oxyalkylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/632Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • C08G18/6677Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203 having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7607Compounds of C08G18/7614 and of C08G18/7657
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0016Foam properties semi-rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0058≥50 and <150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Definitions

  • the present invention relates to a process for producing polyurethane foams using vvoonn emission-reducing compounds, the polyurethane foams themselves and the use of the emission-reducing compounds.
  • Additives for reducing aromatic amines are known from the prior art.
  • ⁇ , ⁇ -unsaturated carboxylic acids, ⁇ , ⁇ -unsaturated carboxylic acid derivatives, ⁇ , ⁇ -unsaturated ketones and/or ⁇ , ⁇ -unsaturated aldehydes are disclosed for the reduction of aromatic amines in the production of polyurethane foams, such as for example hydroxyethyl acrylate.
  • Another group for reducing aromatic amines are, for example, lactams, as disclosed in DE 199 28 687 A1 and in WO 2020/084003 A1.
  • a compound as claimed in claim 1 is not used in any of these disclosures.
  • the object of the present invention is to provide a process for producing polyurethane foams with a reduced proportion of aromatic amines, in a preferred embodiment a reduced proportion of the total emissions, by reducing the emission of the additive.
  • A1 an isocyanate-reactive component
  • P is a polyether polyol with an OH functionality of 2 to 8 and a number average molecular weight of 200 to 4000 g/mol, measured according to DIN 55672-1 of August 2007,
  • R 1 , R 2 each independently represent a substituted or unsubstituted C 1 - to C 8 - alkyl group or a substituted or unsubstituted aryl group
  • n represents the number of OH groups of P which is represented by the group -OC(O) - CH 2 -C (X) - R 1 are replaced and is at least 1, with
  • the present invention also provides the polyurethane foams obtainable by the process described and the use of the compound of the formula (I) for reducing the proportion of aromatic amines.
  • polyols selected from the group consisting of polyether polyols, polyester polyols, polyether ester polyols, polycarbonate polyols and polyether-polycarbonate polyols can be used as isocyanate-reactive components.
  • Polyester polyols and/or polyether polyols are preferred.
  • the compounds of component A1 can have an amine and/or hydroxyl number of between 15 and 4000 mg KOH/g and a functionality of 1 to 8.
  • the compounds of component A1 preferably have a number-average molecular weight of 2000 g/mol to 15000 g/mol, in particular 3000 g/mol to 12000 g/mol and particularly preferably 3500 g/mol to 6500 g/mol. If more than one compound of component A1 is used, the mixture of compounds of component A1 can preferably have a hydroxyl number of between 20 and 200 mg KOH/g, in particular 25 to 100 mg KOH/g.
  • “Functionality” in the context of the present invention denotes the theoretical average functionality (number of functions in the molecule that are reactive toward isocyanates or toward polyols) calculated from the known starting materials and their quantitative ratios.
  • the number-average molar mass M n (also: molecular weight) is determined by gel permeation chromatography in accordance with DIN 55672-1 (March 2007).
  • Polyetherester polyols which can be used are those compounds which contain ether groups, ester groups and OH groups.
  • Organic dicarboxylic acids having up to 12 carbon atoms are preferably used to prepare the polyetherester polyols, preferably aliphatic dicarboxylic acids having 4 to 6 carbon atoms or aromatic dicarboxylic acids, which are used individually or as a mixture. Examples include suberic acid, azelaic acid, decanedioic acid, malonic acid, phthalic acid, pimelic acid and sebacic acid and, in particular, glutaric acid, fumaric acid, succinic acid, adipic acid, phthalic acid, terephthalic acid and isoterephthalic acid called.
  • organic dicarboxylic acids In addition to organic dicarboxylic acids, it is also possible to use derivatives of these acids, for example their anhydrides and their esters and half-esters with low molecular weight, monofunctional alcohols having 1 to 4 carbon atoms.
  • the proportionate use of the above bio-based starting materials, in particular fatty acids or fatty acid derivatives (oleic acid, soybean oil etc.) is also possible and can have advantages, for example with regard to storage stability of the polyol formulation, dimensional stability, fire behavior and compressive strength of the foams.
  • Polyether polyols obtained by alkoxylating starter molecules such as polyhydric alcohols are used as a further component for the production of the polyetherester polyols.
  • the starter molecules are at least difunctional, but may also contain proportions of higher-functional, in particular trifunctional, starter molecules.
  • Starter molecules are, for example, ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentenediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,10-decanediol, 2-methylpropane-1,3-diol, neopentyl glycol, 2,2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-1, 3-propanediol, 2-butene-1,4-diol and 2-butyne-1,4-diol, diethylene glycol, dipropylene glycol, glycerol, trimethylolpropane, di- and trifunctional polyether polyols.
  • the polyether polyols preferably have an OH functionality of 2 to 4 and a molecular weight M n in the range from 62 to 4500 g/mol and in particular a molecular weight M n in the range from 62 to 3000 g/mol. Starter molecules with functionalities other than OH can also be used alone or in a mixture.
  • Polyetheresterpolyols can also be produced by the alkoxylation, in particular by ethoxylation and/or propoxylation, of reaction products obtained by reacting organic dicarboxylic acids and their derivatives and components with Zerewitinoff-active hydrogens, in particular diols and polyols.
  • organic dicarboxylic acids and their derivatives and components with Zerewitinoff-active hydrogens, in particular diols and polyols.
  • Zerewitinoff-active hydrogens in particular diols and polyols.
  • derivatives of these acids that can be used are their anhydrides.
  • the polyester polyols of component Al can, for example, polycondensates of polyhydric alcohols, preferably diols, atoms having 2 to 12 carbon atoms, preferably having 2 to 6 carbon atoms, and polycarboxylic acids, such as. B. di-, tri- or even tetracarboxylic acids or hydroxycarboxylic acids or lactones, aromatic dicarboxylic acids or mixtures of aromatic and aliphatic dicarboxylic acids are preferably used.
  • the corresponding polycarboxylic acid anhydrides or corresponding polycarboxylic acid esters of lower alcohols can also be used to prepare the polyester.
  • carboxylic acids are: succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedioic acid, tetrahydrophthalic acid, Hexahydrophthalic acid, cyclohexanedicarboxylic acid, tetrachlorophthalic acid, itaconic acid, malonic acid, 2-methylsuccinic acid, 3,3-diethylglutaric acid, 2,2-dimethylsuccinic acid, dodecanedioic acid, endomethylenetetrahydrophthalic acid, dimer fatty acid, trimer fatty acid, citric acid, trimellitic acid, benzoic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid and terephthalic acid.
  • carboxylic acids such as dimethyl terephthalate
  • the carboxylic acids can be used either individually or as a mixture.
  • the carboxylic acids used are preferably adipic acid, sebacic acid and/or succinic acid, particularly preferably adipic acid and/or succinic acid.
  • hydroxycarboxylic acids which can be used as reactants in the preparation of a hydroxyl-terminated polyester polyol are lactic acid, malic acid, hydroxycaproic acid, hydroxybutyric acid, hydroxydecanoic acid, hydroxystearic acid and the like.
  • Suitable lactones include caprolactone, butyrolactone and homologues.
  • bio-based starting materials and/or their derivatives can also be used for the production of polyester polyols, e.g. B. Castor oil, polyhydroxy fatty acids, ricinoleic acid, hydroxyl-modified oils, grape seed oil, black cumin oil, pumpkin seed oil, borage seed oil, soybean oil, wheat seed oil, rapeseed oil, sunflower seed oil, peanut oil, apricot kernel oil, pistachio oil, almond oil, olive oil, macadamia nut oil, avocado oil, sea buckthorn oil, sesame oil, hemp oil, Hazelnut oil, primrose oil, wild rose oil, safflower oil, walnut oil, fatty acids, hydroxyl-modified and epoxidized fatty acids and fatty acid esters, for example based on myristoleic acid, palmitoleic acid, oleic acid, vaccenic acid, petroselinic acid, gadoleic acid, erucic acid, nervonic acid, lino
  • Esters of ricinoleic acid with polyhydric alcohols are particularly preferred.
  • diols examples include ethylene glycol, butylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycols such as polyethylene glycol, also 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol and isomers, neopentyl glycol or
  • Hydroxypivalic Acid Neopentyl Glycol Ester. Ethylene glycol, diethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol or mixtures of at least two of the diols mentioned, in particular mixtures of 1,4-butanediol, 1,5-pentanediol and 1, 6-hexanediol.
  • polyols such as trimethylolpropane, glycerol, erythritol, pentaerythritol, trimethylolbenzene or trishydroxyethyl isocyanurate can also be used, glycerol and trimethylolpropane being preferred.
  • monohydric alkanols can also be used.
  • Polyether polyols used according to the invention are obtained by production methods known to those skilled in the art, such as, for example, by anionic polymerization of one or more alkylene oxides having 2 to 4 carbon atoms with alkali metal hydroxides, such as sodium or potassium hydroxide, alkali metal alkoxides, such as sodium methylate, sodium or potassium ethylate or potassium isopropylate, or amine alkoxylation -Catalysts, such as dimethylethanolamine (DMEOA), imidazole and/or imidazole derivatives, using at least one starter molecule which contains 2 to 8, preferably 2 to 6, bonded reactive hydrogen atoms.
  • alkali metal hydroxides such as sodium or potassium hydroxide
  • alkali metal alkoxides such as sodium methylate, sodium or potassium ethylate or potassium isopropylate
  • amine alkoxylation -Catalysts such as dimethylethanolamine (DMEOA), imidazole and/or
  • alkylene oxides examples include tetrahydrofuran, 1,3-propylene oxide, 1,2- or 2,3-butylene oxide, styrene oxide and preferably ethylene oxide and 1,2-propylene oxide.
  • the alkylene oxides can be used individually, alternately one after the other, or as mixtures.
  • Preferred alkylene oxides are propylene oxide and ethylene oxide, and particular preference is given to copolymers of propylene oxide with ethylene oxide.
  • the alkylene oxides can be reacted in combination with CO 2 .
  • starter molecules are: water, organic dicarboxylic acids such as succinic acid, adipic acid, phthalic acid and terephthalic acid, aliphatic and aromatic, optionally N-mono-, N,N- and N,N'-dialkyl-substituted diamines having 1 to 4 carbon atoms in the alkyl radical , such as optionally mono- and dialkyl-substituted ethylenediamine, diethylenetriamine, triethylenetetramine, 1,3-propylenediamine, 1,3- or 1,4-butylenediamine, 1,2-, 1,3-, 1,4-, 1,5- and 1,6-hexamethylenediamine, phenylenediamines, 2,3-, 2,4- and 2,6-tolylenediamine and 2,2'-, 2,4'- and 4,4'-diaminodiphenylmethane.
  • organic dicarboxylic acids such as succinic acid, adipic acid, phthalic acid
  • dihydric or polyhydric alcohols such as ethanediol, 1,2- and 1,3-propanediol, diethylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol, paraformaldehyde, triethanolamine, bisphenols, glycerol, trimethylolpropane, pentaerythritol, sorbitol and sucrose.
  • Polycarbonate polyols which can be used are polycarbonates containing hydroxyl groups, for example polycarbonate diols. These arise in the reaction of carbonic acid derivatives, such as diphenyl carbonate, dimethyl carbonate or phosgene, with polyols, preferably diols.
  • diols examples include ethylene glycol, 1,2- and 1,3-propanediol, 1,3- and 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, neopentyl glycol, 1,4-bishydroxymethylcyclohexane, 2- Methyl-1,3-propanediol, 2,2,4-trimethylpentanediol-1,3, dipropylene glycol, polypropylene glycols, dibutylene glycol, polybutylene glycols, bisphenols and lactone-modified diols of the type mentioned above.
  • polyether-polycarbonate diols which are obtainable, for example, by copolymerization of alkylene oxides, such as propylene oxide, with CO 2 .
  • Polymer polyols, PHD polyols and PIPA polyols can also be used in component A1 as isocyanate-reactive components.
  • Polymer polyols are polyols containing proportions of solid polymers produced by free radical polymerization of suitable monomers such as styrene or acrylonitrile in a base polyol.
  • PHD (polyhydrazodicarbonamide) polyols are produced, for example, by in situ polymerization of an isocyanate or an isocyanate mixture with a diamine and/or hydrazine (or hydrazine hydrate) in a polyol, preferably a polyether polyol.
  • the PHD dispersion is preferably prepared by reacting an isocyanate mixture of 75 to 85% by weight of 2,4-tolylene diisocyanate (2,4-TDI) and 15 to 25% by weight of 2,6-tolylene diisocyanate (2,6 -TDI) with a diamine and/or hydrazine hydrate in a polyether polyol prepared by alkoxylating a trifunctional starter (such as glycerol and/or trimethylolpropane).
  • a trifunctional starter such as glycerol and/or trimethylolpropane
  • PIPA polyols are polyether polyols modified by polyisocyanate polyaddition with alkanolamines, the polyether polyol preferably having a functionality of 2.5 to 4.0 and a hydroxyl number of 3 mg KOH/g to 112 mg KOH/g (molecular weight 500 g/mol to 18000 g/mol).
  • isocyanate-reactive components with a toe-opening effect, such as, for example, copolymers of ethylene oxide and propylene oxide with an excess of ethylene oxide or aromatic diamines such as diethyltoluenediamine.
  • component A1 can contain, for example, graft polyols, polyamines, polyamino alcohols and polythiols.
  • the isocyanate-reactive components described also include those compounds with mixed functionalities
  • polyethers which have at least two hydroxyl groups and an OH number of 20 to 50 mg KOH/g, the OH groups consisting of at least 80 mol % of primary OH groups (determined by means of 1 H-NMR (e.g. Bruker DPX 400, deuterochloroform)).
  • the OH number is particularly preferably from 25 to 40 mg KOH/g, very particularly preferably from 25 to 35 mg KOH/g.
  • compounds having at least two isocyanate-reactive hydrogen atoms and an OH number of 280 to 4000 mg KOH/g, preferably 400 to 3000 mg KOH/g, particularly preferably 1000 to 2000 mg KOH/g are additionally used in component A1.
  • These are to be understood as meaning compounds containing hydroxyl groups and/or amino groups and/or thiol groups and/or carboxyl groups, preferably Compounds containing hydroxyl groups and/or amino groups, which serve as chain extenders or crosslinking agents.
  • These compounds generally have 2 to 8, preferably 2 to 4, isocyanate-reactive hydrogen atoms.
  • ethanolamine, diethanolamine, triethanolamine, sorbitol and/or glycerol can be used.
  • Component A1 can consist of one or more of the abovementioned isocyanate-reactive components; component A1 preferably contains polyethers containing at least two hydroxyl groups, optionally mixed with polyesters containing at least two hydroxyl groups.
  • component A1 contains:
  • A11l Compounds containing isocyanates-reactive hydrogen atoms with an NH number according to DIN 53176 in the version of November 2002 and/or OH number according to DIN 53240-1 in the version of June 2013 from 15 to ⁇ 120 mg KOH/g, optionally
  • Water or carboxylic acids and mixtures thereof, for example, are used as the chemical blowing agent A2.1. These react with isocyanate groups to form the propellant gas, for example in the case of water, carbon dioxide is formed and in the case of z. B. formic acid produces carbon dioxide and carbon monoxide. At least one compound selected from the group consisting of formic acid, N,N-dialkylcarbamic acid, oxalic acid, malonic acid and ricinoleic acid is preferably used as the carboxylic acid. The ammonium salts of these acids are also suitable. Water is particularly preferably used as the chemical blowing agent. For example, low-boiling organic compounds such as e.g. B.
  • hydrocarbons ethers, ketones, carboxylic acid esters, carbonic acid esters, halogenated hydrocarbons.
  • organic compounds which are inert to the isocyanate component B and have boiling points below 100° C., preferably below 50° C., at atmospheric pressure. These boiling points have the advantage that the organic compounds evaporate under the influence of the exothermic polyaddition reaction.
  • Examples of such preferably used organic compounds are alkanes such as heptane, hexane, n- and isopentane, preferably technical mixtures of n- and isopentanes, n- and isobutane and propane, cycloalkanes such as cyclopentane and/or cyclohexane , Ethers such as furan, dimethyl ether and diethyl ether, ketones such as acetone and methyl ethyl ketone, carboxylic acid alkyl esters such as methyl formate, dimethyl oxalate and ethyl acetate and halogenated hydrocarbons such as methylene chloride, dichloromonofluoromethane, difluoromethane, trifluoromethane, difluoroethane, tetrafluoroethane, chlorodifluoroethane, 1,1-dichloro- 2,2,2-trifluoroethane, 2,
  • (hydro)fluorinated olefins such as HFO 1233zd(E) (trans-1-chloro-3,3,3-trifluoro-1-propene) or HFO 1336mzz(Z) (cis-1,1 ,1,4,4,4-hexafluoro-2-butene) or additives such as FA 188 from 3M (1,1,1,2,3,4,5,5,5-nonafluoro-4-(trifluoromethyl)pent- 2-en).
  • HFO 1233zd(E) trans-1-chloro-3,3,3-trifluoro-1-propene
  • HFO 1336mzz(Z) cis-1,1 ,1,4,4,4-hexafluoro-2-butene
  • additives such as FA 188 from 3M (1,1,1,2,3,4,5,5,5-nonafluoro-4-(trifluoromethyl)pent- 2-en).
  • Mixtures of two or more of the organic compounds mentioned can also be used.
  • the component contains A2
  • component A2 20 to 15% by weight (based on the total mass of component A) physical blowing agents. Particular preference is given to using water as component A2.
  • Auxiliaries and additives are used as component A3, such as a) catalysts (activators), b) surface-active additives (surfactants), such as emulsifiers and foam stabilizers, in particular those with low emissions such as products from the Tegostab ® LF series, c) additives such as reaction retardants ( For example, acidic substances such as hydrochloric acid or organic acid halides), cell regulators (such as paraffins or fatty alcohols or dimethylpolysiloxanes), pigments, dyes, flame retardants (such as tricresyl phosphate), stabilizers against aging and weathering, plasticizers, fungistatic and bacteriostatic substances, fillers (such as barium sulphate, diatomaceous earth, soot or whiting) and release agents.
  • reaction retardants For example, acidic substances such as hydrochloric acid or organic acid halides), cell regulators (such as paraffins or fatty alcohols or dimethylpolysiloxanes),
  • Preferred catalysts are aliphatic tertiary amines (e.g. trimethylamine, tetramethylbutanediamine), cycloaliphatic tertiary amines (e.g. 1,4-diaza(2,2,2)bicyclooctane), aliphatic amino ethers (e.g. dimethylaminoethyl ether and N,N,N-trimethyl-N- hydroxyethyl bisaminoethyl ether), cycloaliphatic amino ethers
  • N-ethylmorpholine aliphatic amidines, cycloaliphatic amidines, urea, derivatives of urea (such as aminoalkylureas), in particular (3-dimethylaminopropylamine)urea) and tin catalysts (such as dibutyltin oxide, dibutyltin dilaurate, tin octoate).
  • Particularly preferred catalysts are (i) urea, derivatives of urea and/or (ii) the abovementioned amines and amino ethers, characterized in that the amines and amino ethers contain a functional group which reacts chemically with the isocyanate.
  • the functional group is a hydroxyl group, a primary or secondary amino group.
  • P is a polyether polyol with an OH functionality of 2 to 8 and a number average molecular weight of 200 to 4000 g/mol, measured according to DIN 55672-1 of August 2007,
  • R 1 , R 2 each independently represent a substituted or unsubstituted C 1 - to C 8 - alkyl group or a substituted or unsubstituted aryl group
  • n represents the number of OH groups of P represented by the group -OC(O)- CH 2 -C(X)-R 1 are replaced and at least 1 is used to reduce the proportion of aromatic (di)amines, preferably toluenediamine (TDA) and/or methylenedianiline (MDA).
  • TDA toluenediamine
  • MDA methylenedianiline
  • the compound of formula (I) can, for example, by reacting a polyether polyol P with a ß-keto carboxylic acid ester and optionally subsequent reaction with a primary amine R 2 -NH 2 are prepared.
  • the polyether polyol P can be obtained as described in component A1.
  • the polyether polyol P has an OH functionality of 2 to 8, preferably 2 to 4 and particularly preferably 2 to 3.
  • the molecular weight of the polyether polyol P is 200 to 4000 g/mol, preferably 200 to 2000 g/mol and particularly preferably 200 to 800 g/mol.
  • the polyether polyol P has an equivalent weight of 50 to 500 g/mol, particularly preferably an equivalent weight of 50 to 500 g/mol and an OH functionality of 2 to 6.
  • the equivalent weight is based on the number-average molecular weight of the Polyetherpolyol P determined.
  • Acetoacetate esters, 3-oxopentanoic esters, 3-oxohexanoic esters, 4-methyl-3-oxopentanoic esters, benzylacetoacetate esters, 3-oxo-5-phenylpentanoic esters can be used as ⁇ -ketocarboxylic acid esters.
  • the .beta.-ketocarboxylic acid ester is preferably an acetoacetate ester, particularly preferably a C.sub.1 -C.sub.6 -alkyl ester of acetoacetic acid.
  • R 1 is preferably a substituted or unsubstituted C 1 - to C 8 - alkyl group, preferably a CI to C6 alkyl group, in particular a methyl, ethyl, propyl, or isopropyl group.
  • the primary amine R 2 -NH 2 has a substituted or unsubstituted C 1 to C 8 alkyl group or a substituted or unsubstituted aryl group.
  • R 2 is preferably an unsubstituted or substituted C 1 - to C 8 -alkyl group, particularly preferably a C 1 - to C 8 -alkyl group which has a tertiary amine as a substituent.
  • n OH groups of the polyether polyol P are replaced by the group -OC(O)-CH 2 -C(X)-R 1 , where n is at least 1.
  • the compound of the formula (I) is preferably a polyether polyol P in which only one free OH group is present or all OH groups are replaced by the group -OC(O)-CH 2 -C(X)- R1 have been replaced.
  • P is a polyether polyol having an OH functionality of 2 to 6 and an equivalent weight of 50 to 500 g/mol
  • R 1 , R 2 each independently represent a substituted or unsubstituted C 1 - to C 4 - alkyl group, and only one or two free OH groups are present.
  • Component A4 is preferably used in a proportion of 0.20 to 10% by weight, particularly preferably 0.3 to 5% by weight, based in each case on the total mass of component A.
  • Component B is preferably used in a proportion of 0.20 to 10% by weight, particularly preferably 0.3 to 5% by weight, based in each case on the total mass of component A.
  • Aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates are used as component B, for example those of the formula (II)
  • n is an integer between 2-4, preferably 2 or 3
  • Q is an aliphatic hydrocarbon radical having 2-18, preferably 6-10 carbon atoms, a cycloaliphatic hydrocarbon radical having 4-15, preferably 6-13 carbon atoms or an araliphatic hydrocarbon radical having 8-15, preferably 8-13 carbon atoms .
  • component B contains toluylene diisocyanate (“TDI”), diphenylmethane diisocyanate, polyphenylpolymethylene polyisocyanate or a mixture of the compounds mentioned.
  • TDI toluylene diisocyanate
  • other polyisocyanates can be used, such as polyphenylpolymethylene polyisocyanates, such as those produced by aniline-formaldehyde condensation and subsequent phosgenation (“crude MDI”) and polyisocyanates containing carbodiimide groups, urethane groups, allophanate groups, isocyanurate groups, urea groups or biuret groups (“modified polyisocyanates”).
  • modified polyisocyanates which are derived from 2,4- and/or 2,6-tolylene diisocyanate or from 4,4'- and/or 2,4'-diphenylmethane diisocyanate.
  • component B at least one compound is preferably selected from the group consisting of 2,4- and 2,6-
  • Toluylene diisocyanate 4,4'- and 2,4'- and 2,2'-diphenylmethane diisocyanate and polyphenylpolymethylene polyisocyanate ("multi-nuclear MDI") are used.
  • the polyurethane foams obtained according to the invention are preferably flexible polyurethane foams or semirigid polyurethane foams.
  • the reaction components are treated according to the known method
  • One-step process, the prepolymer process or the semi-prepolymer process are implemented, often using mechanical equipment.
  • the polyurethane foams can be produced as molded foams or also as block foams, it being possible for the molded foams to be produced in a hot-curing or cold-curing manner.
  • the invention therefore relates to a process for the production of polyurethane foams, the polyurethane foams produced by this process and their use for the production of molded parts or block goods, and the molded parts or block goods themselves.
  • the polyurethane foams obtainable according to the invention are used, for example, in the following areas: furniture upholstery, textile inserts, mattresses, automobile seats, headrests, armrests, sponges and components, as well as seat and instrument paneling, and have indexes of 100 or less, preferably 50 to 90, particularly preferably 65 to 85.
  • the isocyanate index (also known as index or isocyanate index) is the quotient of the amount of substance [mol] of isocyanate groups actually used and the amount of substance [mol] of isocyanate-reactive groups actually used, multiplied by 100:
  • the NCO value (also: NCO content, isocyanate content) is determined using EN ISO 11909:2007. Unless otherwise stated, these are the values at 25°C.
  • the invention relates to a process for the production of polyurethane foams, the components
  • auxiliaries and additives such as a) catalysts, b) surface-active additives, c) pigments and/or flame retardants,
  • P is a polyether polyol with an OH functionality of 2 to 8 and a number average molecular weight of 200 to 4000 g/mol, measured according to DIN 55672-1 of August 2007,
  • R 1 , R 2 each independently represent a substituted or unsubstituted C 1 - to C 8 - alkyl group or a substituted or unsubstituted aryl group
  • n represents the number of OH groups of P which is represented by the group -OC(O)- CH 2 -C(X)- R 1 are replaced and is at least 1, with
  • Polyphenyl polymethylene polyisocyanate or a mixture of said compounds are reacted with one another at an isocyanate index of 100 or less.
  • the raw density and molded part density was determined in accordance with DIN EN ISO 845 in the October 2009 version.
  • the test specimens had a volume of 80x80x40 mm 3 .
  • the hydroxyl number was determined in accordance with DIN 53240-1 in the June 2013 version.
  • the content of aromatic amines in the foam was determined for the examples in Table 1 by extraction with 0.1% acetic acid according to Skarping (A. Marand, D. Karlsson, M. Dalene, G. Skarping, Analytica Chimica Acta, 2004. 510, 109-119 J R Johnson, D Karlsson, M Dalene, G Skarping, Analytica Chimica Acta, 2010. 678(1), 117-123), but different from the cited literature without subsequent derivatization. After demolding, the TDA and MDA content of the samples was determined for the first time after 4 hours.
  • Examples 3 and 4 The samples were then stored openly for a total of 48 hours (Examples 3 and 4) or 72 hours (Examples 1, 2 and 6 to 9) before the second analysis was carried out (Table 1: "after storage”).
  • the specification NN ⁇ 0.06 means that the measured value is below the detection limit and the specification ⁇ 0.2 means that the measured value is below the limit of quantification.
  • VOC and FOG values for the examples in Table 2 were measured in accordance with the Technical Rule VDA 278 of the Association of the Automotive Industry "Thermal desorption analysis of organic emissions for the characterization of non-metallic automotive materials” in the October 2011 version.
  • Al.1-1 Polyether polyol having an OH number of 28 mg KOH/g, prepared by alkoxylating glycerol with a mixture of ethylene oxide and propylene oxide in a proportion of 87/13
  • Al.1-2 polyol containing filler with 21.6% polyurea dispersion (PHD) as filler and 78.4% of a polyether polyol based on glycerol, ethylene oxide and propylene oxide with a number-average molecular weight of 4007 g/mol and an OH number of 28 mg KOH/g
  • PLD polyurea dispersion
  • Al.1-3 Polyether polyol based on glycerol, ethylene oxide and propylene oxide with a very high proportion of ethylene oxide groups and an OH number of 37 mg KOH/g
  • Al.1-4 Polyether polyol with an OH number of 31 mg KOH/g
  • Al.1-5 Dispersion of styrene-acrylonitrile copolymer (42% by weight) in a glycerol-started polypropylene oxide-polyethylene oxide block copolymer (OH number 20 mg KOH/g)
  • Al.2-1 polyether polyol mixture, catalytically active, OH number 127 mg KOH/g
  • Al.2-2 polyether polyol mixture with a functionality of 1.8 and an OH number of 410 mg KOH/g
  • A3-1 Silicone stabilizer (Niax® L-3222, commercial product from Momentive Performance
  • A3-2 tertiary amine catalyst (Polycat® 58, commercial product from Evonik)
  • A3-3 amine catalyst (Dabco® NE 1091, commercial product from Evonik)
  • A3-4 Silicone stabilizer (Tegostab® B 8736 LF2, commercial product from Evonik)
  • A3-5 33% by weight of triethylenediamine in dipropylene glycol (Dabco 33 LV, commercial product from
  • A3-8 Bis[2-dimethylamino)ethyl]ether (70 wt%) in dipropylene glycol (30 wt%), Niax®
  • A4-1 Additive based on a polyether polyol with a number average molecular weight of
  • B-2 Isocyanate mixture of 80% by weight 2,4-TDI and 20% by weight 2,6-TDI
  • the isocyanate is weighed into a suitable beaker and emptied again (flow time: 3 s). This beaker, which is still wet on the inside walls, is tared and refilled with the specified amount of isocyanate. The isocyanate becomes the other Components added (flow time: 3 s). The resulting mixture of isocyanate and the other components is mixed intensively for 5 seconds using an agitator (from Pendraulik). To form a molded foam (Tables 1 and 2), the reaction mixture is poured into an aluminum box mold with a volume of 10 dm 3 at 40° C., with a release agent being applied. The mold is closed and locked. After 10 minutes, the latch is opened and released.
  • Table 1 show the effect of the process according to the invention with the additives A4-1 and A4-2 on the proportion of aromatic (di-)amine in the polyurethane foam determined using the Skarping method. Irrespective of the index, the process according to the invention leads to polyurethane foams with lower proportions of aromatic (di-)amine before and after storage of the polyurethane foams.
  • Example 9 Due to the catalytically active imine group in additive A4-2, the amount of catalyst in Example 9 had to be adjusted compared to Comparative Example 8, so that a polyurethane foam with the same molding density is obtained.
  • Table 2 shows the effect of the process according to the invention on formulations based on isocyanate B-2 in accordance with VDA 278.
  • a polyurethane foam without an additive A4 (Example 10) has a total TDA emission of 210 ppm.
  • the use of various amounts of additive A4 in polyurethane foams leads to emissions of TDA of only 22 to 119 ppm (Examples 11 to 13).
  • Table 3 shows the reduction of aromatic (di)amine in the production of viscoelastic polyurethane foams.
  • component A4-1 the use of component A4-1 according to the invention leads to a significant reduction in aromatic (di-)amines in the foam compared to reference example 14.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyurethanschaumstoffen durch die Umsetzung von Komponente A enthaltend A1 eine Isocyanat-reaktive Komponente, A2 Treibmittel, enthaltend Wasser, A3 ggf. Hilfs- und Zusatzstoff. A4 eine Verbindung mit der Formel P[-O-C(O)-CH2-C(X)-R1]n (I) wobei P für ein Polyetherpolyol mit einer OH-Funktionalität von 2 bis 8 und einem zahlenmittleren Molekulargewicht von 200 bis 4000 g/mol, gemessen nach DIN 55672-1 von August 2007, steht, X für =O oder =N-R2 steht, R1, R2 unabhängig voneinander jeweils für eine substituierte oder unsubstituierte C1- bis C8-Alkylgruppe oder eine substituierte oder unsubstituierte Arylgruppe stehen, n für die Anzahl der OH-Gruppen von P stehen die durch die Gruppe -O-C(O)-CH2-C(X)-R1 ersetzt sind und mindestens 1 ist, mit Komponente B eine Isocyanatkomponente, enthaltend Toluylendiisocyanat, Diphenylmethandiisocyanat, Polyphenylpolymethylenpolyisocyanat oder Gemische der genannten Verbindungen, bei einer Isocyanat-Kennzahl von 100 oder weniger. Weiterer Gegenstand der Erfindung sind Polyurethan-Schaumstoffe nach dem Verfahren, die Verwendung der Polyurethan-Schaumstoffe und die Verwendung der Komponente A4.

Description

VERFAHREN ZUR REDUKTION VON AROMATISCHEN (DI-)AMINEN IN POLYURETHANSCHAUMSTOFFEN
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyurethanschaumstoffen unter Verwendung vvoonn emissionsreduzierenden Verbindungen, die erhaltenen Polyurethanschaumstoffe selber und die Verwendung der emissionsvermindernden Verbindungen.
Bei der Herstellung von Polyurethanschaumstoffen entstehen Verbindungen als Nebenprodukte die aus den Polyurethanschaumstoffen emittieren können. Beispiele hierfür sind die Bildung von aromatischen (Di-)Aminen wie z.B. Toluylendiamin (TDA) und Methylendianilin (MDA), die bei Isocyanat-Kennzahlen von unter 100 und bei Verwendung von größeren Mengen an Wasser auftreten. Auf Grund der gesundheitsbedenklichen Eigenschaften dieser Verbindungen ist es notwendig die Bildung oder Emission von Spuren dieser Verbindungen zu reduzieren.
Additive zur Reduktion von aromatischen Aminen sind aus dem Stand der Technik bekannt. So werden in DE 199 19 826 Al zur Reduktion von aromatischen Aminen bei der Herstellung von Polyurethanschaumstoffen α,ß-ungesättigte Carbonsäuren, α,ß-ungesättigte Carbonsäurederivate, α,ß-ungesättigte Ketone und/oder α,ß-ungesättigte Aldehyde offenbart, wie beispielsweise Hydroxyethylacrylat. Eine weitere Gruppe zur Reduktion von aromatischen Aminen sind beispielsweise Lactame wie in DE 199 28 687 Al und in WO 2020/084003 Al offenbart. In keiner dieser Offenbarungsschriften wird jedoch eine Verbindung gemäß Anspruch 1 eingesetzt.
Die Aufgabenstellung der vorliegenden Erfindung ist die Bereitstellung eines Verfahrens zur Herstellung von Polyurethanschaumstoffen mit einem reduzierten Anteil an aromatischen Aminen, in einer bevorzugten Ausführungsform ein reduzierter Anteil der Gesamtemissionen, durch Reduktion der Emission des Additivs.
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Polyurethanschaumstoffen durch die Umsetzung von Komponente A enthaltend
A1 eine Isocyanat-reaktive Komponente,
A2 Treibmittel, enthaltend Wasser,
A3 ggf. Hilfs- und Zusatzstoff.
A4 eine Verbindung mit der Formel
P[-O-C(O)-CH2-C(X)-R1]n (I) wobei
P für ein Polyetherpolyol mit einer OH-Funktionalität von 2 bis 8 und einem zahlenmittleren Molekulargewicht von 200 bis 4000 g/mol, gemessen nach DIN 55672-1 von August 2007, steht,
X für =0 oder =N-R2 steht, R1, R2 unabhängig voneinander jeweils für eine substituierte oder unsubstituierte C1- bis C8- Alkylgruppe oder eine substituierte oder unsubstituierte Arylgruppe stehen, n für die Anzahl der OH-Gruppen von P steht die durch die Gruppe -O-C(O) -CH2-C ( X) - R 1 ersetzt sind und mindestens 1 ist, mit
B eine Isocyanatkomponente, enthaltend Toluylendiisocyanat, Diphenylmethandiisocyanat, Polyphenylpolymethylenpolyisocyanat oder ein Gemisch der genannten Verbindungen, bei einer Isocyanat-Kennzahl von 100 oder weniger, bevorzugt 90 oder weniger.
Gegenstand der vorliegenden Erfindung sind auch die nach dem beschriebenen Verfahren erhältlichen Polyurethanschaumstoffe und die Verwendung der Verbindung gemäß Formel (I) zur Reduktion des Anteils an aromatischen Aminen.
Komponente A1
Als Isocyanat-reaktive Komponenten können beispielsweise Polyole ausgewählt aus der Gruppe bestehend aus Polyetherpolyolen, Polyesterpolyolen, Polyetheresterpolyolen, Polycarbonatpolyolen und Polyether-Polycarbonatpolyolen eingesetzt werden. Bevorzugt sind Polyesterpolyole und/oder Polyetherpolyole. Die Verbindungen der Komponente Al können eine Amin- und/oder Hydroxylzahl zwischen 15 bis 4000 mg KOH/g und eine Funktionalität von 1 bis 8 aufweisen. Vorzugsweise weisen die Verbindungen der Komponente Al ein zahlenmittleres Molekulargewicht von 2000 g/mol bis 15000 g/mol, insbesondere 3000 g/mol bis 12000 g/mol und besonders bevorzugt 3500 g/mol bis 6500 g/mol auf. Werden mehr als nur eine Verbindung der Komponente Al verwendet, kann die Mischung aus Verbindungen der Komponente Al bevorzugt eine Hydroxylzahl zwischen 20 bis 200 mg KOH/g, insbesondere 25 bis 100 mg KOH/g aufweisen.
„Funktionalität“ bezeichnet im Rahmen der vorliegenden Erfindung die theoretische, aus den bekannten Einsatzstoffen und deren Mengenverhältnissen berechnete mittlere Funktionalität (Anzahl an gegenüber Isocyanaten bzw. gegenüber Polyolen reaktiven Funktionen im Molekül).
Die zahlenmittlere Molmasse Mn (auch: Molekulargewicht) wird im Rahmen dieser Erfindung durch Gelpermeationschromatographie nach DIN 55672-1 (August 2007) bestimmt.
Verwendbare Polyetheresterpolyole sind solche Verbindungen, die Ethergruppen, Estergruppen und OH-Gruppen enthalten. Vorzugsweise werden organische Dicarbonsäuren mit bis zu 12 Kohlenstoffatomen zur Herstellung der Polyetheresterpolyole eingesetzt, bevorzugt aliphatische Dicarbonsäuren mit 4 bis 6 Kohlenstoffatomen oder aromatische Dicarbonsäuren, die einzeln oder im Gemisch verwendet werden. Beispielhaft seien Korksäure, Azelainsäure, Decandicarbonsäure, Malonsäure, Phthalsäure, Pimelinsäure und Sebacinsäure sowie insbesondere Glutarsäure, Fumarsäure, Bernsteinsäure, Adipinsäure, Phthalsäure, Terephthalsäure und Isoterephthalsäure genannt. Neben organischen Dicarbonsäuren können auch Derivate dieser Säuren, beispielsweise deren Anhydride sowie deren Ester und Halbester mit niedermolekularen, monofunktionellen Alkoholen mit 1 bis 4 Kohlenstoffatomen eingesetzt werden. Der anteilige Einsatz der oben genannten biobasierten Ausgangsstoffe, insbesondere von Fettsäuren bzw. Fettsäurederivaten (Ölsäure, Sojaöl etc.) ist ebenfalls möglich und kann Vorteile aufweisen, z.B. im Hinblick auf Lagerstabilität der Polyolformulierung, Dimensionsstabilität, Brandverhalten und Druckfestigkeit der Schäume.
Als weitere Komponente zur Herstellung der Polyetheresterpolyole werden Polyetherpolyole eingesetzt, die man durch Alkoxylieren von Startermolekülen wie mehrwertigen Alkoholen erhält. Die Startermoleküle sind mindestens difunktionell, können aber gegebenenfalls auch Anteile höherfunktioneller, insbesondere trifunktioneller, Startermoleküle enthalten.
Startermoleküle sind zum Beispiel Ethylenglykol, Propylenglykol, 1,3-Butandiol, 1 ,4-Butandiol, 1,5-Pentendiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,7-Heptandiol, 1,8-Octandiol, 1,10-Decandiol, 2- Methylpropan-1,3-diol, Neopentylglykol, 2,2-Dimethyl-1,3-propandiol, 3-Methyl-1,5-pentandiol, 2- Butyl-2-ethyl-1,3-propandiol, 2-Buten-1,4-diol und 2-Butin-1,4-diol, Diethylenglykol, Dipropylenglykol, Glycerin, Trimethylolpropan, di- und trifunktionelle Polyetherpolyole. Die Polyetherpolyole haben bevorzugt eine OH-Funktionalität von 2 bis 4 und ein Molekulargewicht Mn im Bereich von 62 bis 4500 g/mol und insbesondere ein Molekulargewicht Mn im Bereich von 62 bis 3000 g/mol. Auch Startermoleküle mit von OH verschiedenen Funktionalitäten können alleine oder in Mischung eingesetzt werden.
Polyetheresterpolyole können auch durch die Alkoxylierung, insbesondere durch Ethoxylierung und/oder Propoxylierung, von Reaktionsprodukten, die durch die Umsetzung von organischen Dicarbonsäuren und deren Derivaten sowie Komponenten mit Zerewitinoff-aktiven Wasserstoffen, insbesondere Diolen und Polyolen, erhalten werden, hergesteht werden. Als Derivate dieser Säuren können beispielsweise deren Anhydride eingesetzt werden.
Die Polyesterpolyole der Komponente Al können beispielsweise Polykondensate aus mehrwertigen Alkoholen, vorzugsweise Diolen, mit 2 bis 12 Kohlenstoff atomen, vorzugsweise mit 2 bis 6 Kohlenstoffatomen, und Polycarbonsäuren, wie z. B. Di-, Tri- oder sogar Tetracarbonsäuren oder Hydroxycarbonsäuren oder Lactonen sein, bevorzugt werden aromatische Dicarbonsäuren oder Gemische aus aromatischen und aliphatischen Dicarbonsäuren verwendet. Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhydride oder entsprechende Polycarbonsäureester von niederen Alkoholen zur Herstellung der Polyester verwendet werden.
Als Carbonsäuren kommen insbesondere in Betracht: Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure, Sebazinsäure, Decandicarbonsäure, Tetrahydrophthalsäure, Hexahydrophthalsäure, Cyclohexandicarbonsäure, Tetrachlorphthalsäure, Itaconsäure, Malonsäure, 2-Methylbernsteinsäure, 3,3-Diethylglutarsäure, 2,2-Dimethylbernsteinsäure, Dodekandisäure, Endomethylentetrahydrophthalsäure, Dimerfettsäure, Trimerfettsäure, Zitronensäure, Trimellithsäure, Benzoesäure, Maleinsäure, Fumarsäure, Phthalsäure, Isophthalsäure und Terephthalsäure. Verwendet werden können ebenso Derivate dieser Carbonsäuren, wie beispielsweise Dimethylterephthalat. Die Carbonsäuren können dabei sowohl einzeln als auch im Gemisch verwendet werden. Als Carbonsäuren werden bevorzugt Adipinsäure, Sebacinsäure und/oder Bernsteinsäure, besonders bevorzugt Adipinsäure und/oder Bernsteinsäure, verwendet.
Hydroxycarbonsäuren, die als Reaktionsteilnehmer bei der Herstellung eines Polyesterpolyols mit endständigen Hydroxylgruppen mitverwendet werden können, sind beispielsweise Milchsäure, Äpfelsäure, Hydroxycapronsäure, Hydroxybuttersäure, Hydroxydecansäure, Hydroxystearinsäure und dergleichen. Geeignete Lactone sind unter anderem Caprolacton, Butyrolacton und Homologe.
Zur Herstellung der Polyesterpolyole kommen insbesondere auch biobasierte Ausgangsstoffe und/oder deren Derivate in Frage, wie z. B. Rizinusöl, Polyhydroxyfettsäuren, Ricinolsäure, Hydroxyl-modifizierte Öle, Weintraubenkernöl, schwarzem Kümmelöl, Kürbiskernöl, Borretschsamenöl, Sojabohnenöl, Weizensamenöl, Rapsöl, Sonnenblumenkernöl, Erdnussöl, Aprikosenkernöl, Pistazienöl, Mandelöl, Olivenöl, Macadamianussöl, Avocadoöl, Sanddornöl, Sesamöl, Hanföl, Haselnussöl, Primelöl, Wildrosenöl, Distelöl, Walnussöl, Fettsäuren, hydroxylmodifizierte und epoxidierte Fettsäuren und Fettsäureester, beispielsweise basierend auf Myristoleinsäure, Palmitoleinsäure, Ölsäure, Vaccensäure, Petroselinsäure, Gadoleinsäure, Erukasäure, Nervonsäure, Linolsäure, alpha- und gamma- Linolensäure, Stearidonsäure, Arachidonsäure, Timnodonsäure, Clupanodonsäure und Cervonsäure. Insbesondere bevorzugt sind Ester der Rizinolsäure mit mehrfunktionellen Alkoholen, z.B. Glycerin. Bevorzugt ist auch die Verwendung von Mischungen solcher biobasierten Säuren mit anderen Carbonsäuren, z.B. Phthalsäuren.
Beispiele für geeignete Diole sind Ethylenglykol, Butylenglykol, Diethylenglykol, Triethylenglykol, Polyalkylenglykole wie Polyethylenglykol, weiterhin 1 ,2-Propandiol, 1,3-Propandiol, 1,3-Butandiol, 1 ,4-Butandiol, 1 ,6-Hexandiol und Isomere, Neopentylglykol oder
Hydroxypivalinsäureneopentylglykolester. Vorzugsweise verwendet werden Ethylenglykol, Diethylenglykol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol oder Mischungen aus mindestens zwei der genannten Diole, insbesondere Mischungen aus 1,4-Butandiol, 1,5-Pentandiol und 1,6- Hexandiol.
Daneben können auch Polyole wie Trimethylolpropan, Glycerin, Erythrit, Pentaerythrit, Trimethylolbenzol oder Trishydroxyethylisocyanurat eingesetzt werden, wobei Glycerin und Trimethylolpropan bevorzugt sind. Es können zusätzlich auch einwertige Alkanole mit verwendet werden.
Erfindungsgemäß eingesetzte Polyetherpolyole werden nach dem Fachmann bekannten Herstellungsmethoden erhalten, wie beispielsweise durch anionische Polymerisation von einem oder mehreren Alkylenoxiden mit 2 bis 4 Kohlenstoffatomen mit Alkalihydroxiden, wie Natrium- oder Kaliumhydroxid, Alkalialkoholaten, wie Natriummethylat, Natrium- oder Kaliumethylat oder Kaliumisopropylat, oder aminischen Alkoxylierungs-Katalysatoren, wie Dimethylethanolamin (DMEOA), Imidazol und/oder Imidazolderivate, unter Verwendung mindestens eines Startermoleküls, das 2 bis 8, vorzugsweise 2 bis 6 reaktive Wasserstoffatome gebunden enthält.
Geeignete Alkylenoxide sind beispielsweise Tetrahydrofuran, 1,3 -Propylenoxid, 1,2- bzw. 2,3- Butylenoxid, Styroloxid und vorzugsweise Ethylenoxid und 1 ,2-Propylenoxid. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden. Bevorzugte Alkylenoxide sind Propylenoxid und Ethylenoxid, besonders bevorzugt sind Copolymere des Propylenoxids mit Ethylenoxid. Die Alkylenoxide können in Kombination mit CO2 umgesetzt werden.
Als Startermoleküle kommen beispielsweise in Betracht: Wasser, organische Dicarbonsäuren, wie Bernsteinsäure, Adipinsäure, Phthalsäure und Terephthalsäure, aliphatische und aromatische, gegebenenfalls N-mono-, N,N- und N,N'-dialkylsubstituierte Diamine mit 1 bis 4 Kohlenstoffatomen im Alkylrest, wie gegebenenfalls mono- und dialkylsubstituiertes Ethylendiamin, Diethylentriamin, Triethylentetramin, 1,3-Propylendiamin, 1,3- bzw. 1,4-Butylendiamin, 1,2-, 1,3-, 1,4-, 1,5- und 1,6- Hexamethylendiamin, Phenylendiamine, 2,3-, 2,4- und 2,6-Toluylendiamin und 2,2'-, 2,4'- und 4,4'- Diaminodiphenylmethan.
Vorzugsweise verwendet werden zwei oder mehrwertige Alkohole, wie Ethandiol, 1,2- und 1,3- Propandiol, Diethylenglykol, Dipropylenglykol, 1 ,4-Butandiol, 1 ,6-Hexandiol, Paraformaldehyd, Triethanolamin, Bisphenole, Glycerin, Trimethylolpropan, Pentaerythrit, Sorbit und Saccharose.
Verwendbare Polycarbonatpolyole sind Hydroxylgruppen aufweisende Polycarbonate, zum Beispiel Polycarbonatdiole. Diese entstehen in der Reaktion von Kohlensäurederivaten, wie Diphenylcarbonat, Dimethylcarbonat oder Phosgen, mit Polyolen, bevorzugt Diolen.
Beispiele derartiger Diole sind Ethylenglykol, 1,2- und 1,3-Propandiol, 1,3- und 1 ,4-Butandiol, 1 ,6- Hexandiol, 1,8-Octandiol, Neopentylglykol, 1,4-Bishydroxymethylcyclohexan, 2-Methyl-1,3- propandiol, 2,2,4-Trimethylpentandiol-1,3, Dipropylenglykol, Polypropylenglykole, Dibutylenglykol, Polybutylenglykole, Bisphenole und lactonmodifizierte Diole der vorstehend genannten Art. Statt oder zusätzlich zu reinen Polycarbonatdiolen können auch Polyether-Polycarbonatdiole eingesetzt werden, welche beispielsweise durch Copolymerisation von Alkylenoxiden, wie zum Beispiel Propylenoxid, mit CO2 erhältlich sind.
Als Isocyanat -reaktive Komponenten können auch Polymerpolyole, PHD-Polyole und PIPA-Polyole in Komponente Al eingesetzt werden. Polymerpolyole sind Polyole, die Anteile von durch radikalische Polymerisation geeigneter Monomere wie Styrol oder Acrylnitril in einem Basispolyol erzeugten festen Polymeren enthalten. PHD (Polyhydrazodicarbonamid)-Polyole werden beispielsweise hergesteht durch in situ Polymerisation eines Isocyanats oder einer Isocyanat-Mischung mit einem Diamin und/oder Hydrazin (bzw. Hydrazinhydrat) in einem Polyol, bevorzugt einem Polyetherpolyol. Bevorzugt wird die PHD-Dispersion hergestellt durch Umsetzung einer Isocyanat- Mischung aus 75 bis 85 Gew.-% 2,4-Toluylendiisocyanat (2,4-TDI) und 15 bis 25 Gew.-% 2,6- Toluylendiisocyanat (2,6-TDI) mit einem Diamin und/oder Hydrazinhydrat in einem Polyetherpolyol hergestellt durch Alkoxylierung eines trifunktionellen Starters (wie beispielsweise Glycerin und/oder Trimethylolpropan). Bei PIPA-Polyolen handelt es sich um durch Polyisocyanat-Polyaddition mit Alkanolaminen-modifizierte Polyetherpolyole, wobei das Polyetherpolyol bevorzugt eine Funktionalität von 2,5 bis 4,0 und eine Hydroxylzahl von 3 mg KOH/g bis 112 mg KOH/g (Molekulargewicht 500 g/mol bis 18000 g/mol) aufweist.
Es können auch Isocyanat-reaktive Komponenten mit zehöffnender Wirkung eingesetzt werden, wie beispielsweise Copolymere aus Ethylenoxid und Propylenoxid mit einem Überschuss an Ethylenoxid oder aromatischen Diaminen wie Diethyltoluendiamin.
Neben den oben beschriebenen Isocyanat-reaktiven Verbindungen können in der Komponente Al beispielsweise Graft-Polyole, Polyamine, Polyaminoalkohole und Polythiole enthalten sein. Die beschriebenen Isocyanat-reaktiven Komponenten umfassen auch solche Verbindungen mit gemischten Funktionalitäten·
Für die Herstellung von Polyurethanschaumstoffen im Kaltschaumverfahren werden bevorzugt mindestens zwei Hydroxylgruppen aufweisenden Polyether mit einer OH-Zahl von 20 bis 50 mg KOH/g eingesetzt, wobei die OH-Gruppen zu mindestens 80 Mol-% aus primärem OH-Gruppen bestehen (Bestimmung mittels 1 H-NMR (z.B. Bruker DPX 400, Deuterochloroform)). Besonders bevorzugt beträgt die OH-Zahl 25 bis 40 mg KOH/g, ganz besonders bevorzugt 25 bis 35 mg KOH/g.
Gegebenenfalls werden zusätzlich in der Komponente Al Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen und einer OH-Zahl von 280 bis 4000 mg KOH/g, bevorzugt 400 bis 3000 mg KOH/g, besonders bevorzugt 1000 bis 2000 mg KOH/g eingesetzt. Hierunter sind Hydroxylgruppen und/oder Aminogruppen und/oder Thiolgruppen und/oder Carboxylgruppen aufweisende Verbindungen zu verstehen, vorzugsweise Hydroxylgruppen und/oder Aminogruppen aufweisende Verbindungen, die als Kettenverlängerungsmittel oder Vernetzungsmittel dienen. Diese Verbindungen weisen in der Regel 2 bis 8, vorzugsweise 2 bis 4, gegenüber Isocyanaten reaktionsfähige Wasserstoffatome auf. Beispielsweise können Ethanolamin, Diethanolamin, Triethanolamin, Sorbit und/oder Glycerin eingesetzt werden.
Die Komponente Al kann aus einer oder mehreren der oben genannten Isocyanat-reaktiven Komponenten bestehen, bevorzugt enthält die Komponente A1 mindestens zwei Hydroxylgruppen aufweisenden Polyether, gegebenenfalls in Mischung mit mindestens zwei Hydroxylgruppen aufweisenden Polyestern.
In einer bevorzugten Ausführungsform enthält die Komponente A1:
A11l gegenüber Isocyanaten reaktionsfähige Wasserstoffatome aufweisende Verbindungen mit einer NH-Zahl gemäß DIN 53176 in der Fassung von November 2002 und/oder OH-Zahl gemäß DIN 53240-1 in der Fassung von Juni 2013 von 15 bis < 120 mg KOH/g, gegebenenfalls
A1.2 gegenüber Isocyanaten reaktionsfähige Wasserstoffatome aufweisende Verbindungen mit einer NH-Zahl gemäß DIN 53176 in der Fassung von November 2002 und/oder OH-Zahl gemäß DIN 53240-1 in der Fassung von Juni 2013 von 120 bis 600 mg KOH/g, und gegebenenfalls
A1.3 gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen aufweisenden Verbindungen mit einer NH-Zahl gemäß DIN 53176 in der Fassung von November 2002 und/oder OH-Zahl gemäß DIN 53240-1 in der Fassung von Juni 2013 von 600 bis 4000 mg KOH/g.
Komponente A2
Als Komponente A2 werden chemische und/oder physikalische Treibmittel eingesetzt.
Als chemisches Treibmittel A2.1 werden beispielsweise Wasser oder Carbonsäuren und deren Gemische verwendet. Diese reagieren mit Isocyanatgruppen unter Bildung des Treibgases, wie beispielsweise im Falle von Wasser entsteht dabei Kohlendioxid und im Falle von z. B. Ameisensäure entsteht dabei Kohlendioxid und Kohlenstoffmonoxid. Als Carbonsäure wird bevorzugt mindestens eine Verbindung, ausgewählt aus der Gruppe bestehend aus Ameisensäure, N,N-dialkylcarbaminsäure, Oxalsäure, Malonsäure und Ricinolsäure, eingesetzt. Auch die Ammoniumsalze dieser Säuren sind geeignet. Als chemisches Treibmittel wird besonders bevorzugt Wasser eingesetzt. Als physikalisches Treibmittel A2.2 eingesetzt werden beispielsweise niedrig siedende organische Verbindungen wie z. B. Kohlenwasserstoffe, Ether, Ketone, Carbonsäureester, Kohlensäureester, halogenierte Kohlenwasserstoffe. Geeignet sind insbesondere organische Verbindungen, welche gegenüber der Isocyanatkomponente B inert sind und Siedepunkte unter 100 °C, vorzugsweise unter 50 °C bei Atmosphärendruck aufweisen. Diese Siedepunkte haben den Vorteil, dass die organischen Verbindungen unter dem Einfluss der exothermen Polyadditionsreaktion verdampfen. Beispiele derartiger, vorzugsweise verwendeten organischen Verbindungen sind Alkane, wie Heptan, Hexan, n- und iso-Pentan, vorzugsweise technische Gemische aus n- und iso-Pentanen, n- und iso-Butan und Propan, Cycloalkane, wie Cyclopentan und/oder Cyclohexan, Ether, wie Furan, Dimethylether und Diethylether, Ketone, wie Aceton und Methylethylketon, Carbonsäurealkylester, wie Methylformiat, Dimethyloxalat und Ethylacetat und halogenierte Kohlenwasserstoffe, wie Methylenchlorid, Dichlormonofluormethan, Difluormethan, Trifluormethan, Difluorethan, Tetrafluorethan, Chlordifluorethane, 1 , 1 -Dichlor-2,2,2-trifluorethan, 2,2-Dichlor-2-fluorethan und Heptafluorpropan. Auch bevorzugt ist der Einsatz von (hydro)fluorierten Olefinen, wie z.B. HFO 1233zd(E) (Trans- 1- chlor-3,3,3-trifluor-1-propen) oder HFO 1336mzz(Z) (cis-1,1,1,4,4,4-Hexafluor-2-buten) oder Additive wie FA 188 von 3M (1,1,1,2,3,4,5,5,5-Nonafluor-4-(trifluormethyl)pent-2-en). Auch Gemische zweier oder mehrerer der genannten organischen Verbindungen können verwendet werden. Die organischen Verbindungen können dabei auch in Form einer Emulsion aus kleinen Tröpfchen eingesetzt werden.
In einer besonderen Ausführungsform enthält die Komponente A2
A2.1 0,5 bis 5 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) chemische Treibmittel und/oder
A2.20 bis 15 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) physikalische Treibmittel Besonders bevorzugt wird als Komponente A2 Wasser eingesetzt.
Komponente A3
Als Komponente A3 werden Hilfs- und Zusatzstoffe verwendet wie a) Katalysatoren (Aktivatoren), b) oberflächenaktive Zusatzstoffe (Tenside), wie Emulgatoren und Schaumstabilisatoren insbesondere solche mit niedriger Emission wie beispielsweise Produkte der Tegostab® LF-Serie, c) Additive wie Reaktionsverzögerer (z.B. sauer reagierende Stoffe wie Salzsäure oder organische Säurehalogenide), Zellregler (wie beispielsweise Paraffine oder Fettalkohole oder Dimethylpoly siloxane), Pigmente, Farbstoffe, Flammschutzmittel, (wie beispielsweise Trikresylphosphat), Stabilisatoren gegen Alterungs- und Witterungseinflüsse, Weichmacher, fungistatisch und bakteriostatisch wirkende Substanzen, Füllstoffe (wie beispielsweise Bariumsulfat, Kieselgur, Ruß- oder Schlämmkreide) und Trennmittel.
Als Katalysatoren werden bevorzugt aliphatische tertiäre Amine (beispielsweise Trimethylamin, Tetramethylbutandiamin), cycloaliphatische tertiäre Amine (beispielsweise 1,4- Diaza(2,2,2)bicyclooctan), aliphatische Aminoether (beispielsweise Dimethylaminoethylether und N,N,N-Trimethyl-N-hydroxyethyl-bisaminoethylether), cycloaliphatische Aminoether
(beispielsweise N-Ethylmorpholin), aliphatische Amidine, cycloaliphatische Amidine, Harnstoff, Derivate des Harnstoffs (wie beispielsweise Aminoalkylharnstoffe), insbesondere (3- Dimethylaminopropylamin)-harnstoff) und Zinn-Katalysatoren (wie beispielsweise Dibutylzinnoxid, Dibutylzinndilaurat, Zinnoctoat).
Als Katalysatoren werden besonders bevorzugt (i) Harnstoff, Derivate des Harnstoffs und/oder (ii) die oben genannten Amine und Aminoether, dadurch gekennzeichnet, dass die Amine und Aminoether eine funktionelle Gruppe enthalten, die mit dem Isocyanat chemisch reagiert. Vorzugsweise ist die funktionelle Gruppe eine Hydroxyl-Gruppe, eine primäre oder sekundäre Aminogruppe. Diese besonders bevorzugten Katalysatoren haben den Vorteil, dass diese ein stark reduziertes Migrations- und Emissionsverhalten aufweisen. Als Beispiele für besonders bevorzugte Katalysatoren seien genannt: (3 -Dime thylaminopropylamin) -Harnstoff, 1,1 ‘-((3-
(dimethylamino)propyl)imino)bis-2-propanol, N-[2-[2-(dimethylamino)ethoxy]ethyl]-N-methyl- 1,3-propanediamin und 3-Dimethylaminopropylamin.
Komponente A4
Erfindungsgemäß wird eine Verbindung mit der Formel
P[-O-C(O)-CH2-C(X)-R1]n (I) wobei
P für ein Polyetherpolyol mit einer OH-Funktionalität von 2 bis 8 und einem zahlenmittleren Molekulargewicht von 200 bis 4000 g/mol, gemessen nach DIN 55672-1 von August 2007, steht,
X für =0 oder =N-R2 steht,
R1, R2 unabhängig voneinander jeweils für eine substituierte oder unsubstituierte C1- bis C8- Alkylgruppe oder eine substituierte oder unsubstituierte Arylgruppe stehen, n für die Anzahl der OH-Gruppen von P steht die durch die Gruppe -O-C(O)-CH2-C(X)-R1 ersetzt sind und mindestens 1 ist, zur Reduktion des Anteils an aromatischen (Di-)Aminen, bevorzugt Toluylendiamin (TDA) und/oder Methylendianilin (MDA), eingesetzt. Die Verbindung gemäß Formel (I) kann beispielsweise durch Reaktion eines Polyetherpolyols P mit einem ß-Ketocarbonsäureester und gegebenenfalls anschließender Umsetzung mit einem primären Amin R2-NH2hergestellt werden. Dabei kann das Polyetherpolyol P wie in Komponente Al beschrieben erhalten werden. Das Polyetherpolyol P weist eine OH-Funktionalität von 2 bis 8, bevorzugt von 2 bis 4 und besonders bevorzugt von 2 bis 3 auf. Das Molekulargewicht des Polyetherpolyols P beträgt 200 bis 4000 g/mol, bevorzugt 200 bis 2000 g/mol und besonders bevorzugt 200 bis 800 g/mol.
In einer besonderen Ausführungsform weist das Polyetherpolyol P ein Äquivalentgewicht von 50 bis 500 g/mol auf, insbesondere bevorzugt ein Äquivalentgewicht von 50 bis 500 g/mol und eine OH- Funktionalität von 2 bis 6. Das Äquivalentgewicht wird dabei auf Basis des zahlenmittleren Molekulargewicht des Polyetherpolyols P bestimmt.
Als ß-Ketocarbonsäureester können beispielsweise Acetoacetatester, 3-Oxopentansäureester, 3- Oxohexansäureester, 4-Methyl-3-Oxopentansäureester, Benzylacetoacetatester, 3-Oxo-5- Phenylpentansäureester eingesetzt werden. Bevorzugt handelt es sich bei dem ß- Ketocarbonsäureester um einen Acetotacetatester, besonders bevorzugt um einen C1 -C6- Alkylester der Acetessigsäure. R1 ist vorzugsweise eine substituierte oder unsubstituierte C1- bis C8- Alkylgruppe, bevorzugt eine CI bis C6- Alkylgruppe, insbesondere eine Methyl, Ethyl, Propyl, oder Isopropylgruppe.
Das primäre Amin R2-NH2 weist eine substituierte oder unsubstituierte C1- bis C8-Alkylgruppe oder eine substituierte oder unsubstituierte Arylgruppe auf. Bevorzugt handelt es sich bei R2 um eine unsubstituierte oder substituierte C1- bis C8-Alkylgruppe, besonders bevorzugt um eine C1- bis C8- Alkylgruppe die ein tertiäres Amin als Substituent aufweist.
In der Verbindung mit der Formel (I) sind n OH-Gruppen des Polyetherpolyols P durch die Gruppe -O-C(O)-CH2-C(X)-R1 ersetzt, wobei n mindestens 1 beträgt. Bevorzugt handelt es sich bei der Verbindung mit der Formel (I) um ein Polyetherpolyol P bei dem nur noch eine freie OH-Gruppe vorhanden ist oder alle OH-Gruppen durch die Gruppe -O-C(O)-CH2-C(X)-R1 ersetzt wurden.
In einer besonderen Ausführungsform wird eine Verbindung gemäß Formel (I) eingesetzt, bei der
P für ein Polyetherpolyol mit einer OH-Funktionalität von 2 bis 6 und einem Äquivalentgewicht von 50 bis 500 g/mol, steht,
R1, R2 unabhängig voneinander jeweils für eine substituierte oder unsubstituierte C1- bis C4- Alkylgruppe stehen, und nur noch eine oder zwei freie OH-Gruppe enthalten sind.
Die Komponente A4 wird bevorzugt in einem Anteil von 0,20 bis 10 Gew.-%, besonders bevorzugt 0,3 bis 5 Gew.-%, jeweils bezogen auf die Gesamtmasse von Komponente A, eingesetzt. Komponente B
Als Komponente B werden aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate eingesetzt, beispielsweise solche der Formel (II)
Q(NCO)n (II) in der n für eine ganze Zahl zwischen 2 - 4, vorzugsweise 2 oder 3 steht, und
Q für einen aliphatischen Kohlenwasserstoffrest mit 2 - 18, vorzugsweise 6 - 10 C- Atomen, einen cycloaliphatischen Kohlenwasserstoffrest mit 4 - 15, vorzugsweise 6 - 13 C- Atomen oder einen araliphatischen Kohlenwasserstoffrest mit 8 - 15, vorzugsweise 8 - 13 C-Atomen steht.
Erfindungsgemäß enthält die Komponente B Toluylendiisocyanat („TDI“), Diphenylmethandiisocyanat, Polyphenylpolymethylenpolyisocyanat oder ein Gemisch der genannten Verbindungen. Neben TDI können weitere Polyisocyanate eingesetzt werden wie beispielsweise Polyphenylpolymethylenpolyisocyanate, wie sie durch Anilin-Formaldehyd- Kondensation und anschließende Phosgenierung hergestellt werden („rohes MDI“) und Carbodiimidgruppen, Urethangruppen, Allophanatgruppen, Isocyanuratgruppen, Harnstoffgruppen oder Biuretgruppen aufweisenden Polyisocyanate („modifizierte Polyisocyanate“), insbesondere solche modifizierten Polyisocyanate, die sich vom 2,4- und/oder 2,6-Toluylendiisocyanat bzw. vom 4,4’- und/oder 2,4’ -Diphenylmethandiisocyanat ableiten. Vorzugsweise werden als Komponente B mindestens eine Verbindung ausgewählt aus der Gruppe bestehend aus 2,4- und 2,6-
Toluylendiisocyanat, 4,4’- und 2,4’- und 2,2’-Diphenylmethandiisocyanat und Polyphenylpolymethylenpolyisocy anat (" Mehrkern-MDI ") eingesetzt .
Die erfindungsgemäß erhaltenen Polyurethanschaumstoffe, sind bevorzugt Polyurethanweichschaumstoffe oder Polyurethanhalbhartschaumstoffe. Zur Herstellung der Polyurethanschaumstoffe werden die Reaktionskomponenten nach dem an sich bekannten
Einstufenverfahren, dem Prepolymerverfahren oder dem Semiprepolymerverfahren zur Umsetzung gebracht, wobei man sich oft maschineller Einrichtungen bedient.
Die Polyurethanschaumstoffe können als Form- oder auch als Blockschaumstoffe hergestellt werden, wobei die Formschaumstoffe heiß- oder auch kalthärtend hergestellt werden können. Gegenstand der Erfindung sind daher ein Verfahren zur Herstellung von Polyurethanschaumstoffe, die nach diesem Verfahren hergestellten Polyurethanschaumstoffe und deren Verwendung zur Herstellung von Formteilen oder Blockware, sowie die Formteile bzw. die Blockware selbst. Die nach der Erfindung erhältlichen Polyurethanschaumstoffe finden beispielsweise folgende Anwendung: Möbelpolsterungen, Textileinlagen, Matratzen, Automobilsitze, Kopfstützen, Armlehnen, Schwämme und Bauelemente, sowie Sitz- und Armaturverkleidungen, und weisen Kennzahlen von 100 oder weniger, bevorzugt 50 bis 90, besonders bevorzugt 65 bis 85. Unter der Isocyanat-Kennzahl (auch Kennzahl oder Isocyanat-Index genannt) wird der Quotient aus der tatsächlich eingesetzten Stoffmenge [Mol] an Isocyanatgruppen und der tatsächlich eingesetzten Stoffmenge [Mol] an Isocyanat-reaktiven Gruppen, multipliziert mit 100, verstanden:
Kennzahl = (Mole Isocyanatgruppen / Mole Isocyanat-reaktive Gruppen) * 100
Der NCO-Wert (auch: NCO-Gehalt, Isocyanatgehalt) wird bestimmt mittels EN ISO 11909:2007. Falls nicht anders angegeben, handelt es sich um die Werte bei 25°C.
In einer bevorzugten Ausführungsform der Erfindung betrifft die Erfindung ein Verfahren zur Herstellung von Polyurethanschaumstoffen, wobei die Komponenten
Al Verbindungen mit gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen enthaltend
A1.1 29,0 bis 96,5 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen aufweisenden Verbindungen mit einer NH- Zahl gemäß DIN 53176 in der Fassung von November 2002 und/oder OH- Zahl gemäß DIN 53240-1 in der Fassung von Juni 2013 von 20 bis < 120 mg KOH/g,
A1.2 0 bis 60 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) gegenüber
Isocyanaten reaktionsfähigen Wasserstoffatomen aufweisenden Verbindungen mit einer NH- Zahl gemäß DIN 53176 in der Fassung von November 2002 und/oder OH- Zahl gemäß DIN 53240-1 in der Fassung von Juni 2013 von 120 bis < 600 mg KOH/g,
A1.3 0 bis 10 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) gegenüber
Isocyanaten reaktionsfähigen Wasserstoffatomen aufweisenden Verbindungen mit einer NH- Zahl gemäß DIN 53176 in der Fassung von November 2002 und/oder OH- Zahl gemäß DIN 53240-1 in der Fassung von Juni 2013 von 600 bis 4000 mg KOH/g,
A2 Treibmittel, enthaltend
A2.1 0,1 bis 10 Gew.-%, bevorzugt 1 bis 5 Gew.-% (jeweils bezogen auf die Gesamtmasse der Komponente A) chemische Treibmittel wie Wasser und/oder A2.2 0 bis 15 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) physikalische Treibmittel wie z. B. CO2,
A3 0,5 bis 10 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) Hilfs- und Zusatzstoffe wie a) Katalysatoren, b) oberflächenaktive Zusatzstoffe, c) Pigmente und/oder Flammschutzmittel,
A4 0,25 bis 10 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) eine Verbindung mit der Formel
P[-O-C(O)-CH2-C(X)-R1]n (I) wobei
P für ein Polyetherpolyol mit einer OH-Funktionalität von 2 bis 8 und einem zahlenmittleren Molekulargewicht von 200 bis 4000 g/mol, gemessen nach DIN 55672- 1 von August 2007, steht,
X für =0 oder =N-R2 steht,
R1, R2 unabhängig voneinander jeweils für eine substituierte oder unsubstituierte C1- bis C8- Alkylgruppe oder eine substituiert oder unsubstituierte Arylgruppe stehen, n für die Anzahl der OH-Gruppen von P steht die durch die Gruppe -O-C(O)-CH2-C(X)- R1 ersetzt sind und mindestens 1 ist, mit
B Di- und/oder Polyisocyanaten mit einem Gehalt von >50 Gew.-% difunktionellen Isocyanaten, enthaltend Toluylendiisocyanat, Diphenylmethandiisocyanat,
Polyphenylpolymethylenpolyisocyanat oder ein Gemisch der genannten Verbindungen, bei einer Isocyanat-Kennzahl von 100 oder weniger miteinander umgesetzt werden.
Beispiele
Prüfmethoden:
Die Rohdichte und Formteildichte wurde gemäß DIN EN ISO 845 in der Fassung von Oktober 2009. Die Probenkörper hatten ein Volumen von 80x80x40 mm3. Die Hydroxylzahl wurde gemäß DIN 53240-1 in der Fassung von Juni 2013 bestimmt.
Die Bestimmung des Gehalts an aromatischen Aminen im Schaumstoff erfolgte für die Beispiele in Tabelle 1 durch Extraktion mit 0,l%iger Essigsäure nach Skarping (A. Marand, D. Karlsson, M. Dalene, G. Skarping, Analytica Chimica Acta, 2004. 510, 109-119; J. R. Johnson, D. Karlsson, M. Dalene, G. Skarping, Analytica Chimica Acta, 2010. 678 (1), 117-123), jedoch anders als in der angegebenen Literatur ohne anschließende Derivatisierung. Nach der Entformung wurde zum ersten Mal der TDA- bzw. MDA-Gehalt der Proben nach 4 Stunden bestimmt. Anschließend wurden die Proben für insgesamt 48 Stunden (Beispiele 3 und 4), bzw. 72 Stunden (Beispiele 1, 2, und 6 bis 9) offen gelagert bevor die zweite Analyse durchgeführt wurde (Tabelle 1: „nach Lagerung“). Die Angabe NN < 0,06 bedeutet, dass der Messwert unterhalb der Nachweisgrenze liegt und die Angabe < 0,2 bedeutet, dass der Messwert unterhalb der Bestimmungsgrenze liegt.
Die Messung der VOC- und FOG-Werte für die Beispiele in Tabelle 2 erfolgte gemäß der Technischen Regel VDA 278 des Verbandes der Automobilindustrie „Thermodesorptionsanalyse organischer Emissionen zur Charakterisierung von nichtmetallischen Kfz-Werkstoffen“ in der Fassung von Oktober 2011.
Beschreibung der Versuche
Rohstoffe
Al.1-1: Polyetherpolyol mit einer OH-Zahl von 28 mg KOH/g, hergestellt durch Alkoxylierung von Glycerin mit einem Gemisch aus Ethylenoxid und Propylenoxid in einem Mengenverhältnis von 87/13
Al.1-2: füllstoffhaltiges Polyol mit 21,6 % Polyharnstoff dispersion (PHD) als Füllstoff und 78,4% eines Polyetherpolyols auf der Basis von Glycerin, Ethylenoxid und Propylenoxid mit einem zahlengemitteltem Molekulargewicht von 4007 g/mol und einer OH-Zahl von 28 mg KOH/g Al.1-3: Polyetherpolyol auf der Basis von Glycerin, Ethylenoxid und Propylenoxid mit einem sehr hohen Anteil an Ethylenoxid-Gruppen und einer OH-Zahl von 37 mg KOH/g
Al.1-4: Polyetherpolyol mit einer OH-Zahl von 31 mg KOH/g Al.1-5: Dispersion von Styrol-Acrylnitril-Copolymer (42 Gew.-%) in einem Glyzerin-gestarteten Polypropylenoxid-Polyethylenoxid-Block-Copolymer (OH-Zahl 20 mg KOH/g)
Al.2-1: Polyetherpolyolmischung, katalytisch aktiv, OH-Zahl 127 mg KOH/g Al.2-2: Polyetherpolyolmischug mit einer Funktionalität von 1,8 und einer OH-Zahl von 410 mg KOH/g
Al.3-1: Glycerin A2.1-1: Wasser
A3-1: Silikonstabilisator (Niax® L-3222, Handelsprodukt der Fa. Momentive Performance
Materials)
A3-2: tertiärer Amin-Katalysator (Polycat® 58, Handelsprodukt der Fa. Evonik)
A3-3: Amin-Katalysator (Dabco® NE 1091, Handelsprodukt der Fa. Evonik)
A3-4: Silikonstabilisator (Tegostab® B 8736 LF2, Handelsprodukt der Fa. Evonik)
A3-5: 33 Gew.-% Triethylendiamin in Dipropylenglycol (Dabco 33 LV, Handelsprodukt der Fa.
Evonik)
A3-6: Amin-Katalysator (Niax® A-400, Handelsprodukt der Fa. Momentive Performance
Materials)
A3-7 Schaumstabilisator Tegostab® B 8783 LF2 (Handelsprodukt der Firma Evonik)
A3-8: Bis[2-dimethylamino)ethyl]ether (70 Gew.-%) in Dipropylenglycol (30 Gew.-%), Niax®
Catalyst A-l (Handelsprodukt der Firma Momentive Performance Materials)
A4- 1 : Additiv auf Basis eines Polyetherpolyols mit einem zahlenmittleren Molekulargewicht von
300 g/mol und einer OH-Funktionalität von 3, wobei 85% der OH-Gruppen mit Methylacetoacetat umgesetzt wurden
A4-2: Additiv A4-1, wobei für 2/3 der Carbonylgruppen das Sauerstoffatom durch =N-(CH2)3-
N(CH3)2 ersetzt wurde
B-l: Isocyanat-Gemisch aus 70 Gew.-% TDI und 30 Gew.-% 4,4‘-MDI und höhere Homologe
B-2: Isocyanat-Gemisch aus 80 Gew.-% 2,4-TDI und 20 Gew.-% 2,6-TDI
B-3: 4, 4‘-MDI und höhere Homologe
Zur Herstellung der Polyurethan-Schaumstoffe werden die notwendigen Mengen der in den Tabellen 1 bis 3 angegebenen Komponenten mit Ausnahme des Isocyanats in einem Pappbecher mit Blechboden (Volumen: ca. 850 ml) vorgelegt und mit einem Rührwerk (Fa. Pendraulik) mit Standardrührscheibe (d = 64 mm) bei 4200 U/min 45 Sekunden lang mit Luft beladen.
Das Isocyanat wird in einen geeigneten Becher eingewogen und wieder entleert (Auslaufzeit: 3 s). Dieser, an den Innenwandungen noch benetzte Becher wird tariert und wieder mit der angegebenen Isocyanatmenge gefüllt. Das Isocyanat wird den anderen Komponenten zugesetzt (Auslaufzeit: 3 s). Die erhaltene Mischung aus Isocyanat und den anderen Komponenten wird mit einem Rührwerk (Fa. Pendraulik) für 5 Sekunden intensiv vermischt. Zur Bildung eines Formschaumstoffes (Tabelle 1 und 2) wird das Reaktionsgemisch in eine 40°C warme Kastenform aus Aluminium mit 10 dm3 Volumen gegossen, wobei ein Trennmittel appliziert wird. Die Form wird verschlossen und verriegelt. Nach 10 Minuten wird die Verriegelung geöffnet und entspannt.
Die Beispiele in Tabelle 1 zeigen die Wirkung des erfindungsgemäßen Verfahrens mit den Additiven A4-1 und A4-2 auf den mit der Skarping-Methode ermittelten Anteil an aromatischen (Di-) Amin im Polyurethanschaumstoff. Unabhängig von der Kennzahl führt das erfindungsgemäße Verfahren zu Polyurethanschaumstoffen mit geringeren Anteilen an aromatischen (Di-)Amin vor und nach Lagerung der Polyurethan-Schaumstoffe.
Auf Grund der katalytisch aktiven Imingruppe im Additiv A4-2 musste die Menge an Katalysator in Beispiel 9 gegenüber dem Vergleichsbeispiel 8 angepasst werden, damit ein Polyurethanschaumstoff mit gleicher Formteildichte erhalten wird.
In Tabelle 2 wird die Wirkung des erfindungsgemäßen Verfahrens auf Formulierungen auf Basis des Isocyanats B-2 nach VDA 278 dargestellt. Ein Polyurethan-Schaumstoff ohne ein Additiv A4 (Beispiel 10) weist eine Emission an TDA von insgesamt 210 ppm auf. Im Gegensatz dazu führt der Einsatz verschiedener Mengen des Additivs A4 in Polyurethan-Schaumstoffen zu Emissionen an TDA von nur 22 bis 119 ppm (Beispiele 11 bis 13).
Die Tabelle 3 zeigt die Reduktion von aromatischen (Di-) Amin bei der Herstellung von viskoelastischen Polyurethane-Schaumstoffen. Der Einsatz der erfindungsgemäßen Komponente A4-1 führt in den Beispielen 15 und 16 zu einer deutlichen Reduktion von aromatischen (Di-) Amin im Schaumstoff im Vergleich zum Referenzbeispiel 14.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polyurethanschaumstoffen durch die Umsetzung von Komponente A enthaltend
A1 eine Isocyanat-reaktive Komponente,
A2 Treibmittel, enthaltend Wasser,
A3 ggf. Hilfs- und Zusatzstoff.
A4 eine Verbindung mit der Formel
P[-O-C(O)-CH2-C(X)-R1]n (I) wobei
P für ein Polyetherpolyol mit einer OH-Funktionalität von 2 bis 8 und einem zahlenmittleren Molekulargewicht von 200 bis 4000 g/mol, gemessen nach DIN 55672- 1 von August 2007, steht,
X für =O oder =N-R2 steht,
R1, R2 unabhängig voneinander jeweils für eine substituierte oder unsubstituierte C1- bis C8- Alkylgruppe oder eine substituierte oder unsubstituierte Arylgruppe stehen, n für die Anzahl der OH-Gruppen von P stehen die durch die Gruppe -O-C(O)-CH2-C(X)- R1 ersetzt sind und mindestens 1 ist, mit
Komponente B eine Isocyanatkomponente, enthaltend Toluylendiisocyanat, Diphenylmethandiisocyanat, Polyphenylpolymethylenpolyisocyanat oder
Gemische der genannten Verbindungen, bei einer Isocyanat-Kennzahl von 100 oder weniger.
2. Verfahren gemäß Anspruch 1, wobei P für ein Polyetherpolyol mit einer OH-Funktionalität von 2 bis 4 steht.
3. Verfahren gemäß Anspruch 1 oder 2, wobei P für ein Polyetherpolyol mit einem zahlenmittleren Molekulargewicht von 200 bis 2000 g/mol, gemessen nach DIN 55672-1 von August 2007, steht.
4. Verfahren gemäß Anspruch 1 oder 2, wobei P für ein Polyetherpolyol mit einem zahlenmittleren Molekulargewicht von 800 bis 2000 g/mol, gemessen nach DIN 55672-1 von August 2007, steht.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, wobei R2 eine tertiäre Aminogruppe enthält.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, wobei n so gewählt ist, dass P entweder nur eine freie OH-Gruppe oder keine freie OH-Gruppe enthält.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, wobei A4 in einem Anteil von 0,25 bis 5 Gew.- %, bezogen auf die Gesamtmasse von Komponente A, vorliegt.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, wobei die Isocyanat- Kennzahl 50 bis 90 beträgt.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, wobei R1 eine substituierte oder unsubstituierte C1- bis C4-Alkylgruppe ist.
10. Verfahren gemäß einem der Ansprüche 1 bis 8, wobei die Verbindung mit der Formel (I) durch Reaktion eines Acetoacetatesters mit dem Polyetherpolyol P und gegebenenfalls anschließender Umsetzung mit einem Amin erhalten wird.
11. Verfahren gemäß Anspruch 1, wobei eine Verbindung gemäß Formel (I) eingesetzt wird, bei der
P für ein Polyetherpolyol mit einer OH-Funktionalität von 2 bis 6 und einem Äquivalentgewicht von 50 bis 500 g/mol, steht,
R1, R2 unabhängig voneinander jeweils für eine substituierte oder unsubstituierte C1- bis C4- Alkylgruppe stehen, und nur noch eine oder zwei freie OH-Gruppe enthalten sind.
12. Verfahren gemäß einem der Ansprüche 1 bis 11, wobei die Komponente A die folgenden Komponenten enthält
A1 Verbindungen mit gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen enthaltend
A1.1 29,0 bis 96,5 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen aufweisenden Verbindungen mit einer NH-Zahl gemäß DIN 53176 in der Fassung von November 2002 und/oder OH-Zahl gemäß DIN 53240-1 in der Fassung von Juni 2013 von 20 bis < 120 mg KOH/g, A1.2 0 bis 60 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen aufweisenden Verbindungen mit einer NH-Zahl gemäß DIN 53176 in der Fassung von November 2002 und/oder OH-Zahl gemäß DIN 53240-1 in der Fassung von Juni 2013 von 120 bis < 600 mg KOH/g,
A1.3 0 bis 10 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen aufweisenden Verbindungen mit einer NH-Zahl gemäß DIN 53176 in der Fassung von November 2002 und/oder OH-Zahl gemäß DIN 53240-1 in der Fassung von Juni 2013 von 600 bis 4000 mg KOH/g,
A2 Treibmittel, enthaltend
A2.1 0,1 bis 10 Gew.-%, bevorzugt 1 bis 5 Gew.-% (jeweils bezogen auf die Gesamtmasse der Komponente A) chemische Treibmittel wie Wasser und/oder
A2.2 0 bis 15 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) physikalische Treibmittel wie z. B. CO2,
A3 0,5 bis 10 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) Hilfs- und
Zusatzstoffe wie a) Katalysatoren, b) oberflächenaktive Zusatzstoffe, c) Pigmente und/oder Flammschutzmittel,
A4 0,25 bis 5 Gew.-% (bezogen auf die Gesamtmasse der Komponente A) eine
Verbindung mit der Formel (I).
13. Polyurethanschaumstoff, hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis
12.
14. Verwendung der Polyurethanschaumstoffe gemäß Anspruch 13 zur Herstellung von
Möbelpolsterungen, Textileinlagen, Matratzen, Automobilsitze, Kopfstützen, Armlehnen, Schwämme, Schaumstofffolien zur Verwendung in Automobilteilen wie beispielsweise Dachhimmeln, Türseitenverkleidungen, Sitzauflagen und Bauelementen.
15. Verwendung einer Verbindung mit der Formel (I)
P[-O-C(O)-CH2-C(X)-R1] n (I) wobei P für ein Polyetherpolyol mit einer OH-Funktionalität von 2 bis 8 und einem zahlenmittleren Molekulargewicht von 200 bis 4000 g/mol, gemessen nach DIN 55672- 1 von August 2007, steht,
X für =O oder =N-R2 steht, R1, R2 unabhängig voneinander jeweils für eine substituierte oder unsubstituierte C1- bis C8-
Alkylgruppe oder eine substituierte oder unsubstituierte Arylgruppe stehen, n für die Anzahl der OH-Gruppen von P steht die durch die Gruppe -O-C(O)-CH2-C(X)- R1 ersetzt sind und mindestens 1 ist, zur Reduktion von aromatischen (Di-)Amin, bevorzugt Toluylendiamin und/oder Methylendianilin, in Polyurethanschaumstoffen.
EP22712003.7A 2021-03-23 2022-03-17 Verfahren zur reduktion von aromatischen (di-)aminen in polyurethanschaumstoffen Pending EP4314104A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21164326 2021-03-23
PCT/EP2022/057038 WO2022200176A1 (de) 2021-03-23 2022-03-17 Verfahren zur reduktion von aromatischen (di-)aminen in polyurethanschaumstoffen

Publications (1)

Publication Number Publication Date
EP4314104A1 true EP4314104A1 (de) 2024-02-07

Family

ID=75203019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22712003.7A Pending EP4314104A1 (de) 2021-03-23 2022-03-17 Verfahren zur reduktion von aromatischen (di-)aminen in polyurethanschaumstoffen

Country Status (2)

Country Link
EP (1) EP4314104A1 (de)
WO (1) WO2022200176A1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4319948A1 (de) * 1993-06-16 1994-12-22 Bayer Ag Tertiäre Aminogruppen aufweisende Verbindungen, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Katalysatoren
DE19919826A1 (de) 1999-04-30 2000-11-02 Basf Ag Verfahren zur Herstellung von Polyurethanschaumstoffen
DE19928687A1 (de) 1999-06-23 2000-12-28 Basf Ag Polyisocyanat-Polyadditionsprodukte
US6391935B1 (en) * 2000-01-31 2002-05-21 Bayer Antwerp, N.V. Viscoelastic polyurethane foams
ES2530361T3 (es) * 2012-02-15 2015-03-02 Bayer Ip Gmbh Espumas semirrígidas basadas en poliuretano, su uso y su aplicación
JP7029463B2 (ja) * 2017-02-20 2022-03-03 ダウ グローバル テクノロジーズ エルエルシー アルデヒドの放散量が削減されたポリウレタン
US20210395431A1 (en) 2018-10-24 2021-12-23 Basf Se Polyurethane foams with reduced aromatic amine content

Also Published As

Publication number Publication date
WO2022200176A1 (de) 2022-09-29

Similar Documents

Publication Publication Date Title
EP1345988B1 (de) Polyurethanelastomere mit verbesserter hydrolysestabilität
DE102008051882A1 (de) Verfahren zur Herstellung von Polyetheresterpolyolen
EP3036267B1 (de) Verbesserte polyurethan- und polyisocyanurat-hartschaumstoffe auf basis von fettsäuremodifizierten polyetherpolyolen
WO2013127647A1 (de) Polyetheresterpolyole und ihre verwendung zur herstellung von polyurethan-hartschaumstoffen
EP2804886A1 (de) Verfahren zur herstellung von polyurethan-hartschäumen
WO2013102540A1 (de) Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen
DE102008025005A1 (de) Nanoharnstoffe zur Reduzierung von Emissionen in Polyurethan-Schäumen
DE102004042033A1 (de) Polyurethanelastomere mit verbessertem antistatischen Verhalten
EP3870624A1 (de) Polyurethanschaumstoffe mit vermindertem gehalt an aromatischen aminen
WO2018104222A1 (de) Verwendung von acrylsäureestern und –amiden zur erniedrigung von emissionen eines polyurethanschaumstoffes
EP3728362A1 (de) Flammgeschützte polyurethan-hartschaumstoffe
EP3728377B1 (de) Flammgeschützte polyurethan-hartschaumstoffe
EP3997161A1 (de) Verfahren zur herstellung von flammwidrigen pur-/pir-hartschäumen
EP3555166B1 (de) Verfahren zur erniedrigung von emissionen eines polyurethanschaumstoffes
EP4314104A1 (de) Verfahren zur reduktion von aromatischen (di-)aminen in polyurethanschaumstoffen
WO2001085822A1 (de) Stabilisatoren für polyurethanschäume
WO2023012023A1 (de) Verfahren zur verminderung von aminspuren in polyurethan-weichschaumstoffen
WO2022101096A1 (de) Verfahren zur verminderung von aminspuren in polyurethanen
WO2022152686A1 (de) Verfahren zur reduktion von emissionen von polyurethanschaumstoff
EP4011891A1 (de) Verfahren zur herstellung von flammgeschützten pur/pir-hartschaumstoffen
WO2019011956A1 (de) Weichschaumstoff mit halogenfreiem flammschutz
EP3932969A1 (de) Verfahren zur reduktion von emissionen von polyurethanen
WO2021170542A1 (de) Neuartige polyolverbindungen und ein verfahren zur herstellung von pur-/pir-schaumstoffen auf ihrer basis
EP3428212A1 (de) Weichschaumstoff mit halogenfreiem flammschutz
WO2018104221A1 (de) Verfahren zur herstellung von tdi-basierten polyurethanweichschaumstoffen enthaltend organische säureanhydride und/oder organische säurechloride

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR