EP4297181A1 - Dielectric waveguide for propagating high frequency waves - Google Patents

Dielectric waveguide for propagating high frequency waves Download PDF

Info

Publication number
EP4297181A1
EP4297181A1 EP22179967.9A EP22179967A EP4297181A1 EP 4297181 A1 EP4297181 A1 EP 4297181A1 EP 22179967 A EP22179967 A EP 22179967A EP 4297181 A1 EP4297181 A1 EP 4297181A1
Authority
EP
European Patent Office
Prior art keywords
dielectric waveguide
section
waveguide
cross
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22179967.9A
Other languages
German (de)
French (fr)
Inventor
Christian WEINZIERLE
Steffen WÄLDE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vega Grieshaber KG
Original Assignee
Vega Grieshaber KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vega Grieshaber KG filed Critical Vega Grieshaber KG
Priority to EP22179967.9A priority Critical patent/EP4297181A1/en
Priority to CN202310730695.8A priority patent/CN117276837A/en
Priority to US18/337,972 priority patent/US20230411816A1/en
Publication of EP4297181A1 publication Critical patent/EP4297181A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/006Manufacturing dielectric waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/087Transitions to a dielectric waveguide

Definitions

  • the invention relates to a waveguide, in particular a dielectric waveguide, for propagating high-frequency waves, e.g. radar waves, a waveguide arrangement, a manufacturing method and a use.
  • a waveguide in particular a dielectric waveguide, for propagating high-frequency waves, e.g. radar waves, a waveguide arrangement, a manufacturing method and a use.
  • Waveguides are suitable and/or designed to transmit high-frequency waves (HF waves), for example from an HF generator to an antenna.
  • HF waves high-frequency waves
  • waveguides - e.g. from a certain length of the waveguide - it may be necessary to arrange one or more holders and/or other support devices on the waveguide, e.g. to support the waveguide.
  • these mounts can lead to the HF waves escaping from the waveguide and/or to spurious reflections in the HF signal.
  • the dielectric waveguide can be designed as a plastic filament with a cross-sectional area of basically any shape, which in at least some embodiments can be rectangular or round.
  • the dielectric waveguide can be suitable or designed to transmit a high-frequency signal, in particular to transmit it with low loss.
  • a dielectric waveguide can have a cross-sectional area between 0.25 mm 2 and 8 mm 2 .
  • the cross-sectional area can depend on the frequency of the waveguide to be transmitted.
  • a dielectric waveguide with a relatively small cross-sectional area - which may correspond to the first section - can have a relatively lower signal attenuation than a waveguide with a relatively larger cross-sectional area.
  • a waveguide with a larger cross-sectional area - which can correspond to the second section - can be less sensitive to external influences and objects (such as holders) that are in the immediate vicinity of the waveguide.
  • the dielectric waveguide described here can be designed as a first section with a substantially uniform cross section over a majority of its route, and as a second section or expansion over at least some parts of its route, the second section having a larger cross section than the first section .
  • the second section or the expansion can be particularly suitable for arranging, for example, fastening elements (such as brackets) thereon.
  • a compromise can advantageously be achieved between low signal attenuation, which particularly characterizes the first section or sections, and low sensitivity to interference, which is typical for the second section.
  • interference from the waveguide holders can be minimized and the radar system can be adjusted in terms of its ringing behavior (interference reflections in the antenna area and/or Close range of the antenna) can be improved.
  • the measurement reliability in close ranges can be increased.
  • the production of such dielectric waveguides with expansion can be realized using various production processes.
  • production by means of injection molding, in particular plastic injection molding has proven to be very efficient and/or cost-effective.
  • the cross-sectional area of the second section is larger than the cross-sectional area of the first section by a factor of 5 to 80, in particular by a factor of 10 to 50, for example by a factor of 15 to 30. This has proven to be a particularly efficient compromise between low signal attenuation and low interference when arranged with (e.g.) brackets.
  • a transition between the first section and the second section is designed to be stepped, oblique and/or rounded.
  • the transition on the left and right sides of the second section can be designed the same. The design of the transition can depend on the manufacturing process chosen.
  • the dielectric waveguide has a cross-sectional area between 0.25 mm and 8 mm, in particular between 0.3 mm and 3 mm.
  • the diameter of the cross section can, for example, depend on the frequency and/or the shape of the cross section (e.g. rectangular) as well as on the plastic used.
  • the dielectric waveguide includes a plurality of second sections, and the second sections are spaced between 10 mm and 300 mm.
  • the distances between the expansions of the dielectric waveguide can be equidistant from one another, but non-uniform distances are also possible.
  • the distances between the expansions can be significantly larger than the length of the expansions. This can advantageously emphasize the low signal attenuation.
  • the cross section of the first section and/or the second section is elliptical, in particular round, rectangular, in particular square, and/or polygonal, in particular as an equilateral polygon.
  • the design of the cross section can depend on the selected measurement frequency, the plastic used, the selected manufacturing process and/or on the objects arranged on it (e.g. fasteners or holders).
  • the dielectric waveguide has a DK value (relative permittivity ⁇ r ) between 2 and 5 and/or loss factors tan( ⁇ ) between 0.00001 and 0.1.
  • the dielectric waveguide consists of or has a plastic, in particular a material from a group including polyetheretherketone, PEEK, polytetrafluoroethylene, PTFE, perfluoroalkoxy, PFA, polyvinylidene fluoride, PVDF, and / or rigid polyethylene (high density polyethylene ), HDPE.
  • a plastic in particular a material from a group including polyetheretherketone, PEEK, polytetrafluoroethylene, PTFE, perfluoroalkoxy, PFA, polyvinylidene fluoride, PVDF, and / or rigid polyethylene (high density polyethylene ), HDPE.
  • the plastics mentioned can in particular tolerate high process temperatures and/or be resistant to a large number of chemicals.
  • these plastics can have small DK values (2 ⁇ ⁇ r ⁇ 3.5) and loss factors (0.00001 ⁇ tan( ⁇ ) ⁇ 0.1).
  • One aspect relates to a method for producing a dielectric waveguide as described above and/or below by means of injection molding, in particular by means of plastic injection molding. This has proven to be very efficient and/or cost-effective.
  • One aspect relates to a dielectric waveguide assembly that includes a dielectric waveguide as described above and/or below, and a holder that at least partially comprises the dielectric waveguide and/or is otherwise arranged on the waveguide.
  • a combination of a series of dielectric waveguides and waveguides is possible.
  • the holder is made of stainless steel, in particular 316L stainless steel, and/or of a plastic, in particular hard polyethylene, HDPE, or has this material.
  • the material of the holder can advantageously have a lower DK value than the dielectric waveguide.
  • less signal is coupled out at the holders and the signal attenuation is not significantly worsened. This can also contribute to a low sensitivity to interference of the waveguide arrangement.
  • the holder is connected to the dielectric waveguide by means of a positive, non-positive and/or material connection.
  • the holder can be detachably connected to the dielectric waveguide.
  • One aspect relates to a use of a dielectric waveguide as described above and/or below or a dielectric waveguide arrangement as described above and/or below for propagating radar waves, in particular for frequencies between 70 GHz and 500 GHz, for example between 100 GHz and 300 GHz.
  • One aspect relates to a use of a dielectric waveguide as described above and/or below or a dielectric waveguide arrangement as described above and/or below for level measurement, topology determination and/or limit level determination.
  • Fig. 1 shows schematically a radar device 10, for example for level measurement technology in process or factory automation, according to one embodiment.
  • the radar device 10 has sensor electronics 14 which is arranged in a housing 12.
  • the sensor electronics 14 can, for example, have a generator or transmitter and/or a receiver of high-frequency waves (HF waves).
  • a connection between the sensor electronics 14 and an antenna system 18 for transmitting the HF waves can be realized, for example, by means of a dielectric waveguide 20.
  • This can be particularly advantageous for applications involving high process temperatures, in which a certain spatial distance between sensor electronics 14 and antenna system 18 may be required so that, for example, the electronic components of sensor electronics 14 can be operated in their specified temperature range.
  • the dielectric waveguide 20 may be supported by one or more holders 25.
  • the holder 25 can at least partially include the dielectric waveguide 20.
  • the holder 25 can be connected to the dielectric waveguide 20 by means of a positive, non-positive and/or material connection.
  • the holder 25 can be detachably connected to the dielectric waveguide 20.
  • the dielectric waveguide 20 can form a dielectric waveguide arrangement 28 with the holder 25 and, optionally, with further components - for example a housing 27.
  • the waveguide arrangement 28 can, for example, have a length between 1 cm and 50 cm exhibit.
  • Such a dielectric waveguide arrangement 28 can advantageously have low signal attenuation compared to a waveguide, for example at frequencies >100 GHz.
  • a dielectric waveguide arrangement 28 can be produced relatively easily and inexpensively, for example as a plastic injection molded part.
  • the production of waveguides for frequencies > 100 GHz can be technically demanding, time-consuming and therefore cost-intensive.
  • the dielectric waveguide 20 may have one or more first sections 21 with a substantially uniform cross section. Furthermore, the dielectric waveguide 20 may have one or more second sections 22. The second section or sections 22 have a larger cross section (or an expansion) than the first section 21. A transition 23 is arranged between the first section 21 and the second section 22, which can be designed, for example, in a step-shaped, oblique and/or rounded manner . The holder(s) 25 are preferably arranged on the second section 22. This can be advantageous because an optimized electric field distribution in and/or on the dielectric waveguide 20 can be achieved. In particular, interference reflections in the HF signal can be reduced when the HF waves are transmitted using the dielectric waveguide 20. As a result, a compromise can advantageously be achieved between low signal attenuation, which particularly characterizes the first section or sections 21, and low sensitivity to interference, which is typical of the second section 22.
  • Figs. 2a and 2b show a connection between conductor cross sections of a waveguide 20 (see e.g Fig. 1 ) and an electric field distribution in and on the waveguide 20.
  • the scale of Fig. 2c represents an attenuation of the electric field strength. The brighter, the lower the attenuation.
  • the waveguides 20 from Figs. 2a and 2b have - without limiting generality - a rectangular cross section (shown in black).
  • the waveguide 20 points from Fig. 2b a larger cross section than the waveguide 20 of Fig. 2a .
  • the waveguide 20 has an (elliptical) maximum of the electric field strength (shown brightly, corresponding to the scale of Fig. 2c ) within the waveguide 20. Furthermore, a maximum of the electric field strength can be determined above and below the waveguide 20, ie outside the waveguide 20. This means that the waveguide 20 can release electrical energy to the environment when one of the areas of high field strength (eg above and below the waveguide 20) is touched by an object or comes close to the waveguide 20. Such an object can be, for example, a holder for the waveguide 20. The release of electrical energy into the environment can, for example, lead to increased attenuation and/or spurious reflections in the HF signal.
  • a waveguide 20 with a small cross-section has lower signal attenuation than a waveguide 20 with a larger cross-section (such as in Fig. 2b shown). This is particularly true at higher frequencies, for example above 70 GHz or above 100 GHz.
  • Fig. 2a shows that with a larger cross section of a waveguide 20, smaller areas of high field strength occur outside the waveguide 20. Therefore, interference from an external object is less than with a waveguide 20 with a smaller cross section. However, the signal attenuation is higher than with a waveguide 20 with a smaller cross section (such as in Fig. 2a shown).
  • first sections 21 For transmission with low signal attenuation, and has dedicated regions with a relatively larger cross section (second sections 22). , which are particularly suitable for arranging brackets on them, for example, with relatively less signal interference from these objects.
  • second sections 22 which are particularly suitable for arranging brackets on them, for example, with relatively less signal interference from these objects.
  • the further figures show implementation examples for such a waveguide 20 and/or a waveguide arrangement 28.
  • Figs. 2d and 2e show a connection between conductor cross sections of a waveguide 20 (see e.g Fig. 1 ) and the electric field strength along the waveguide center in the horizontal direction in another representation.
  • a distance from a center of the waveguide 20 in the y direction is plotted on the abscissa of the diagrams 51 and 52, and a relative intensity of the electric field strength along the center of the waveguide is plotted on the ordinate.
  • the waveguide has a width (or cross section) b.
  • the areas between the dashed lines describe the electric field strength within the waveguide 20.
  • This illustration also shows that the electric field strength outside the dielectric waveguide with a smaller cross section b (see Fig.
  • the waveguide 20 can release electrical energy to the environment when one of the areas of high field strength (eg to the left and right of the waveguide 20) is touched by an object or comes close to the waveguide 20.
  • Fig. 3a - 3c schematically show a waveguide 20 and a waveguide arrangement 28 according to an embodiment.
  • the waveguide 20 from Fig. 3a has a plurality of first sections 21 and two widenings or second sections 22.
  • the second sections 22 have a step-shaped transition 23 on both sides.
  • Fig. 3a Only the pure dielectric waveguide 20 with two cross-sectional expansions 22 is shown. These expansions or second sections 22 can be positioned at a certain distance from one another. The longer the waveguide, the more expansions 22 can be provided.
  • Fig. 3b shows a cross section through a waveguide arrangement 28, which has a waveguide 20, as shown in, for example Fig. 3a is shown.
  • the waveguide 20 can be made, for example, from hard polyethylene (HDPE).
  • the same reference numbers denote the same or similar components as in Fig. 3a .
  • the waveguide arrangement 28 has the Fig. 3b two holders 25, which are arranged in the area of the second sections 22. These can be used, for example, to properly seal the waveguide in its housing position and hold accordingly.
  • the holders 25 can, for example, advantageously be made of a metallic material, such as stainless steel 316L, and/or of plastics, for example.
  • the material of the holder can advantageously have a lower DK value than the dielectric waveguide. This can contribute to a low sensitivity to interference of the waveguide arrangement.
  • the waveguide can be held using (hard) foam, e.g. Rohacell. This can be advantageous for applications with lower requirements for temperature resistance and/or mechanical stability.
  • Fig. 3c shows a perspective view of a waveguide arrangement 28 as in Fig. 3b .
  • the waveguide arrangement 28 has a waveguide 20 and holders 25 which are arranged in the area of the second sections 22.
  • FIG. 4a and 4b show schematically a waveguide arrangement 28 according to a further embodiment, each in a perspective view ( Fig. 4a ) and in cross section ( Fig. 4b ).
  • the waveguide arrangement 28 has a waveguide 20 and three holders 25 which are arranged in the area of the second sections 22.
  • the second sections 22 and the holders 25 are arranged equidistantly; However, other distances are also possible.
  • the transitions 23 are designed obliquely. However, step-shaped and/or rounded designs are also possible.
  • the transitions 23 from the first sections 21 of the waveguide 20 to the widenings 22 at the holding points are realized in this example with suitable tapers (tapers, or a transition, for example a widening, from the small conductor cross-section to the large conductor cross-section).
  • tapers tapeers, or a transition, for example a widening, from the small conductor cross-section to the large conductor cross-section.
  • the interference reflections or the influence of the holders can thereby advantageously be reduced again.
  • Figs. 5a - 5b show schematically a waveguide arrangement 28 according to a further embodiment, each in a perspective view ( Fig. 5a ) and in cross section ( Fig. 5b ).
  • the same reference numbers designate the same or similar components as in the previous figures.
  • the waveguide arrangement 28 has one waveguide 20 and three Holders 25 which are arranged in the area of the second sections 22.
  • the second sections 22 and the holders 25 are not arranged equidistantly.

Abstract

Die Erfindung betrifft einen Wellenleiter, insbesondere einen dielektrischen Wellenleiter (20), zum Propagieren von Hochfrequenzwellen, und eine dielektrische Wellenleiteranordnung (28). Der dielektrische Wellenleiter (20) weist einen ersten Abschnitt (21) mit einem im Wesentlichen gleichförmigen Querschnitt auf, und einen zweiten Abschnitt (22), aufweisend einen größeren Querschnitt als der erste Abschnitt (21).Die dielektrische Wellenleiteranordnung (28) weist einen Wellenleiter (20) auf und eine Halterung (25), welche den dielektrischen Wellenleiter (20) zumindest teilweise umfasst.The invention relates to a waveguide, in particular a dielectric waveguide (20), for propagating high-frequency waves, and a dielectric waveguide arrangement (28). The dielectric waveguide (20) has a first section (21) with a substantially uniform cross section, and a second section (22) having a larger cross section than the first section (21). The dielectric waveguide arrangement (28) has a waveguide (20) and a holder (25) which at least partially encompasses the dielectric waveguide (20).

Description

Gebiet der ErfindungField of invention

Die Erfindung betrifft einen Wellenleiter, insbesondere einen dielektrischen Wellenleiter, zum Propagieren von Hochfrequenzwellen, z.B. von Radarwellen, eine Wellenleiteranordnung, ein Herstellungsverfahren und eine Verwendung.The invention relates to a waveguide, in particular a dielectric waveguide, for propagating high-frequency waves, e.g. radar waves, a waveguide arrangement, a manufacturing method and a use.

Hintergrundbackground

Wellenleiter sind geeignet und/oder dazu eingerichtet, Hochfrequenzwellen (HF-Wellen) zu übertragen, z.B. von einem HF-Generator zu einer Antenne. Für zumindest einige Wellenleiter-z.B. ab einer bestimmten Länge des Wellenleiters - kann es erforderlich sein, eine oder mehrere Halterungen und/oder andere Stützvorrichtung an dem Wellenleiter anzuordnen, z.B. um den Wellenleiter zu stützen. Bei zumindest einigen Wellenleitern, z.B. bei einigen Typen von dielektrischen Wellenleitern, können diese Halterungen jedoch zu einem Austreten der HF-Wellen aus dem Wellenleiter und/oder zu Störreflexionen im HF-Signal führen.Waveguides are suitable and/or designed to transmit high-frequency waves (HF waves), for example from an HF generator to an antenna. For at least some waveguides - e.g. from a certain length of the waveguide - it may be necessary to arrange one or more holders and/or other support devices on the waveguide, e.g. to support the waveguide. However, in at least some waveguides, e.g. in some types of dielectric waveguides, these mounts can lead to the HF waves escaping from the waveguide and/or to spurious reflections in the HF signal.

ZusammenfassungSummary

Es ist Aufgabe der Erfindung, eine Vorrichtung zur Verfügung zu stellen, welche dazu beitragen kann, Störreflexionen im HF-Signal zu reduzieren. Diese Aufgabe wird durch den Gegenstand der unabhängigen Patentansprüche gelöst. Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der folgenden Beschreibung.It is the object of the invention to provide a device which can help reduce spurious reflections in the HF signal. This task is solved by the subject matter of the independent patent claims. Further developments of the invention result from the subclaims and the following description.

Ein Aspekt betrifft einen dielektrischen Wellenleiter zum Propagieren von Hochfrequenzwellen, wobei der Wellenleiter aufweist:

  • einen ersten Abschnitt mit einem im Wesentlichen gleichförmigen Querschnitt, und
  • einen zweiten Abschnitt, aufweisend einen größeren Querschnitt als der erste Abschnitt.
One aspect relates to a dielectric waveguide for propagating high frequency waves, the waveguide comprising:
  • a first section having a substantially uniform cross section, and
  • a second section having a larger cross section than the first section.

Der dielektrische Wellenleiter kann als ein Kunststofffilament ausgeführt sein, mit einer Querschnittsfläche von prinzipiell beliebiger Form, die in zumindest einigen Ausführungsformen rechteckig oder rund ausgeführt sein kann. Der dielektrische Wellenleiter kann dafür geeignet oder dazu eingerichtet sein, ein Hochfrequenzsignal zu übertragen, insbesondere verlustarm zu übertragen. Ein dielektrischer Wellenleiter kann beispielsweise eine Querschnittsfläche zwischen 0,25 mm2 und 8 mm2 aufweisen. Die Querschnittsfläche kann von der zu übertragenden Frequenz des Wellenleiters abhängig sein. Generell kann ein dielektrischer Wellenleiter mit einer relativ kleinen Querschnittsfläche - welche dem ersten Abschnitt entsprechen kann - eine relativ geringere Signaldämpfung aufweisen als ein Wellenleiter mit einer relativ größeren Querschnittsfläche. Allerdings kann ein Wellenleiter mit einer größeren Querschnittsfläche - welche dem zweiten Abschnitt entsprechen kann - unempfindlicher gegenüber äußeren Einflüssen und Gegenständen (wie z.B. Halterungen) sein, die sich in unmittelbarer Nähe des Wellenleiters befinden.The dielectric waveguide can be designed as a plastic filament with a cross-sectional area of basically any shape, which in at least some embodiments can be rectangular or round. The dielectric waveguide can be suitable or designed to transmit a high-frequency signal, in particular to transmit it with low loss. For example, a dielectric waveguide can have a cross-sectional area between 0.25 mm 2 and 8 mm 2 . The cross-sectional area can depend on the frequency of the waveguide to be transmitted. In general, a dielectric waveguide with a relatively small cross-sectional area - which may correspond to the first section - can have a relatively lower signal attenuation than a waveguide with a relatively larger cross-sectional area. However, a waveguide with a larger cross-sectional area - which can correspond to the second section - can be less sensitive to external influences and objects (such as holders) that are in the immediate vicinity of the waveguide.

Daher kann der hier beschriebene dielektrische Wellenleiter auf einem überwiegenden Teil seiner Strecke als erster Abschnitt mit einem im Wesentlichen gleichförmigen Querschnitt ausgeführt sein, und auf zumindest einigen Teilen seiner Strecke als zweiter Abschnitt oder Aufweitung, wobei der zweite Abschnitt einen größeren Querschnitt aufweist als der erste Abschnitt. Der zweite Abschnitt oder die Aufweitung kann insbesondere dafür geeignet sein, um an diesem z.B. Befestigungselemente (wie z.B. Halterungen) anzuordnen. Dadurch kann vorteilhafterweise ein Kompromiss erzielt werden zwischen geringer Signaldämpfung, die insbesondere den ersten Abschnitt bzw. die ersten Abschnitte auszeichnet, und geringer Störempfindlichkeit, welche typisch ist für den zweiten Abschnitt. Weiterhin können dadurch Störeinflüsse von den Wellenleiterhalterungen minimiert und das Radarsystem kann hinsichtlich seines Klingelverhaltens (Störreflexionen im Antennenbereich und/oder Nahbereich der Antenne) verbessert werden. Ferner kann die Messsicherheit im Nahbereich erhöht werden.Therefore, the dielectric waveguide described here can be designed as a first section with a substantially uniform cross section over a majority of its route, and as a second section or expansion over at least some parts of its route, the second section having a larger cross section than the first section . The second section or the expansion can be particularly suitable for arranging, for example, fastening elements (such as brackets) thereon. As a result, a compromise can advantageously be achieved between low signal attenuation, which particularly characterizes the first section or sections, and low sensitivity to interference, which is typical for the second section. Furthermore, interference from the waveguide holders can be minimized and the radar system can be adjusted in terms of its ringing behavior (interference reflections in the antenna area and/or Close range of the antenna) can be improved. Furthermore, the measurement reliability in close ranges can be increased.

Die Herstellung derartiger dielektrischer Wellenleiter mit Aufweitung kann mittels verschiedener Herstellungsverfahren realisiert werden. Beispielsweise hat sich eine Herstellung mittels Spritzguss, insbesondere Kunststoffspritzguss, als sehr effizient und/oder kostengünstig erwiesen.The production of such dielectric waveguides with expansion can be realized using various production processes. For example, production by means of injection molding, in particular plastic injection molding, has proven to be very efficient and/or cost-effective.

In einigen Ausführungsformen ist die Querschnittsfläche des zweiten Abschnitts um einen Faktor 5 bis 80, insbesondere um einen Faktor 10 bis 50, beispielsweise um einen Faktor 15 bis 30, größer als die Querschnittsfläche des ersten Abschnitts. Dies hat sich als besonders effizienter Kompromiss zwischen geringer Signaldämpfung und geringen Störungen bei der Anordnung mit (z.B.) Halterungen erwiesen.In some embodiments, the cross-sectional area of the second section is larger than the cross-sectional area of the first section by a factor of 5 to 80, in particular by a factor of 10 to 50, for example by a factor of 15 to 30. This has proven to be a particularly efficient compromise between low signal attenuation and low interference when arranged with (e.g.) brackets.

In einigen Ausführungsformen ist ein Übergang zwischen dem ersten Abschnitt und dem zweiten Abschnitt stufenförmig, schräg und/oder abgerundet ausgestaltet. Der Übergang an der linken und rechten Seite des zweiten Abschnitts kann gleich gestaltet sein. Die Gestaltung des Übergangs kann von dem gewählten Herstellungsverfahren abhängig sein.In some embodiments, a transition between the first section and the second section is designed to be stepped, oblique and/or rounded. The transition on the left and right sides of the second section can be designed the same. The design of the transition can depend on the manufacturing process chosen.

In einigen Ausführungsformen weist der dielektrische Wellenleiter eine Querschnittsfläche zwischen 0,25 mm und 8 mm, insbesondere zwischen 0,3 mm und 3 mm, auf. Der Durchmesser des Querschnitts kann z.B. von der Frequenz und/oder von der Form des Querschnitts (z.B. rechteckig) sowie von dem verwendeten Kunststoff abhängig sein.In some embodiments, the dielectric waveguide has a cross-sectional area between 0.25 mm and 8 mm, in particular between 0.3 mm and 3 mm. The diameter of the cross section can, for example, depend on the frequency and/or the shape of the cross section (e.g. rectangular) as well as on the plastic used.

In einigen Ausführungsformen weist der dielektrische Wellenleiter eine Vielzahl von zweiten Abschnitten auf, und die zweiten Abschnitte weisen einen Abstand von zwischen 10 mm und 300 mm auf. Die Abstände zwischen den Aufweitungen des dielektrischen Wellenleiters können äquidistant zueinander sein, es sind aber auch ungleichmäßige Abstände möglich. Die Abstände zwischen den Aufweitungen können wesentlich größer sein als die Länge der Aufweitungen. Dies kann vorteilhafterweise die geringe Signaldämpfung betonen.In some embodiments, the dielectric waveguide includes a plurality of second sections, and the second sections are spaced between 10 mm and 300 mm. The distances between the expansions of the dielectric waveguide can be equidistant from one another, but non-uniform distances are also possible. The distances between the expansions can be significantly larger than the length of the expansions. This can advantageously emphasize the low signal attenuation.

In einigen Ausführungsformen ist der Querschnitt des ersten Abschnitts und/oder des zweiten Abschnitts elliptisch, insbesondere rund, rechteckig, insbesondere quadratisch, und/oder vieleckig, insbesondere als gleichseitiges Vieleck, ausgeführt. Die Gestaltung des Querschnitts kann von der gewählten Messfrequenz, dem verwendeten Kunststoff, dem gewählten Herstellungsverfahren und/oder von den daran angeordneten Gegenständen (z.B. Befestigungselementen oder Halterungen) abhängig sein.In some embodiments, the cross section of the first section and/or the second section is elliptical, in particular round, rectangular, in particular square, and/or polygonal, in particular as an equilateral polygon. The design of the cross section can depend on the selected measurement frequency, the plastic used, the selected manufacturing process and/or on the objects arranged on it (e.g. fasteners or holders).

In einigen Ausführungsformen weist der dielektrische Wellenleiter einen DK-Wert (relative Dielektrizitätskonstante εr) zwischen 2 und 5 und/oder Verlustfaktoren tan(δ) zwischen 0,00001 und 0,1 auf.In some embodiments, the dielectric waveguide has a DK value (relative permittivity ε r ) between 2 and 5 and/or loss factors tan(δ) between 0.00001 and 0.1.

In einigen Ausführungsformen besteht der dielektrische Wellenleiter aus einem Kunststoff oder weist dieses Material auf, insbesondere ein Material aus einer Gruppe, welche Polyetheretherketon, PEEK, Polytetrafluorethylen, PTFE, Perfluoralkoxy, PFA, Polyvinylidenfluorid, PVDF, und/oder Hart-Polyethylen (High Density Polyethylen), HDPE, umfasst. Die genannten Kunststoffe können insbesondere hohe Prozesstemperaturen tolerieren und/oder und gegen eine Vielzahl von Chemikalien beständig sein. Darüber hinaus können diese Kunststoffe aus hochfrequenztechnischer Sicht kleine DK-Werte (2 ≤ εr ≤ 3,5) und Verlustfaktoren (0,00001 ≤ tan(δ) ≤ 0,1) aufweisen.In some embodiments, the dielectric waveguide consists of or has a plastic, in particular a material from a group including polyetheretherketone, PEEK, polytetrafluoroethylene, PTFE, perfluoroalkoxy, PFA, polyvinylidene fluoride, PVDF, and / or rigid polyethylene (high density polyethylene ), HDPE. The plastics mentioned can in particular tolerate high process temperatures and/or be resistant to a large number of chemicals. In addition, from a high-frequency perspective, these plastics can have small DK values (2 ≤ ε r ≤ 3.5) and loss factors (0.00001 ≤ tan(δ) ≤ 0.1).

Ein Aspekt betrifft ein Verfahren zur Herstellung eines dielektrischen Wellenleiters wie oben und/oder nachfolgend beschrieben mittels Spritzguss, insbesondere mittels Kunststoffspritzguss. Dies hat sich als sehr effizient und/oder kostengünstig erwiesen.One aspect relates to a method for producing a dielectric waveguide as described above and/or below by means of injection molding, in particular by means of plastic injection molding. This has proven to be very efficient and/or cost-effective.

Ein Aspekt betrifft eine dielektrische Wellenleiteranordnung, die einen dielektrischen Wellenleiter wie oben und/oder nachfolgend beschrieben aufweist, und eine Halterung, welche den dielektrischen Wellenleiter zumindest teilweise umfasst und/oder anderweitig an dem Wellenleiter angeordnet ist. Alternativ ist eine Kombination aus einer Aneinanderreihung von dielektrischen Wellenleitern und Hohlleitern möglich.One aspect relates to a dielectric waveguide assembly that includes a dielectric waveguide as described above and/or below, and a holder that at least partially comprises the dielectric waveguide and/or is otherwise arranged on the waveguide. Alternatively, a combination of a series of dielectric waveguides and waveguides is possible.

In einigen Ausführungsformen besteht die Halterung aus Edelstahl, insbesondere 316L Edelstahl, und/oder aus einem Kunststoff, insbesondere Hart-Polyethylen, HDPE, oder weist dieses Material auf. Dabei kann das Material der Halterung vorteilhafterweise einen niedrigeren DK-Wert aufweisen als der dielektrische Wellenleiter. Vorteilhafterweise wird dadurch weniger Signal an den Halterungen ausgekoppelt und die Signaldämpfung nicht wesentlich verschlechtert. Dies kann zudem zu einer geringen Störempfindlichkeit der Wellenleiteranordnung beitragen.In some embodiments, the holder is made of stainless steel, in particular 316L stainless steel, and/or of a plastic, in particular hard polyethylene, HDPE, or has this material. The material of the holder can advantageously have a lower DK value than the dielectric waveguide. Advantageously, less signal is coupled out at the holders and the signal attenuation is not significantly worsened. This can also contribute to a low sensitivity to interference of the waveguide arrangement.

In einigen Ausführungsformen ist die Halterung mittels einer form-, kraftschlüssigen und/oder stoffschlüssigen Verbindung mit dem dielektrischen Wellenleiter verbunden. Dabei kann die Halterung lösbar mit dem dielektrischen Wellenleiter verbunden sein.In some embodiments, the holder is connected to the dielectric waveguide by means of a positive, non-positive and/or material connection. The holder can be detachably connected to the dielectric waveguide.

Ein Aspekt betrifft eine Verwendung eines dielektrischen Wellenleiters wie oben und/oder nachfolgend beschrieben oder einer dielektrischen Wellenleiteranordnung wie oben und/oder nachfolgend beschrieben zur Propagierung von Radarwellen, insbesondere für Frequenzen zwischen 70 GHz und 500 GHz, beispielsweise zwischen 100 GHz und 300 GHz.One aspect relates to a use of a dielectric waveguide as described above and/or below or a dielectric waveguide arrangement as described above and/or below for propagating radar waves, in particular for frequencies between 70 GHz and 500 GHz, for example between 100 GHz and 300 GHz.

Ein Aspekt betrifft eine Verwendung eines dielektrischen Wellenleiters wie oben und/oder nachfolgend beschrieben oder einer dielektrischen Wellenleiteranordnung wie oben und/oder nachfolgend beschrieben zur Füllstandmessung, zur Topologiebestimmung und/oder zur Grenzstandbestimmung.One aspect relates to a use of a dielectric waveguide as described above and/or below or a dielectric waveguide arrangement as described above and/or below for level measurement, topology determination and/or limit level determination.

Es sei noch angemerkt, dass die verschiedenen oben und/oder nachfolgend beschriebenen Ausführungsformen miteinander kombiniert werden können.It should also be noted that the various embodiments described above and/or below can be combined with one another.

Zur weiteren Verdeutlichung wird die Erfindung anhand von in den Figuren abgebildeten Ausführungsformen beschrieben. Diese Ausführungsformen sind nur als Beispiel, nicht aber als Einschränkung zu verstehen.For further clarification, the invention is described using the embodiments shown in the figures. These embodiments are only to be understood as an example and not as a limitation.

Kurze Beschreibung der FigurenShort description of the characters

Dabei zeigt:

Fig. 1
schematisch ein Radargerät gemäß einer Ausführungsform;
Fig. 2a - 2e
einen Zusammenhang zwischen Leiterquerschnitten eines Wellenleiters und einer elektrischen Feldverteilung;
Fig. 3a - 3c
schematisch einen Wellenleiter und eine Wellenleiteranordnung gemäß einer Ausführungsform;
Fig. 4a - 4b
schematisch eine Wellenleiteranordnung gemäß einer weiteren Ausführungsform;
Fig. 5a - 5b
schematisch eine Wellenleiteranordnung gemäß einer weiteren Ausführungsform.
This shows:
Fig. 1
schematically a radar device according to one embodiment;
Fig. 2a - 2e
a relationship between conductor cross sections of a waveguide and an electric field distribution;
Fig. 3a - 3c
schematically a waveguide and a waveguide arrangement according to one embodiment;
Fig. 4a - 4b
schematically a waveguide arrangement according to a further embodiment;
Figs. 5a - 5b
schematically a waveguide arrangement according to a further embodiment.

Detaillierte Beschreibung von AusführungsformenDetailed Description of Embodiments

Fig. 1 zeigt schematisch ein Radargerät 10, z.B. für die Füllstandmesstechnik in der Prozess- oder Fabrikautomation, gemäß einer Ausführungsform. Das Radargerät 10 weist eine Sensorelektronik 14 auf, die in einem Gehäuse 12 angeordnet ist. Die Sensorelektronik 14 kann beispielsweise einen Generator oder Sender und/oder einen Empfänger von Hochfrequenzwellen (HF-Wellen) aufweisen. Eine Verbindung zwischen der Sensorelektronik 14 und einem Antennensystem 18, zur Übertragung der HF-Wellen, kann z.B. mittels eines dielektrischen Wellenleiters 20 realisiert sein. Dies kann insbesondere für Anwendungen fei hohen Prozesstemperaturen vorteilhaft sein, bei denen ein gewisser räumlicher Abstand zwischen Sensorelektronik 14 und Antennensystem 18 erforderlich sein kann, damit z.B. die Elektronikbauteile der Sensorelektronik 14 in ihrem spezifizierten Temperaturbereich betrieben werden können. Der dielektrische Wellenleiter 20 kann mittels einer oder mehrerer Halterungen 25 gestützt sein. Die Halterung 25 kann den dielektrischen Wellenleiter 20 zumindest teilweise umfassen. Die Halterung 25 kann mittels einer form-, kraft- und/oder stoffschlüssigen Verbindung mit dem dielektrischen Wellenleiter 20 verbunden ist. Die Halterung 25 kann lösbar mit dem dielektrischen Wellenleiter 20 verbunden sein. Der dielektrische Wellenleiter 20 kann mit der Halterung 25 und, optional, mit weiteren Komponenten - z.B. einem Gehäuse 27 - eine dielektrische Wellenleiteranordnung 28 bilden. Die Wellenleiteranordnung 28 kann z.B. eine Länge zwischen 1 cm und 50 cm aufweisen. Eine derartige dielektrische Wellenleiteranordnung 28 kann vorteilhafterweise z.B. bei Frequenzen > 100 GHz eine geringe Signaldämpfung gegenüber einem Hohlleiter aufweisen. Weiterhin kann eine dielektrische Wellenleiteranordnung 28 relativ einfach und kostengünstig, z.B. als Kunststoffspritzgussteil, hergestellt werden. Die Herstellung von Hohlleitern hingegen kann für Frequenzen > 100 GHz technisch anspruchsvoll, aufwändig und entsprechend kostenintensiv sein. Fig. 1 shows schematically a radar device 10, for example for level measurement technology in process or factory automation, according to one embodiment. The radar device 10 has sensor electronics 14 which is arranged in a housing 12. The sensor electronics 14 can, for example, have a generator or transmitter and/or a receiver of high-frequency waves (HF waves). A connection between the sensor electronics 14 and an antenna system 18 for transmitting the HF waves can be realized, for example, by means of a dielectric waveguide 20. This can be particularly advantageous for applications involving high process temperatures, in which a certain spatial distance between sensor electronics 14 and antenna system 18 may be required so that, for example, the electronic components of sensor electronics 14 can be operated in their specified temperature range. The dielectric waveguide 20 may be supported by one or more holders 25. The holder 25 can at least partially include the dielectric waveguide 20. The holder 25 can be connected to the dielectric waveguide 20 by means of a positive, non-positive and/or material connection. The holder 25 can be detachably connected to the dielectric waveguide 20. The dielectric waveguide 20 can form a dielectric waveguide arrangement 28 with the holder 25 and, optionally, with further components - for example a housing 27. The waveguide arrangement 28 can, for example, have a length between 1 cm and 50 cm exhibit. Such a dielectric waveguide arrangement 28 can advantageously have low signal attenuation compared to a waveguide, for example at frequencies >100 GHz. Furthermore, a dielectric waveguide arrangement 28 can be produced relatively easily and inexpensively, for example as a plastic injection molded part. On the other hand, the production of waveguides for frequencies > 100 GHz can be technically demanding, time-consuming and therefore cost-intensive.

Der dielektrische Wellenleiter 20 kann einen oder mehrere erste Abschnitte 21 mit einem im Wesentlichen gleichförmigen Querschnitt aufweisen. Weiterhin kann der dielektrische Wellenleiter 20 einen oder mehrere zweite Abschnitte 22 aufweisen. Der oder die zweiten Abschnitte 22 weisen einen größeren Querschnitt (oder eine Aufweitung) auf als der erste Abschnitt 21. Zwischen dem ersten Abschnitt 21 und dem zweiten Abschnitt 22 ist ein Übergang 23 angeordnet, der z.B. stufenförmig, schräg und/oder abgerundet ausgeführt sein kann. Der oder die Halterungen 25 sind vorzugsweise an dem zweiten Abschnitt 22 angeordnet. Dies kann vorteilhaft sein, weil damit eine optimierte elektrische Feldverteilung in und/oder an dem dielektrischen Wellenleiter 20 erzielt werden kann. Dabei können insbesondere Störreflexionen im HF-Signal bei einer Übertragung der HF-Wellen mittels des dielektrischen Wellenleiters 20 reduziert werden. Dadurch kann vorteilhafterweise ein Kompromiss erzielt werden zwischen geringer Signaldämpfung, die insbesondere den ersten Abschnitt bzw. die ersten Abschnitte 21 auszeichnet, und geringer Störempfindlichkeit, welche typisch ist für den zweiten Abschnitt 22.The dielectric waveguide 20 may have one or more first sections 21 with a substantially uniform cross section. Furthermore, the dielectric waveguide 20 may have one or more second sections 22. The second section or sections 22 have a larger cross section (or an expansion) than the first section 21. A transition 23 is arranged between the first section 21 and the second section 22, which can be designed, for example, in a step-shaped, oblique and/or rounded manner . The holder(s) 25 are preferably arranged on the second section 22. This can be advantageous because an optimized electric field distribution in and/or on the dielectric waveguide 20 can be achieved. In particular, interference reflections in the HF signal can be reduced when the HF waves are transmitted using the dielectric waveguide 20. As a result, a compromise can advantageously be achieved between low signal attenuation, which particularly characterizes the first section or sections 21, and low sensitivity to interference, which is typical of the second section 22.

Fig. 2a und 2b zeigen einen Zusammenhang zwischen Leiterquerschnitten eines Wellenleiters 20 (siehe z.B. Fig. 1 ) und einer elektrischen Feldverteilung in und an dem Wellenleiter 20. Die Skala von Fig. 2c stellt eine Dämpfung der elektrischen Feldstärke dar. Je heller, desto geringer ist die Dämpfung. Die Wellenleiter 20 von Fig. 2a und 2b weisen - ohne Einschränkung der Allgemeinheit - einen rechteckigen Querschnitt auf (schwarz dargestellt). Dabei weist der Wellenleiter 20 von Fig. 2b einen größeren Querschnitt auf als der Wellenleiter 20 von Fig. 2a . Figs. 2a and 2b show a connection between conductor cross sections of a waveguide 20 (see e.g Fig. 1 ) and an electric field distribution in and on the waveguide 20. The scale of Fig. 2c represents an attenuation of the electric field strength. The brighter, the lower the attenuation. The waveguides 20 from Figs. 2a and 2b have - without limiting generality - a rectangular cross section (shown in black). The waveguide 20 points from Fig. 2b a larger cross section than the waveguide 20 of Fig. 2a .

In der Darstellung von Fig. 2a wird deutlich, dass der Wellenleiter 20 ein (elliptisches) Maximum der elektrischen Feldstärke (hell dargestellt, entsprechend der Skala von Fig. 2c ) innerhalb des Wellenleiters 20 aufweist. Weiterhin ist ein Maximum der elektrischen Feldstärke oberhalb und unterhalb des Wellenleiters 20, d.h. außerhalb des Wellenleiters 20, festzustellen. Dies bedeutet, dass der Wellenleiter 20 elektrische Energie an die Umgebung abgeben kann, wenn einer der Bereiche hoher Feldstärke (z.B. oberhalb und unterhalb des Wellenleiters 20) mit einem Gegenstand berührt wird oder dem Wellenleiter 20 nahekommt. Ein derartiger Gegenstand kann z.B. eine Halterung des Wellenleiters 20 sein. Das Abgeben der elektrischen Energie an die Umgebung kann beispielsweise zu einer erhöhten Dämpfung und/oder zu Störreflexionen im HF-Signal führen. Solange aber kein Gegenstand den Wellenleiter 20 berührt oder nahekommt, weist ein Wellenleiter 20 mit einem kleinen Querschnitt eine geringere Signaldämpfung auf als ein Wellenleiter 20 mit einem größeren Querschnitt (wie z.B. in Fig. 2b dargestellt). Dies gilt insbesondere bei höheren Frequenzen, z.B. über 70 GHz oder über 100 GHz.In the representation of Fig. 2a It becomes clear that the waveguide 20 has an (elliptical) maximum of the electric field strength (shown brightly, corresponding to the scale of Fig. 2c ) within the waveguide 20. Furthermore, a maximum of the electric field strength can be determined above and below the waveguide 20, ie outside the waveguide 20. This means that the waveguide 20 can release electrical energy to the environment when one of the areas of high field strength (eg above and below the waveguide 20) is touched by an object or comes close to the waveguide 20. Such an object can be, for example, a holder for the waveguide 20. The release of electrical energy into the environment can, for example, lead to increased attenuation and/or spurious reflections in the HF signal. However, as long as no object touches or comes close to the waveguide 20, a waveguide 20 with a small cross-section has lower signal attenuation than a waveguide 20 with a larger cross-section (such as in Fig. 2b shown). This is particularly true at higher frequencies, for example above 70 GHz or above 100 GHz.

Die Darstellung von Fig. 2a zeigt, dass bei einem größeren Querschnitt eines Wellenleiter 20 kleinere Bereiche hoher Feldstärke außerhalb des Wellenleiters 20 auftreten. Daher ist eine Störung durch einen externen Gegenstand geringer als bei einem Wellenleiter 20 mit kleinerem Querschnitt. Allerdings ist die Signaldämpfung höher als bei einem Wellenleiter 20 mit einem kleineren Querschnitt (wie z.B. in Fig. 2a dargestellt).The representation of Fig. 2a shows that with a larger cross section of a waveguide 20, smaller areas of high field strength occur outside the waveguide 20. Therefore, interference from an external object is less than with a waveguide 20 with a smaller cross section. However, the signal attenuation is higher than with a waveguide 20 with a smaller cross section (such as in Fig. 2a shown).

Es ist also besonders vorteilhaft, einen Wellenleiter 20 zur Verfügung zu stellen, der längere Bereiche mit einem relativ kleineren Querschnitt (erste Abschnitte 21) aufweist, für eine Übertragung mit geringer Signaldämpfung, und dedizierte Bereiche mit einem relativ größeren Querschnitt (zweite Abschnitte 22) aufweist, die besonders geeignet sind, um daran z.B. Halterungen anzuordnen, mit einer relativ geringeren Signalstörung durch diese Gegenstände. Dadurch kann vorteilhafterweise ein Kompromiss erzielt werden zwischen geringer Signaldämpfung, die insbesondere den ersten Abschnitt bzw. die ersten Abschnitte 21 auszeichnet, und geringer Störempfindlichkeit, welche typisch ist für den zweiten Abschnitt 22. Die weiteren Figuren zeigen Realisierungsbeispiele für einen derartigen Wellenleiter 20 und/oder eine Wellenleiteranordnung 28.It is therefore particularly advantageous to provide a waveguide 20 which has longer regions with a relatively smaller cross section (first sections 21), for transmission with low signal attenuation, and has dedicated regions with a relatively larger cross section (second sections 22). , which are particularly suitable for arranging brackets on them, for example, with relatively less signal interference from these objects. This advantageously allows a compromise to be achieved between low signal attenuation, which particularly characterizes the first section or sections 21, and low sensitivity to interference, which is typical for the second section 22. The further figures show implementation examples for such a waveguide 20 and/or a waveguide arrangement 28.

Die Beispiele von Fig. 2d und 2e zeigen einen Zusammenhang zwischen Leiterquerschnitten eines Wellenleiters 20 (siehe z.B. Fig. 1 ) und der elektrischen Feldstärke entlang des Wellenleiterzentrums in horizontaler Richtung in einer anderen Darstellung. Dabei ist an der Abszisse der Diagramme 51 und 52 ein Abstand vom einem Zentrum des Wellenleiters 20 in y-Richtung angetragen, und an der Ordinate ist eine relative Intensität der elektrischen Feldstärke entlang des Zentrums des Wellenleiters angetragen. Der Wellenleiter weist dabei eine Breite (oder Querschnitt) b auf. Die Bereiche zwischen den gestrichelten Linien beschreiben dabei die elektrische Feldstärke innerhalb des Wellenleiters 20. Auch in dieser Darstellung wird deutlich, dass die elektrische Feldstärke außerhalb des dielektrischen Wellenleiters mit einem kleineren Querschnitt b (siehe Fig. 2d ) deutlich höher ist als bei einem Wellenleiter mit größerem Querschnitt b (siehe Fig. 2e ). Dies bedeutet - wie oben ausgeführt -, dass der Wellenleiter 20 elektrische Energie an die Umgebung abgeben kann, wenn einer der Bereiche hoher Feldstärke (z.B. links und rechts des Wellenleiters 20) mit einem Gegenstand berührt wird oder dem Wellenleiter 20 nahekommt.The examples of Figs. 2d and 2e show a connection between conductor cross sections of a waveguide 20 (see e.g Fig. 1 ) and the electric field strength along the waveguide center in the horizontal direction in another representation. A distance from a center of the waveguide 20 in the y direction is plotted on the abscissa of the diagrams 51 and 52, and a relative intensity of the electric field strength along the center of the waveguide is plotted on the ordinate. The waveguide has a width (or cross section) b. The areas between the dashed lines describe the electric field strength within the waveguide 20. This illustration also shows that the electric field strength outside the dielectric waveguide with a smaller cross section b (see Fig. 2d ) is significantly higher than a waveguide with a larger cross section b (see Fig. 2e ). This means - as explained above - that the waveguide 20 can release electrical energy to the environment when one of the areas of high field strength (eg to the left and right of the waveguide 20) is touched by an object or comes close to the waveguide 20.

Fig. 3a - 3c zeigen schematisch einen Wellenleiter 20 und eine Wellenleiteranordnung 28 gemäß einer Ausführungsform. Der Wellenleiter 20 von Fig. 3a weist eine Vielzahl von ersten Abschnitten 21 auf und zwei Aufweitungen oder zweite Abschnitte 22. Die zweiten Abschnitte 22 weisen auf beiden Seiten einen stufenförmigen Übergang 23 auf. In Fig. 3a ist dabei nur der reine dielektrische Wellenleiter 20 mit zwei Querschnittsaufweitungen 22 dargestellt. Diese Aufweitungen oder zweite Abschnitte 22 können in einem bestimmten Abstand zueinander positioniert sein. Je länger der Wellenleiter, desto mehr Aufweitungen 22 können vorgesehen sein. Fig. 3a - 3c schematically show a waveguide 20 and a waveguide arrangement 28 according to an embodiment. The waveguide 20 from Fig. 3a has a plurality of first sections 21 and two widenings or second sections 22. The second sections 22 have a step-shaped transition 23 on both sides. In Fig. 3a Only the pure dielectric waveguide 20 with two cross-sectional expansions 22 is shown. These expansions or second sections 22 can be positioned at a certain distance from one another. The longer the waveguide, the more expansions 22 can be provided.

Fig. 3b zeigt einen Querschnitt durch eine Wellenleiteranordnung 28, die einen Wellenleiter 20 aufweist, wie er z.B. in Fig. 3a dargestellt ist. Der Wellenleiter 20 kann z.B. aus Hart-Polyethylen (HDPE) hergestellt sein. Gleiche Bezugszeichen bezeichnen dabei gleiche oder ähnliche Komponenten wie in Fig. 3a . Weiterhin weist die Wellenleiteranordnung 28 der Fig. 3b zwei Halterungen 25 auf, die im Bereich der zweiten Abschnitte 22 angeordnet sind. Diese können z.B. dafür genutzt werden, den Wellenleiter in ihrem Gehäuse richtig zu positionieren und entsprechend zu halten. Die Halterungen 25 können z.B. vorteilhafterweise aus einem metallischen Material hergestellt sein, wie beispielsweise Edelstahl 316L, und/oder aus beispielsweise aus Kunststoffen. Dabei kann das Material der Halterung vorteilhafterweise einen niedrigeren DK-Wert aufweisen als der dielektrische Wellenleiter. Dies kann zu einer geringen Störempfindlichkeit der Wellenleiteranordnung beitragen. Fig. 3b shows a cross section through a waveguide arrangement 28, which has a waveguide 20, as shown in, for example Fig. 3a is shown. The waveguide 20 can be made, for example, from hard polyethylene (HDPE). The same reference numbers denote the same or similar components as in Fig. 3a . Furthermore, the waveguide arrangement 28 has the Fig. 3b two holders 25, which are arranged in the area of the second sections 22. These can be used, for example, to properly seal the waveguide in its housing position and hold accordingly. The holders 25 can, for example, advantageously be made of a metallic material, such as stainless steel 316L, and/or of plastics, for example. The material of the holder can advantageously have a lower DK value than the dielectric waveguide. This can contribute to a low sensitivity to interference of the waveguide arrangement.

In einer Ausführungsform kann die Halterung des Wellenleiters mittels (Hart-)Schaumstoff, z.B. Rohacell, realisiert sein. Die kann für Anwendungen mit geringeren Anforderungen an die Temperaturfestigkeit und/oder die mechanische Stabilität vorteilhaft sein.In one embodiment, the waveguide can be held using (hard) foam, e.g. Rohacell. This can be advantageous for applications with lower requirements for temperature resistance and/or mechanical stability.

Fig. 3c zeigt eine perspektivische Darstellung einer Wellenleiteranordnung 28 wie in Fig. 3b . Die Wellenleiteranordnung 28 weist einen Wellenleiter 20 und Halterungen 25 auf, die im Bereich der zweiten Abschnitte 22 angeordnet sind. Fig. 3c shows a perspective view of a waveguide arrangement 28 as in Fig. 3b . The waveguide arrangement 28 has a waveguide 20 and holders 25 which are arranged in the area of the second sections 22.

Fig. 4a und 4b zeigen schematisch eine Wellenleiteranordnung 28 gemäß einer weiteren Ausführungsform, jeweils in perspektivischer Darstellung ( Fig. 4a ) und im Querschnitt ( Fig. 4b ). Die Wellenleiteranordnung 28 weist einen Wellenleiter 20 und drei Halterungen 25 auf, die im Bereich der zweiten Abschnitte 22 angeordnet sind. Die zweiten Abschnitte 22 und die Halterungen 25 sind äquidistant angeordnet; es sind aber auch andere Abstände möglich. Wie insbesondere in Fig. 4b deutlich wird, sind die Übergänge 23 schräg ausgeführt. Es sind aber auch z.B. stufenförmig und/oder abgerundete Ausführungen möglich. Die Übergänge 23 von den ersten Abschnitten 21 des Wellenleiters 20 zu den Aufweitungen 22 an den Haltepunkten sind in diesem Beispiel mit passenden Tapern (Verjüngungen, oder ein Übergang, z.B. eine Aufweitung, von dem kleinen Leiterquerschnitt in den großen Leiterquerschnitt) realisiert. Die Störreflexionen bzw. der Einfluss der Halterungen können dadurch vorteilhafterweise nochmals verringert werden. 4a and 4b show schematically a waveguide arrangement 28 according to a further embodiment, each in a perspective view ( Fig. 4a ) and in cross section ( Fig. 4b ). The waveguide arrangement 28 has a waveguide 20 and three holders 25 which are arranged in the area of the second sections 22. The second sections 22 and the holders 25 are arranged equidistantly; However, other distances are also possible. Like in particular Fig. 4b becomes clear, the transitions 23 are designed obliquely. However, step-shaped and/or rounded designs are also possible. The transitions 23 from the first sections 21 of the waveguide 20 to the widenings 22 at the holding points are realized in this example with suitable tapers (tapers, or a transition, for example a widening, from the small conductor cross-section to the large conductor cross-section). The interference reflections or the influence of the holders can thereby advantageously be reduced again.

Fig. 5a - 5b zeigen schematisch eine Wellenleiteranordnung 28 gemäß einer weiteren Ausführungsform, jeweils in perspektivischer Darstellung ( Fig. 5a ) und im Querschnitt ( Fig. 5b ). Gleiche Bezugszeichen bezeichnen dabei gleiche oder ähnliche Komponenten wie in den vorherigen Figuren. Die Wellenleiteranordnung 28 weist einen Wellenleiter 20 und drei Halterungen 25 auf, die im Bereich der zweiten Abschnitte 22 angeordnet sind. Die zweiten Abschnitte 22 und die Halterungen 25 sind dabei nicht äquidistant angeordnet. Figs. 5a - 5b show schematically a waveguide arrangement 28 according to a further embodiment, each in a perspective view ( Fig. 5a ) and in cross section ( Fig. 5b ). The same reference numbers designate the same or similar components as in the previous figures. The waveguide arrangement 28 has one waveguide 20 and three Holders 25 which are arranged in the area of the second sections 22. The second sections 22 and the holders 25 are not arranged equidistantly.

Liste der BezugszeichenList of reference symbols

1010
RadargerätRadar device
1212
GehäuseHousing
1414
SensorelektronikSensor electronics
1818
AntennensystemAntenna system
2020
dielektrischer Wellenleiterdielectric waveguide
2121
erster Abschnitt des Wellenleitersfirst section of the waveguide
2222
zweiter Abschnitt des Wellenleiterssecond section of the waveguide
2323
Übergangcrossing
2525
Halterungbracket
2727
GehäuseHousing
2828
dielektrische Wellenleiteranordnungdielectric waveguide arrangement
51, 5251, 52
DiagrammeDiagrams

Claims (16)

Dielektrischer Wellenleiter (20) zum Propagieren von Hochfrequenzwellen, der Wellenleiter (20) aufweisend: einen ersten Abschnitt (21) mit einem im Wesentlichen gleichförmigen Querschnitt, und einen zweiten Abschnitt (22), aufweisend einen größeren Querschnitt als der erste Abschnitt (21). Dielectric waveguide (20) for propagating high-frequency waves, the waveguide (20) comprising: a first section (21) with a substantially uniform cross section, and a second section (22) having a larger cross section than the first section (21). Dielektrischer Wellenleiter (20) nach Anspruch 1,
wobei die Querschnittsfläche des zweiten Abschnitts (22) um einen Faktor 5 bis 80, insbesondere um einen Faktor 10 bis 50, beispielsweise um einen Faktor 15 bis 30, größer ist als der Querschnitt des ersten Abschnitts (21).
Dielectric waveguide (20) according to claim 1,
wherein the cross-sectional area of the second section (22) is larger by a factor of 5 to 80, in particular by a factor of 10 to 50, for example by a factor of 15 to 30, than the cross section of the first section (21).
Dielektrischer Wellenleiter (20) nach Anspruch 1 oder 2,
wobei ein Übergang (23) zwischen dem ersten Abschnitt (21) und dem zweiten Abschnitt (22) stufenförmig, schräg und/oder abgerundet ist.
Dielectric waveguide (20) according to claim 1 or 2,
wherein a transition (23) between the first section (21) and the second section (22) is step-shaped, oblique and / or rounded.
Dielektrischer Wellenleiter (20) nach einem der vorhergehenden Ansprüche,
wobei der Querschnitt des ersten Abschnitts (21) eine Querschnittsfläche zwischen 0,25 mm und 8 mm, insbesondere zwischen 0,3 mm und 3 mm, aufweist.
Dielectric waveguide (20) according to one of the preceding claims,
wherein the cross section of the first section (21) has a cross sectional area between 0.25 mm and 8 mm, in particular between 0.3 mm and 3 mm.
Dielektrischer Wellenleiter (20) nach einem der vorhergehenden Ansprüche,
wobei der dielektrische Wellenleiter (20) eine Vielzahl von zweiten Abschnitten (22) aufweist, und die zweiten Abschnitte (22) einen Abstand von zwischen 10 mm und 300 mm aufweisen.
Dielectric waveguide (20) according to one of the preceding claims,
wherein the dielectric waveguide (20) has a plurality of second sections (22), and the second sections (22) have a spacing of between 10 mm and 300 mm.
Dielektrischer Wellenleiter (20) nach einem der vorhergehenden Ansprüche,
wobei der Querschnitt des ersten Abschnitts (21) und/oder des zweiten Abschnitts (22) elliptisch, insbesondere rund, rechteckig, insbesondere quadratisch, und/oder vieleckig, insbesondere als gleichseitiges Vieleck, ausgeführt ist.
Dielectric waveguide (20) according to one of the preceding claims,
wherein the cross section of the first section (21) and/or the second section (22) is elliptical, in particular round, rectangular, in particular square, and/or polygonal, in particular as an equilateral polygon.
Dielektrischer Wellenleiter (20) nach einem der vorhergehenden Ansprüche,
wobei der dielektrische Wellenleiter (20) einen DK-Wert zwischen 2 und 5, insbesondere zwischen 2,5 und 3,5, aufweist, und/oder Verlustfaktoren zwischen 0,00001 und 0,1 aufweist.
Dielectric waveguide (20) according to one of the preceding claims,
wherein the dielectric waveguide (20) has a DK value between 2 and 5, in particular between 2.5 and 3.5, and / or has loss factors between 0.00001 and 0.1.
Dielektrischer Wellenleiter (20) nach einem der vorhergehenden Ansprüche,
wobei der dielektrische Wellenleiter (20) aus einem Kunststoff besteht oder dieses Material aufweist, insbesondere ein Material aus einer Gruppe, welche Polyetheretherketon, PEEK, Polytetrafluorethylen, PTFE, Perfluoralkoxy, PFA, Polyvinylidenfluorid, PVDF, und/oder Hart-Polyethylen, HDPE, umfasst.
Dielectric waveguide (20) according to one of the preceding claims,
wherein the dielectric waveguide (20) consists of a plastic or has this material, in particular a material from a group which includes polyetheretherketone, PEEK, polytetrafluoroethylene, PTFE, perfluoroalkoxy, PFA, polyvinylidene fluoride, PVDF, and / or rigid polyethylene, HDPE .
Verfahren zur Herstellung eines dielektrischen Wellenleiters (20) nach einem der vorhergehenden Ansprüche mittels Spritzguss.Method for producing a dielectric waveguide (20) according to one of the preceding claims by means of injection molding. Dielektrische Wellenleiteranordnung (28), aufweisend: einen dielektrischen Wellenleiter (20) nach einem der vorhergehenden Ansprüche, und eine Halterung (25), welche den dielektrischen Wellenleiter (20) zumindest teilweise umfasst. Dielectric waveguide arrangement (28), comprising: a dielectric waveguide (20) according to one of the preceding claims, and a holder (25) which at least partially encompasses the dielectric waveguide (20). Dielektrische Wellenleiteranordnung (28) nach Anspruch 10, wobei die Halterung (25) aus Edelstahl, insbesondere 316L Edelstahl, und/oder aus einem Kunststoff, insbesondere HDPE, aus einem Schaumstoff, insbesondere Rohacell, besteht oder dieses Material aufweist, wobei das Material der Halterung (25) einen niedrigeren DK-Wert aufweist als der dielektrische Wellenleiter (20). Dielectric waveguide arrangement (28) according to claim 10, wherein the holder (25) consists of stainless steel, in particular 316L stainless steel, and/or of a plastic, in particular HDPE, of a foam, in particular Rohacell, or has this material, wherein the material of the holder (25) has a lower DK value than the dielectric waveguide (20). Dielektrische Wellenleiteranordnung (28) nach Anspruch 10 oder 11, wobei die Halterung (25) mittels einer formschlüssigen, kraftschlüssigen und/oder stoffschlüssigen Verbindung mit dem dielektrischen Wellenleiter (20) verbunden ist, und/oder wobei die Halterung (25) lösbar mit dem dielektrischen Wellenleiter (20) verbunden ist. Dielectric waveguide arrangement (28) according to claim 10 or 11, wherein the holder (25) is connected to the dielectric waveguide (20) by means of a positive, non-positive and/or material connection, and/or wherein the holder (25) is detachably connected to the dielectric waveguide (20). Dielektrische Wellenleiteranordnung (28) nach Anspruch 10, 11 oder 12,
wobei die Halterung (25) und der dielektrische Wellenleiter (20) in einem Gehäuse (27) angeordnet sind.
Dielectric waveguide arrangement (28) according to claim 10, 11 or 12,
wherein the holder (25) and the dielectric waveguide (20) are arranged in a housing (27).
Radargerät (10), insbesondere Radarfüllstandmessgerät, mit einem dielektrischen Wellenleiter (20) nach einem der Ansprüche 1 bis 8 oder einer dielektrischen Wellenleiteranordnung (28) nach einem der Ansprüche 10 bis 13.Radar device (10), in particular radar level measuring device, with a dielectric waveguide (20) according to one of claims 1 to 8 or a dielectric waveguide arrangement (28) according to one of claims 10 to 13. Verwendung eines Radargeräts (10) nach Anspruch 14 zur Füllstandmessung, zur Topologiebestimmung und/oder zur Grenzstandbestimmung.Use of a radar device (10) according to claim 14 for level measurement, topology determination and/or limit level determination. Verwendung eines dielektrischen Wellenleiters (20) nach einem der Ansprüche 1 bis 8 oder einer dielektrischen Wellenleiteranordnung (28) nach einem der Ansprüche 10 bis 13 zur Propagierung von Radarwellen, insbesondere für Frequenzen zwischen 70 GHz und 500 GHz, beispielsweise zwischen 100 GHz und 300 GHz.Use of a dielectric waveguide (20) according to one of claims 1 to 8 or a dielectric waveguide arrangement (28) according to one of claims 10 to 13 for propagating radar waves, in particular for frequencies between 70 GHz and 500 GHz, for example between 100 GHz and 300 GHz .
EP22179967.9A 2022-06-20 2022-06-20 Dielectric waveguide for propagating high frequency waves Pending EP4297181A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22179967.9A EP4297181A1 (en) 2022-06-20 2022-06-20 Dielectric waveguide for propagating high frequency waves
CN202310730695.8A CN117276837A (en) 2022-06-20 2023-06-20 Dielectric waveguide for propagating radio frequency waves
US18/337,972 US20230411816A1 (en) 2022-06-20 2023-06-20 Dielectric waveguide for propagating high-frequency waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22179967.9A EP4297181A1 (en) 2022-06-20 2022-06-20 Dielectric waveguide for propagating high frequency waves

Publications (1)

Publication Number Publication Date
EP4297181A1 true EP4297181A1 (en) 2023-12-27

Family

ID=82117467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22179967.9A Pending EP4297181A1 (en) 2022-06-20 2022-06-20 Dielectric waveguide for propagating high frequency waves

Country Status (3)

Country Link
US (1) US20230411816A1 (en)
EP (1) EP4297181A1 (en)
CN (1) CN117276837A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814595B1 (en) * 1969-05-17 1973-05-08
US3845426A (en) * 1971-08-02 1974-10-29 Nat Res Dev Dipole mode electromagnetic waveguides
DE102020129765A1 (en) * 2020-11-11 2022-05-12 Endress+Hauser SE+Co. KG level gauge
WO2022107499A1 (en) * 2020-11-17 2022-05-27 Agc株式会社 Transmission path

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814595B1 (en) * 1969-05-17 1973-05-08
US3845426A (en) * 1971-08-02 1974-10-29 Nat Res Dev Dipole mode electromagnetic waveguides
DE102020129765A1 (en) * 2020-11-11 2022-05-12 Endress+Hauser SE+Co. KG level gauge
WO2022107499A1 (en) * 2020-11-17 2022-05-27 Agc株式会社 Transmission path

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. BAER ET AL: "Dielectric waveguides for industrial radar applications", INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, vol. 7, no. 3-4, 24 February 2015 (2015-02-24), GB, pages 399 - 406, XP055602548, ISSN: 1759-0787, DOI: 10.1017/S1759078715000136 *

Also Published As

Publication number Publication date
US20230411816A1 (en) 2023-12-21
CN117276837A (en) 2023-12-22

Similar Documents

Publication Publication Date Title
DE60006132T2 (en) APERTURE COUPLED SLOT RADIATOR GROUP ANTENNA
DE69929614T2 (en) ANTENNA INPUT, REFLECTIVE ANTENNA SYSTEM AND NOISE RECEIVER WITH APPROPRIATE ANTENNA POWER
EP3309899A1 (en) Radar antenna for a fill level measuring device
EP3311450B1 (en) Waveguide coupling for a line scanner
EP0916153B1 (en) Device for producing plasma
EP3361223B1 (en) Fill level switch and method for detecting a fill level of a medium in a container
DE2726797C2 (en) Microwave band filters
WO2001088488A1 (en) Level meter
DE112018007422B4 (en) WAVEGUIDE SLOT GROUP ANTENNA
DE3023055A1 (en) ANTENNA
DE69833070T2 (en) Group antennas with a large bandwidth
EP3322027B1 (en) Near field coupler for transmitting uwb signals.
EP4297181A1 (en) Dielectric waveguide for propagating high frequency waves
DE102017216906A1 (en) Waveguide system, radio frequency line and radar sensor
DE102012112318A1 (en) Device for aligning and centering conductor of field device that is used to determine medium level in container at TDR measuring system, has attaching part connected with spacer at connector, which is arranged between regions of conductor
DE102018115389B3 (en) Probe for measuring plasma parameters
EP3483569B1 (en) Fill level measuring device with galvanic isolation in waveguide
EP2923409B1 (en) Antenna structure for the wide-band transmission of electrical signals
DE102011084592A1 (en) Antenna unit mounted on extensible mast in submarines, whose one end is provided with flange portion and mechanically stable system for connecting with the mast
WO2021023445A1 (en) Dielectric waveguide
DE102016001703A1 (en) Apparatus and method for testing the electromagnetic compatibility of a test specimen
EP3358674B1 (en) Flexible antenna arrangement
DE102018116631A1 (en) Spiral antenna system
EP2659494B1 (en) Electrical line
DE102019108901A1 (en) Antenna arrangement for mobile radio systems with at least one dual-polarized crossed dipole

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR