EP4305282A1 - Dispositif de turbomachine tritherme et vehicule comprenant un tel dispositif - Google Patents

Dispositif de turbomachine tritherme et vehicule comprenant un tel dispositif

Info

Publication number
EP4305282A1
EP4305282A1 EP22708582.6A EP22708582A EP4305282A1 EP 4305282 A1 EP4305282 A1 EP 4305282A1 EP 22708582 A EP22708582 A EP 22708582A EP 4305282 A1 EP4305282 A1 EP 4305282A1
Authority
EP
European Patent Office
Prior art keywords
compressor
conditioning
turbine
heat exchanger
turbomachine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22708582.6A
Other languages
German (de)
English (en)
Inventor
Wissam Bou Nader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stellantis Auto SAS
Original Assignee
Stellantis Auto SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stellantis Auto SAS filed Critical Stellantis Auto SAS
Publication of EP4305282A1 publication Critical patent/EP4305282A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3222Cooling devices using compression characterised by the compressor driving arrangements, e.g. clutches, transmissions or multiple drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/02Adaptations for driving vehicles, e.g. locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/20Adaptations of gas-turbine plants for driving vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • F25B11/04Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/004Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of devices and turbomachine systems of the Brayton cycle type with cooled compression and heating during expansion.
  • This type of turbomachine generally comprises turbines and compressors that can be associated with combustion chambers with heat recovery.
  • the invention relates in particular to useful applications for motor vehicles.
  • the turbogenerator cycle with intercooler, recuperator and heat exchanger of the IRReGT (Intercooled Regenerative Reheat Gas Turbine) type is a cycle with high potential. This cycle makes it possible to achieve a very high efficiency but also a very high power density (high specific net work).
  • IRReGT Intercooled Regenerative Reheat Gas Turbine
  • This type of turbomachine uses moving parts and produces heat.
  • the invention aims to use these movements and heat produced to implement a production of heat and/or cold of the passenger compartment of a motor vehicle, as well as a generation of electrical energy.
  • the invention relates to a turbomachine device for a motor vehicle, the device comprising
  • first turbocharger comprising a first compressor and a first turbine
  • a second turbocharger comprising a second compressor and a second turbine
  • a flow cooler connected to the first compressor and to the second compressor;
  • a heat exchanger connected, preferably to an exhaust outlet and to the second compressor, itself being connected to the two turbines; the device being configured to implement a first flow of fluid from the first compressor towards the cooler, towards the second compressor, towards the heat exchanger, towards the turbines, characterized in that it comprises at least one conditioning section vehicle interior comprising at least one means for producing cold and/or heat on the basis of said flow.
  • the arrangement of the device according to the invention makes it possible to take advantage of the heat of the turbomachine and of the exhaust line to achieve a production of cold and/or heat for the passenger compartment of the vehicle. This results in a significant drop in fuel consumption.
  • the cabin conditioning section comprises a flow diversion between the second compressor and the first heat exchanger, a first cooling exchanger, a conditioning turbine connected downstream of the first cooling exchanger, a second cooling exchanger for producing cold from passenger compartment connected downstream of the conditioning turbine; and/or the conditioning turbine is a turbocharger turbine associated with a conditioning compressor connected downstream either between the first compressor and the cooler, or upstream of the first compressor; and or
  • the cabin conditioning section comprises a cabin conditioning circuit passing through the cooler associated with a circulation pump for a second flow of fluid, the conditioning circuit comprising a heating exchanger; and or
  • the cabin conditioning section comprises a flow bypass between the second compressor and the first heat exchanger, an additional heat exchanger coupled to the conditioning circuit and to the flow coming from the bypass, a conditioning turbine connected downstream of the additional heat exchanger, a first cooling exchanger for producing cabin cold connected downstream of the conditioning turbine; and or -
  • the conditioning turbine is a turbocharger turbine associated with a conditioning compressor connected downstream either between the first compressor and the cooler, or upstream of the first compressor; and/or - the turbomachine device comprises a second heat exchanger between the second and first turbines, optionally associated with a heating circuit comprising a solar concentrator; and or
  • turbochargers are mounted on separate axles; and/or the device comprises an electric generator on each of said axes.
  • the invention further relates to a motor vehicle comprising a turbomachine device according to the invention.
  • FIG.1 illustrates a functional diagram of a turbomachine device according to a first preferred embodiment of the invention
  • FIG.2 illustrates a first alternative variant of the first embodiment
  • FIG.3 illustrates a second alternative variant of the first embodiment
  • FIG.4 illustrates a block diagram of a turbomachine device according to a second embodiment
  • FIG.5 illustrates an alternative variant of the second embodiment
  • FIG.6 schematically illustrates a top view of a turbomachine device according to the second embodiment.
  • the invention relates to a turbomachine device of the gas turbine cycle type with cooled compression, regenerative and reheat during expansion (IRReGT).
  • the invention relates in particular to useful applications for motor vehicles.
  • the turbomachine device includes a first turbocharger and a second turbocharger.
  • the first turbocharger comprises a first compressor C1 and a first turbine T2.
  • the second turbocharger includes a second compressor C2 and a second turbine T1.
  • turbomachines compressors and turbines
  • the working fluid air in the case of the compressor and gas in the case of the turbine, have a radial trajectory between the inlet and the outlet.
  • the turbochargers are preferably electrified, that is to say they each comprise an electric generator G1, G2.
  • it is an electric machine operating both in motor and generator mode, i.e. motor to drive and start the system; and generator to recover the energy.
  • the turbomachine device further includes an IC flow cooler.
  • the flow cooler IC is connected to the first compressor C1 and to the second compressor C2.
  • the turbomachine device further comprises a heat exchanger
  • the heat exchanger E1 is connected to the second compressor C2 and the fluid circuit F1 continues downstream.
  • the turbomachine device can be coupled to an exhaust outlet EL or to combustion chambers CC1, CC2 depending on the embodiment considered.
  • the device In the case of the exhaust line EL (first embodiment), it is connected to the heat exchanger E1 to use the heat.
  • the device then relates to a thermal recovery system for the heat of the exhaust line, using the thermal energy of the exhaust gases as a source of energy.
  • combustion chambers these are arranged downstream of the first heat exchanger E1 and between the turbines T1, T2.
  • the heat exchanger E1 is connected to the first combustion chamber CC1 upstream of the turbines T1, T2.
  • the first combustion chamber CC1 is also connected to the second turbine T1 in one variant, or to the first turbine T2 in another variant (not shown).
  • the second combustion chamber CC2 is connected to the two turbines
  • the device is configured to implement a flow of fluid F1 from the first compressor C1 to the cooler IC.
  • the flow F1 then passes from the cooler IC to the second compressor C2.
  • the flow F1 then passes from the second compressor C2 to the heat exchanger E1.
  • Flow F1 then passes from heat exchanger E1 (or recuperator RE) to turbines T1, T2.
  • the turbomachine device comprises at least one vehicle cabin conditioning section comprising at least one means for producing cold (E1 F ) and/or heat (E1c) on the basis of said flow F1 .
  • vehicle cabin conditioning section comprising at least one means for producing cold (E1 F ) and/or heat (E1c) on the basis of said flow F1 .
  • E1 F cold
  • E1c heat
  • the arrangement of the device according to the invention makes it possible to take advantage of the heat from the turbomachine and the exhaust line EL or the heat from the first turbine to produce cold and/or heat for the vehicle interior. This leads to a significant reduction in the vehicle's energy consumption.
  • the device makes it possible to produce thermal energy (hot and cold).
  • the IC cooler is used to evacuate a quantity of heat outside the cycle. This thermal energy is recovered at the level of the cooler IC and can be used to heat at the level of a hot exchanger (E1c).
  • the cabin conditioning section comprises a flow diversion F3 between the second compressor C2 and the first heat exchanger E1. Flow F3 from this bypass is used to produce cold in the passenger compartment. Downstream of the flow diversion F3 is provided a first cooling exchanger E1 F, a conditioning turbine T1 F connected downstream of the first cooling exchanger E1 F. In addition, a second cooling exchanger E2F for producing cabin cold is provided , connected downstream of the conditioning turbine T1 F.
  • FIG. 1 This makes it possible to limit the energy consumption for cooling the passenger compartment.
  • the device makes it possible to produce cold by recovering pressurized air at the outlet of the compressor C2, then cooling it via a cooler E1 F, and causing it to undergo a work-producing expansion.
  • the air leaving the turbine T1 F will thus cool, which will make it possible to produce cold at the level of a cold exchanger (E2F).
  • the conditioning turbine T1 F is a turbocharger turbine associated with a conditioning compressor C1 F .
  • the conditioning compressor C1 F is connected downstream either between the first compressor C1 and the cooler IC, or upstream of the first compressor C1.
  • filtered air filter f
  • the cabin conditioning section comprises a cabin conditioning circuit Ci 1 passing through the cooler IC.
  • the conditioning circuit Ci1 associated with a circulation pump P for a second flow of fluid F2.
  • the conditioning circuit Ci 1 comprises a heating exchanger E1c making it possible to produce the heat.
  • this makes it possible to take advantage of the heat exchanges of the IC cooler to produce heat for the passenger compartment.
  • the heat exchanger E1 or recuperator RE is connected to the output of the first turbine T2.
  • the cabin conditioning section comprises a flow diversion F3 between the second compressor C2 and the first heat exchanger E1.
  • Flow F3 then passes through the heat exchanger IC F before arriving downstream at a conditioning turbine T1 F then at a cooling exchanger E1 F for cold production.
  • This variant can be illustrated by figure 4.
  • the turbomachine device comprises a second heat exchanger E2 between the second and first turbines T1, T2.
  • the second heat exchanger E2 can be associated with at least one heating circuit Ci2 associated with the exhaust line EL as shown in Figures 2 and 3; or at least one heating circuit Ci2 comprising a solar concentrator SR as shown in FIG. 5.
  • the turbochargers are mounted on separate axes A1, A2.
  • the arrangement of the device according to the invention makes it possible to have an easily integrated architecture by separating the two turbochargers without requiring a common long axis with a common direction of rotation.
  • the fact of having two turbochargers each on its axis, instead of just one, makes it possible to reduce the length of the axis, and to have more flexibility with respect to the operating points as well as with respect to - vis-a-vis integration. This therefore makes it possible to reduce the complexity of the device, to reduce the manufacturing constraints of the system, to reduce the total mass of the machine and to minimize the total volume.
  • the first turbocharger forms a "low pressure” stage
  • the second turbocharger forms a "high pressure” stage.
  • the electric generators G1, G2 are on each of said axes. It is also possible to provide an additional generator G1 F on a shaft of the conditioning turbine T1 F .
  • turbocharger configurations make it possible to increase the recuperation efficiency (net electrical power divided by the energy available at the exhaust); to reduce the air flow, which reduces the mass and size of the components; to improve cold production, due to the use of greater expansion (the use of cooled compression) followed by cooling and expansion; the system allows efficiencies far superior to the known efficiencies of thermal recovery machines such as ORC (Organic Rankine Cycle), SRC (Steam Rankine Cycle), simple Brayton, Thermoacoustics, Thermoelectricity, Stirling, etc.
  • ORC Organic Rankine Cycle
  • SRC Steam Rankine Cycle
  • simple Brayton Thermoacoustics
  • Thermoelectricity Stirling, etc.
  • Another object of the invention relates to a motor vehicle comprising a turbomachine device as described above. It is in particular a vehicle with an electric traction motor, preferably of the hybrid type.
  • the invention makes it possible to produce electrical energy, hot thermal energy and cold thermal energy. It is compatible with electric hybrid (thermal engine combined with an electric motor).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

L'invention concerne un dispositif de turbomachine du type à cycle turbine à gaz avec compression refroidie, régénérateur et réchauffe durant la détente (IRReGT). L'invention concerne des applications pour véhicules automobiles. Le dispositif de turbomachine comprend un premier turbocompresseur (C1, T2), un deuxième turbocompresseur (C2, T1), deux chambres de combustion (CC1, CC2) ou une ligne d'échappement (EL), un refroidisseur (IC), et un échangeur thermique (E1).Le dispositif est configuré pour mettre en œuvre un flux de fluide (F1) du premier compresseur (C1) vers le refroidisseur (IC), vers le deuxième compresseur (C2), vers l'échangeur thermique (E1), vers les turbines (T1, T2).Selon un aspect, le dispositif comprend au moins une section de conditionnement d'habitacle de véhicule comprenant au moins un moyen de production de froid (E1F, E2F) et/ou chaleur (E1C) sur la base dudit flux (F1).

Description

DESCRIPTION
TITRE DE L’INVENTION : DISPOSITIF DE TURBOMACHINE TRITHERME ET VEHICULE COMPRENANT UN TEL DISPOSITIF
La présente invention revendique la priorité de la demande française N°2102250 déposée le 09.03.2021 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
L’invention se rapporte au domaine des dispositifs et systèmes de turbomachine du type à cycle Brayton avec compression refroidie, et réchauffe durant la détente. Ce type de turbomachine comprend généralement des turbines et compresseurs pouvant être associés à des chambres de combustion avec une récupération de chaleur. L’invention concerne en particulier des applications utiles pour des véhicules automobiles.
Le cycle turbogénérateur avec refroidisseur (« intercooler ), récupérateur et échangeur de chaleur de type IRReGT (« Intercooled Regenerative Reheat Gas Turbine ») est un cycle à fort potentiel. Ce cycle permet d’atteindre un rendement très important mais aussi une densité de puissance très élevée (travail net spécifique élevé).
Ce type de turbomachine utilise des pièces en mouvement et produit de la chaleur. L’invention vise à utiliser ces mouvements et chaleurs produites pour mettre en œuvre une production de chaleur et/ou de froid d’habitacle de véhicule automobile, ainsi qu’une génération d’énergie électrique.
Pour atteindre cet objectif, l’invention concerne un dispositif de turbomachine pour véhicule automobile, le dispositif comprenant
- un premier turbocompresseur comprenant un premier compresseur et une première turbine ;
- un deuxième turbocompresseur comprenant un deuxième compresseur et une deuxième turbine ;
- un refroidisseur de flux connecté au premier compresseur et au deuxième compresseur ; - un échangeur thermique connecté, de préférence à une sortie d’échappement et, au deuxième compresseur , lui-même étant connecté aux deux turbines ; le dispositif étant configuré pour mettre en œuvre un premier flux de fluide du premier compresseur vers le refroidisseur, vers le deuxième compresseur, vers l’échangeur thermique, vers les turbines, caractérisé en ce qu’il comprend au moins une section de conditionnement d’habitacle de véhicule comprenant au moins un moyen de production de froid et/ou chaleur sur la base dudit flux.
Avantageusement, l’agencement du dispositif selon l’invention permet de mettre à profit la chaleur de la turbomachine et de la ligne d’échappement pour réaliser une production de froid et/ou de chaleur pour l’habitacle du véhicule. Cela aboutit à une baisse significative de la consommation de carburant.
Selon d’autres aspects pris isolément, ou combinés selon toutes les combinaisons techniquement réalisables :
- la section de conditionnement d’habitacle comprend une dérivation de flux entre le deuxième compresseur et le premier échangeur thermique, un premier échangeur refroidissant, une turbine de conditionnement connectée en aval du premier échangeur refroidissant, un deuxième échangeur refroidissant de production de froid d’habitacle connecté en aval de la turbine de conditionnement ; et/ou - la turbine de conditionnement est une turbine de turbocompresseur associée à un compresseur de conditionnement connecté en aval soit entre le premier compresseur et le refroidisseur, soit en amont du le premier compresseur ; et/ou
- la section de conditionnement d’habitacle comprend un circuit de conditionnement d’habitacle passant par le refroidisseur associé à une pompe de circulation pour un deuxième flux de fluide, le circuit de conditionnement comportant un échangeur chauffant ; et/ou
- la section de conditionnement d’habitacle comprend une dérivation de flux entre le deuxième compresseur et le premier échangeur thermique, un échangeur de chaleur supplémentaire couplé au circuit de conditionnement et au flux issu de la dérivation, une turbine de conditionnement connectée en aval de l’échangeur de chaleur supplémentaire, un premier échangeur refroidissant de production de froid d’habitacle connecté en aval de la turbine de conditionnement ; et/ou - la turbine de conditionnement est une turbine de turbocompresseur associée à un compresseur de conditionnement connecté en aval soit entre le premier compresseur et le refroidisseur, soit en amont du le premier compresseur ; et/ou - le dispositif de turbomachine comprend un deuxième échangeur thermique entre les deuxième et première turbines, optionnellement associé à un circuit de chauffage comportant un concentrateur solaire ; et/ou
- les turbocompresseurs sont montés sur des axes séparés ; et/ou le dispositif comporte un générateur électrique sur chacun desdits axes. L’invention porte en outre sur un véhicule automobile comprenant un dispositif de turbomachine selon l’invention.
L’invention sera davantage détaillée par la description de modes de réalisation non limitatifs, et sur la base des figures annexées illustrant des variantes de l’invention, dans lesquelles : - [Fig.1 ] illustre un schéma fonctionnel d’un dispositif de turbomachine selon un premier mode de réalisation préféré de l’invention ;
- [Fig.2] illustre une première variante alternative du premier mode de réalisation ;
- [Fig.3] illustre une deuxième variante alternative du premier mode de réalisation ;
- [Fig.4] illustre un schéma fonctionnel d’un dispositif de turbomachine selon un deuxième mode de réalisation ;
- [Fig.5] illustre une variante alternative du deuxième mode de réalisation ; et
- [Fig.6] illustre schématiquement une vue de dessus d’un dispositif de turbomachine selon le deuxième mode de réalisation.
L’invention concerne un dispositif de turbomachine du type à cycle turbine à gaz avec compression refroidie, régénérateur et réchauffe durant la détente (IRReGT). L’invention concerne en particulier des applications utiles pour des véhicules automobiles. Le dispositif de turbomachine comprend un premier turbocompresseur et un deuxième turbocompresseur.
Le premier turbocompresseur comprend un premier compresseur C1 et une première turbine T2. Le deuxième turbocompresseur comprend un deuxième compresseur C2 et une deuxième turbine T1.
En particulier, il s’agit de turbomachines (compresseurs et turbines), de type radiales. Sur ce type de machine, le fluide de travail, air en cas du compresseur et gaz dans le cas de la turbine, ont une trajectoire radiale entre l’entrée et la sortie.
Les turbocompresseurs sont de préférence électrifiés, c’est-à-dire qu’ils comportent chacun un générateur électrique G1 , G2. Dans la variante préférée, il s’agit d’une machine électrique opérant à la fois en mode moteur et générateur, c’est-à-dire moteur pour entraîner et démarrer le système ; et générateur pour récupérer l’énergie.
Le dispositif de turbomachine comprend en outre un refroidisseur de flux IC. Le refroidisseur de flux IC est connecté au premier compresseur C1 et au deuxième compresseur C2. Le dispositif de turbomachine comprend en outre un échangeur thermique
E1. L’échangeur thermique E1 est connecté au deuxième compresseur C2 et le circuit du fluide F1 se poursuit en aval.
Le dispositif de turbomachine peut être couplé à une sortie d’échappement EL ou à des chambres de combustion CC1, CC2 selon le mode de réalisation considéré.
Dans le cas de la ligne d’échappement EL (premier mode de réalisation), celle-ci et connectée à l’échangeur thermique E1 pour en utiliser la chaleur. Ainsi, le dispositif concerne alors un système de récupération thermique de la chaleur de la ligne d’échappement, utilisant l’énergie thermique des gaz d’échappement comme source d’énergie.
Dans le cas des chambres de combustion (deuxième mode de réalisation), celles-ci sont disposées en aval du premier échangeur de chaleur E1 et entre les turbines T1, T2. En particulier, l’échangeur thermique E1 est connecté à la première chambre de combustion CC1 en amont des turbines T1, T2. La première chambre de combustion CC1 est en outre connectée à la deuxième turbine T1 dans une variante, ou à la première turbine T2 dans une autre variante (non représentée).
La deuxième chambre de combustion CC2 est connectée aux deux turbines
T1, T2. Le dispositif est configuré pour mettre en œuvre un flux de fluide F1 du premier compresseur C1 vers le refroidisseur IC. Le flux F1 passe ensuite du refroidisseur IC vers le deuxième compresseur C2. Le flux F1 passe ensuite du deuxième compresseur C2 vers l’échangeur thermique E1. Le flux F1 passe ensuite de l’échangeur thermique E1 (ou récupérateur RE) vers les turbines T1, T2.
Selon un aspect de l’invention, le dispositif de turbomachine comprend au moins une section de conditionnement d’habitacle de véhicule comprenant au moins un moyen de production de froid (E1F) et/ou chaleur (E1c) sur la base dudit flux F1. Ces productions de froid et chaleur d’habitacle sont illustrées dans les figures 1 à 5 par des larges flèches verticales orientées vers le bas.
Avantageusement, l’agencement du dispositif selon l’invention permet de mettre à profit la chaleur de la turbomachine et de la ligne d’échappement EL ou la chaleur issue de la première turbine pour réaliser une production de froid et/ou de chaleur pour l’habitacle du véhicule. Cela aboutit à une baisse significative de la consommation d’énergie du véhicule.
Ainsi, le dispositif permet de produire de l’énergie thermique (chaud et froid). En effet, le refroidisseur IC sert à évacuer une quantité de chaleur à l’extérieur du cycle. Cette énergie thermique est récupérée au niveau du refroidisseur IC et pourra être utilisée pour chauffer au niveau d’un échangeur chaud (E1c).
Selon une variante, la section de conditionnement d’habitacle comprend une dérivation de flux F3 entre le deuxième compresseur C2 et le premier échangeur thermique E1. Le flux F3 de cette dérivation est utilisé pour produire du froid dans l’habitacle. En aval de la dérivation de flux F3 est prévu un premier échangeur refroidissant E1 F, une turbine de conditionnement T1 F connectée en aval du premier échangeur refroidissant E1 F. En outre, un deuxième échangeur refroidissant E2F de production de froid d’habitacle est prévu, connecté en aval de la turbine de conditionnement T1 F. Cette variante peut être illustrée par la figure 1. Cela permet de limiter la consommation énergétique pour rafraîchir l’habitacle.
Ainsi, le dispositif permet de produire du froid en récupérant de l’air sous pression en sortie du compresseur C2, puis le refroidir via un refroidisseur E1 F, et le faire subir une détente productrice de travail. L’air en sortie de la turbine T1 F va ainsi refroidir, ce qui va permettre de produire du froid au niveau d’un échangeur froid (E2F).
Selon une variante, la turbine de conditionnement T1F est une turbine de turbocompresseur associée à un compresseur de conditionnement C1F. Le compresseur de conditionnement C1F est connecté en aval soit entre le premier compresseur C1 et le refroidisseur IC, soit en amont du le premier compresseur C1. Ainsi, de l’air de préférence filtré (filtre f) passe par le compresseur de conditionnement C1F et peut être réinjecté dans le circuit de F1.
Selon une variante, la section de conditionnement d’habitacle comprend un circuit de conditionnement d’habitacle Ci 1 passant par le refroidisseur IC. Le circuit de conditionnement Ci1 associé à une pompe de circulation P pour un deuxième flux de fluide F2. Le circuit de conditionnement Ci 1 comporte un échangeur chauffant E1c permettant de produire la chaleur. Avantageusement, cela permet de mettre à profit les échanges de chaleur du refroidisseur IC pour produire de la chaleur pour l’habitacle.
Ainsi, faire circuler le fluide F2 en utilisant la pompe P, permet de ramener des calories du refroidisseur IC pour les rejeter à l’extérieur au niveau de l’échangeur chaud (E1c), produisant ainsi du chaud. Cela est bénéfique surtout en temps froid. En outre, cela permet de ne pas dépendre d’une récupération de calories de moteur (souvent récupérées sur le circuit eau lorsqu’il fait froid). Ainsi cela permet de réduire la consommation électrique nécessaire pour activer les résistances électriques. Cette variante permet de récupérer l’énergie du refroidisseur IC sans générer de perte de charge sur le circuit échappement contrairement à un dispositif d’échangeur de chaleur à l’échappement de type RTE (Récupération Thermique Echappement) de l’art antérieur.
Dans un deuxième mode de réalisation, l’échangeur thermique E1 ou récupérateur RE est connecté à la sortie de la première turbine T2.
Selon une variante, la section de conditionnement d’habitacle comprend une dérivation de flux F3 entre le deuxième compresseur C2 et le premier échangeur thermique E1. Le flux F3 passe ensuite dans l’échangeur de chaleur ICF avant d’arriver en aval à une turbine de conditionnement T1F puis à un échangeur refroidissant E1F de production de froid. Cette variante peut être illustrée par la figure 4.
On peut prévoir un échangeur de chaleur ICF supplémentaire couplé au circuit de conditionnement Ci 1 et au flux F3 issu de la dérivation ou un récupérateur RE2 supplémentaire couplé au circuit de conditionnement Ci1 et au flux F1 issu de la première turbine T2.
Selon une variante, le dispositif de turbomachine comprend un deuxième échangeur thermique E2 entre les deuxièmes et premières turbines T1, T2. Selon le mode de réalisation envisagé, le deuxième échangeur thermique E2 peut être associé à au moins un circuit de chauffage Ci2 associé à la ligne d’échappement EL comme l’illustre les figures 2 et 3 ; ou au moins un circuit de chauffage Ci2 comportant un concentrateur solaire SR comme l’illustre la figure 5. Selon un aspect de l’invention, les turbocompresseurs sont montés sur des axes A1 , A2 séparés.
Avantageusement, l’agencement du dispositif selon l’invention est permet d’avoir une architecture facilement intégrable en séparant les deux turbocompresseurs sans nécessiter d’avoir un long axe commun avec un sens de rotation commun. Le fait d’avoir deux turbocompresseurs chacun sur son axe, au lieu d’un seul, permet de réduire la longueur de l’axe, et d’avoir plus de flexibilités vis-à-vis des points de fonctionnement ainsi que vis-à-vis de l’intégration. Cela permet donc de réduire la complexité du dispositif, de réduire les contraintes de fabrication du système, de réduire la masse totale de la machine et de minimiser le volume total.
Ces avantages sont bénéfiques pour optimiser un turbogénérateur conçu pour être intégré dans une chaîne de traction automobile.
En particulier, le premier turbocompresseur forme un étage « basse pression , et le deuxième turbocompresseur forme un étage « haute pression Selon la variante désirée, on peut également coupler le deuxième compresseur C2 (compresseur HP) à la première turbine T2 (turbine BP) en fonction de l’équilibrage des puissances. Selon une variante, les générateurs électriques G1, G2 sont sur chacun desdits axes. On peut en outre prévoir un générateur supplémentaire G1F sur un axe de turbine de conditionnement T1F.
Les configurations de turbocompresseur, et l’architecture mentionnée permettent d’augmenter le rendement de récupération (puissance électrique nette divisée par l’énergie disponible à l’échappement) ; de diminuer le débit d’air ce qui permet de réduire la masse et la taille des composants ; d’améliorer la production de froid, du fait de l’utilisation d’une détente plus importante (l’utilisation d’une compression refroidie) suivi d’un refroidissement et d’une détente ; le système permet des rendements largement supérieurs aux rendements connus des machines de récupération thermique type ORC (Organique Rankine Cycle), SRC (Steam Rankine Cycle), Brayton simple, Thermoacoustique, Thermoélectricité, Stirling...
Un autre objet de l’invention a trait à un véhicule automobile comprenant un dispositif de turbomachine tel que décrit précédemment. Il s’agit en particulier d’un véhicule à moteur de traction électrique de préférence de type hybride.
L’invention permet de produire de l’énergie électrique, de l’énergie thermique chaud et de l’énergie thermique froid . Elle est compatible avec hybride électrique (moteur thermique associé à un moteur électrique).

Claims

REVENDICATIONS
1. Dispositif de turbomachine pour véhicule automobile, le dispositif comprenant - un premier turbocompresseur comprenant un premier compresseur (C1 ) et une première turbine (T2) ;
- un deuxième turbocompresseur comprenant un deuxième compresseur (C2) et une deuxième turbine (T1) ;
- un refroidisseur (IC) de flux connecté au premier compresseur (C1 ) et au deuxième compresseur (C2) ;
- un échangeur thermique (E1) connecté, de préférence à une sortie d’échappement (EL) et, au deuxième compresseur (C2), lui-même étant connecté aux deux turbines (T1, T2) ; le dispositif étant configuré pour mettre en œuvre un premier flux de fluide (F1) du premier compresseur (C1) vers le refroidisseur (IC), vers le deuxième compresseur (C2), vers l’échangeur thermique (E1), vers les turbines (T1, T2), caractérisé en ce qu’il comprend au moins une section de conditionnement d’habitacle de véhicule comprenant au moins un moyen de production de froid (E1F, E2F) et/ou chaleur (E1c) sur la base dudit flux (F1).
2. Dispositif de turbomachine selon la revendication 1, caractérisé en ce que la section de conditionnement d’habitacle comprend une dérivation de flux (F3) entre le deuxième compresseur (C2) et le premier échangeur thermique (E1 ), un premier échangeur refroidissant (E1 F), une turbine de conditionnement (T1F) connectée en aval du premier échangeur refroidissant (E1 F), un deuxième échangeur refroidissant (E2F) de production de froid d’habitacle connecté en aval de la turbine de conditionnement (T1F).
3. Dispositif de turbomachine selon la revendication 2, caractérisé en ce que la turbine de conditionnement (T1F) est une turbine de turbocompresseur associée à un compresseur de conditionnement (C1F) connecté en aval soit entre le premier compresseur (C1 ) et le refroidisseur (IC), soit en amont du le premier compresseur (C1).
4. Dispositif de turbomachine selon l’une quelconque des revendications 1 à 3, caractérisé en ce que la section de conditionnement d’habitacle comprend un circuit de conditionnement d’habitacle (Ci1 ) passant par le refroidisseur (IC) associé à une pompe de circulation (P) pour un deuxième flux de fluide (F2), le circuit de conditionnement (Ci1 ) comportant un échangeur chauffant (E1c).
5. Dispositif de turbomachine selon la revendication 4, caractérisé en ce que la section de conditionnement d’habitacle comprend une dérivation de flux (F3) entre le deuxième compresseur (C2) et le premier échangeur thermique (E1), un échangeur de chaleur (ICF) supplémentaire couplé au circuit de conditionnement (Ci1) et au flux (F3) issu de la dérivation, une turbine de conditionnement (T1F) connectée en aval de l’échangeur de chaleur (ICF) supplémentaire, un premier échangeur refroidissant (E1F) de production de froid d’habitacle connecté en aval de la turbine de conditionnement (T1F).
6. Dispositif de turbomachine selon la revendication 5, caractérisé en ce que la turbine de conditionnement (T1F) est une turbine de turbocompresseur associée à un compresseur de conditionnement (C1F) connecté en aval soit entre le premier compresseur (C1 ) et le refroidisseur (IC), soit en amont du premier compresseur (C1 ).
7. Dispositif de turbomachine selon l’une quelconque des revendications 1 à 6, comprenant un deuxième échangeur thermique (E2) entre les deuxième et première turbines (T1, T2), optionnellement associé à un circuit de chauffage comportant un concentrateur solaire.
8. Dispositif de turbomachine selon l’une quelconque des revendications 1 à 7, dans lequel les turbocompresseurs sont montés sur des axes (A1, A2) séparés.
9. Dispositif de turbomachine selon la revendication 8, comportant un générateur électrique (G1, G2) sur chacun desdits axes (A1, A2).
10. Véhicule automobile comprenant un dispositif de turbomachine selon l’une quelconque des revendications 1 à 9.
EP22708582.6A 2021-03-09 2022-02-01 Dispositif de turbomachine tritherme et vehicule comprenant un tel dispositif Pending EP4305282A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2102250A FR3120571B1 (fr) 2021-03-09 2021-03-09 Dispositif de turbomachine tritherme et vehicule comprenant un tel dispositif
PCT/FR2022/050170 WO2022189712A1 (fr) 2021-03-09 2022-02-01 Dispositif de turbomachine tritherme et vehicule comprenant un tel dispositif

Publications (1)

Publication Number Publication Date
EP4305282A1 true EP4305282A1 (fr) 2024-01-17

Family

ID=75339964

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22708582.6A Pending EP4305282A1 (fr) 2021-03-09 2022-02-01 Dispositif de turbomachine tritherme et vehicule comprenant un tel dispositif

Country Status (4)

Country Link
US (1) US20240149644A1 (fr)
EP (1) EP4305282A1 (fr)
FR (1) FR3120571B1 (fr)
WO (1) WO2022189712A1 (fr)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1358987A (en) 1970-08-13 1974-07-03 Lamber Ind Research Ass Fibrous material
US4751814A (en) * 1985-06-21 1988-06-21 General Electric Company Air cycle thermodynamic conversion system
DD296545A5 (de) * 1990-07-05 1991-12-05 Hochschule Fuer Verkehrswesen "Friedrich List" Dresden Buero Fuer Schutzrechte,De Kaltluftkaeltemaschine
US6606864B2 (en) * 2001-02-13 2003-08-19 Robin Mackay Advanced multi pressure mode gas turbine
ITRM20070023A1 (it) * 2007-01-18 2008-07-19 Marcello Palitto Sistema di turbine a gas operante in circuito aperto
WO2013059456A1 (fr) * 2011-10-18 2013-04-25 Icr Turbine Engine Corporation Configurations d'axe de composant de moteur à turbine à gaz
FR3032227A1 (fr) * 2015-02-02 2016-08-05 Peugeot Citroen Automobiles Sa Groupe motopropulseur a recuperation d'energie thermique
DE102016213590A1 (de) * 2016-07-25 2018-01-25 Ford Global Technologies, Llc Brennkraftmaschine mit Ladeluftkühlung durch Klimaanlagensystem

Also Published As

Publication number Publication date
WO2022189712A1 (fr) 2022-09-15
FR3120571B1 (fr) 2024-03-01
US20240149644A1 (en) 2024-05-09
FR3120571A1 (fr) 2022-09-16

Similar Documents

Publication Publication Date Title
US6672063B1 (en) Reciprocating hot air bottom cycle engine
WO2005103453A1 (fr) Systeme pour recuperer l’energie thermique d’un vehicule a moteur thermique
EP0038232A2 (fr) Procédé et système de génération de puissance par moteur à combustion interne suralimenté
EP2229513A2 (fr) Moteur a combustion interne et vehicule equipe d'un tel moteur
JP2012007500A (ja) 内燃機関の排気熱回収装置
US20140144136A1 (en) System and method for waste heat recovery for internal combustion engines
WO2013167932A1 (fr) Agencement de moteur à combustion interne de camion, comprenant un système de récupération de chaleur destiné à comprimer l'air d'admission
JP2013032751A (ja) エンジンシステム
EP4305282A1 (fr) Dispositif de turbomachine tritherme et vehicule comprenant un tel dispositif
US10358946B2 (en) Expansion apparatus for recovering waste heat and waste heat recovery system including the same
WO2011039447A1 (fr) Systeme et procede de controle de la temperature de l'habitacle d'un vehicule automobile
WO2022180311A1 (fr) Dispositif de turbomachine a generateur systeme d'alimentation et vehicule comprenant un tel dispositif
WO2022171394A1 (fr) Dispositif et procédé de réfrigération ou de liquéfaction d'un fluide
FR3070725B1 (fr) Turbopompe cinetique avec un dispositif de variation de vitesse pour un circuit ferme, en particulier de type a cycle de rankine, notamment pour un vehicule automobile
FR3066227B1 (fr) Moteur a combustion interne avec compression isotherme haute pression d’un flux d’air admis
JP2017120068A (ja) 廃熱回収装置
WO2024100332A1 (fr) Vehicule automobile comprenant des turbocompresseurs multiaxiaux couples a un generateur electrique, procede sur la base d'un tel vehicule
TR2022010075A1 (tr) Turbo maki̇na
FR3077122A1 (fr) Systeme a cycle thermodynamique de rankine integre a une boucle de climatisation pour vehicule automobile
WO2019115122A1 (fr) Ensemble de turbopompe electrifiee pour un circuit ferme, en particulier de type a cycle de rankine, comportant un refroidissement integre
FR2926600A1 (fr) Moteur a combustion interne et vehicule equipe d'un tel moteur
FR2926601A1 (fr) Moteur a combustion interne et vehicule equipe d'un tel moteur
BOUDIGUES et al. Modelling of waste heat recovery within thermal machines
GB2544051A (en) An energy recovery system for an internal combustion engine
FR3057305A1 (fr) Ensemble de motorisation a boucle de rankine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR