EP2483092A1 - Systeme et procede de controle de la temperature de l'habitacle d'un vehicule automobile - Google Patents

Systeme et procede de controle de la temperature de l'habitacle d'un vehicule automobile

Info

Publication number
EP2483092A1
EP2483092A1 EP10770602A EP10770602A EP2483092A1 EP 2483092 A1 EP2483092 A1 EP 2483092A1 EP 10770602 A EP10770602 A EP 10770602A EP 10770602 A EP10770602 A EP 10770602A EP 2483092 A1 EP2483092 A1 EP 2483092A1
Authority
EP
European Patent Office
Prior art keywords
circuit
cooling
thermal energy
engine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10770602A
Other languages
German (de)
English (en)
Inventor
Pascal Archer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2483092A1 publication Critical patent/EP2483092A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/025Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from both the cooling liquid and the exhaust gases of the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a system and a method for controlling the temperature of the passenger compartment of a motor vehicle.
  • US patent application US 2005/0229595 discloses a system comprising two Rankine cycles, but these do not provide sufficient mechanical efficiency.
  • JP 20080389 16 discloses a Rankine cycle coupled between the exhaust line of the engine gases and an exchanger which communicates with the engine cooling circuit. But this cycle does not allow sufficient mechanical efficiency.
  • One of the aims of the invention is to recover the thermal energy recovered using a system operating according to a Rankine cycle.
  • Another object of the invention is to improve the efficiency of the system operating according to a Rankine cycle.
  • Another object of the invention is to optionally transfer, as required, a portion of the thermal energy recovered between different vehicle systems, such as a system for controlling the temperature of the passenger compartment of a motor vehicle.
  • Another object of the invention is to also provide a system for increasing the temperature of the engine during the starting phase of the engine.
  • a system for controlling the temperature of the passenger compartment of a motor vehicle equipped with an internal combustion engine comprising a first cooling circuit capable of circulating a cooling liquid. in the engine and in a device for regulating the temperature of the passenger compartment, and a circuit for recovering at least a portion of the thermal energy of the exhaust gases with transformation into mechanical energy.
  • This system comprises a second cooling circuit capable of circulating a cooling liquid at a temperature below the liquid of the first cooling circuit and controlled distribution means capable of communicating the thermal energy recovery circuit with the first or the second cooling circuit. the second cooling circuit.
  • the efficiency of the thermal energy recovery circuit can be increased when the thermal energy recovery circuit is brought into communication with the coolant of the second cooling circuit.
  • the first and second cooling circuits have a common circuit and the controlled distribution means comprise two solenoid valves mounted respectively upstream and downstream of said common circuit.
  • this system comprises an air conditioning circuit capable of circulating a cooling fluid in the device for regulating the temperature of the passenger compartment, the air conditioning circuit comprising a heat exchanger coupled to the second cooling circuit.
  • the second cooling circuit makes it possible to transfer at least a portion of the thermal energy of the exhaust gases of a thermal energy recovery system to an air conditioning circuit of the passenger compartment of the vehicle.
  • the thermal energy recovery circuit includes a recovery heat exchanger for heating the coolant of the first or second cooling circuit, the recovery heat exchanger being located downstream of the heat exchanger of the air conditioning circuit with respect to the coolant flow direction of the second cooling circuit.
  • the heat exchanger of the air conditioning circuit receives the liquid from the second cooling circuit when the latter is the coldest to improve the efficiency of the air conditioning system and to promote the comfort of the passengers of the vehicle.
  • the thermal energy recovery circuit comprises a turbine coupled, via a clutch, to a torque transmission shaft of the engine.
  • the thermal energy recovery circuit comprises a turbine coupled via a clutch to an alternator which is coupled to a torque transmission shaft of the engine.
  • the air conditioning circuit may also include a compressor coupled, through a second clutch, to the engine torque transmission shaft.
  • the air conditioning circuit may further include a coolant flow reversal valve.
  • the air conditioning circuit can be transformed into a heat pump system, allowing, in particular, to improve the efficiency of the thermal energy recovery circuit.
  • a method for controlling the temperature of the passenger compartment of a motor vehicle equipped with an internal combustion engine, at least one engine cooling circuit able to regulate the temperature of the passenger compartment and a circuit for recovering at least a portion of the thermal energy of the exhaust gases with transformation into mechanical energy is provided.
  • the recovered thermal energy is distributed with the engine cooling circuit or not.
  • this method comprises an air conditioning circuit and in which the recovered thermal energy is distributed with the engine cooling circuit and / or the air conditioning circuit.
  • FIG. 1 schematically illustrates a system for controlling the temperature of the passenger compartment of a motor vehicle
  • FIG. 3 schematically illustrates another embodiment of the coupling of the engine torque transmission shaft.
  • FIG. 1 diagrammatically shows a control system 1 for the temperature of the passenger compartment of a motor vehicle equipped with an internal combustion engine 2, which may be of the diesel type. or gasoline, provided with a plurality of cylinders 3 and which is adapted to transmit a torque to a transmission shaft 4 for, in particular, driving the wheels of the vehicle.
  • an internal combustion engine 2 which may be of the diesel type. or gasoline, provided with a plurality of cylinders 3 and which is adapted to transmit a torque to a transmission shaft 4 for, in particular, driving the wheels of the vehicle.
  • FIG. 1 also illustrates a gas intake circuit 5 in the engine 2, a thermal energy recovery circuit 6, an air conditioning circuit 7, a first and second cooling circuit, respectively referenced 8 and 9.
  • the gas intake circuit 5 makes it possible to supply the combustion chambers of the engine 2 with fresh air 10.
  • a first part of the fresh air ambient air 10 passes through an air filter 1 1 and then through a first intake duct 12, to be then directed to a compressor 13 of a turbocharger 14.
  • the compressor 13 is connected by a drive shaft 15 to a turbine 16.
  • the gases thus compressed are directed to a cooling heat exchanger 17 before entering the combustion chambers of the engine 2 by a second intake duct 18 and an intake manifold 19.
  • the high temperature exhaust gases successively pass through an exhaust manifold 20, an exhaust duct 21, the turbine 16 of the turbocharger 14 and an exhaust line 22.
  • the gas intake circuit 5 may comprise one or two partial exhaust gas recirculation circuits 23, 24 for withdrawing a portion of the exhaust gas for mixing with the fresh air admitted to it. change the temperature and composition.
  • a partial exhaust gas recirculation circuit 23, 24 noted EGR circuit (“Exhaust Gas Recirculation” in English), may be an EGR circuit operating at high pressure 23 or low pressure 24. These EGR circuits at high or at low pressure 23, 24 make it possible to reduce the pollutant emission rate.
  • the high pressure EGR circuit 23 is stitched on the exhaust manifold 20 and on the intake manifold 19.
  • the gas intake circuit 5 may comprise a low pressure EGR circuit 24 stitched onto the exhaust manifold.
  • Each EGR circuit is generally provided with a valve 25 and a cooler 26 which may be equipped with a bypass bypass for uncooled mode of partially recycled exhaust gases.
  • an exhaust gas treatment system 27 which may comprise a particulate filter, a catalytic exhaust system, a nitrogen oxide trap, or a combination of these elements. .
  • these gases pass through a heat exchanger 28 forming part of the thermal energy recovery circuit 6, and are then discharged into the atmosphere via the exhaust duct. 29.
  • a valve Vr can be mounted upstream of the heat exchanger 28 to divert all or a portion of the exhaust gas directly into the atmosphere, via a bypass circuit 22a, without these derivative gases passing through the heat exchanger 28 of the thermal energy recovery circuit 6.
  • the valve Vr can take two positions, a first position 1 - 3 to pass the exhaust gas into the first heat exchanger. heat 28, and a second position 2-3 to pass the exhaust gas into the bypass circuit 22a.
  • the thermal energy recovery circuit 6 is intended to recover a portion of the thermal energy of the exhaust gas to transform it into mechanical energy using, for example, a Rankine cycle.
  • a working fluid that can pass from a liquid state to a gaseous state.
  • This working fluid may be water, ethanol, N-pentane, an organic fluid, or any other appropriate fluid changing phase as a function of temperature and pressure variations in the circuit 6.
  • the thermal energy recovery circuit 6 comprises a pump Pr, the heat exchanger 28 communicating with the exhaust gas, an expansion turbine 30 provided with a transmission shaft 31, an internal heat exchanger 32, a recovery heat exchanger 33 and a protection member 34 of the pump Pr.
  • the pump Pr activates the working fluid in the liquid state towards the heat exchanger 28.
  • this heat exchanger 28 is an evaporator for recovering part of the thermal energy of the exhaust gases in order to transform the working fluid into gas.
  • the gas generated under pressure is expanded in the expansion turbine 30 to convert the recovered thermal energy into mechanical energy. This mechanical energy is then transmitted in the form of a torque to the transmission shaft 31 of the expansion turbine 30.
  • the fluid thus expanded, still sufficiently hot, then passes through the internal heat exchanger 32 to cool again and for preheating the working fluid in the liquid state at the outlet of the pump Pr.
  • the working fluid then passes through the recovery heat exchanger 33, which may be a condenser, to cool the working fluid so that it returns to the liquid state at the inlet of the pump Pr.
  • This heat exchanger recovery 33 is in communication with the first 8 or the second 9 cooling circuit, and recovers a portion of the thermal energy of the working fluid to heat the cooling liquid flowing in one of the cooling circuits 8 or 9.
  • the protective member 34 may be a liquid / gas separator to protect the pump Pr during transient phases of transformation of the working fluid from the gaseous state to the liquid state.
  • the air conditioning circuit 7 is intended to cool the passenger compartment of the vehicle.
  • This air conditioning circuit 7 comprises a compressor 40, a heat exchanger 41, an expansion member 42, a heat exchanger 43 and a protection member 44 of the compressor 40.
  • the compressor 40 raises the pressure of a cooling fluid which is in the gaseous state.
  • This fluid is then partly cooled in the heat exchanger 41, which can be a condenser.
  • the fluid passes through the expansion member 42, which may be a static expander, to provide at its output a cooling fluid at low temperature.
  • the low temperature coolant passes into the heat exchanger 43, for example an evaporator, to cool the ambient air towards the passenger compartment.
  • the coolant returns to the compressor 40.
  • the first cooling circuit 8 makes it possible to cool the engine 2 by circulating a cooling liquid at a temperature of between -20 ° C. and 90 ° C.
  • the first cooling circuit 8 is also called high temperature cooling circuit. Note that when the engine 2 reaches a normal speed, that is to say after the starting phase of the engine 2, the temperature of the engine 2 is regulated around 90 ° C.
  • This first cooling circuit 8 comprises a pump P I, a thermostatic valve 50 provided with a thermostat, a high temperature radiator 5 1, a protection member 52 of the pump P I and a heat exchanger 53.
  • the pump P I moves the coolant towards the engine 2, said coolant passing into the engine 2 to cool.
  • this heated coolant circulates in parallel in a first loop A in the direction of the high temperature radiator 51 and in a second loop B in the direction of the heat exchanger 53.
  • a first portion of the coolant passes through the thermostatic valve 50.
  • the thermostatic valve 50 allows, during the starting phase of the engine 2, to cut the flow rate in the high temperature radiator 51 to increase the temperature engine 2 and, when the engine is in normal operation, to regulate its temperature around its normal operating temperature of 90 ° C. Then, the coolant passes into the high temperature radiator 51 where it is cooled by the ambient air 10. At the outlet of the high temperature radiator 51, the coolant returns to the inlet of the pump P l.
  • the protection member 52 of the pump P I may be a jar which allows to degas a portion of the coolant flowing in the first loop A to protect the pump P l.
  • a second portion of the coolant passes into the heat exchanger 53 to heat the ambient air 10 directed to the passenger compartment of the vehicle, then the coolant exits the heat exchanger 53 to return to the pump inlet Pl.
  • a part of the heated coolant at the outlet of the engine 2 can also pass into a third loop C, also referred to as a "common circuit", in the direction of the recovery heat exchanger 33.
  • the coolant returns to the input of the pump PI.
  • the second cooling circuit 9 makes it possible to cool the heat exchanger 41 of the air conditioning circuit 7 and the recovery heat exchanger 33 by circulating a cooling liquid at a temperature of between -20 ° C. and 50 ° C.
  • the second cooling circuit 9 is also called low temperature cooling circuit. Note that when the engine 2 reaches a normal speed, that is to say after the starting phase of the engine 2, the temperature of the liquid in the low temperature cooling circuit is about 50 ° C, it is at a temperature lower than that of the coolant of the first cooling circuit 8.
  • the second cooling circuit 9 comprises a pump P2 and a low temperature radiator 54.
  • the pump P2 moves the coolant towards the heat exchanger 41 of the air conditioning circuit 7, then towards the heat exchanger.
  • the coolant passes through the common circuit C.
  • a second portion of the coolant circulating in the second cooling circuit cooling 9 can also pass into a bypass circuit 8a, in which the coolant does not pass through the recovery heat exchanger 33.
  • the control system 1 comprises a first and a second controlled distribution means VI and V2 located on either side of the recovery heat exchanger 33 to control the circulation of the cooling liquids, coming respectively from the first and second circuits 8, 9 in the common circuit C.
  • the distribution means VI and V2 are controlled so as to put in communication only one of the cooling circuits with the working fluid of the thermal energy recovery circuit 6.
  • the distribution means V I, V 2 are two solenoid valves.
  • the first solenoid valve VI can take two positions, a first position 2-3 to pass the coolant of the first cooling circuit 8 in the common circuit C, and a second position 1 -3 to pass the coolant of the second cooling circuit 9 in the common circuit C.
  • the second solenoid valve V2 can take two positions, a first position 1 -3 to pass the coolant from the second cooling circuit 9 in the bypass circuit 8a, and a second position 2-3 to pass the coolant of the second cooling circuit 9 in the common circuit C, and thus passing the cooling liquid from the second cooling circuit 9 into the recovery heat exchanger 33.
  • the control system 1 further comprises a device 60 for regulating the temperature of the passenger compartment.
  • This control device 60 comprises the heat exchangers 43, 53, respectively of the air conditioning circuit 7 and the first cooling circuit 8, a fan 61 and an air distribution flap 62.
  • the fan 61 makes it possible to draw the ambient air 10 towards the passenger compartment.
  • the air distribution flap 62 can take two distinct stop positions and a plurality of intermediate positions between said two stop positions. In a first abutment position, solid line in Figure 1, the ambient air 10a through the heat exchangers 43, 53 before being brought into the passenger compartment. When the air distribution flap 62 is in this first position, it is said that it is in the heating position, because the ambient air passes through the heat exchanger 53 of the high temperature cooling circuit 8 to heat the passenger compartment. .
  • the ambient air 10b passes through the heat exchanger 43 of the air conditioning circuit 7 only before being brought into the passenger compartment.
  • the engine is in the starting phase: in this case it is important to increase the temperature of the engine 2 for a short time to a minimum in order to limit fuel consumption and polluting emissions;
  • the engine has reached its normal speed: in this case the temperature of the engine 2 is regulated around around 90 ° C., in particular using the thermostatic valve 50.
  • the heat of the coolant of the high temperature cooling circuit 8 is used via the temperature control device 60.
  • the heating of the passenger compartment slows down the increase in the temperature. engine temperature 2 and may be insufficient to ensure comfort in the cabin when the ambient air temperature is very low. In both cases, a contribution of energy additional thermal is required, this can be achieved using the recovery heat exchanger 33.
  • temperate phase in this case the air conditioning circuit 7 and the heating of the cabin can be used to demist the windows or the windshield;
  • the first table below describes the operation of the actuators of the control system 1 when the engine is in the starting phase:
  • the pump P I of the first cooling circuit 8 is running.
  • the pump Pr of the thermal energy recovery circuit 6 operates as soon as the temperature of the exhaust gas is higher than 250 ° C.
  • the solenoid valves V I and V2 make it possible to put the thermal energy recovery circuit 6 in communication with the first cooling circuit 8 to increase the temperature of the coolant of the first cooling circuit 8, and therefore the temperature of the engine 2.
  • the cabin is heated and the air conditioning circuit 7 is stopped.
  • the pump P2 of the second cooling circuit 9 is stopped.
  • the expansion turbine 30 of the thermal energy recovery circuit 6 is coupled to the transmission shaft 4 of the engine 2, which generates an additional torque to the engine 2.
  • the air distribution flap 62 is in the heating position to warm the cabin.
  • the thermal energy recovery circuit 6 accelerates the temperature rise of the engine 2 and increases the temperature of the passenger compartment.
  • the operation of the control system 1 is similar to that of the winter phase with the fan 61 stopped and the air distribution flap 62 in the cooling position.
  • the thermal energy recovery circuit 6 accelerates the temperature rise of the engine 2 and provides additional torque to the engine 2.
  • the summer phase it stops the heating of the passenger compartment and the air conditioning circuit 7 walk.
  • the pump P2 of the second cooling circuit 9 operates, the coolant of the second cooling circuit 9 is cooled in the low-temperature radiator 54, then flows in the heat exchanger 41 of the air conditioning circuit 7, to cool the cooling circuit. air conditioning 7, then flows into the bypass circuit 8a.
  • the coolant of the second cooling circuit 9 does not pass into the recovery heat exchanger 33 so as not to heat said coolant downstream of the air conditioning circuit 7.
  • the thermal energy recovery circuit 6 accelerates the temperature rise of the engine 2 and provides an additional torque to the engine 2.
  • the operation of the control system 1 is similar to that of the summer phase with the fan 61 running and the air distribution flap 62 in the heating position.
  • the thermal energy recovery circuit 6 accelerates the temperature rise of the engine 2, provides an additional torque to the engine 2 and supplies heat to the regulation device 60 to dry the air 10 from the passenger compartment .
  • the pump P I of the first cooling circuit 8 is running.
  • the pump Pr of the thermal energy recovery circuit 6 operates as soon as the temperature of the exhaust gas is higher than 250 ° C.
  • the cabin is heated and the air conditioning circuit 7 is stopped.
  • the expansion turbine 30 of the thermal energy recovery circuit 6 is coupled to the transmission shaft 4 of the engine 2, which generates an additional torque to the engine 2.
  • the air distribution flap 62 is in the heating position to warm the cabin.
  • a cabin temperature setpoint is lower than the coolant temperature of the first cooling circuit 8.
  • This temperature setpoint is a desired temperature that can be selected manually by the driver, or calculated in a manner automatic by a control computer embedded in the vehicle.
  • the first solenoid valve V I is in position 1 - 3, noted in bold in the table above, and the second solenoid valve V2 is in position 2-3.
  • the engine 2 alone ensures the heating of the passenger compartment.
  • the pump P2 of the second cooling circuit 9 works to cool the thermal energy recovery circuit 6. In this first mode, the efficiency of the thermal energy recovery circuit 6 is maximum.
  • the temperature setpoint of the passenger compartment is higher than the coolant temperature of the first cooling circuit 8.
  • the first solenoid valve VI is in position 2-3 and the second solenoid valve V2 is in position 1 -3.
  • the thermal energy recovery circuit 6 provides additional thermal energy to that generated by the motor 2.
  • the pump P2 of the second cooling circuit 9 is stopped and the The thermal energy recovery circuit 6 is cooled by the coolant of the first cooling circuit 8.
  • the efficiency of the thermal energy recovery circuit 6 is degraded to the detriment of the comfort of the passenger compartment.
  • the cooling liquid of the second cooling circuit 9 cools the thermal energy recovery circuit 6.
  • the thermal energy recovery circuit 6 provides additional torque to the engine 2.
  • the summer phase it stops the heating of the passenger compartment and the air conditioning circuit 7 running.
  • the pump P2 of the second cooling circuit 9 operates, the coolant of the second cooling circuit 9 is cooled in the low-temperature radiator 54, then flows into the heat exchanger 41 of the air conditioning circuit 7, to cool the cooling circuit. 7, then flows into the recovery heat exchanger 33 to cool the thermal energy recovery circuit 6.
  • the recovery heat exchanger 33 of the thermal energy recovery circuit 6 is located downstream of the heat recovery circuit. the heat exchanger 41 of the air conditioning circuit 7, with respect to the direction of flow of the coolant of the second cooling circuit 9.
  • the heat exchanger 41 of the air conditioning circuit 7 receives the coolant the second cooling circuit 9 in its coldest state, that is to say at the outlet of the low-temperature radiator 54, to promote cooling of the air 10 of the passenger compartment.
  • the second solenoid valve V2 makes it possible to partially or completely bypass the recovery heat exchanger 33 to degrade the efficiency of the thermal energy recovery circuit 6 and to promote the cooling of the air of the passenger compartment.
  • control system 1 During the defrosting phase, the operation of the control system 1 is similar to that of the summer phase with the fan 61 running and the air distribution flap 62 in the heating position.
  • FIG. 2 diagrammatically shows an embodiment of the coupling of the transmission shaft 4 of the torque of the motor 2. This figure also shows some of the elements described in the previous figure.
  • the mechanical energy supplied by the expansion turbine 30 of the thermal energy recovery circuit 6 can be transmitted, in the form of an additional torque, to a timing belt 70 of the engine 2 via the transmission shaft of the engine.
  • expansion turbine 30 In addition a first clutch El can be placed between the expansion turbine 30 and the timing belt 70 in order to couple or not said expansion turbine 30 with the motor 2.
  • the first clutch E l makes it possible to decouple the expansion turbine 30 from the timing belt 70 during the phases in which the exhaust gases are not hot enough, in particular during the starting of the engine 2.
  • the vehicle transmits torque to the engine 2 and to a first alternator Alt.
  • the expansion turbine 30 may be coupled to charge a battery Bat or decoupled if the battery Bat is full.
  • the pump PI, the expansion turbine 30 of the thermal energy recovery circuit 6, the compressor 40 of the air conditioning circuit 7 and the alternator Alt are connected to the timing belt 70.
  • the compressor 40 can benefit from a second clutch E2 located between a transmission shaft of the compressor 71 and the timing belt 70.
  • the pumps P2, Pr and the solenoid valves VI, V2 are electric.
  • FIG. 3 diagrammatically shows another embodiment of the coupling of the transmission shaft 4 of the torque of the motor 2. It is also shown in this figure some elements described in the preceding figures.
  • the expansion turbine 30 is coupled to a second alternator Alt2, the latter being coupled to the timing belt 70.
  • the mechanical energy supplied by the thermal energy recovery circuit 6 is transformed into electrical energy.
  • the cooling heat exchanger 17 may be cooled by the coolant of the second cooling circuit 9.
  • this heat exchanger of cooling 17 is also located on the second cooling circuit 9. It can be located:
  • the air conditioning circuit 7 may further be equipped with a reversal valve to transform said air conditioning circuit 7 into an additional heating circuit.
  • the heat exchanger 41 of the air conditioning circuit 7 evaporates the cooling fluid and cools the cooling liquid of the second cooling circuit 9.
  • the cooling liquid of the second cooling circuit 9 thus cooled passes into the exchanger recovery heat 33, improves the efficiency of the thermal energy recovery circuit 6, and increases the additional torque supplied to the motor 2.
  • the heat exchanger 28 communicating with the exhaust gas can be positioned upstream of the exhaust gas treatment system 27.
  • the valve Vr and the pump Pr of the recovery circuit The thermal energy 6 can be controlled according to the temperature of the exhaust gases passing through said heat exchanger 28 and the exhaust gas treatment system 27, so as to take only a part of the thermal energy. exhaust gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Système de contrôle de la température de l'habitacle d'un véhicule automobile muni d'un moteur à combustion interne (2), comprenant un premier circuit de refroidissement (8) capable de faire circuler un liquide de refroidissement dans le moteur (2) et dans un dispositif de régulation de la température de l'habitacle (60), un circuit de récupération d' au moins une partie de l' énergie thermique des gaz d'échappement (6) avec transformation en énergie mécanique, un deuxième circuit de refroidissement (9) capable de faire circuler un liquide de refroidissement à une température inférieure au liquide du premier circuit de refroidissement (8) et des moyens de distribution commandés (V1, V2) capables de mettre en communication le circuit de récupération d' énergie thermique (6) avec le premier (8) ou le deuxième (9) circuit de refroidissement.

Description

SYSTEME ET PROCEDE DE CONTROLE DE LA TEMPERATURE DE L'HABITACLE D'UN VEHICULE AUTOMOBILE
L' invention concerne un système et un procédé de contrôle de la température de l' habitacle d' un véhicule automobile.
Actuellement, les normes d' émissions polluantes imposent une forte augmentation du rendement des groupes motopropulseurs automobiles . Dans ce contexte, des progrès importants ont été réalisés sur des moteurs à combustion interne de type diesel ou essence. Parmi ceux-ci, nous pouvons citer le turbocompresseur, l' aérodynamisme des chambres de combustion ...
Pour diminuer les émissions polluantes, on peut choisir de diminuer la consommation en carburant des véhicules . Ainsi, il devient nécessaire de valoriser l' énergie thermique renvoyée à l' air ambiant.
II existe certaines méthodes qui consistent à utiliser un système fonctionnant selon un cycle de Rankine pour valoriser l' énergie thermique d' un moteur thermique. Un tel système permet de convertir une énergie thermique en énergie mécanique. On utilise généralement une vapeur surchauffée, qui traverse une turbine de détente fournissant l' énergie mécanique .
La demande de brevet américain US 2005/0229595 décrit un système comprenant deux cycles de Rankine, mais ceux-ci n' offrent pas un rendement mécanique suffisant.
La demande de brevet j aponais JP 20080389 16 décrit un cycle de Rankine couplé entre la ligne d' échappement des gaz du moteur et un échangeur qui communique avec le circuit de refroidissement du moteur. Mais ce cycle ne permet pas non plus un rendement mécanique suffisant.
Un des buts de l' invention est de valoriser l' énergie thermique récupérée à l' aide d' un système fonctionnant selon un cycle de Rankine .
Un autre but de l' invention est d' améliorer le rendement du système fonctionnant selon un cycle de Rankine.
Un autre but de l' invention est de transférer au choix, selon les besoins, une partie de l' énergie thermique récupérée entre différents systèmes du véhicule, comme notamment un système pour contrôler la température de l 'habitacle d' un véhicule automobile.
Un autre but de l' invention est de fournir également un système permettant d' augmenter la température du moteur thermique lors de la phase de démarrage du moteur.
Selon un aspect de l' invention, il est proposé un système de contrôle de la température de l' habitacle d' un véhicule automobile muni d' un moteur à combustion interne, comprenant un premier circuit de refroidissement capable de faire circuler un liquide de refroidissement dans le moteur et dans un dispositif de régulation de la température de l' habitacle, et un circuit de récupération d' au moins une partie de l' énergie thermique des gaz d' échappement avec transformation en énergie mécanique .
Ce système comprend un deuxième circuit de refroidissement capable de faire circuler un liquide de refroidissement à une température inférieure au liquide du premier circuit de refroidissement et des moyens de distribution commandés capables de mettre en communication le circuit de récupération d' énergie thermique avec le premier ou le deuxième circuit de refroidissement.
On peut ainsi utiliser une partie de la chaleur des gaz d' échappement pour participer au chauffage de l' habitacle du véhicule.
En outre, on peut augmenter le rendement du circuit de récupération d' énergie thermique lorsque le circuit de récupération d' énergie thermique est mis en communication avec le liquide de refroidissement du deuxième circuit de refroidissement.
On peut également accélérer la montée en température du moteur à combustion interne lorsque le circuit de récupération d' énergie thermique est mis en communication avec le liquide de refroidissement du premier circuit de refroidissement.
Avantageusement, les premier et deuxième circuits de refroidissement ont un circuit commun et les moyens de distributions commandés comprennent deux électrovannes montées respectivement en amont et en aval dudit circuit commun .
L' utilisation d' électrovannes est un moyen simple et peu onéreux pour contrôler les échanges thermiques entre plusieurs systèmes . Selon un autre avantage, ce système comprend un circuit de climatisation capable de faire circuler un fluide de refroidissement dans le dispositif de régulation de la température de l' habitacle, le circuit de climatisation comprenant un échangeur de chaleur couplé au deuxième circuit de refroidissement.
Ainsi, le deuxième circuit de refroidissement permet de transférer au moins une partie de l ' énergie thermique des gaz d' échappement d' un système de récupération d' énergie thermique vers un circuit de climatisation de l' habitacle du véhicule.
Selon encore un autre avantage, le circuit de récupération d' énergie thermique comprend un échangeur de chaleur de récupération pour chauffer le liquide de refroidissement du premier ou du deuxième circuit de refroidissement, l' échangeur de chaleur de récupération étant situé en aval de l' échangeur de chaleur du circuit de climatisation par rapport au sens d' écoulement du liquide de refroidissement du deuxième circuit de refroidissement.
Ainsi, l' échangeur de chaleur du circuit de climatisation reçoit le liquide du deuxième circuit de refroidissement lorsque ce dernier est le plus froid pour améliorer le rendement du système de climatisation et favoriser le confort des passagers du véhicule.
Selon un mode de réalisation, le circuit de récupération d' énergie thermique comprend une turbine couplée, par l' intermédiaire d' un embrayage, à un arbre de transmission du couple du moteur.
On peut, ainsi, utiliser une partie de la chaleur des gaz d' échappement pour générer un couple additionnel utilisable par le moteur à combustion interne.
Selon un autre mode de réalisation, le circuit de récupération d' énergie thermique comprend une turbine couplée, par l' intermédiaire d' un embrayage, à un alternateur qui est couplé à un arbre de transmission du couple du moteur.
Ainsi on peut fournir un moyen pour transformer une énergie mécanique en énergie électrique pour alimenter des capteurs, des actionneurs ou un moteur électrique, par exemple, dans le cas d' une application de type véhicule hybride. Le circuit de climatisation peut également comprendre un compresseur couplé, par l' intermédiaire d' un deuxième embrayage, à l' arbre de transmission du couple du moteur.
Le circuit de climatisation peut, en outre, comprendre une vanne d' inversion de débit du fluide de refroidissement.
Ainsi, le circuit de climatisation peut se transformer en un système de pompe à chaleur, permettant, notamment, d' améliorer le rendement du circuit de récupération d' énergie thermique.
Selon un autre aspect de l' invention, il est proposé un procédé de contrôle de la température de l' habitacle d'un véhicule automobile muni d' un moteur à combustion interne, d' au moins un circuit de refroidissement du moteur apte à réguler la température de l' habitacle et d'un circuit de récupération d' au moins une partie de l' énergie thermique des gaz d' échappement avec transformation en énergie mécanique.
Dans ce procédé, on distribue, ou non, l' énergie thermique récupérée avec le circuit de refroidissement du moteur.
Avantageusement, ce procédé comprend un circuit de climatisation et dans lequel on distribue l' énergie thermique récupérée avec le circuit de refroidissement du moteur et/ou le circuit de climatisation.
D ' autres buts, caractéristiques et avantages de l' invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d' exemple non limitatif, et faite en référence aux dessins annexés, sur lesquels :
- la figure 1 illustre schématiquement un système de contrôle de la température de l' habitacle d' un véhicule automobile ;
- la figure 2 illustre schématiquement un mode de réalisation du couplage de l' arbre de transmission du couple du moteur ; et
- la figure 3 illustre schématiquement un autre mode de réalisation du couplage de l' arbre de transmission du couple du moteur.
Sur la figure 1 , on a représenté schématiquement un système de contrôle 1 de la température de l' habitacle d' un véhicule automobile équipé d' un moteur à combustion interne 2, pouvant être de type diesel ou essence, muni d'une pluralité de cylindres 3 et qui est apte à transmettre un couple à un arbre de transmission 4 pour, notamment, entraîner les roues du véhicule.
La figure 1 illustre également, un circuit d' admission des gaz 5 dans le moteur 2, un circuit de récupération d' énergie thermique 6, un circuit de climatisation 7, un premier et deuxième circuits de refroidissement, respectivement référencés 8 et 9.
Le circuit d' admission des gaz 5 permet d' alimenter les chambres de combustion du moteur 2 en air frais 10. Une première partie de l' air ambiant en air frais 10, passe par un filtre à air 1 1 , puis par un premier conduit d' admission 12, pour être ensuite dirigé vers un compresseur 13 d'un turbocompresseur 14. Le compresseur 13 est relié par un arbre d' entraînement 15 à une turbine 16. Les gaz ainsi comprimés sont dirigés vers un échangeur de chaleur de refroidissement 17 avant de pénétrer dans les chambres de combustion du moteur 2 par un deuxième conduit d' admission 18 et un collecteur d' admission 19.
En sortie du moteur 2, les gaz d' échappement à haute température passent successivement par un collecteur d'échappement 20, un conduit d' échappement 21 , la turbine 16 du turbocompresseur 14 et une ligne d' échappement 22.
En outre, le circuit d' admission des gaz 5 peut comprendre un ou deux circuits de recirculation partielle des gaz d' échappement 23, 24 pour prélever une partie des gaz d' échappement afin de les mélanger avec l' air frais 10 admis pour en modifier la température et la composition. Un circuit de recirculation partielle des gaz d' échappement 23, 24 noté circuit EGR, (« Exhaust Gas Recirculation » en langue anglaise), peut être un circuit EGR fonctionnant à haute pression 23 ou à basse pression 24. Ces circuits EGR à haute ou à basse pression 23, 24 permettent de diminuer le taux d' émissions polluantes. Le circuit EGR haute pression 23 est piqué sur le collecteur d' échappement 20 et sur le collecteur d' admission 19. En variante, ou en combinaison, le circuit d' admission des gaz 5 peut comprendre un circuit EGR basse pression 24 piqué sur la ligne d' échappement 22, en aval de la turbine 16, et sur le conduit d' admission 12 en amont du compresseur 13. Chaque circuit EGR est généralement pourvu d'une vanne 25 et d'un refroidisseur 26 qui peut être équipé d'une dérivation « by-pass » pour un mode non refroidi des gaz d' échappement partiellement recyclés.
Dans la ligne d' échappement 22 est monté un système de traitement des gaz d'échappement 27 qui peut comporter un filtre à particules, un système catalytique des gaz d' échappement, un piège à oxydes d' azote, ou une combinaison de ces éléments. Après le passage des gaz d' échappement dans le système de traitement des gaz d' échappement 27 , ces gaz traversent un échangeur de chaleur 28 faisant partie du circuit de récupération d' énergie thermique 6, puis sont évacués dans l' atmosphère par le conduit 29. Dans l' exemple illustré, une vanne Vr peut être montée en amont de l' échangeur de chaleur 28 pour dériver la totalité, ou une partie, des gaz d' échappement directement dans l' atmosphère, via un circuit de dérivation 22a, sans que ces gaz dérivés ne traversent l' échangeur de chaleur 28 du circuit de récupération d' énergie thermique 6. La vanne Vr peut prendre deux positions, une première position 1 -3 pour faire passer les gaz d' échappement dans le premier échangeur de chaleur 28, et une deuxième position 2-3 pour faire passer les gaz d' échappement dans le circuit de dérivation 22a.
Le circuit de récupération d' énergie thermique 6 est destiné à récupérer une partie de l' énergie thermique des gaz d' échappement pour la transformer en énergie mécanique en utilisant, par exemple, un cycle de Rankine. Dans le circuit de récupération d' énergie thermique 6 circule un fluide de travail pouvant passer d'un état liquide à un état gazeux. Ce fluide de travail peut être de l' eau, de l' éthanol, du N- Pentane, un fluide organique, ou tout autre fluide approprié changeant de phase en fonction des variations de température et de pression dans le circuit 6.
Le circuit de récupération d' énergie thermique 6 comprend une pompe Pr, l' échangeur de chaleur 28 communiquant avec les gaz d' échappement, une turbine de détente 30 munie d'un arbre de transmission 31 , un échangeur de chaleur interne 32, un échangeur de chaleur de récupération 33 et un organe de protection 34 de la pompe Pr. La pompe Pr met en mouvement le fluide de travail à l' état liquide vers l' échangeur de chaleur 28. De préférence, cet échangeur de chaleur 28 est un évaporateur pour récupérer une partie de l' énergie thermique des gaz d' échappement afin de transformer le fluide de travail en gaz. Le gaz généré sous pression est détendu dans la turbine de détente 30, pour convertir l' énergie thermique récupérée en énergie mécanique. Cette énergie mécanique est ensuite transmise sous la forme d'un couple à l' arbre de transmission 31 de la turbine de détente 30. Le fluide ainsi détendu, encore suffisamment chaud, traverse ensuite l' échangeur de chaleur interne 32 pour se refroidir encore et pour préchauffer le fluide de travail à l'état liquide en sortie de la pompe Pr.
Le fluide de travail traverse ensuite l'échangeur de chaleur de récupération 33, qui peut être un condenseur, pour refroidir le fluide de travail afin que celui-ci repasse à l' état liquide en entrée de la pompe Pr. Cet échangeur de chaleur de récupération 33 est en communication avec le premier 8 ou le deuxième 9 circuit de refroidissement, et permet de récupérer une partie de l' énergie thermique du fluide de travail afin de chauffer le liquide de refroidissement circulant dans l'un des circuits de refroidissement 8 ou 9. L' organe de protection 34 peut être un séparateur liquide/gaz pour protéger la pompe Pr durant les phases transitoires de transformation du fluide de travail de l' état gazeux vers l' état liquide.
Le circuit de climatisation 7 est destiné à refroidir l'habitacle du véhicule. Ce circuit de climatisation 7 comprend un compresseur 40, un échangeur de chaleur 41 , un organe de détente 42, un échangeur de chaleur 43 et un organe de protection 44 du compresseur 40.
Le compresseur 40 élève la pression d'un fluide de refroidissement qui se trouve à l' état gazeux. Ce fluide est ensuite en partie refroidi dans l' échangeur de chaleur 41 , qui peut être un condenseur. Puis le fluide traverse l' organe de détente 42, qui peut être un détendeur statique, pour fournir à sa sortie, un fluide de refroidissement à basse température. Le fluide de refroidissement à basse température passe dans l' échangeur de chaleur 43 , par exemple un évaporateur, pour refroidir l' air ambiant 10 dirigé vers l'habitacle. Puis, le fluide de refroidissement retourne au compresseur 40. Le premier circuit de refroidissement 8 permet de refroidir le moteur 2 en faisant circuler un liquide de refroidissement à une température comprise entre -20°C et 90°C. Le premier circuit de refroidissement 8 est également appelé circuit de refroidissement haute température. On notera que lorsque le moteur 2 atteint un régime normal, c' est-à-dire après la phase de démarrage du moteur 2, la température du moteur 2 est régulée autour de 90°C.
Ce premier circuit de refroidissement 8 comprend une pompe P I , une vanne thermostatique 50 munie d'un thermostat, un radiateur haute température 5 1 , un organe de protection 52 de la pompe P I et un échangeur de chaleur 53.
La pompe P I met en mouvement le liquide de refroidissement en direction du moteur 2, ledit liquide de refroidissement passant dans le moteur 2 pour le refroidir. En sortie du moteur 2, ce liquide de refroidissement réchauffé circule en parallèle dans une première boucle A en direction du radiateur haute température 51 et dans une deuxième boucle B en direction de l' échangeur de chaleur 53.
Dans la première boucle A, une première partie du liquide de refroidissement passe à travers la vanne thermostatique 50. La vanne thermostatique 50 permet, durant la phase de démarrage du moteur 2, de couper le débit dans le radiateur haute température 51 pour augmenter la température du moteur 2 et, lorsque ce dernier atteint son régime normal, de réguler sa température autour de sa température de fonctionnement normal égale à 90°C. Puis, le liquide de refroidissement passe dans le radiateur haute température 51 où il est refroidi par l' air ambiant 10. En sortie du radiateur haute température 51 , le liquide de refroidissement retourne en entrée de la pompe P l .
L' organe de protection 52 de la pompe P I peut être un bocal qui permet de dégazer une partie du liquide de refroidissement qui circule dans la première boucle A afin de protéger la pompe P l .
Dans la deuxième boucle B , une deuxième partie du liquide de refroidissement passe dans l' échangeur de chaleur 53 pour chauffer l' air ambiant 10 dirigé vers l'habitacle du véhicule, puis le liquide de refroidissement sort de l' échangeur de chaleur 53 pour retourner en entrée de la pompe Pl . Une partie du liquide de refroidissement réchauffé en sortie du moteur 2 peut également passer dans une troisième boucle C, notée également « circuit commun » , en direction de l' échangeur de chaleur de récupération 33. En sortie de l' échangeur de chaleur de récupération 33 , le liquide de refroidissement retourne en entrée de la pompe P I .
Le deuxième circuit de refroidissement 9 permet de refroidir l' échangeur de chaleur 41 du circuit de climatisation 7 et l' échangeur de chaleur de récupération 33 en faisant circuler un liquide de refroidissement à une température comprise entre -20°C et 50°C . Le deuxième circuit de refroidissement 9 est également appelé circuit de refroidissement basse température. On notera que lorsque le moteur 2 atteint un régime normal, c' est-à-dire après la phase de démarrage du moteur 2, la température du liquide dans le circuit de refroidissement basse température est d' environ 50 °C, c' est-à-dire à une température inférieure à celle du liquide de refroidissement du premier circuit de refroidissement 8.
Le deuxième circuit de refroidissement 9 comprend une pompe P2 et un radiateur basse température 54. La pompe P2 met en mouvement le liquide de refroidissement en direction de l' échangeur de chaleur 41 du circuit de climatisation 7 , puis en direction de l' échangeur de chaleur de récupération 33 du circuit de récupération d' énergie thermique 6. Au niveau de l' échangeur de chaleur de récupération 33 , le liquide de refroidissement passe par le circuit commun C. Une deuxième partie du liquide de refroidissement circulant dans le deuxième circuit de refroidissement 9 peut également passer dans un circuit de dérivation 8a, dans lequel le liquide de refroidissement ne traverse pas l' échangeur de chaleur de récupération 33.
Le système de contrôle 1 comprend un premier et un deuxième moyens de distribution commandés V I et V2 situés de part et d' autre de l' échangeur de chaleur de récupération 33 pour contrôler la circulation des liquides de refroidissement, provenant respectivement des premier et deuxième circuits de refroidissement 8 ,9, dans le circuit commun C . En effet, les moyens de distributions V I et V2 sont commandés de manière à ne mettre en communication que l' un des circuits de refroidissement avec le fluide de travail du circuit de récupération d' énergie thermique 6. Ces moyens permettent de distribuer au choix, selon les besoins, une partie de l' énergie thermique récupérée vers les circuits de refroidissement 8 ,9.
De préférence, les moyens de distribution V I , V2 sont deux électrovannes. La première électrovanne V I peut prendre deux positions, une première po sition 2-3 pour faire passer le liquide de refroidissement du premier circuit de refroidissement 8 dans le circuit commun C, et une deuxième position 1 -3 pour faire passer le liquide de refroidissement du deuxième circuit de refroidissement 9 dans le circuit commun C . La deuxième électrovanne V2 peut prendre deux positions, une première po sition 1 -3 pour faire passer le liquide de refroidissement du deuxième circuit de refroidissement 9 dans le circuit de dérivation 8a, et une deuxième position 2-3 pour faire passer le liquide de refroidissement du deuxième circuit de refroidissement 9 dans le circuit commun C, et ainsi faire passer le liquide de refroidissement du deuxième circuit de refroidissement 9 dans l' échangeur de chaleur de récupération 33.
Lorsque le liquide de refroidissement du deuxième circuit de refroidissement 9 sort de l' échangeur de chaleur de récupération 33 , il retourne à l' entrée de la pompe P2, en passant au préalable par le premier moyen de distribution V I et par le radiateur basse température 54.
Le système de contrôle 1 comprend, en outre, un dispositif de régulation 60 de la température de l' habitacle. Ce dispo sitif de régulation 60 comprend les échangeurs de chaleur 43 , 53 , respectivement du circuit de climatisation 7 et du premier circuit de refroidissement 8 , un ventilateur 61 et un volet de distribution d' air 62.
Le ventilateur 61 permet d' entraîner l ' air ambiant 10 vers l' habitacle. Le volet de distribution d' air 62 peut prendre deux positions de butée distinctes et plusieurs positions intermédiaires entre lesdites deux positions de butée . Dans une première position de butée, en trait plein sur la figure 1 , l' air ambiant 10a traverse les échangeurs de chaleur 43, 53 avant d' être amené dans l'habitacle. Lorsque le volet de distribution d' air 62 est dans cette première position, on dit qu' il est en position de chauffage, car l' air ambiant traverse l' échangeur de chaleur 53 du circuit de refroidissement haute température 8 pour chauffer l'habitacle.
Dans une deuxième position de butée, en tireté sur la figure 1 , l' air ambiant 10b traverse l' échangeur de chaleur 43 du circuit de climatisation 7 uniquement avant d'être amené dans l'habitacle.
Lorsque le volet de distribution d' air 62 est dans cette deuxième position, on dit qu' il est en position de refroidissement, car l' air ambiant n' est pas chauffé par l' intermédiaire de l' échangeur de chaleur 53 du circuit de refroidissement haute température 9.
Dans la suite de la description, des exemples de fonctionnement du système de contrôle 1 seront décrits.
Concernant le moteur 2, deux états sont considérés :
- le moteur est en phase de démarrage : dans ce cas il est important d' augmenter la température du moteur 2 sur une durée réduite au minimum afin de limiter la consommation en carburant et les émissions polluantes ;
- le moteur a atteint son régime normal : dans ce cas on régule la température du moteur 2 autour d'environ 90°C, à l' aide notamment de la vanne thermostatique 50.
Concernant le confort dans l'habitacle du véhicule, quatre phases sont considérées :
- une phase hiver : dans ce cas, il est important de chauffer l'habitacle. Pour chauffer l'habitacle, on utilise la chaleur du liquide de refroidissement du circuit de refroidissement haute température 8 par l' intermédiaire du dispositif de régulation de la température 60. Dans ce cas, le chauffage de l'habitacle ralentit l' augmentation de la température du moteur 2 et peut s' avérer insuffisant pour assurer le confort dans l'habitacle lorsque la température de l' air ambiant 10 est très basse. Dans ces deux cas, un apport d' énergie thermique additionnel est nécessaire, celui-ci pourra être réalisé à l' aide de l' échangeur de chaleur de récupération 33.
- une phase tempérée : dans ce cas le circuit de climatisation 7 et le chauffage de l' habitacle peuvent être utilisés pour désembuer les vitres ou le pare-brise ;
- une phase été : dans ce cas, il est important de refroidir l' habitacle à l' aide du circuit de climatisation 7 ;
- une phase dégivrage des vitres ou du pare-brise : dans ce cas le circuit de climatisation 7 et le chauffage de l' habitacle fonctionnent simultanément.
Le premier tableau ci-dessous décrit le fonctionnement des actionneurs du système de contrôle 1 lorsque le moteur est en phase de démarrage :
ActionPosition des actionneurs en fonctior î des phases de confort dans neurs l'habitac e
hiver tempérée été dégivrage vanne Vr position 1-3 position 1-3 position 1-3 position 1-3 pompe Pr marche marche marche marche turbine de marche marche marche marche détente 30
compresarrêt arrêt marche marche seur 40
pompe PI marche marche marche marche vanne VI position 2-3 position 2-3 position 2-3 position 2-3 vanne V2 position 1-3 position 1-3 Position 1-3 position 1-3 ventila-teur marche arrêt marche marche 61
volet de position de position de position de position de distribuchauffage refroidissement refroidischauffage tion d'air sement
62
pompe P2 arrêt arrêt marche marche Une description d'un mode de fonctionnement du système de contrôle 1 lorsque le moteur 2 est en phase de démarrage est donnée ci-dessous.
La pompe P I du premier circuit de refroidissement 8 est en marche. La pompe Pr du circuit de récupération d' énergie thermique 6 marche dès que la température des gaz d' échappement est supérieure à 250°C. Les électrovannes V I et V2 permettent de mettre en communication le circuit de récupération d' énergie thermique 6 avec le premier circuit de refroidissement 8 pour augmenter la température du liquide de refroidissement du premier circuit de refroidissement 8, et donc la température du moteur 2.
Au cours de la phase hiver, on chauffe l'habitacle et le circuit de climatisation 7 est arrêté. La pompe P2 du deuxième circuit de refroidissement 9 est arrêtée. La turbine de détente 30 du circuit de récupération d' énergie thermique 6 est couplé à l' arbre de transmission 4 du moteur 2, ce qui génère un couple additionnel au moteur 2. Le volet de distribution d' air 62 est en position de chauffage pour chauffer l'habitacle. Dans cette phase hiver, le circuit de récupération d' énergie thermique 6 accélère la montée en température du moteur 2 et augmente la température de l'habitacle.
Au cours de la phase tempérée, le fonctionnement du système de contrôle 1 est similaire à celui de la phase hiver avec le ventilateur 61 arrêté et le volet de distribution d' air 62 en position de refroidissement. Dans cette phase tempérée, le circuit de récupération d' énergie thermique 6 accélère la montée en température du moteur 2 et fournit un couple additionnel au moteur 2.
Au cours de la phase été, on arrête le chauffage de l'habitacle et le circuit de climatisation 7 marche. La pompe P2 du deuxième circuit de refroidissement 9 marche, le liquide de refroidissement du deuxième circuit de refroidissement 9 est refroidi dans le radiateur basse température 54, puis circule dans l'échangeur de chaleur 41 du circuit de climatisation 7, pour refroidir le circuit de climatisation 7, puis circule dans le circuit de dérivation 8a. Le liquide de refroidissement du deuxième circuit de refroidissement 9 ne passe pas dans l' échangeur de chaleur de récupération 33 pour ne pas réchauffer ledit liquide de refroidissement en aval du circuit de climatisation 7. Dans cette phase été, le circuit de récupération d' énergie thermique 6 accélère la montée en température du moteur 2 et fournit un couple additionnel au moteur 2.
Au cours de la phase dégivrage, le fonctionnement du système de contrôle 1 est similaire à celui de la phase été avec le ventilateur 61 en marche et le volet de distribution d' air 62 en position de chauffage. Dans cette phase dégivrage, le circuit de récupération d' énergie thermique 6 accélère la montée en température du moteur 2, fournit un couple additionnel au moteur 2 et fournit de la chaleur au dispositif de régulation 60 pour assécher l' air 10 de l' habitacle.
Le deuxième tableau ci-dessous décrit le fonctionnement des actionneurs du système de contrôle 1 lorsque le moteur a atteint son régime normal :
ActionPosition des actionneurs en fonction des phases de confort dans neurs l'habitacle
hiver tempérée été dégivrage vanne Vr position 1-3 position 1-3 position 1-3 position 1-3 pompe Pr marche marche marche marche turbine de marche marche marche marche détente 30
compresarrêt arrêt marche marche seur 40
pompe PI marche marche marche marche vanne VI position 2-3 ou position 1-3 position 1-3 position 2-3
1-3 ou 1-3 vanne V2 position 1-3 ou position 2-3 Position 2-3 position 1-3
2-3 ou 2-3 ventila-teur marche arrêt marche marche 61
volet de position de position de position de position de distribuchauffage refroidissement refroidis-sement chauffage tion d'air
62
pompe P2 arrêt ou marche marche marche marche Une description d'un mode de fonctionnement du système de contrôle 1 lorsque le moteur 2 a atteint son régime normal est donnée ci-dessous.
La pompe P I du premier circuit de refroidissement 8 est en marche. La pompe Pr du circuit de récupération d' énergie thermique 6 marche dès que la température des gaz d' échappement est supérieure à 250°C.
Au cours de la phase hiver, on chauffe l'habitacle et le circuit de climatisation 7 est arrêté. La turbine de détente 30 du circuit de récupération d' énergie thermique 6 est couplée à l' arbre de transmission 4 du moteur 2, ce qui génère un couple additionnel au moteur 2. Le volet de distribution d' air 62 est en position de chauffage pour chauffer l'habitacle.
Lors du chauffage de l'habitacle, deux modes sont alors possibles :
Dans un premier mode, une consigne de température de l'habitacle est inférieure à la température du liquide de refroidissement du premier circuit de refroidissement 8. Cette consigne de température est une température désirée qui peut être sélectionnée manuellement par le conducteur, ou calculée de façon automatique par un calculateur de contrôle embarqué dans le véhicule. Dans ce premier mode, la première électrovanne V I est en position 1 - 3, noté en gras dans le tableau ci-dessus, et la deuxième électrovanne V2 est en position 2-3. Dans ce premier mode, le moteur 2 assure seul le chauffage de l'habitacle. La pompe P2 du deuxième circuit de refroidissement 9 marche pour refroidir le circuit de récupération d' énergie thermique 6. Dans ce premier mode le rendement du circuit de récupération d' énergie thermique 6 est maximum.
Dans un deuxième mode, la consigne de température de l'habitacle est supérieure à la température du liquide de refroidissement du premier circuit de refroidissement 8. Dans ce deuxième mode, la première électrovanne V I est en position 2-3 et la deuxième électrovanne V2 est en position 1 -3. Dans ce deuxième mode, le circuit de récupération d' énergie thermique 6 fournit une énergie thermique additionnelle à celle générée par le moteur 2. La pompe P2 du deuxième circuit de refroidissement 9 est arrêtée et le circuit de récupération d' énergie thermique 6 est refroidi par le liquide de refroidissement du premier circuit de refroidissement 8. Dans ce deuxième mode le rendement du circuit de récupération d' énergie thermique 6 est dégradé au détriment du confort de l' habitacle .
Au cours de la phase tempérée, le liquide de refroidissement du deuxième circuit de refroidissement 9 refroidit le circuit de récupération d' énergie thermique 6. Dans cette phase tempérée, le circuit de récupération d' énergie thermique 6 fournit un couple additionnel au moteur 2.
Au cours de la phase été, on arrête le chauffage de l' habitacle et le circuit de climatisation 7 marche. La pompe P2 du deuxième circuit de refroidissement 9 marche, le liquide de refroidissement du deuxième circuit de refroidissement 9 est refroidi dans le radiateur basse température 54, puis circule dans l ' échangeur de chaleur 41 du circuit de climatisation 7 , pour refroidir le circuit de climatisation 7 , puis circule dans l' échangeur de chaleur de récupération 33 pour refroidir le circuit de récupération d' énergie thermique 6. Avantageusement, l' échangeur de chaleur de récupération 33 du circuit de récupération d' énergie thermique 6 est situé en aval de l' échangeur de chaleur 41 du circuit de climatisation 7 , par rapport au sens d' écoulement du liquide de refroidissement du deuxième circuit de refroidissement 9. Dans cette configuration, l' échangeur de chaleur 41 du circuit de climatisation 7 reçoit le liquide de refroidissement du deuxième circuit de refroidissement 9 dans son état le plus froid, c'est- à-dire en sortie du radiateur basse température 54, afin de favoriser le refroidissement de l' air 10 de l' habitacle. En situation de chaleur extrême, la deuxième électrovanne V2 permet de dériver partiellement ou totalement l' échangeur de chaleur de récupération 33 pour dégrader le rendement du circuit de récupération d' énergie thermique 6 et favoriser le refroidissement de l ' air de l' habitacle.
Au cours de la phase dégivrage, le fonctionnement du système de contrôle 1 est similaire à celui de la phase été avec le ventilateur 61 en marche et le volet de distribution d' air 62 en position de chauffage .
Sur la figure 2, on a représenté schématiquement un mode de réalisation du couplage de l' arbre de transmission 4 du couple du moteur 2. On a également reporté sur cette figure certains éléments décrits à la figure précédente.
L'énergie mécanique fournie par la turbine de détente 30 du circuit de récupération d' énergie thermique 6 peut être transmise, sous la forme d'un couple supplémentaire, à une courroie de distribution 70 du moteur 2 via l' arbre de transmission de la turbine de détente 30. En outre un premier embrayage El peut être placé entre la turbine de détente 30 et la courroie de distribution 70 afin de coupler ou non ladite turbine de détente 30 avec le moteur 2.
Le premier embrayage E l permet de découpler la turbine de détente 30 de la courroie de distribution 70 durant les phases où les gaz d' échappement ne sont pas assez chauds, notamment pendant le démarrage du moteur 2. Durant les phases de freinage, le véhicule transmet du couple vers le moteur 2 et vers un premier alternateur Alt. Dans ce cas, la turbine de détente 30 peut être couplée pour charger une batterie Bat ou découplée si la batterie Bat est pleine. Dans un mode de réalisation préféré, la pompe P I , la turbine de détente 30 du circuit de récupération d' énergie thermique 6, le compresseur 40 du circuit de climatisation 7 et l' alternateur Alt sont reliés à la courroie de distribution 70. Le compresseur 40 peut bénéficier d'un deuxième embrayage E2 situé entre un arbre de transmission du compresseur 71 et la courroie de distribution 70. Les pompes P2, Pr et les électrovannes V I , V2 sont électriques.
Sur la figure 3, on a représenté schématiquement un autre mode de réalisation du couplage de l' arbre de transmission 4 du couple du moteur 2. On a également reporté sur cette figure certains éléments décrits aux figures précédentes.
Dans cet autre mode de réalisation, la turbine de détente 30 est couplée à un deuxième alternateur Alt2, ce dernier étant couplé à la courroie de distribution 70. Dans ce cas, l' énergie mécanique fournie par le circuit de récupération d' énergie thermique 6 est transformée en énergie électrique.
En variante, l'échangeur de chaleur de refroidissement 17 peut être refroidi par le liquide de refroidissement du deuxième circuit de refroidissement 9. Dans ce cas, cet échangeur de chaleur de refroidissement 17 est situé également sur le deuxième circuit de refroidissement 9. Il peut être situé :
- en aval de la pompe P2 ;
- en aval de l' échangeur de chaleur 41 du circuit de climatisation 7 ;
- en aval de l'échangeur de chaleur de récupération 33 ;
- sur le circuit de dérivation 8a du deuxième circuit de refroidissement 9 ; ou
- en aval du radiateur basse température 54.
II est également possible d' intégrer un variateur de vitesse entre la turbine de détente 30 et la courroie de distribution 70 du moteur 2 pour réguler le point de fonctionnement du circuit de récupération d' énergie thermique 6.
Le circuit de climatisation 7 peut en outre être équipé d'une vanne d' inversion de débit pour transformer ledit circuit de climatisation 7 en un circuit de chauffage additionnel. Dans ce cas, l' échangeur de chaleur 41 du circuit de climatisation 7 évapore le fluide de refroidissement et refroidit le liquide de refroidissement du deuxième circuit de refroidissement 9. Le liquide de refroidissement du deuxième circuit de refroidissement 9 ainsi refroidi passe dans l' échangeur de chaleur de récupération 33, améliore le rendement du circuit de récupération d' énergie thermique 6, et augmente le couple additionnel fourni au moteur 2.
Selon une autre variante, l' échangeur de chaleur 28 communiquant avec les gaz d' échappement peut être positionné en amont du système de traitement des gaz d' échappement 27. Dans ce cas, la vanne Vr et la pompe Pr du circuit de récupération d'énergie thermique 6 peuvent être pilotées en fonction de la température des gaz d' échappement qui traversent ledit échangeur de chaleur 28 et le système de traitement des gaz d' échappement 27, de manière à ne prélever qu'une partie de l' énergie thermique des gaz d' échappement.

Claims

REVENDICATIONS
1 . Système de contrôle de la température de l' habitacle d' un véhicule automobile muni d' un moteur à combustion interne (2), comprenant un premier circuit de refroidissement (8) capable de faire circuler un liquide de refroidissement dans le moteur (2) et dans un dispositif de régulation de la température de l' habitacle (60), et un circuit de récupération d' au moins une partie de l' énergie thermique des gaz d' échappement (6) avec transformation en énergie mécanique, caractérisé en ce qu' il comprend un deuxième circuit de refroidissement (9) capable de faire circuler un liquide de refroidissement à une température inférieure au liquide du premier circuit de refroidissement (8) et des moyens de distribution commandés (V I , V2) capables de mettre en communication le circuit de récupération d' énergie thermique (6) avec le premier (8) ou le deuxième (9) circuit de refroidissement.
2. Système selon la revendication 1 , dans lequel les premier et deuxième circuits de refroidissement ont un circuit commun (C) et les moyens de distributions (V I , V2) commandés comprennent deux électrovannes montées respectivement en amont et en aval dudit circuit commun (C) .
3. Système selon l' une des revendications 1 et 2, comprenant un circuit de climatisation (7) capable de faire circuler un fluide de refroidissement dans le dispositif de régulation de la température de l' habitacle (60) , le circuit de climatisation (7) comprenant un échangeur de chaleur (41 ) couplé au deuxième circuit de refroidissement (9) .
4. Système selon la revendication 3 , dans lequel le circuit de récupération d' énergie thermique (6) comprend un échangeur de chaleur de récupération (33) pour chauffer le liquide de refroidissement du premier ou du deuxième circuit de refroidissement (8 ,9), l' échangeur de chaleur de récupération (33) étant situé en aval de l' échangeur de chaleur (41 ) du circuit de climatisation (7) par rapport au sens d' écoulement du liquide de refroidissement du deuxième circuit de refroidissement (9) .
5. Système selon l'une des revendications 3 ou 4, dans lequel le circuit de climatisation (7) comprend une vanne d' inversion de débit du fluide de refroidissement.
6. Système selon l'une des revendications 3 à 5, dans lequel le circuit de récupération d' énergie thermique (6) comprend une turbine
(30) couplée, par l' intermédiaire d'un embrayage (E l ), à un arbre de transmission du couple du moteur (4) .
7. Système selon l'une des revendications 3 à 5, dans lequel le circuit de récupération d' énergie thermique (6) comprend une turbine (30) couplée, par l' intermédiaire d'un premier embrayage (E l ), à un alternateur (Alt2) qui est couplé à un arbre de transmission du couple du moteur (4) .
8. Système selon l'une des revendications 6 ou 7, dans lequel le circuit de climatisation (7) comprend un compresseur (40) couplé, par l' intermédiaire d'un deuxième embrayage (E2), à l' arbre de transmission du couple du moteur (4) .
9. Procédé de contrôle de la température de l'habitacle d'un véhicule automobile muni d'un moteur à combustion interne, d'un premier circuit de refroidissement du moteur apte à réguler la température de l'habitacle, d'un deuxième circuit de refroidissement et d'un circuit de récupération d' au moins une partie de l' énergie thermique des gaz d' échappement avec transformation en énergie mécanique, caractérisé en ce qu' on distribue au choix, selon les besoins, une partie de l' énergie thermique récupérée vers les circuits de refroidissement.
10. Procédé selon la revendication 9, comprenant un circuit de climatisation et dans lequel on distribue l' énergie thermique récupérée avec le circuit de refroidissement du moteur et/ou le circuit de climatisation.
EP10770602A 2009-09-29 2010-09-21 Systeme et procede de controle de la temperature de l'habitacle d'un vehicule automobile Withdrawn EP2483092A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0956749A FR2950572B1 (fr) 2009-09-29 2009-09-29 Systeme et procede de controle de la temperature de l'habitacle d'un vehicule automobile
PCT/FR2010/051972 WO2011039447A1 (fr) 2009-09-29 2010-09-21 Systeme et procede de controle de la temperature de l'habitacle d'un vehicule automobile

Publications (1)

Publication Number Publication Date
EP2483092A1 true EP2483092A1 (fr) 2012-08-08

Family

ID=42101590

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10770602A Withdrawn EP2483092A1 (fr) 2009-09-29 2010-09-21 Systeme et procede de controle de la temperature de l'habitacle d'un vehicule automobile

Country Status (3)

Country Link
EP (1) EP2483092A1 (fr)
FR (1) FR2950572B1 (fr)
WO (1) WO2011039447A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH705014A1 (de) * 2011-05-27 2012-11-30 Liebherr Machines Bulle Sa Energierückgewinnungssystem.
CN106571751B (zh) * 2016-11-18 2018-04-24 江苏大学 一种汽车尾气温差发电系统及其冷却方法和对尾气流量控制的方法
SE543715C2 (en) 2018-12-14 2021-06-29 Scania Cv Ab Powertrain and Vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10259488A1 (de) * 2002-12-19 2004-07-01 Bayerische Motoren Werke Ag Wärmekraftmaschine
JP2008297961A (ja) * 2007-05-30 2008-12-11 Denso Corp 廃熱利用装置を備える冷凍装置
JP2008038916A (ja) * 2007-09-28 2008-02-21 Denso Corp ランキンサイクル
JP2009167994A (ja) * 2008-01-21 2009-07-30 Sanden Corp 内燃機関の廃熱利用装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011039447A1 *

Also Published As

Publication number Publication date
WO2011039447A1 (fr) 2011-04-07
FR2950572A1 (fr) 2011-04-01
FR2950572B1 (fr) 2012-03-09

Similar Documents

Publication Publication Date Title
EP1474601B1 (fr) Procede de controle de la temperature de gaz admis dans un moteur de vehicule automobile, echangeur et dispositif de gestion de la temperature de ces gaz
US8739531B2 (en) Hybrid power plant with waste heat recovery system
US10465575B2 (en) Systems and methods for warming up an engine with an electric boost device
FR2885169A1 (fr) Systeme de gestion de l'energie calorifique a bord d'un vehicule comportant un circuit a cycle de rankine
FR3002285A1 (fr) Systeme de recuperation de chaleur des gaz d'echappement dans un moteur a combustion interne, avec deux echangeurs de chaleur au niveau d'un circuit de recirculation de gaz
EP3564504B1 (fr) Systeme de refroidissement d'un moteur avec deux thermostats et integrant un circuit selon un cycle de rankine
EP2229513A2 (fr) Moteur a combustion interne et vehicule equipe d'un tel moteur
FR2913217A1 (fr) Systeme et procede de gestion d'energie d'un vehicule.
FR2924169A1 (fr) Dispositif et procede de depollution et de chauffage pour vehicule automobile
EP2959121B1 (fr) Système de récupération de chaleur des gaz d'échappement dans un moteur à combustion interne
US10378390B2 (en) Internal combustion engine system with heat recovery
EP1740803A1 (fr) Systeme ameliore de regulation de la temperature des gaz admis dans un moteur
WO2011039447A1 (fr) Systeme et procede de controle de la temperature de l'habitacle d'un vehicule automobile
WO2019043304A1 (fr) Ensemble d'un circuit de refroidissement pour un moteur thermique et une boite de vitesses
FR2976322A1 (fr) Repartiteur d'air comprenant un dispositif adapte a echanger de la chaleur avec de l'air de suralimentation, et systeme de transfert thermique comprenant un tel repartiteur
KR20190040454A (ko) 내연기관 작동 방법, 내연기관, 및 자동차
FR2948421A1 (fr) Procede de gestion de la circulation d'un fluide caloporteur dans un circuit de refroidissement d'un moteur thermique de vehicule automobile.
EP1739293A2 (fr) Dispositif et procédé de refroidissement des cylindres et de la culasse d'un moteur thermique
FR3078389A1 (fr) Installation thermique pour moteurs thermique et electrique avec transmission automatique electrique et condenseur fluide/fluide
FR3057305A1 (fr) Ensemble de motorisation a boucle de rankine
FR3057299A1 (fr) Ensemble de motorisation a boucle de rankine
FR2926600A1 (fr) Moteur a combustion interne et vehicule equipe d'un tel moteur
FR2978206A1 (fr) Dispositif de regulation thermique pour vehicule automobile
FR3057298A1 (fr) Ensemble de motorisation a boucle de rankine
FR2926601A1 (fr) Moteur a combustion interne et vehicule equipe d'un tel moteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 7/16 20060101ALI20150213BHEP

Ipc: B60H 1/00 20060101AFI20150213BHEP

Ipc: F02G 5/02 20060101ALI20150213BHEP

Ipc: B60H 1/02 20060101ALI20150213BHEP

INTG Intention to grant announced

Effective date: 20150303

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150714