EP4303409A1 - Verfahren zur optimierung der erwärmung eines katalysators zur begrenzung des kraftstoffverbrauchs - Google Patents

Verfahren zur optimierung der erwärmung eines katalysators zur begrenzung des kraftstoffverbrauchs Download PDF

Info

Publication number
EP4303409A1
EP4303409A1 EP23184055.4A EP23184055A EP4303409A1 EP 4303409 A1 EP4303409 A1 EP 4303409A1 EP 23184055 A EP23184055 A EP 23184055A EP 4303409 A1 EP4303409 A1 EP 4303409A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
concentration
nitrogen oxides
engine
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23184055.4A
Other languages
English (en)
French (fr)
Inventor
Bertrand Fasolo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New H Powertrain Holding SLU
Original Assignee
New H Powertrain Holding SLU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New H Powertrain Holding SLU filed Critical New H Powertrain Holding SLU
Publication of EP4303409A1 publication Critical patent/EP4303409A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1411Exhaust gas flow rate, e.g. mass flow rate or volumetric flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1621Catalyst conversion efficiency

Definitions

  • the present invention relates to a method for optimizing the heating of a catalyst for depolluting the exhaust gases of an internal combustion engine, to limit the fuel consumption of the engine.
  • a method according to the invention relates in particular to vehicles equipped with spark-ignition engines (running on gasoline) which must comply with future polluting emissions standards in Europe.
  • the catalytic post-treatment system of a motor vehicle internal combustion engine must be able to post-treat as quickly as possible. polluting emissions leaving the engine after a cold start of the engine.
  • the main lever used is to significantly reduce the ignition advance, typically with 35° less crankshaft angle.
  • EP-B1-0639708 discloses a process for heating a catalyst, in which the air flow rate is increased, the mass of fuel injected is adapted and the ignition advance is shifted as far as possible in the direction of the delay.
  • a disadvantage of such a process is that it causes a significant increase of approximately 30% in fuel consumption throughout the catalyst heating phase.
  • an additional nitrogen oxide concentration sensor also known as an “NOx probe” will be fitted to vehicle engines, downstream of the engine exhaust gas post-treatment system. , to make it possible to monitor exhaust NOx emissions in real time, and thus report a fault if the system exceeds a threshold defined by regulations.
  • the publication FR-A1-3075260 discloses a method for controlling the temperature of a catalyst in the case of a hybrid vehicle. Heating of the catalyst is triggered and maintained for a predetermined duration when the exhaust temperature reaches a threshold Ts greater than the initiation temperature Ta of the catalyst, while keeping it active, and, when the instantaneous temperature, whose subsequent evolution depends on the operation of the hybrid powertrain (respective operating points of the thermal engine and the electric machine) is lower than the threshold Ts, then the heating is controlled until reaching the temperature threshold Ts.
  • the publication FR-A1-3081918 discloses an improved method for managing the priming of a catalyst in which the enthalpy of the exhaust gases is calculated making it possible to determine the quantity of heat supplied to the catalyst.
  • a threshold enthalpy is determined which characterizes the initiation, and heating is stopped when the calculated value of the enthalpy reaches the threshold.
  • the threshold is a function of the value of the water temperature at start-up and the aging of the catalyst. For example, it is the product of a first factor which is a decreasing function of the water temperature, and a second factor between 0 and 1 which corresponds to aging, 0 corresponding to a new catalyst and 1 to a aged catalyst.
  • the aging is determined from the damping of a richness signal downstream of the catalyst relative to a richness signal upstream of the catalyst.
  • the process described in this document does provide for an adaptation of the heating duration of the catalyst, but the link with the real capacity of the catalyst to clean up NOx is very indirect, and as a result, this method lacks precision. It is not easy to establish the correct values of the first and second factors.
  • a method according to the invention makes it possible to adapt the heating of a catalyst as necessary after a cold start of a vehicle, in particular by preventing said catalyst from continuing to be heated when it has already reached its temperature. priming.
  • the subject of the invention is a method for optimizing the heating of a catalyst for depolluting the exhaust gases of an internal combustion engine after a cold start of a vehicle comprising said engine, said vehicle comprising a line d exhaust equipped with said catalyst and a nitrogen oxide concentration sensor at the outlet of said catalyst.
  • a method according to the invention has the particularity of relying on an element already present in the vehicle, namely the nitrogen oxide concentration sensor at the catalyst outlet, to adjust the heating of said catalyst following a cold start of the vehicle, so that said catalyst is no longer heated once it has reached its priming temperature.
  • an element already present in the vehicle namely the nitrogen oxide concentration sensor at the catalyst outlet
  • This sensor makes it possible to determine with certainty and reliability the moment when the catalyst has actually reached its initiation temperature, by means of the determination of a parameter which is representative of the quantity of nitrogen oxide particles remaining at the outlet of the catalyst.
  • a method according to the invention is controlled by an on-board computer having software whose input data The main one is the nitrogen oxide concentration measured by the nitrogen oxide concentration sensor at the catalyst outlet. From this concentration of nitrogen oxides measured by the sensor, the software calculates a specific parameter, representative of the quantity of nitrogen oxide particles remaining at the outlet of the catalyst, which is compared to a predetermined threshold value.
  • the threshold value being a function of the specific parameter considered.
  • the computer orders an immediate stop of heating of the catalyst.
  • the catalyst can, for example in the case of a spark ignition engine, be a three-way catalyst.
  • a particle filter is added to the catalyst to further limit the emission into the atmosphere of fine particles produced by the vehicle engine.
  • the specific parameter is a concentration of nitrogen oxides directly determined by the sensor.
  • the specific parameter is a mass flow rate of nitrogen oxides at the outlet of the catalyst corresponding to the product of the concentration of nitrogen oxides and the flow rate of the exhaust gases at the outlet of the catalyst.
  • the specific parameter is a level of post-treatment efficiency of the nitrogen oxides by the catalyst, calculated as the ratio between the concentration of nitrogen oxides at the catalyst outlet and the concentration of nitrogen oxides at the catalyst inlet. In other words, this is the proportion of nitrogen oxides emitted by the engine which are not treated by the catalyst.
  • the concentration of nitrogen oxides at the inlet of the catalyst is measured by an upstream sensor for the concentration of nitrogen oxides, said upstream sensor being placed on the exhaust line between the engine and the catalyst.
  • the concentration of nitrogen oxides at the inlet of the catalyst corresponding to the concentration of nitrogen oxides at the outlet of the engine is determined from a model giving this concentration as a function of the operating point of the engine, said model being calibrated in advance by means of bench tests.
  • the operating point of the engine depends on a set of parameters comprising at least the engine speed, the engine torque, and the water temperature (i.e. coolant).
  • the heating of the catalyst is carried out using a technique to be chosen from a degradation of the combustion efficiency with modification of the value of the ignition advance, and an electric heating which can be coupled with air injection at the exhaust.
  • These heating techniques are similar to those already existing.
  • the catalyst is a three-way catalyst.
  • An optimization method makes it possible to heat a depollution catalyst as accurately as possible after a cold start of a vehicle, by relying on an element already present in said vehicle, namely the concentration sensor. nitrogen oxide at the outlet of the catalyst. It therefore does not require the insertion of added equipment, which is a source of cost, bulk and additional weight. It also has the advantage of offering a realistic and reliable method making it possible to know from what precise moment the catalyst has reached its initiation temperature, to avoid continuing to unnecessarily heat said catalyst.
  • a method for optimizing the heating of a catalyst according to the invention is particularly suitable for a vehicle equipped with a spark ignition engine.
  • an example of a powertrain 1 of such a vehicle schematically comprises an internal combustion engine, for example a gasoline engine 2, an air intake line 3 intended to supply air to said engine 2, and an exhaust line 4 intended to evacuate exhaust gases coming from this engine 2.
  • the air intake line 3 is materialized by a conduit 5 comprising an air inlet 6, followed by a filter air 7 and opening into a turbocharger compressor 8.
  • the conduit 5 extends to connect said compressor 8 to an intake manifold 9 passing through a throttle body 10, said intake manifold 9 distributing air into combustion chambers 11 of said engine 2.
  • An exhaust manifold 12 makes it possible to evacuate the exhaust gases coming from the combustion chambers 11 of the engine 2, towards the exhaust line 4.
  • the exhaust manifold 12 opens into a turbine 13 of the turbocharger which is coupled to the compressor 8 by a common shaft, and the exhaust line 4 extends beyond said turbine 13 to an outlet 14, passing through a depollution device 15 comprising a three-way catalyst 16 followed by a particle filter 17.
  • the three-way catalyst 16 is inserted between the turbine 13 and the particle filter 17.
  • a nitrogen oxide concentration sensor 18 is placed downstream of the particle filter 17 and upstream of the outlet 14 of the exhaust line 4. The sensor 18 makes it possible to measure the concentration of nitrogen oxides NOx at the outlet of the pollution control device 15 after the catalyst 16 has.
  • the catalyst 16 is effective when it is at its starting temperature, which it reaches several tens of seconds after a cold start. Indeed, following a cold start of the engine corresponding to time Os on the diagrams, for approximately the following 50 seconds, the quantity of nitrogen oxides emitted by engine 2 and materialized by curve 19, is equivalent to the quantity of nitrogen oxides determined at the outlet of catalyst 16 and materialized by curve 20.
  • quantitative we mean in the example of the figure 2a a mass flow.
  • An optimization method according to the invention makes it possible to know precisely the moment when a catalyst 16 in the heating phase after a cold start of the vehicle has reached its priming temperature, meaning that this heating must be interrupted instantly.
  • the catalyst heating step 16 begins just after a cold start of the vehicle. This step is carried out using a technique to be chosen from a degradation of the combustion efficiency with modification of the value of the ignition advance, and an electric heating which can be coupled with air injection at the exhaust. These heating techniques are similar to those already existing.
  • the step of measuring the concentration of nitrogen oxides by the sensor 18 at the outlet of the catalyst 16 as soon as said vehicle is started, is carried out without making the slightest adjustment to said sensor 18 and said catalyst 16.
  • a method according to invention relies on the presence of the nitrogen oxide concentration sensor 18 already present in the vehicle, to know the priming state of the catalyst 16.
  • a threshold value is predetermined, from which it can be estimated that the catalyst 16 has been initiated. As soon as said specific parameter has reached this threshold value, the heating of the catalyst stops instantly so as to no longer unnecessarily heat said catalyst 16.
  • a method according to the invention is managed by an on-board computer having software whose input data is the concentration of nitrogen oxides measured by the sensor 18. From this concentration of nitrogen oxides measured by the sensor 18, the software calculates the specific parameter considered, which is compared to a predetermined threshold value which has been previously entered into said software, and which corresponds to the specific parameter considered. As soon as this threshold value is reached, the computer orders an immediate stopping of the heating of the catalyst 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
EP23184055.4A 2022-07-08 2023-07-07 Verfahren zur optimierung der erwärmung eines katalysators zur begrenzung des kraftstoffverbrauchs Pending EP4303409A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2207021A FR3137718A1 (fr) 2022-07-08 2022-07-08 procédé d’optimisation du chauffage d’un catalyseur pour limiter la consommation de carburant

Publications (1)

Publication Number Publication Date
EP4303409A1 true EP4303409A1 (de) 2024-01-10

Family

ID=83439111

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23184055.4A Pending EP4303409A1 (de) 2022-07-08 2023-07-07 Verfahren zur optimierung der erwärmung eines katalysators zur begrenzung des kraftstoffverbrauchs

Country Status (2)

Country Link
EP (1) EP4303409A1 (de)
FR (1) FR3137718A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639708B1 (de) 1993-08-19 1998-03-25 Ekkardt Czub Verfahren zum Betrieb einer Fahrzeug-Brennkraftmaschine
CN108590827A (zh) * 2018-07-03 2018-09-28 广西玉柴机器股份有限公司 根据obd监测效率控制三元催化器入口温度的装置及方法
FR3075260A1 (fr) 2017-12-14 2019-06-21 Psa Automobiles Sa Systeme et procede de pilotage de la temperature d’un catalyseur d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant
FR3081918A1 (fr) 2018-05-29 2019-12-06 Renault S.A.S Procede de gestion de l’amorcage d’un catalyseur de depollution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639708B1 (de) 1993-08-19 1998-03-25 Ekkardt Czub Verfahren zum Betrieb einer Fahrzeug-Brennkraftmaschine
FR3075260A1 (fr) 2017-12-14 2019-06-21 Psa Automobiles Sa Systeme et procede de pilotage de la temperature d’un catalyseur d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant
FR3081918A1 (fr) 2018-05-29 2019-12-06 Renault S.A.S Procede de gestion de l’amorcage d’un catalyseur de depollution
CN108590827A (zh) * 2018-07-03 2018-09-28 广西玉柴机器股份有限公司 根据obd监测效率控制三元催化器入口温度的装置及方法

Also Published As

Publication number Publication date
FR3137718A1 (fr) 2024-01-12

Similar Documents

Publication Publication Date Title
FR2860034A1 (fr) Procede de restriction de l'elevation excessive de la temperature du filtre dans un moteur a combustion interne
EP1323905B1 (de) Verfahren und Vorrichtung zur Überwachung des Betriebszustandes eines Katalysators im Abgasstrang einer Brennkraftmaschine
EP1809878A1 (de) Vorrichtung zur kontrolle des betriebszustandes eines katalytischen wandlers einer abgasleitung, die zu einem verbrennungsmotor führt, und motor mit einer solchen vorrichtung
WO2019229027A1 (fr) Procede de gestion de l'amorcage d'un catalyseur de depollution
EP1834074B1 (de) Schützen eines oxidationskatalysators stromaufwärts eines teilchenfilters für einen dieselmotor durch begrenzung von eingespritztem kraftstoff
EP3574194B1 (de) Verfahren zur kontrolle der emission von stickoxiden einer brennkraftmaschine
EP2545261B1 (de) Verfahren zur regelung der regenerationstemperatur eines partikelfilters
EP4303409A1 (de) Verfahren zur optimierung der erwärmung eines katalysators zur begrenzung des kraftstoffverbrauchs
EP2992193B1 (de) Vorrichtung und verfahren zur überwachung des funktionszustandes eines organs zur behandlung von gasförmigen emissionen einer abgasanlage einer brennkraftmaschine
EP2299094A1 (de) Regelverfahren für einen aufgeladenen Dieselmotor mit Niederdruck-Abgasrückführung
EP2078840B1 (de) Strategiezur Umsetzung eines Schnellerhitzungsprozesses eines Katalysators
FR2916229A1 (fr) Procede de controle des emissions polluantes d'un moteur diesel
EP3995685B1 (de) Verfahren zur diagnose eines luftdurchflussmessers für einen verbrennungsmotor
EP4041998B1 (de) Diagnoseverfahren für ein abgasnachbehandlungssystem eines fremdgezündeten verbrennungsmotors
FR2981690A3 (fr) Procede de depollution d'un moteur a combustion interne et moteur a combustion interne fonctionnant a richesse 1
FR2943095A1 (fr) Procede de regeneration d'un filtre a particules
FR3118647A1 (fr) Procédé de détection d’une fuite de gaz dans un circuit d’admission d’un dispositif de motorisation
FR3028558A1 (fr) Procede de controle d'un dispositif de motorisation et dispositif de motorisation associe
FR3104210A1 (fr) Procede pour limiter la quantite de polluants rejetes par un moteur thermique de vehicule hybride
EP4088012A1 (de) Verfahren zum regenerieren eines partikelfilters eines fremdgezündeten verbrennungsmotors und zugehörige vorrichtung
EP3974636A1 (de) Steuerungsverfahren eines einspeisungssystems mit zwei kraftstoffen für kraftfahrzeug und entsprechende verarbeitungseinheit
EP3816416A1 (de) Verfahren zum regenerieren einer stickoxidfalle eines verbrennungsmotors, der mit einem katalysator zur selektiven reduktion von stickoxiden ausgestattet ist
FR3120921A1 (fr) Procédé de diagnostic d’un fonctionnement erroné d’un moteur de véhicule
FR3045102A1 (fr) Procede de controle d'un dispositif de motorisation et dispositif de motorisation associe
WO2009115759A2 (fr) Procede de gestion du fonctionnement d'au moins un convertisseur catalytique pour moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR