EP4294188A1 - Use of cationic porphyrins as selective herbicide - Google Patents
Use of cationic porphyrins as selective herbicideInfo
- Publication number
- EP4294188A1 EP4294188A1 EP22710652.3A EP22710652A EP4294188A1 EP 4294188 A1 EP4294188 A1 EP 4294188A1 EP 22710652 A EP22710652 A EP 22710652A EP 4294188 A1 EP4294188 A1 EP 4294188A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- genus
- tmpyp
- porphyrins
- methylpyridyl
- tetra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- -1 cationic porphyrins Chemical class 0.000 title claims abstract description 65
- 239000004009 herbicide Substances 0.000 title claims abstract description 25
- 230000002363 herbicidal effect Effects 0.000 title claims description 41
- 239000000203 mixture Substances 0.000 claims abstract description 26
- SPWGXBZRYSNPFX-UHFFFAOYSA-N CN1C=CC=CC1C1=C(C=C2)N=C2C(C2N(C)C=CC=C2)=C(C=C2)NC2=C(C2N(C)C=CC=C2)C(C=C2)=NC2=C(C2N(C)C=CC=C2)C2=CC=C1N2.Cl.Cl.Cl.Cl Chemical compound CN1C=CC=CC1C1=C(C=C2)N=C2C(C2N(C)C=CC=C2)=C(C=C2)NC2=C(C2N(C)C=CC=C2)C(C=C2)=NC2=C(C2N(C)C=CC=C2)C2=CC=C1N2.Cl.Cl.Cl.Cl SPWGXBZRYSNPFX-UHFFFAOYSA-N 0.000 claims abstract description 17
- 241000196324 Embryophyta Species 0.000 claims description 80
- 240000003768 Solanum lycopersicum Species 0.000 claims description 27
- 240000005979 Hordeum vulgare Species 0.000 claims description 25
- 235000007340 Hordeum vulgare Nutrition 0.000 claims description 25
- 235000007688 Lycopersicon esculentum Nutrition 0.000 claims description 22
- 238000011282 treatment Methods 0.000 claims description 22
- 240000001090 Papaver somniferum Species 0.000 claims description 19
- 235000008753 Papaver somniferum Nutrition 0.000 claims description 17
- 238000005507 spraying Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 150000004032 porphyrins Chemical class 0.000 claims description 13
- 244000062793 Sorghum vulgare Species 0.000 claims description 11
- 235000019713 millet Nutrition 0.000 claims description 11
- 235000009337 Spinacia oleracea Nutrition 0.000 claims description 9
- 244000300264 Spinacia oleracea Species 0.000 claims description 9
- 244000291564 Allium cepa Species 0.000 claims description 8
- 240000008100 Brassica rapa Species 0.000 claims description 8
- 244000020551 Helianthus annuus Species 0.000 claims description 8
- 235000003222 Helianthus annuus Nutrition 0.000 claims description 8
- 241000219422 Urtica Species 0.000 claims description 7
- 240000006122 Chenopodium album Species 0.000 claims description 6
- 235000009344 Chenopodium album Nutrition 0.000 claims description 6
- 235000005187 Taraxacum officinale ssp. officinale Nutrition 0.000 claims description 6
- 235000021307 Triticum Nutrition 0.000 claims description 6
- 235000013311 vegetables Nutrition 0.000 claims description 6
- 241000209082 Lolium Species 0.000 claims description 5
- 235000002560 Solanum lycopersicum Nutrition 0.000 claims description 5
- 235000002594 Solanum nigrum Nutrition 0.000 claims description 5
- 240000006694 Stellaria media Species 0.000 claims description 5
- 241000209140 Triticum Species 0.000 claims description 5
- 244000098338 Triticum aestivum Species 0.000 claims description 5
- 235000005255 Allium cepa Nutrition 0.000 claims description 4
- 235000002732 Allium cepa var. cepa Nutrition 0.000 claims description 4
- 235000011293 Brassica napus Nutrition 0.000 claims description 4
- 235000011292 Brassica rapa Nutrition 0.000 claims description 4
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 claims description 4
- 241000207763 Solanum Species 0.000 claims description 4
- 235000002634 Solanum Nutrition 0.000 claims description 4
- 241000245665 Taraxacum Species 0.000 claims description 4
- 240000001949 Taraxacum officinale Species 0.000 claims description 4
- 240000008042 Zea mays Species 0.000 claims description 4
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 241000208477 Anagallis Species 0.000 claims description 3
- 241000208296 Datura Species 0.000 claims description 3
- 235000008116 Echinochloa crusgalli var frumentacea Nutrition 0.000 claims description 3
- 244000182691 Echinochloa frumentacea Species 0.000 claims description 3
- 235000008247 Echinochloa frumentacea Nutrition 0.000 claims description 3
- 240000008114 Panicum miliaceum Species 0.000 claims description 3
- 235000007199 Panicum miliaceum Nutrition 0.000 claims description 3
- 235000007846 Papaver rhoeas Nutrition 0.000 claims description 3
- 240000004674 Papaver rhoeas Species 0.000 claims description 3
- 241000219053 Rumex Species 0.000 claims description 3
- 240000004284 Rumex crispus Species 0.000 claims description 3
- 235000021501 Rumex crispus Nutrition 0.000 claims description 3
- 244000061457 Solanum nigrum Species 0.000 claims description 3
- 235000006754 Taraxacum officinale Nutrition 0.000 claims description 3
- 241000234282 Allium Species 0.000 claims description 2
- 235000011331 Brassica Nutrition 0.000 claims description 2
- 241000219198 Brassica Species 0.000 claims description 2
- 241000219312 Chenopodium Species 0.000 claims description 2
- 241000192043 Echinochloa Species 0.000 claims description 2
- 241000208818 Helianthus Species 0.000 claims description 2
- 241000208125 Nicotiana Species 0.000 claims description 2
- 241000209117 Panicum Species 0.000 claims description 2
- 235000006443 Panicum miliaceum subsp. miliaceum Nutrition 0.000 claims description 2
- 235000009037 Panicum miliaceum subsp. ruderale Nutrition 0.000 claims description 2
- 235000011096 Papaver Nutrition 0.000 claims description 2
- 240000002307 Solanum ptychanthum Species 0.000 claims description 2
- 241000219315 Spinacia Species 0.000 claims description 2
- 235000009392 Vitis Nutrition 0.000 claims description 2
- 241000219095 Vitis Species 0.000 claims description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 2
- 235000005822 corn Nutrition 0.000 claims description 2
- 238000000338 in vitro Methods 0.000 description 32
- 230000000694 effects Effects 0.000 description 24
- 230000009418 agronomic effect Effects 0.000 description 18
- 239000002609 medium Substances 0.000 description 17
- 230000012010 growth Effects 0.000 description 16
- 239000004094 surface-active agent Substances 0.000 description 15
- 230000003115 biocidal effect Effects 0.000 description 14
- 239000007921 spray Substances 0.000 description 14
- 239000003504 photosensitizing agent Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 235000002595 Solanum tuberosum Nutrition 0.000 description 10
- 244000061456 Solanum tuberosum Species 0.000 description 10
- 244000061176 Nicotiana tabacum Species 0.000 description 7
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 102000016938 Catalase Human genes 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 150000003573 thiols Chemical class 0.000 description 6
- 244000025254 Cannabis sativa Species 0.000 description 5
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 5
- 108010016714 guaiacol peroxidase Proteins 0.000 description 5
- 241000219194 Arabidopsis Species 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108010053835 Catalase Proteins 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 235000009108 Urtica dioica Nutrition 0.000 description 4
- 239000003139 biocide Substances 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 241001233957 eudicotyledons Species 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000001782 photodegradation Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 235000016623 Fragaria vesca Nutrition 0.000 description 3
- 240000009088 Fragaria x ananassa Species 0.000 description 3
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 235000014787 Vitis vinifera Nutrition 0.000 description 3
- 240000006365 Vitis vinifera Species 0.000 description 3
- 235000021186 dishes Nutrition 0.000 description 3
- 230000035784 germination Effects 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 241001198505 Anarsia lineatella Species 0.000 description 2
- 241000219195 Arabidopsis thaliana Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108030002440 Catalase peroxidases Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- 229960001950 benzethonium chloride Drugs 0.000 description 2
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- 238000010876 biochemical test Methods 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 235000001671 coumarin Nutrition 0.000 description 2
- 150000004775 coumarins Chemical class 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 235000002532 grape seed extract Nutrition 0.000 description 2
- 229960001867 guaiacol Drugs 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 235000009973 maize Nutrition 0.000 description 2
- 230000017066 negative regulation of growth Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 231100000956 nontoxicity Toxicity 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000002428 photodynamic therapy Methods 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000002731 protein assay Methods 0.000 description 2
- 239000003642 reactive oxygen metabolite Substances 0.000 description 2
- 230000007226 seed germination Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- YZHUMGUJCQRKBT-UHFFFAOYSA-M sodium chlorate Chemical compound [Na+].[O-]Cl(=O)=O YZHUMGUJCQRKBT-UHFFFAOYSA-M 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- KIUMMUBSPKGMOY-UHFFFAOYSA-N 3,3'-Dithiobis(6-nitrobenzoic acid) Chemical compound C1=C([N+]([O-])=O)C(C(=O)O)=CC(SSC=2C=C(C(=CC=2)[N+]([O-])=O)C(O)=O)=C1 KIUMMUBSPKGMOY-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000239290 Araneae Species 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 240000008853 Datura stramonium Species 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 241001505295 Eros Species 0.000 description 1
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 244000148687 Glycosmis pentaphylla Species 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 240000004296 Lolium perenne Species 0.000 description 1
- 235000003886 Muntingia calabura Nutrition 0.000 description 1
- 240000002529 Muntingia calabura Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229920001007 Nylon 4 Polymers 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 244000000037 crop pathogen Species 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011536 extraction buffer Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012869 germination medium Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000002186 photoactivation Effects 0.000 description 1
- 230000000886 photobiology Effects 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 230000006950 reactive oxygen species formation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- FBWNMEQMRUMQSO-UHFFFAOYSA-N tergitol NP-9 Chemical compound CCCCCCCCCC1=CC=C(OCCOCCOCCOCCOCCOCCOCCOCCOCCO)C=C1 FBWNMEQMRUMQSO-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000009333 weeding Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01P—BIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
- A01P13/00—Herbicides; Algicides
- A01P13/02—Herbicides; Algicides selective
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/90—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/16—Heavy metals; Compounds thereof
Definitions
- Photosensitizers are molecules capable of inducing, thanks to a light stimulus and in the presence of oxygen, the formation of reactive oxygen species (ROS) which are more or less toxic for living cells, according to their physicochemical properties, the concentrations used as well as the nature of the cells and biological organisms.
- ROS reactive oxygen species
- the type I mechanism which involves a transfer of electrons from the photosensitizer to biological substrates to form free radicals (superoxide anion (V, hydroxyl radical -OH and hydrogen peroxide H 2 0 2 );
- photosensitizers are mainly used in the medical field, in the context of photodynamic therapy in the treatment of cancer, but also for the fight against microorganisms such as bacteria and fungi, as disinfection therapy or for decontamination. water and food. In general, ROS are deleterious to all living cells.
- Cationic water-soluble porphyrins (zinc-tetra (N-methylpyridyl) porphyrin tetrachloride (Zn-TMPyP) and tetra (N-methylpyridyl) porphyrin tetrachloride (TMPyP)) have also been applied to tomato seedlings (Solanum lycopersicum ) grown in vitro under a photoperiod of 16 hours. Cationic porphyrins have been shown to significantly alter seedling growth in vitro.
- the present invention therefore relates to the use of cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride (Zn-TMPyP), tetra (N-methylpyridyl) porphyrin tetrachloride (TMPyP) or their mixture, in as a selective foliar herbicide.
- Zn-TMPyP zinc-tetra (N-methylpyridyl) porphyrin tetrachloride
- TMPyP tetra (N-methylpyridyl) porphyrin tetrachloride
- Zn-TMPyP can be used as a selective foliar herbicide. While Zn-TMPyP significantly inhibits the development of plants (weeds and plants of agronomic interest) when it is applied to the roots of plants in vitro, the inventors have demonstrated that Zn-TMPyP preserves plants of agronomic interest and n does not affect their development when Zn-TMPyP is applied by foliar spray, typically in a greenhouse. On the other hand, this same process (foliar application of Zn-TMPyP in a greenhouse) leads to the death of weeds.
- Zn-TMPyP is therefore a selective foliar herbicide which helps to control weeds while preserving crops of agronomic interest.
- TMPyP and Zn-TMPyP are advantageously photodegradable, thus making it possible to limit their long-term effect. Their non-toxicity has also been demonstrated towards fishing worms (maggots).
- TMPyP and Zn-TMPyP are effective at low concentrations.
- glyphosate which remains the most widely used herbicide in the world, is used at extremely high concentrations (about 360g/L).
- the herbicidal compounds according to the invention are for their part used at concentrations of the order of a micromolar (mM).
- the present invention also relates to a selective weed control method consisting of the application of cationic porphyrins chosen from TMPyP, Zn-TMPyP or their mixture, said porphyrins being applied by leaf spraying.
- FIG. 2 shows the in vitro biocidal effect of 3.5mM Zn-TMPyP on weeds (nettle, arabidopsis and poppy).
- FIG. 5 is a comparison demonstrating the in vitro biocidal effect of 3.5mM of Zn-TMPyP on 17-day-old barley seedlings, and the absence of effect of 50mM of Zn-TMPyP on barley seedlings in greenhouses 22 days compared to their respective control media.
- Fig. 6 is a comparison demonstrating the in vitro biocidal effect of 3.5mM of Zn-TMPyP on 17-day-old barley seedlings, and the absence of effect of 50mM of Zn-TMPyP on barley seedlings in greenhouses 22 days compared to their respective control media.
- FIG. 7 shows the harmlessness of 50mM Zn-TMPyP on the viability of maggots in the presence and in the absence of light 24 hours after the spray treatment with 50mM Zn-TMPyP.
- FIG. 11 is a schematic comparison of the results presented in FIGS. 8 and 9 demonstrating, in particular, that the in vitro results cannot be extrapolated to the greenhouse results.
- FIG. 12 shows the herbicidal effect of Zn-TMPyP against weeds at different concentrations (C1, C2, C3) compared to the control (T).
- Fig. 13 shows the herbicidal effect of Zn-TMPyP against weeds at different concentrations (C1, C2, C3) compared to the control (T).
- Zn-TMPyP is a cationic porphyrin metallated at the level of the tetrapyrrole ring.
- Zn-TMPyP and TMPyP are marketed by the company Frontier Scientific (Carnforth, UK).
- Zn-TMPyP is used as a selective foliar herbicide.
- culture or culture space any space for cultivating plants and more particularly plants of agronomic interest. Mention will be made, by way of illustration, of a greenhouse, a field, a meadow, a courtyard, an alley, a garden, a vegetable patch, etc.
- the growing space is chosen from among a greenhouse, a field, a meadow, a courtyard, an alley, a garden, a vegetable patch.
- a herbicide is a pesticide for agricultural use whose activity on the metabolism of plants leads to their death.
- the cationic porphyrins according to the invention are selective herbicides when they are applied by foliar spraying.
- Zn-TMPyP and TMPyP can be used as a selective herbicide when they are applied by foliar spraying.
- the inventors have in fact proved that Zn-TMPyP sprayed in a greenhouse causes the death of weeds and preserves the plants of agronomic interest. Plants of interest such as barley and tomato have been shown to grow perfectly whether under the condition "control" (spray of H 2 0) or following their treatment (foliar sprays of 50 mM Zn-TMPyP). Conversely, poppy and millet died completely following foliar treatment with Zn-TMPyP.
- Zn-TMPyP and TMPyP are advantageously selective foliar herbicides, preferentially when they are applied in a greenhouse.
- a foliar herbicide is applied by spraying on the leaves and requires an adjuvant to help the active principle to penetrate inside the cells (basipetal translocation). Conversely, in the case of a root herbicide, the active principle is absorbed by the roots and carried by the sap (acropetic translocation).
- Zn-TMPyP has been shown to be a root herbicide in vitro, it is advantageously selective when applied by foliar spray.
- a selective herbicide is a herbicide which aims to eliminate weeds without damaging the growing space such as a greenhouse, a field, a meadow, a yard, an alley, a garden. It is therefore a question of fighting against weeds or “weeds” which are undesirable in crops.
- the cationic porphyrins according to the invention will destroy the weeds without damaging the plants of agronomic interest.
- weed is understood to mean any herbaceous or capitaous plant which is found in an agroecosystem without having been intentionally established there. For example, it will be an undesirable plant species present in a space where another plant species is grown.
- the plants of agronomic interest will be chosen from plants of the genus Nicotiana, of the genus Solanum, of the genus Vitis, of the genus Hordeaum, of the genus Triticum, of the genus Zeya, of the genus Helianthus, of the genus Allium, genus Spinacia, genus Frugaria, genus Brassica.
- the plants of agronomic interest will be chosen from tobacco (Nicotiana tabacum), potato (Solanum tuberosum), vine (Vitis vinifera), barley (Hordeum vulgare), tomato (Solanum lycopersicum), wheat (Triticum sativum), maize (Zeya mays), sunflower (Helianthus annuus), onion (Allium cepa), spinach (Spinacia oleracea), strawberry (Frugaria sp.) and turnip (Brassica rapa).
- Zn-TMPyP and TMPyP are used for the treatment of crops chosen from tobacco crops (Nicotiana tabacum), potato (Solanum tuberosum), vine (Vitis vinifera), barley (Hordeum vulgare), tomato (Solanum lycopersicum), wheat (Triticum sativum), corn (Zeya mays), sunflower (Helianthus annuus), onion (Allium cepa), spinach (Spinacia oleracea ), strawberry ( Frugaria sp.) and turnip ( Brassica rapa).
- Zn-TMPyP and TMPyP are used for the treatment of crops chosen from wheat (Triticum sativum), barley (Hordeum vulgare), maize ( Zeya mays), sunflower (Helianthus annuus), turnip (Brassica rapa), tomato (Solanum lycopersicum), onion (Allium cepa), spinach (Spinacia oleracea).
- Zn-TMPyP and TMPyP will be used against weeds chosen from nettle (Urtica dioi ' ca), millet (Echinochloa frumentacea), poppy (Papaver rhoeas), ray Italian grass (Lolium multi forum), datura (Datura stramonium), white pimpernel (Stellaria media), lamb's-quarters (Chenopodium album), false millet (Panicum miliaceum), dandelion (Taraxacum officinale), rumex ( Rumex crispus), black moth (Solanum nigrum).
- nettle Urtica dioi ' ca
- millet Echinochloa frumentacea
- poppy Paperaver rhoeas
- ray Italian grass Limpernel
- datura Datura stramonium
- white pimpernel Stellaria media
- lamb's-quarters Choenopodium album
- Zn-TMPyP and TMPyP will be used against weeds chosen from black nightshade (Solanum nigrum), dandelion (Taraxacum officinale), lamb's-quarters ( Chenopodium album), dock ( Rumex crispus), Italian ryegrass ( Lolium multi forum), false millet ( Panicum miliaceum), white pimpernel ( Stellaria media), millet ( Echinochloa frumentacea), poppy (Papaver rhoeas ).
- black nightshade Solanum nigrum
- dandelion Tiraxacum officinale
- lamb's-quarters Chenopodium album
- dock Rumex crispus
- Italian ryegrass Lolium multi forum
- false millet Panicum miliaceum
- white pimpernel Stellaria media
- millet Echinochloa frumentacea
- poppy Paperaver rhoeas
- the present invention also relates to a selective herbicidal composition
- a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least one surfactant.
- the invention relates to a selective herbicidal composition
- a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least a surfactant the content of cationic porphyrins being at least 40mg/L.
- the invention relates to a selective herbicidal composition
- a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least a surfactant the content of cationic porphyrins being approximately 44mg/L.
- the invention relates to a selective herbicidal composition
- a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least a surfactant the content of cationic porphyrins being approximately 66mg/L.
- the invention relates to a selective herbicidal composition
- a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least a surfactant the content of cationic porphyrins being at least 80mg/L.
- the invention relates to a selective herbicidal composition
- a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least a surfactant the content of cationic porphyrins being approximately 88mg/L.
- a person skilled in the art is able to determine the concentration to be applied as well as the frequency depending on the nature of the crops, the surface of the field, the weather conditions, etc.
- the surfactant will be chosen from neutral and nonionic surfactants such as polyoxyethylene nonylphenylether, anionic surfactants such as products marketed under the name clasofl®, texapon®, cationic surfactants such as benzalkonium chloride (BAC) or Benzethonium chloride (BZT), neutral zwitterionic surfactants,
- neutral and nonionic surfactants such as polyoxyethylene nonylphenylether
- anionic surfactants such as products marketed under the name clasofl®, texapon®
- cationic surfactants such as benzalkonium chloride (BAC) or Benzethonium chloride (BZT)
- neutral zwitterionic surfactants such as benzalkonium chloride (BAC) or Benzethonium chloride (BZT)
- the selective herbicidal composition comprises zinc-tetra (N-methylpyridyl) porphyrin tetrachloride and polyoxyethylene nonylphenylether.
- Zinc-tetra (N-methylpyridyl) porphyrin tetrachloride named Zn-TMPyP Zinc-tetra (N-methylpyridyl) porphyrin tetrachloride named Zn-TMPyP (marketed by Frontier Scientific (Carnforth, UK)).
- Zn-TMPyP Zinc-tetra (N-methylpyridyl) porphyrin tetrachloride named Zn-TMPyP (marketed by Frontier Scientific (Carnforth, UK)).
- the stock solution prepared at 1 mM in water, is stored in the dark at room temperature.
- the Petri dishes like the jars are placed in a culture chamber (photoperiod 16 h, 22°C, photon flux density -100 pmol.m-2.s-1 generated by cool daylight lamps (OSRAM Lumilux 24W)) .
- the jars are used for the transfer of the seedlings and allow them a more appropriate growth.
- Two spot treatments (approximately 10 sprays each) spaced 48 hours apart were carried out one week after germination. The first treatment was carried out when the seedlings were at the cotyledon stage, the second when the seedlings were at the first leaf stage.
- the seedlings (roots and aerial apparatus separated before freezing) are ground in liquid nitrogen.
- the powder is transferred into an Eppendorf tube in which 50 mg of PolyVynil PolyPyrrolidone (PVPP) (Sigma) have been weighed beforehand.
- PVPP PolyVynil PolyPyrrolidone
- the homogenate is taken in extraction buffer (25 mM phosphate buffer pH 7.8, 10% (v/v) glycerol, and 1 mM EDTA).
- the tubes are then centrifuged for 20 minutes at 14,000 rpm at 4°C and the supernatants are stored at 4°C for the protein assay or stored at -20°C.
- the protein assay we use the Bradford assay method (Bradford, 1976) and BSA for the standard range.
- Catalase is an enzyme of the oxidoreductase family. Catalase activity can be quantified by measuring the disappearance of GH 2 0 2 by dismutation into H 2 0 and 0 2 . To determine this activity, we use the protocol carried out in the publication of Issawi. et al. (2016). The kinetics of H 2 0 2 disappearance is measured for 200 seconds every 20 seconds at 240 nm. The activity is calculated using the molar extinction coefficient of H 2 0 2 which is 43.6 rnM Lcnr 1 [0106] Determination of the activity of guaiacol peroxidase (GPOX)
- Example 1 Demonstration of the selective foliar herbicidal effect of Zn-TMPyP vs. the in vitro biocidal effect of Zn-TMPvP
- the potato (Coquine variety) shows a slight delay in growth at the level of the stem and the roots on the treated medium compared to the seedlings of the control condition.
- Tobacco and vine [0120] The tobacco and vine seedlings show considerable inhibition of their development after respectively one and a half and two months of culture on a medium rich in Zn-TMPyP at 3.5 mM ( Figure 1).
- the nettle and arabidopsis show a very significant inhibition of growth on a medium treated with Zn-TMPyP (3.5 mM) after 18 days and 1 month respectively.
- the total thiols, as well as the enzymatic activity (catalase activity and guaicol peroxidase activity) were determined on seedlings cultured in vitro on the medium rich in Zn-TMPyP 3.5 mM (FIG. 9) and on seedlings subjected to 50 mM Zn-TMPyP per foliar application (Figure 10).
- the antioxidant machinery is significantly inhibited in the seedlings cultivated on the medium rich in Zn-TMPyP 3.5 mM.
- the molecules and the antioxidant enzymes remain constant in the seedlings treated with 50 mM of Zn-TMPyP under greenhouse except for an increase in thiols in the roots (FIG. 11).
- Example 2 Determination of the non-toxicity of Zn-TMPyP for peach worms (maggots) [0143] The maggots were placed in Petri dishes under photoperiod (16 h) or under dark conditions in a phytotron (24°C) for 24 hours. 30 maggots per petri dish were subjected to 10 sprays of H 2 0 or 50 mM of Zn-TMPyP. Percent viability was determined after 24 h.
- Zn-TMPyP is advantageously more respectful of the environment by having a reduced impact on animal biodiversity.
- Example 3 Photostability/photodegradation of Zn-TMPyP [0147] In the dark, Zn-TMPyP remains perfectly stable whether with or without surfactant for 29 days of follow-up (FIG. 8).
- the doses of Zn-TMPyP are as follows:
- Zn-TMPyP was formulated with 0.1% v/v Polyoxyethylene nonylphenylether.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Environmental Sciences (AREA)
- Zoology (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Dentistry (AREA)
- Agronomy & Crop Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
The present invention relates to the use of cationic porphyrins, such as zinc-tetra (N-methylpyridyl) porphyrin tetrachloride and tetra (N-methylpyridyl) porphyrin tetrachloride or a mixture thereof, as a selective foliar herbicidal agent.
Description
Description Description
Titre : Utilisation de porphyrines cationiques en tant que désherbant sélectif Domaine technique Title: Use of cationic porphyrins as a selective weedkiller Technical area
[0001] La présente invention concerne l’utilisation de porphyrines cationiques telles que la zinc-tetra (N-methylpyridyl) porphyrine tetrachloride et la tetra (N-methylpyridyl) porphyrine tetrachloride ou leur mélange, en tant qu’agent herbicide foliaire sélectif. The present invention relates to the use of cationic porphyrins such as zinc-tetra (N-methylpyridyl) porphyrin tetrachloride and tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture, as a selective foliar herbicidal agent.
Technique antérieure Prior technique
[0002] Les photosensibilisateurs (PS) sont des molécules capables d’induire, grâce à un stimulus lumineux et en présence d’oxygène, la formation d’espèces réactives de l’oxygène (EROs) plus ou moins toxiques pour les cellules vivantes, selon leurs propriétés physicochimiques, les concentrations utilisées ainsi que la nature des cellules et des organismes biologiques. Il existe deux mécanismes de production d’EROs : [0002] Photosensitizers (PS) are molecules capable of inducing, thanks to a light stimulus and in the presence of oxygen, the formation of reactive oxygen species (ROS) which are more or less toxic for living cells, according to their physicochemical properties, the concentrations used as well as the nature of the cells and biological organisms. There are two mechanisms of production of EROs:
- Le mécanisme de type I, qui implique un transfert d’électrons du photosensibilisateur vers des substrats biologiques pour former des radicaux libres (anion superoxide (V, radical hydroxyle -OH et peroxyde d’hydrogène H202) ; - The type I mechanism, which involves a transfer of electrons from the photosensitizer to biological substrates to form free radicals (superoxide anion (V, hydroxyl radical -OH and hydrogen peroxide H 2 0 2 );
- Le mécanisme de type II qui implique quant à lui le transfert de l’énergie vers le dioxygène moléculaire, qui passe de son état fondamental (état triplet : 302) à l’état singulet 102. - The type II mechanism which involves the transfer of energy to molecular oxygen, which passes from its ground state (triplet state: 3 0 2 ) to the singlet state 1 0 2 .
[0003] Ces photosensibilisateurs sont majoritairement utilisés dans le domaine médical, dans le contexte de la thérapie photodynamique du traitement du cancer mais également pour la lutte contre les microorganismes tels que les bactéries et les champignons, en tant que thérapie de désinfection ou pour la décontamination de l’eau et des aliments. De façon générale, les EROs sont délétères pour toutes les cellules vivantes. [0003] These photosensitizers are mainly used in the medical field, in the context of photodynamic therapy in the treatment of cancer, but also for the fight against microorganisms such as bacteria and fungi, as disinfection therapy or for decontamination. water and food. In general, ROS are deleterious to all living cells.
[0004] Ces photosensibilisateurs, ont donc été pressentis pour une application en tant que biocides dans le domaine agricole, et plus particulièrement à l’encontre d’agents pathogènes des cultures tels que les bactéries et les champignons, qui génèrent des baisses de rendement agricole. L’utilisation de ces photosensibilisateurs en tant que biocide est également appelé traitement photodynamique antimicrobien. [0004] These photosensitizers have therefore been considered for application as biocides in the agricultural field, and more particularly against crop pathogens such as bacteria and fungi, which cause reductions in agricultural yield. . The use of these photosensitizers as a biocide is also called antimicrobial photodynamic treatment.
[0005] Toutefois, et bien que nécessaires, les études évaluant les effets indésirables des photosensibilisateurs sur les plantes sont rares. Par ailleurs, les effets de molécules sur les plantes sont très difficilement transposables entre différentes espèces. Typiquement, des photosensibilisateurs naturels (coumarines et furocoumarines) ont été évalués en tant que biocides sur des orangers et des fraisiers. Alors que les feuilles des orangers n’ont pas été affectées par les photosensibilisateurs, les feuilles des fraisiers ont été endommagées par les coumarines.
[0006] Des porphyrines hydrosolubles cationiques (la zinc-tetra (N-methylpyridyl) porphyrine tetrachloride (Zn-TMPyP) et la tetra (N-methylpyridyl) porphyrine tetrachloride (TMPyP)) ont également été appliquées sur des plantules de tomates ( Solanum lycopersicum) cultivées in vitro sous une photopériode de 16 heures. Il a été démontré que les porphyrines cationiques ont, in vitro, considérablement altéré la croissance des plantules. Les auteurs suggèrent toutefois que ces photosensibilisateurs pourraient être utilisés en tant que biocides à l’encontre des pathogènes de la tomate (Guillaumot et al., Synergistic enhancement of tolérance mechanisms in response to photoactivation of cationic tetra (N-methylpyridyl) porphyrins in tomato plantlets, Journal of Photochemistry and Photobiology B: Biology, Volume 156, March 2016, Pages 69-78). [0005] However, and although necessary, studies evaluating the undesirable effects of photosensitizers on plants are rare. Moreover, the effects of molecules on plants are very difficult to transpose between different species. Typically, natural photosensitizers (coumarins and furocoumarins) have been evaluated as biocides on orange and strawberry trees. While orange leaves were unaffected by photosensitizers, strawberry leaves were damaged by coumarins. Cationic water-soluble porphyrins (zinc-tetra (N-methylpyridyl) porphyrin tetrachloride (Zn-TMPyP) and tetra (N-methylpyridyl) porphyrin tetrachloride (TMPyP)) have also been applied to tomato seedlings (Solanum lycopersicum ) grown in vitro under a photoperiod of 16 hours. Cationic porphyrins have been shown to significantly alter seedling growth in vitro. However, the authors suggest that these photosensitizers could be used as biocides against tomato pathogens (Guillaumot et al., Synergistic enhancement of tolerance mechanisms in response to photoactivation of cationic tetra (N-methylpyridyl) porphyrins in tomato plantlets , Journal of Photochemistry and Photobiology B: Biology, Volume 156, March 2016, Pages 69-78).
[0007] Toutefois, ces mêmes porphyrines cationiques, également testées in vitro sur des plantules d’Arabidopsis ( Arabidopsis thaliana) ont complètement tué la plante à très faible dose (3.5mM) (Issawi et al., Responses of an adventitious fast-growing plant to photodynamic stress : comparative study of anionic and cationic porphyrin effect on Arabidopsis thaliana, Physiologia Plantarum 162 : 379-390. 2018). [0007] However, these same cationic porphyrins, also tested in vitro on Arabidopsis (Arabidopsis thaliana) seedlings, completely killed the plant at a very low dose (3.5 mM) (Issawi et al., Responses of an adventitious fast-growing plant to photodynamic stress: comparative study of anionic and cationic porphyrin effect on Arabidopsis thaliana, Physiologia Plantarum 162: 379-390. 2018).
[0008] Alors que l’effet racinaire in vitro des photosensibilisateurs sur les plantes est imprévisible et difficilement extrapolable aux conditions en champ ou en serre, et que les porphyrines cationiques telles que Zn-TMPyP appliquées in vitro au mieux inhibent la croissance des plantes testées, au pire les détruisent, les inventeurs ont, de manière inattendue, démontré que les porphyrines cationiques et préférentiellement TMPyP et Zn- TMPyP sont des désherbants sélectifs lorsqu’ils sont appliqués par pulvérisation foliaire. [0008] Whereas the in vitro root effect of photosensitizers on plants is unpredictable and difficult to extrapolate to field or greenhouse conditions, and whereas cationic porphyrins such as Zn-TMPyP applied in vitro at best inhibit the growth of the plants tested , at worst destroy them, the inventors have, unexpectedly, demonstrated that the cationic porphyrins and preferentially TMPyP and Zn-TMPyP are selective weedkillers when they are applied by foliar spraying.
Résumé Summary
[0009] La présente invention concerne donc l’utilisation de porphyrines cationiques choisies parmi la zinc-tetra (N-methylpyridyl) porphyrine tetrachloride (Zn-TMPyP), la tetra (N-methylpyridyl) porphyrine tetrachloride (TMPyP) ou leur mélange, en tant qu’herbicide foliaire sélectif. The present invention therefore relates to the use of cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride (Zn-TMPyP), tetra (N-methylpyridyl) porphyrin tetrachloride (TMPyP) or their mixture, in as a selective foliar herbicide.
[0010] Les inventeurs ont en effet avantageusement démontré que Zn-TMPyP peut être utilisée en tant qu’herbicide foliaire sélectif. Alors que Zn-TMPyP inhibe significativement le développement des plantes (adventices et plantes d’intérêt agronomique) lorsqu’elle est appliquée sur les racines des plantes in vitro, les inventeurs ont démontré que Zn-TMPyP préserve les plantes d’intérêt agronomique et n’affecte pas leur développement lorsque Zn- TMPyP est appliquée par pulvérisation foliaire, typiquement dans une serre. En revanche, ce même procédé (application foliaire de Zn-TMPyP dans une serre) entraîne la mort des adventices. Zn-TMPyP, est donc un herbicide foliaire sélectif qui permet de lutter contre les adventices tout en préservant les cultures d’intérêt agronomique.
[0011] Par ailleurs, TMPyP et Zn-TMPyP sont avantageusement photodégradables, permettant ainsi de limiter leur effet à long terme. Leur non-toxicité a également été démontrée envers des vers de pêche (asticots). [0010] The inventors have indeed advantageously demonstrated that Zn-TMPyP can be used as a selective foliar herbicide. While Zn-TMPyP significantly inhibits the development of plants (weeds and plants of agronomic interest) when it is applied to the roots of plants in vitro, the inventors have demonstrated that Zn-TMPyP preserves plants of agronomic interest and n does not affect their development when Zn-TMPyP is applied by foliar spray, typically in a greenhouse. On the other hand, this same process (foliar application of Zn-TMPyP in a greenhouse) leads to the death of weeds. Zn-TMPyP is therefore a selective foliar herbicide which helps to control weeds while preserving crops of agronomic interest. [0011] Furthermore, TMPyP and Zn-TMPyP are advantageously photodegradable, thus making it possible to limit their long-term effect. Their non-toxicity has also been demonstrated towards fishing worms (maggots).
[0012] Avantageusement toujours, TMPyP et Zn-TMPyP sont efficaces à faibles concentrations. Typiquement, le glyphosate, qui reste l’herbicide le plus employé au monde, est utilisé à des concentrations extrêmement importantes (de l’ordre d’environ 360g/L). Les composés herbicides selon l’invention sont quant à eux utilisés à des concentrations de l’ordre du micromolaire (mM). [0012] Still advantageously, TMPyP and Zn-TMPyP are effective at low concentrations. Typically, glyphosate, which remains the most widely used herbicide in the world, is used at extremely high concentrations (about 360g/L). The herbicidal compounds according to the invention are for their part used at concentrations of the order of a micromolar (mM).
[0013] Ces molécules constituent donc une alternative aux herbicides présents sur le marché, plus respectueuses de l’environnement et ayant un impact réduit sur la santé humaine et la biodiversité animale et végétale. [0013] These molecules therefore constitute an alternative to the herbicides present on the market, which are more respectful of the environment and have a reduced impact on human health and animal and plant biodiversity.
[0014] La présente invention concerne également un procédé sélectif de désherbage consistant en l’application de porphyrines cationiques choisies parmi TMPyP, Zn-TMPyP ou leur mélange, lesdites porphyrines étant appliquées par pulvérisation foliaire. The present invention also relates to a selective weed control method consisting of the application of cationic porphyrins chosen from TMPyP, Zn-TMPyP or their mixture, said porphyrins being applied by leaf spraying.
Brève description des dessins Brief description of the drawings
[0015] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels : [0015] Other characteristics, details and advantages will appear on reading the detailed description below, and on analyzing the appended drawings, in which:
Fig. 1 Fig. 1
[0016] [Fig. 1] montre l’effet biocide in vitro de 3.5mM de Zn-TMPyP sur les plantes d’intérêt agronomique (orge, tomate, pomme de terre, tabac et vigne). [0016] [Fig. 1] shows the in vitro biocidal effect of 3.5mM Zn-TMPyP on plants of agronomic interest (barley, tomato, potato, tobacco and grapevine).
Fig. 2 Fig. 2
[0017] [Fig. 2] montre l’effet biocide in vitro de de 3.5mM Zn-TMPyP sur les adventices (ortie, arabidopsis et coquelicot). [0017] [Fig. 2] shows the in vitro biocidal effect of 3.5mM Zn-TMPyP on weeds (nettle, arabidopsis and poppy).
Fig. 3 Fig. 3
[0018] [Fig. 3] montre l’effet herbicide foliaire sélectif de Zn-TMPyP sous serre sur deux systèmes de cultures associées avec leurs adventices (orge / coquelicot et tomate / millet) après deux mois de traitement avec soit 50mM Zn-TMPyP soit de l’eau (culture témoin). Il est à noter que le coquelicot est complètement détruit. [0018] [Fig. 3] shows the selective foliar herbicidal effect of Zn-TMPyP in greenhouse on two crop systems associated with their weeds (barley/poppy and tomato/millet) after two months of treatment with either 50mM Zn-TMPyP or water ( control culture). It should be noted that the poppy is completely destroyed.
Fig. 4 Fig. 4
[0019] [Fig. 4] est un comparatif démontrant l’effet biocide in vitro de 3.5mM de Zn-TMPyP sur les plantules de tomate de 22 jours, et l’absence d’effet de 50mM de Zn-TMPyP sur des plantules de tomates sous serre de 22 jours comparativement à leurs milieux témoins respectifs.
Fig. 5 [0019] [Fig. 4] is a comparison demonstrating the in vitro biocidal effect of 3.5mM of Zn-TMPyP on 22-day-old tomato seedlings, and the absence of effect of 50mM of Zn-TMPyP on 22-day-old greenhouse tomato seedlings. days compared to their respective control media. Fig. 5
[0020] [Fig. 5] est un comparatif démontrant l’effet biocide in vitro de 3.5mM de Zn-TMPyP sur les plantules d’orge de 17 jours, et l’absence d’effet de 50mM de Zn-TMPyP sur des plantules d’orge sous serre de 22 jours comparativement à leurs milieux témoins respectifs. Fig. 6 [0020] [Fig. 5] is a comparison demonstrating the in vitro biocidal effect of 3.5mM of Zn-TMPyP on 17-day-old barley seedlings, and the absence of effect of 50mM of Zn-TMPyP on barley seedlings in greenhouses 22 days compared to their respective control media. Fig. 6
[0021] [Fig. 6] est un comparatif démontrant l’effet biocide in vitro de 3.5mM de Zn-TMPyP sur les plantules de coquelicot de 22 jours, et l’effet herbicide de 50mM de Zn-TMPyP sur des plantules de coquelicot sous serre comparativement à leurs milieux témoins respectifs. [0021] [Fig. 6] is a comparison demonstrating the in vitro biocidal effect of 3.5mM of Zn-TMPyP on 22-day-old poppy seedlings, and the herbicidal effect of 50mM of Zn-TMPyP on poppy seedlings in greenhouses compared to their environments respective witnesses.
Fig. 7 [0022] [Fig. 7] montre l’innocuité de la Zn-TMPyP 50mM sur la viabilité des asticots en présente et en l’absence de lumière 24 heures après le traitement par pulvérisation de Zn- TMPyP 50mM. Fig. 7 [0022] [Fig. 7] shows the harmlessness of 50mM Zn-TMPyP on the viability of maggots in the presence and in the absence of light 24 hours after the spray treatment with 50mM Zn-TMPyP.
Fig. 8 Fig. 8
[0023] [Fig. 8] correspond au suivi de la photostabilité/photodégradation de la Zn-TMPyP à 50 mM avec ou sans surfactant dans l’eau sous photopériode (16 h lumière/8 h obscurité) ou à l’obscurité. [0023] [Fig. 8] corresponds to monitoring the photostability/photodegradation of Zn-TMPyP at 50 mM with or without surfactant in water under photoperiod (16 h light/8 h dark) or in the dark.
Fig. 9 Fig. 9
[0024] [Fig. 9] correspond au dosage des thiols totaux ainsi que des activités enzymatiques (catalase et guaïacol peroxydase) sur des plantules de tomates cultivées pendant 1 mois in vitro sur le milieu riche en Zn-TMPyP 3.5 mM. [0024] [Fig. 9] corresponds to the dosage of total thiols as well as enzymatic activities (catalase and guaiacol peroxidase) on tomato seedlings cultivated for 1 month in vitro on the medium rich in Zn-TMPyP 3.5 mM.
Fig. 10 Fig. 10
[0025] [Fig. 10] correspond au dosage des thiols totaux ainsi que des activités enzymatiques (catalase et guaïacol peroxydase) sur des plantules de tomates cultivées pendant deux mois sous serre, après application foliaire de 50mM de Zn-TMPyP. Fig. 11 [0025] [Fig. 10] corresponds to the dosage of total thiols as well as enzymatic activities (catalase and guaiacol peroxidase) on tomato seedlings grown for two months in a greenhouse, after foliar application of 50 mM of Zn-TMPyP. Fig. 11
[0026] [Fig. 11] est un comparatif schématique des résultats présentés aux figures 8 et 9 démontrant, notamment, que les résultats in vitro ne sont pas extrapolables aux résultats sous serre. [0026] [Fig. 11] is a schematic comparison of the results presented in FIGS. 8 and 9 demonstrating, in particular, that the in vitro results cannot be extrapolated to the greenhouse results.
Fig. 12 [0027] [Fig. 12] présente l’effet herbicide de Zn-TMPyP à l’encontre des adventices à différentes concentrations (C1 , C2, C3) par rapport au témoin (T).
Fig. 13 Fig. 12 [0027] [Fig. 12] shows the herbicidal effect of Zn-TMPyP against weeds at different concentrations (C1, C2, C3) compared to the control (T). Fig. 13
[0028] [Fig. 13] présente l’innocuité de Zn-TMPyP à l’encontre des plantes d’intérêt à différentes concentrations (C1 , C2, C3) par rapport au témoin (T). [0028] [Fig. 13] presents the safety of Zn-TMPyP against the plants of interest at different concentrations (C1, C2, C3) compared to the control (T).
Description détaillée [0029] La présente invention concerne donc l’utilisation de porphyrines cationiques choisies parmi la zinc-tetra (N-methylpyridyl) porphyrine tetrachloride, la tetra (N- methylpyridyl) porphyrine tetrachloride ou leur mélange en tant qu’herbicide foliaire sélectif. Detailed Description The present invention therefore relates to the use of cationic porphyrins chosen from among zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture as a selective foliar herbicide.
[0030] Porphyrines cationiques [0030] Cationic porphyrins
[0031] Les porphyrines utilisées selon l’invention sont la tetra (N-methylpyridyl) porphyrine tetrachloride (TMPyP ou T4MPyP) de formule (I) : The porphyrins used according to the invention are tetra (N-methylpyridyl) porphyrin tetrachloride (TMPyP or T4MPyP) of formula (I):
[0032] [chem 1]
[0032] [chem 1]
(formule I) et la zinc-tetra (N-methylpyridyl) porphyrine tetrachloride nommée Zn-TMPyP ou Zn- T4MPyP de formule II, où X est un atome de Zinc :
(formula I) and zinc-tetra (N-methylpyridyl) porphyrin tetrachloride named Zn-TMPyP or Zn-T4MPyP of formula II, where X is a Zinc atom:
[chem 2]
[chem 2]
(formule II). (Form II).
[0033] Zn-TMPyP est une porphyrine cationique métallée au niveau du noyau tétrapyrrolique. Zn-TMPyP is a cationic porphyrin metallated at the level of the tetrapyrrole ring.
[0034] Zn-TMPyP et TMPyP sont commercialisées par la société Frontier Scientific (Carnforth, UK). Zn-TMPyP and TMPyP are marketed by the company Frontier Scientific (Carnforth, UK).
[0035] Selon un mode de réalisation préféré, Zn-TMPyP est utilisée en tant qu’herbicide foliaire sélectif. [0036] Espace de culture [0035] According to a preferred embodiment, Zn-TMPyP is used as a selective foliar herbicide. [0036] Culture space
[0037] On entend par culture ou espace de culture, tout espace permettant de cultiver des plantes et plus particulièrement des plantes d’intérêt agronomique. On citera, à titre illustratif, une serre, un champ, une prairie, une cour, une allée, un jardin, un potager,... By culture or culture space is meant any space for cultivating plants and more particularly plants of agronomic interest. Mention will be made, by way of illustration, of a greenhouse, a field, a meadow, a courtyard, an alley, a garden, a vegetable patch, etc.
[0038] Selon un mode de réalisation, l’espace de culture est choisi parmi une serre, un champ, une prairie, une cour, une allée, un jardin, un potager. According to one embodiment, the growing space is chosen from among a greenhouse, a field, a meadow, a courtyard, an alley, a garden, a vegetable patch.
[0039] Herbicide foliaire sélectif [0039] Selective foliar herbicide
[0040] Un herbicide est un pesticide à usage agricole dont l’activité sur le métabolisme des plantes entraîne leur mort. A herbicide is a pesticide for agricultural use whose activity on the metabolism of plants leads to their death.
[0041] Les porphyrines cationiques selon l’invention sont des herbicides sélectifs lorsqu’elles sont appliquées par pulvérisation foliaire. The cationic porphyrins according to the invention are selective herbicides when they are applied by foliar spraying.
[0042] En effet, et contrairement aux résultats vitro démontrant l’effet biocide de Zn-TMPyP, les inventeurs ont avantageusement mis en évidence que Zn-TMPyP et TMPyP peuvent être utilisées comme herbicide sélectif lorsqu’elles sont appliquées par pulvérisation foliaire. Les inventeurs ont en effet prouvé que Zn-TMPyP pulvérisée en serre entraîne la mort des adventices et préserve les plantes d’intérêt agronomique. Il a été démontré que les plantes d’intérêt telles que l’orge et la tomate poussent parfaitement que ce soit dans la condition
« témoin » (pulvérisation d’H20) ou suite à leur traitement (pulvérisations foliaires de 50 mM de Zn-TMPyP). A l’inverse, le coquelicot et le millet sont complètement morts suite au traitement foliaire par Zn-TMPyP. Les premiers symptômes apparaissent 24 h après le premier traitement. Après 48 heures, le coquelicot est complètement détruit. [0043] Ces résultats sont inattendus au regard des effets in vitro : alors que la croissance de l’orge et de la tomate était drastiquement altérée in vitro par 3.5mM de Zn-TMPyP en application racinaire, l’application par pulvérisation foliaire de 50 mM de Zn-TMPyP n’a eu aucun effet sur la croissance des plantes d’intérêt agronomique. En revanche, la même dose de Zn-TMPyP entraîne la mort des adventices témoignant de l’effet herbicide sélectif lorsque Zn-TMPyP est appliqué par pulvérisation foliaire. [0042] Indeed, and contrary to the in vitro results demonstrating the biocidal effect of Zn-TMPyP, the inventors have advantageously demonstrated that Zn-TMPyP and TMPyP can be used as a selective herbicide when they are applied by foliar spraying. The inventors have in fact proved that Zn-TMPyP sprayed in a greenhouse causes the death of weeds and preserves the plants of agronomic interest. Plants of interest such as barley and tomato have been shown to grow perfectly whether under the condition "control" (spray of H 2 0) or following their treatment (foliar sprays of 50 mM Zn-TMPyP). Conversely, poppy and millet died completely following foliar treatment with Zn-TMPyP. The first symptoms appear 24 hours after the first treatment. After 48 hours, the poppy is completely destroyed. These results are unexpected with regard to the in vitro effects: whereas the growth of barley and tomato was drastically altered in vitro by 3.5 mM of Zn-TMPyP in root application, the application by foliar spray of 50 mM of Zn-TMPyP had no effect on the growth of plants of agronomic interest. On the other hand, the same dose of Zn-TMPyP leads to the death of weeds, testifying to the selective herbicidal effect when Zn-TMPyP is applied by foliar spraying.
[0044] Ainsi, Zn-TMPyP et TMPyP sont avantageusement des herbicides foliaires sélectifs, préférentiellement lorsqu’elles sont appliquées dans une serre. Thus, Zn-TMPyP and TMPyP are advantageously selective foliar herbicides, preferentially when they are applied in a greenhouse.
[0045] Un herbicide foliaire est appliqué par pulvérisation sur les feuilles et nécessite un adjuvant pour aider le principe actif à pénétrer à l’intérieur des cellules (translocation basipète). A l’inverse, dans le cas d’un herbicide racinaire, le principe actif est absorbé par les racines et conduit par la sève (translocation acropète). [0045] A foliar herbicide is applied by spraying on the leaves and requires an adjuvant to help the active principle to penetrate inside the cells (basipetal translocation). Conversely, in the case of a root herbicide, the active principle is absorbed by the roots and carried by the sap (acropetic translocation).
[0046] Ainsi, et de manière inattendue, alors que Zn-TMPyP s’est révélé être un herbicide racinaire in vitro, il est avantageusement sélectif lorsqu’il est appliqué par pulvérisation foliaire. [0047] Un herbicide sélectif est un herbicide qui vise à éliminer les adventices sans endommager l’espace de culture tel qu’une serre, un champ, une prairie, une cour, une allée, un jardin. Il s’agit donc de lutter contre les adventices ou « mauvaises herbes » qui sont indésirables dans les cultures. Avantageusement, les porphyrines cationiques selon l’invention vont détruire les adventices sans endommager les plantes d’intérêt agronomique. [0048] On entend par le terme « adventice » toute plante herbacée ou ligneuse qui se trouve dans un agroécosystème sans y avoir été intentionnellement installée. Il s’agira par exemple d’une espèce végétale indésirable présente dans un espace de culture d’une autre espèce végétale. [0046] Thus, and unexpectedly, while Zn-TMPyP has been shown to be a root herbicide in vitro, it is advantageously selective when applied by foliar spray. A selective herbicide is a herbicide which aims to eliminate weeds without damaging the growing space such as a greenhouse, a field, a meadow, a yard, an alley, a garden. It is therefore a question of fighting against weeds or “weeds” which are undesirable in crops. Advantageously, the cationic porphyrins according to the invention will destroy the weeds without damaging the plants of agronomic interest. The term “weed” is understood to mean any herbaceous or ligneous plant which is found in an agroecosystem without having been intentionally established there. For example, it will be an undesirable plant species present in a space where another plant species is grown.
[0049] Selon un mode de réalisation, les plantes d’intérêt agronomique seront choisies parmi des plantes du genre Nicotiana, du genre Solanum, du genre Vitis, du genre Hordeaum, du genre Triticum, du genre Zeya, du genre Helianthus, du genre Allium, du genre Spinacia, du genre Frugaria, du genre Brassica. According to one embodiment, the plants of agronomic interest will be chosen from plants of the genus Nicotiana, of the genus Solanum, of the genus Vitis, of the genus Hordeaum, of the genus Triticum, of the genus Zeya, of the genus Helianthus, of the genus Allium, genus Spinacia, genus Frugaria, genus Brassica.
[0050] Les plantes d’intérêt agronomique seront choisies parmi le tabac ( Nicotiana tabacum), la pomme de terre ( Solanum tuberosum), la vigne ( Vitis vinifera), l’orge ( Hordeum vulgare), la tomate ( Solanum lycopersicum), le blé ( Triticum sativum), le maïs
(Zeya mays), le tournesol ( Helianthus annuus), l’oignon ( Allium cepa), l’épinard ( Spinacia oleracea), la fraise ( Frugaria sp.) et le navet ( Brassica rapa). The plants of agronomic interest will be chosen from tobacco (Nicotiana tabacum), potato (Solanum tuberosum), vine (Vitis vinifera), barley (Hordeum vulgare), tomato (Solanum lycopersicum), wheat (Triticum sativum), maize (Zeya mays), sunflower (Helianthus annuus), onion (Allium cepa), spinach (Spinacia oleracea), strawberry (Frugaria sp.) and turnip (Brassica rapa).
[0051] Ainsi, selon un mode de réalisation, Zn-TMPyP et TMPyP sont utilisés pour le traitement de cultures choisies parmi les cultures de tabac ( Nicotiana tabacum),de pomme de terre ( Solanum tuberosum), de vigne (Vitis vinifera), d’orge ( Hordeum vulgare), de tomate ( Solanum lycopersicum), de blé ( Triticum sativum), de maïs ( Zeya mays), de tournesol ( Helianthus annuus), d’oignon ( Allium cepa), d’épinard ( Spinacia oleracea), de fraise ( Frugaria sp.) et de navet ( Brassica rapa). Thus, according to one embodiment, Zn-TMPyP and TMPyP are used for the treatment of crops chosen from tobacco crops (Nicotiana tabacum), potato (Solanum tuberosum), vine (Vitis vinifera), barley (Hordeum vulgare), tomato (Solanum lycopersicum), wheat (Triticum sativum), corn (Zeya mays), sunflower (Helianthus annuus), onion (Allium cepa), spinach (Spinacia oleracea ), strawberry ( Frugaria sp.) and turnip ( Brassica rapa).
[0052] Selon un mode de réalisation préféré, Zn-TMPyP et TMPyP, préférentiellement -Zn- TMPyP sont utilisés pour le traitement de cultures choisies parmi les cultures de blé ( Triticum sativum), d’orge ( Hordeum vulgare), de maïs ( Zeya mays), de tournesol ( Helianthus annuus), de navet ( Brassica rapa), de tomate ( Solanum lycopersicum), d’oignon ( Allium cepa), d’épinard ( Spinacia oleracea). According to a preferred embodiment, Zn-TMPyP and TMPyP, preferentially -Zn-TMPyP are used for the treatment of crops chosen from wheat (Triticum sativum), barley (Hordeum vulgare), maize ( Zeya mays), sunflower (Helianthus annuus), turnip (Brassica rapa), tomato (Solanum lycopersicum), onion (Allium cepa), spinach (Spinacia oleracea).
[0053] Zn-TMPyP et TMPyP seront utilisées à l’encontre des adventices choisies parmi des adventices du genre Urtica, du genre Echinochloa, du genre Papaver, du genre Lolium, du genre Datura, du genre Stellaria, du genre Chenopodium, du genre Panicum, du genre Taraxacum, du genre Rumex, du genre Solanum. Zn-TMPyP and TMPyP will be used against weeds chosen from weeds of the genus Urtica, the genus Echinochloa, the genus Papaver, the genus Lolium, the genus Datura, the genus Stellaria, the genus Chenopodium, the genus Panicum, genus Taraxacum, genus Rumex, genus Solanum.
[0054] Selon un mode de réalisation, Zn-TMPyP et TMPyP seront utilisées à l’encontre des adventices choisies parmi l’ortie ( Urtica dioi'ca), le millet ( Echinochloa frumentacea), le coquelicot ( Papaver rhoeas), le ray gras d’italie ( Lolium multiforum), la datura ( Datura stramonium), le mouron blanc ( Stellaria media), le chenopode blanc ( Chenopodium album), le faux millet ( Panicum miliaceum), le pissenlit ( Taraxacum officinale), le rumex ( Rumex crispus), la mo relie noire ( Solanum nigrum). According to one embodiment, Zn-TMPyP and TMPyP will be used against weeds chosen from nettle (Urtica dioi ' ca), millet (Echinochloa frumentacea), poppy (Papaver rhoeas), ray Italian grass (Lolium multiforum), datura (Datura stramonium), white pimpernel (Stellaria media), lamb's-quarters (Chenopodium album), false millet (Panicum miliaceum), dandelion (Taraxacum officinale), rumex ( Rumex crispus), black moth (Solanum nigrum).
[0055] Selon un mode de réalisation, Zn-TMPyP et TMPyP, et préférentiellement Zn- TMPyP, seront utilisées à l’encontre des adventices choisies parmi la morelle noire ( Solanum nigrum), le pissenlit ( Taraxacum officinale), le chenopode blanc ( Chenopodium album), le rumex ( Rumex crispus), le ray gras d’italie ( Lolium multiforum), le faux millet ( Panicum miliaceum), le mouron blanc ( Stellaria media), le millet ( Echinochloa frumentacea), le coquelicot (Papaver rhoeas). [0056] Composition herbicide sélective According to one embodiment, Zn-TMPyP and TMPyP, and preferably Zn-TMPyP, will be used against weeds chosen from black nightshade (Solanum nigrum), dandelion (Taraxacum officinale), lamb's-quarters ( Chenopodium album), dock ( Rumex crispus), Italian ryegrass ( Lolium multiforum), false millet ( Panicum miliaceum), white pimpernel ( Stellaria media), millet ( Echinochloa frumentacea), poppy (Papaver rhoeas ). [0056] Selective herbicidal composition
[0057] La présente invention concerne également une composition herbicide sélective comprenant des porphyrines cationiques choisies parmi la zinc-tetra (N-methylpyridyl) porphyrine tetrachloride, la tetra (N-methylpyridyl) porphyrine tetrachloride ou leur mélange et au moins un surfactant.
[0058] Selon un mode de réalisation, l’invention concerne une composition herbicide sélective comprenant des porphyrines cationiques choisies parmi la zinc-tetra (N- methylpyridyl) porphyrine tetrachloride, la tetra (N-methylpyridyl) porphyrine tetrachloride ou leur mélange et au moins un surfactant la teneur en porphyrines cationiques étant d’au moins 40mg/L. The present invention also relates to a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least one surfactant. According to one embodiment, the invention relates to a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least a surfactant the content of cationic porphyrins being at least 40mg/L.
[0059] Selon un mode de réalisation, l’invention concerne une composition herbicide sélective comprenant des porphyrines cationiques choisies parmi la zinc-tetra (N- methylpyridyl) porphyrine tetrachloride, la tetra (N-methylpyridyl) porphyrine tetrachloride ou leur mélange et au moins un surfactant la teneur en porphyrines cationiques étant d’environ 44mg/L. According to one embodiment, the invention relates to a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least a surfactant the content of cationic porphyrins being approximately 44mg/L.
[0060] Selon un mode de réalisation, l’invention concerne une composition herbicide sélective comprenant des porphyrines cationiques choisies parmi la zinc-tetra (N- methylpyridyl) porphyrine tetrachloride, la tetra (N-methylpyridyl) porphyrine tetrachloride ou leur mélange et au moins un surfactant la teneur en porphyrines cationiques étant d’au moins 60mg/L. According to one embodiment, the invention relates to a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least a surfactant the content of cationic porphyrins being at least 60mg/L.
[0061] Selon un mode de réalisation, l’invention concerne une composition herbicide sélective comprenant des porphyrines cationiques choisies parmi la zinc-tetra (N- methylpyridyl) porphyrine tetrachloride, la tetra (N-methylpyridyl) porphyrine tetrachloride ou leur mélange et au moins un surfactant la teneur en porphyrines cationiques étant d’environ 66mg/L. According to one embodiment, the invention relates to a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least a surfactant the content of cationic porphyrins being approximately 66mg/L.
[0062] Selon un mode de réalisation, l’invention concerne une composition herbicide sélective comprenant des porphyrines cationiques choisies parmi la zinc-tetra (N- methylpyridyl) porphyrine tetrachloride, la tetra (N-methylpyridyl) porphyrine tetrachloride ou leur mélange et au moins un surfactant la teneur en porphyrines cationiques étant d’au moins 80mg/L. According to one embodiment, the invention relates to a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least a surfactant the content of cationic porphyrins being at least 80mg/L.
[0063] Selon un mode de réalisation, l’invention concerne une composition herbicide sélective comprenant des porphyrines cationiques choisies parmi la zinc-tetra (N- methylpyridyl) porphyrine tetrachloride, la tetra (N-methylpyridyl) porphyrine tetrachloride ou leur mélange et au moins un surfactant la teneur en porphyrines cationiques étant d’environ 88mg/L. According to one embodiment, the invention relates to a selective herbicidal composition comprising cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture and at least a surfactant the content of cationic porphyrins being approximately 88mg/L.
[0064] L’homme du métier est à même de déterminer la concentration à appliquer ainsi que la fréquence en fonction de la nature des cultures, de la surface du champ, des conditions météorologiques, ... [0064] A person skilled in the art is able to determine the concentration to be applied as well as the frequency depending on the nature of the crops, the surface of the field, the weather conditions, etc.
[0065] Typiquement, le surfactant sera choisi parmi les surfactants neutres et non ioniques tels que le polyoxyethylène nonylphenylether, les surfactants anioniques tels que les
produits commercialisés sous la dénomination clasofl®, texapon®, les surfactants cationiques tels que benzalkonium chloride (BAC) ou le Benzéthonium chloride (BZT), les surfactants neutres zwitterioniques, [0065] Typically, the surfactant will be chosen from neutral and nonionic surfactants such as polyoxyethylene nonylphenylether, anionic surfactants such as products marketed under the name clasofl®, texapon®, cationic surfactants such as benzalkonium chloride (BAC) or Benzethonium chloride (BZT), neutral zwitterionic surfactants,
[0066] Préférentiellement, le surfactant est le polyoxyethylène nonylphenylether (Igepal CO-630, Sigma Aldrich). Preferably, the surfactant is polyoxyethylene nonylphenylether (Igepal CO-630, Sigma Aldrich).
[0067] Selon un mode de réalisation, la composition herbicide sélective comprend la zinc- tetra (N-methylpyridyl) porphyrine tetrachloride et le polyoxyethylène nonylphenylether. According to one embodiment, the selective herbicidal composition comprises zinc-tetra (N-methylpyridyl) porphyrin tetrachloride and polyoxyethylene nonylphenylether.
[0068] Procédé de désherbage [0068] Weeding process
[0069] La présente invention concerne également un procédé sélectif de désherbage comprenant au moins une étape d’application de porphyrines cationiques choisies parmi la zinc-tetra (N-methylpyridyl) porphyrine tetrachloride, la tetra (N-methylpyridyl) porphyrine tetrachloride ou leur mélange dans un espace de culture, lesdites porphyrines étant appliquées par pulvérisation foliaire. The present invention also relates to a selective weed control process comprising at least one step of applying cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture in a growing space, said porphyrins being applied by foliar spraying.
[0070] Préférentiellement, l’espace de culture est choisi parmi une serre, un champ, une prairie, une cour, une allée, un jardin, un potager ,.... [0070] Preferably, the growing space is chosen from among a greenhouse, a field, a meadow, a courtyard, an alley, a garden, a vegetable patch, etc.
[0071] On entend par « pulvérisation foliaire » l’application des porphyrines selon l’invention sur les parties aériennes des adventices et des plantes d’intérêt agronomique en culture, et préférentiellement l’application sur les feuilles des adventices et des plantes d’intérêt agronomique en culture The term “foliar spraying” means the application of the porphyrins according to the invention to the aerial parts of weeds and plants of agronomic interest in cultivation, and preferentially the application to the leaves of weeds and plants of agronomic interest in cultivation
[0072] Selon un mode de réalisation du procédé de désherbage, TMPyP et Zn-TMPyP sont pulvérisées au stade cotylédon et/ou au stade premières feuilles tel que le stade 2 feuilles et/ou 4 feuilles. According to one embodiment of the weed control method, TMPyP and Zn-TMPyP are sprayed at the cotyledon stage and/or at the first leaf stage such as the 2-leaf and/or 4-leaf stage.
[0073] On entend par « stade cotylédonnaire » ou « stade cotylédon », le stade d’émergence des feuilles embryonnaires. The term “cotyledonary stage” or “cotyledonary stage” means the stage of emergence of the embryonic leaves.
[0074] On entend par « stade premières feuilles », le stade de développement des vraies feuilles. [0074] The term "first leaf stage" means the stage of development of the true leaves.
[0075] Méthode herbicide sélective [0075] Selective herbicidal method
[0076] L’invention concerne également une méthode de désherbage sélectif, la méthode comprenant l’application à un espace de culture, de porphyrines cationiques choisies parmi la zinc-tetra (N-methylpyridyl) porphyrine tetrachloride, la tetra (N-methylpyridyl) porphyrine tetrachloride ou leur mélange, lesdites porphyrines étant appliquées par pulvérisation foliaire.
[0077] Préférentiellement, l’espace de culture est choisi parmi une serre, un champ, une prairie, une cour, une allée, un jardin, un potager,.... The invention also relates to a method for selective weed control, the method comprising the application to a culture space of cationic porphyrins chosen from among zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or mixtures thereof, said porphyrins being applied by foliar spraying. [0077] Preferably, the growing space is chosen from among a greenhouse, a field, a meadow, a courtyard, an alley, a garden, a vegetable patch, etc.
[0078] Selon un mode de réalisation du procédé de désherbage, TMPyP et Zn-TMPyP sont pulvérisés au stade cotylédon et/ou au stade 2 feuilles et/ou 4 feuilles. Exemples According to one embodiment of the weed control method, TMPyP and Zn-TMPyP are sprayed at the cotyledon stage and/or at the 2-leaf and/or 4-leaf stage. Examples
[0079] Matériels et Méthodes [0079] Materials and Methods
[0080] Dans les exemples qui suivent, les matériels et méthodes ci-après décrits ont été utilisés. In the examples which follow, the materials and methods described below were used.
[0081 ] Porphyrines cationiques [0082] La porphyrine cationique métallée au niveau du noyau tétrapyrrolique utilisée est la[0081] Cationic porphyrins [0082] The cationic porphyrin metallated at the level of the tetrapyrrole nucleus used is the
Zinc-tetra (N-methylpyridyl) porphyrine tetrachloride nommée Zn-TMPyP (commercialisée par Frontier Scientific (Carnforth, UK)). La solution mère préparée à 1 mM dans l’eau, est conservée à l’obscurité à température ambiante. Zinc-tetra (N-methylpyridyl) porphyrin tetrachloride named Zn-TMPyP (marketed by Frontier Scientific (Carnforth, UK)). The stock solution, prepared at 1 mM in water, is stored in the dark at room temperature.
[0083] Formulation pour la pulvérisation foliaire 50 mM de Zn-TMPyP solubilisé dans l’eau + 0.1% v/vd’un surfactant neutre et non ionique[0083] Formulation for foliar spraying 50 mM Zn-TMPyP dissolved in water + 0.1% v/v of a neutral and non-ionic surfactant
(Polyoxyethylène nonylphenylether) (Igepal 00-630, Sigma Aldrich). (Polyoxyethylene nonylphenylether) (Igepal 00-630, Sigma Aldrich).
[0084] Test de photostabilité / photodéqradation [0084] Photostability / photodegradation test
[0085] La photostabilité / photodégradation de Zn-TMPyP a été testée dans l’eau sous photopériode de 16 h et à l’obscurité avec ou sans surfactant. La Zn-TMPyP mélangée avec 0.1%v/v de surfactant est testée à 50 mM sous photopériode et dans l’obscurité en monitorant l’absorption de la bande de Soret par spectrométrie UV-visible. Le suivi de l’intensité de la bande de Soret en fonction du temps d’irradiation permet de calculer le pourcentage des porphyrines dégradées. The photostability/photodegradation of Zn-TMPyP was tested in water under a photoperiod of 16 h and in the dark with or without surfactant. Zn-TMPyP mixed with 0.1% v/v of surfactant is tested at 50 mM under photoperiod and in the dark by monitoring the absorption of the Soret band by UV-visible spectrometry. Monitoring the intensity of the Soret band as a function of irradiation time makes it possible to calculate the percentage of degraded porphyrins.
[0086] Modèles végétaux [0087] Neuf espèces végétales appartenant à plusieurs grandes familles ont été testées selon les conditions ci-après décrites : [0086] Plant models [0087] Nine plant species belonging to several large families were tested according to the conditions described below:
[0088] [Tableau 1]
[0088] [Table 1]
[0089] Stérilisation des araines/carvopses [0089] Sterilization of spiders/carvopses
[0090] La stérilisation des graines se fait selon le protocole suivant. Une stérilisation de surface est tout d’abord effectuée à l’éthanol 70 % (v/v) pendant 2 minutes à température ambiante. L’éthanol est éliminé et les graines sont plongées dans 20 % (v/v) d’hypochlorite de sodium pendant 15-20 minutes puis abondamment rincées avec de l’eau stérile. Les caryopses d’orge sont laissés au moins une heure dans l’eau avant mise en culture. The seeds are sterilized according to the following protocol. Surface sterilization is first performed with 70% (v/v) ethanol for 2 minutes at room temperature. The ethanol is removed and the seeds are immersed in 20% (v/v) sodium hypochlorite for 15-20 minutes then rinsed thoroughly with sterile water. The barley caryopsis are left for at least one hour in water before culturing.
[0091 ] Germination des graines [0091] Seed germination
[0092] Le milieu de germination pour toutes les graines est le milieu synthétique de Gamborg aussi appelé B5 (Duchefa Biochemie, Haarlem, Netherlands) supplémenté par du saccharose 2 % (m/v) et solidifié à l’agar à 0,8% (Difco, Dallas, USA). Le pH est ajusté à 5,8 avec de la soude à 1 M avant autoclavage. Après autoclavage (120°C, 20 minutes, 1 bar) et refroidissement du milieu dans les boîtes de Pétri et/ou les bocaux, est rajoutée la porphyrine à la concentration désirée. Après stérilisation, les graines sont déposées sur le milieu B5 solidifié contenant ou non la porphyrine, sous la hotte à flux laminaire. Les boîtes de Pétri comme les bocaux sont placés en chambre de culture (photopériode 16 h, 22 °C, densité du flux de photons -100 pmol.m-2.s-1 généré par des lampes cool daylight (OSRAM Lumilux 24W)). Les bocaux sont utilisés pour le transfert des plantules et leur permettent une croissance plus appropriée. The germination medium for all the seeds is Gamborg's synthetic medium also called B5 (Duchefa Biochemie, Haarlem, Netherlands) supplemented with 2% (m/v) sucrose and solidified with 0.8% agar. (Difco, Dallas, USA). The pH is adjusted to 5.8 with 1 M sodium hydroxide before autoclaving. After autoclaving (120° C., 20 minutes, 1 bar) and cooling of the medium in Petri dishes and/or jars, porphyrin is added at the desired concentration. After sterilization, the seeds are deposited on the solidified B5 medium, which may or may not contain the porphyrin, under the laminar flow hood. The Petri dishes like the jars are placed in a culture chamber (photoperiod 16 h, 22°C, photon flux density -100 pmol.m-2.s-1 generated by cool daylight lamps (OSRAM Lumilux 24W)) . The jars are used for the transfer of the seedlings and allow them a more appropriate growth.
[0093] Multiplication in vitro des clones [0094] Les expiants sont multipliés de façon stérile à partir de plantules de 1 mois pour la pomme de terre et de deux mois pour les vignes. Les expiants de pomme de terre sont
multipliés sur un milieu synthétique Murashige et Skoog supplémenté en saccharose 2% et myo-inositol (100 mg/L) pH 5.8. Les expiants de vigne sont cultivés sur milieu ½ Chée et Pool supplémenté en saccharose 2%, pH 5.9. Les milieux sont solidifiés par du Sobigel 0.8 %. Les deux milieux sont fournis par Duchefa Biochemie, Haarlem, Netherlands. Les milieux sont autoclavés comme décrit précédemment pour le milieu B5. Les expiants de vigne sont mis en chambre de culture 25° C et ceux de pomme de terre à 23 °C, même photopériode et intensité lumineuse que pour les germinations de graines. [0093] In Vitro Multiplication of the Clones [0094] The explants are multiplied in a sterile manner from seedlings 1 month old for the potato and two months old for the vines. Potato explants are multiplied on a synthetic Murashige and Skoog medium supplemented with 2% sucrose and myo-inositol (100 mg/L) pH 5.8. The vine explants are grown on ½ Chée and Pool medium supplemented with 2% sucrose, pH 5.9. The media are solidified with 0.8% Sobigel. Both media are supplied by Duchefa Biochemie, Haarlem, Netherlands. The media are autoclaved as previously described for the B5 medium. The vine explants are placed in a culture chamber at 25° C and those of potatoes at 23° C, same photoperiod and light intensity as for seed germination.
[0095] Culture sous serre [0095] Cultivation in a greenhouse
[0096] Les différentes graines sont mises en culture sous serre dans du terreau commercial (Terreau universel, Fertiligène). Les graines ont été semées à la serre dans des conditions de température et d’humidité contrôlées (La température varie entre 15 °C et 30 °C selon la saison, et l'humidité relative varie de 50 à 70%.). [0096] The various seeds are cultured in a greenhouse in commercial soil (Universal soil, Fertiligene). The seeds were sown in the greenhouse under controlled temperature and humidity conditions (The temperature varies between 15°C and 30°C depending on the season, and the relative humidity varies from 50 to 70%.).
[0097] Deux traitements ponctuels (environ 10 pulvérisations chacun) espacés de 48 h ont été réalisés une semaine après la mise en germination. Le premier traitement a été réalisé lorsque les plantules sont au stade cotylédons, le deuxième lorsque les plantules sont au stades premières feuilles. [0097] Two spot treatments (approximately 10 sprays each) spaced 48 hours apart were carried out one week after germination. The first treatment was carried out when the seedlings were at the cotyledon stage, the second when the seedlings were at the first leaf stage.
[0098] Au bout de deux mois, les plantules ont été récoltées. Les racines et les parties aériennes ont été séparées et les racines ont été lavées à l’eau distillée et séchées sur papier absorbant. Ces matériels ont été ensuite conservés à -20° C jusqu’à leur utilisation pour les différentes analyses biochimiques. [0098] After two months, the seedlings were harvested. The roots and aerial parts were separated and the roots were washed with distilled water and dried on absorbent paper. These materials were then stored at -20°C until they were used for the various biochemical analyses.
[0099] Test biochimiques [0099] Biochemical tests
[0100] Détermination des thiols totaux [0100] Determination of total thiols
[0101] Les plantules (racines et appareil aérien séparés avant congélation) sont broyées dans de l’azote liquide. La poudre est transvasée dans un tube Eppendorf et pesée (entre 200 et 100 mg par extraction). L’extrait est acidifié par 0,2 N HCL vortexé et centrifugéThe seedlings (roots and aerial apparatus separated before freezing) are ground in liquid nitrogen. The powder is transferred to an Eppendorf tube and weighed (between 200 and 100 mg per extraction). The extract is acidified by 0.2 N HCL, vortexed and centrifuged
(13000 g 10 min 4 °C). 500 pL du surnageant est neutralisé par 400 pL NaOH (0,2 N) et 50 pL Na2HP04. Ensuite, 700 pL Na2HP04 0,12 M, 6 mM EDTA et 6 mM DTNB sont ajoutés sur 200 pL de la solution neutralisée. Après établissement d’une gamme de glutathion, on détermine les thiols totaux contenus dans les échantillons par spectrométrie UV-visible à 412 nm et on rapporte à la masse fraîche. (13000g 10min 4°C). 500 pL of the supernatant is neutralized with 400 pL NaOH (0.2 N) and 50 pL Na 2 HP0 4 . Then, 700 μL Na 2 HP0 4 0.12 M, 6 mM EDTA and 6 mM DTNB are added to 200 μL of the neutralized solution. After establishing a glutathione range, the total thiols contained in the samples are determined by UV-visible spectrometry at 412 nm and related to the fresh mass.
[0102] Activités enzymatiques [0102] Enzymatic activities
[0103] Les plantules (racines et appareil aérien séparés avant congélation) sont broyées dans de l’azote liquide. La poudre est transvasée dans un tube Eppendorf dans lequel 50 mg de PolyVynil PolyPyrrolidone (PVPP) (Sigma) ont été préalablement pesés. Le PVPP
permet d’éliminer les polyphénols présents dans les organes qui seraient susceptibles d’interférer avec les dosages biochimiques. Le broyât est pris dans du tampon d’extraction (25 mM tampon phosphate pH 7.8, 10 % (v/v) glycérol, et 1 mM EDTA). Les tubes sont ensuite centrifugés 20 minutes à 14 000 rpm à 4°C et les surnageants sont conservés à 4°C pour le dosage des protéines ou conservés à -20°C. Pour le dosage des protéines nous utilisons la méthode de dosage de Bradford (Bradford, 1976) et la BSA pour la gamme étalon. The seedlings (roots and aerial apparatus separated before freezing) are ground in liquid nitrogen. The powder is transferred into an Eppendorf tube in which 50 mg of PolyVynil PolyPyrrolidone (PVPP) (Sigma) have been weighed beforehand. The PVPP eliminates the polyphenols present in the organs that could interfere with biochemical assays. The homogenate is taken in extraction buffer (25 mM phosphate buffer pH 7.8, 10% (v/v) glycerol, and 1 mM EDTA). The tubes are then centrifuged for 20 minutes at 14,000 rpm at 4°C and the supernatants are stored at 4°C for the protein assay or stored at -20°C. For the protein assay, we use the Bradford assay method (Bradford, 1976) and BSA for the standard range.
[0104] Détermination de l’activité de la catalase (CAT) [0104] Determination of catalase activity (CAT)
[0105] La catalase est une enzyme de la famille des oxydoréductases. L’activité de la catalase est quantifiable en mesurant la disparition de GH202 par dismutation en H20 et 02. Pour déterminer cette activité, nous utilisons le protocole réalisé dans la publication de Issawi. et al. (2018). La cinétique de disparition de l’H202 est mesurée pendant 200 secondes toutes les 20 secondes à 240 nm. L’activité est calculée en utilisant le coefficient d’extinction molaire de H202 qui est de 43.6 rnM Lcnr1 [0106] Détermination de l’activité de la guaïacol peroxydase (GPOX) Catalase is an enzyme of the oxidoreductase family. Catalase activity can be quantified by measuring the disappearance of GH 2 0 2 by dismutation into H 2 0 and 0 2 . To determine this activity, we use the protocol carried out in the publication of Issawi. et al. (2018). The kinetics of H 2 0 2 disappearance is measured for 200 seconds every 20 seconds at 240 nm. The activity is calculated using the molar extinction coefficient of H 2 0 2 which is 43.6 rnM Lcnr 1 [0106] Determination of the activity of guaiacol peroxidase (GPOX)
[0107] La guaïacol peroxydase est une enzyme présente uniquement chez les plantes. Elle détoxifie la plante des molécules de peroxyde d’oxygène produites par le champignon. Son activité est mesurée par l’oxydation du guaïacol en présence d’H202. Pour déterminer cette activité, nous utilisons le protocole décrit dans la publication de Issawi. et al. (2018). La cinétique d’apparition du guaïacol oxydé est mesurée pendant 120 secondes toutes les 10 secondes à 436 nm. L’activité est calculée en utilisant le coefficient d’extinction molaire de H202 qui est de 25.5 mM Lcnr1. Guaiacol peroxidase is an enzyme present only in plants. It detoxifies the plant of oxygen peroxide molecules produced by the fungus. Its activity is measured by the oxidation of guaiacol in the presence of H 2 0 2 . To determine this activity, we use the protocol described in the publication by Issawi. et al. (2018). The kinetics of appearance of oxidized guaiacol is measured for 120 seconds every 10 seconds at 436 nm. The activity is calculated using the molar extinction coefficient of H 2 0 2 which is 25.5 mM Lcnr 1 .
[0108] Les tests biochimiques ont été réalisés sur 3 expériences indépendantes et validés statistiquement en utilisant le logiciel PAST [0108] The biochemical tests were carried out on 3 independent experiments and statistically validated using the PAST software
[0109] Exemple 1 : Démonstration de l’effet herbicide foliaire sélectif de Zn-TMPyP vs l’effet biocide in vitro de de Zn-TMPvP Example 1: Demonstration of the selective foliar herbicidal effect of Zn-TMPyP vs. the in vitro biocidal effect of Zn-TMPvP
[0110] A. Effet biocide in vitro : cas des plantes d’intérêt agronomique [0111] Les résultats sont présentés à la Figure 1. [0110] A. Biocidal effect in vitro: case of plants of agronomic interest [0111] The results are presented in Figure 1.
[0112] Pour éviter les contraintes mécaniques, les résultats ci-après présentés concernant l’orge et la tomate sont des résultats après 17 et 22 jours respectivement. En effet, les plantules vont rapidement croître sur les milieux témoins (sans Zn-TMPyP) et toucher le couvercle des bocaux par rapport aux autres cultures. To avoid mechanical stresses, the results presented below concerning barley and tomato are results after 17 and 22 days respectively. Indeed, the seedlings will grow rapidly on the control media (without Zn-TMPyP) and touch the lid of the jars compared to the other cultures.
[0113] Orge [0113] Barley
[0114] Il apparaît clairement que la croissance de l’orge est altérée après un mois de culture sur milieu riche en Zn-TMPyP à 3.5 mM. De plus, les feuilles montrent un jaunissement et par la suite un flétrissement. En revanche, en milieu témoin, l’orge pousse normalement et montre une croissance rapide et parfaite au bout des 17 jours.
[0115] Tomate It clearly appears that the growth of barley is altered after one month of culture on a medium rich in Zn-TMPyP at 3.5 mM. In addition, the leaves show yellowing and subsequently wilting. On the other hand, in the control medium, the barley grows normally and shows rapid and perfect growth after 17 days. [0115] Tomato
[0116] Conformément aux résultats de l’état de la technique (Guillaumot et al.), la tomate (variété Marmande) montre un développement significativement inhibé après 22 jours sur le milieu riche en Zn-TMPyP à 3.5 mM par rapport à la condition « témoin ». [0117] Pomme de terre In accordance with the results of the state of the art (Guillaumot et al.), the tomato (Marmande variety) shows significantly inhibited development after 22 days on the medium rich in Zn-TMPyP at 3.5 mM compared to the condition " witness ". [0117] Potato
[0118] La pomme de terre (variété Coquine) montre un léger retard de croissance au niveau de la tige et les racines sur le milieu traité par comparaison aux plantules de la condition témoin. The potato (Coquine variety) shows a slight delay in growth at the level of the stem and the roots on the treated medium compared to the seedlings of the control condition.
[0119] T abac et vigne [0120] Les plantules de tabac et de vigne témoignent d’une inhibition considérable de leur développement après respectivement, un mois et demi et deux mois de culture sur milieu riche en en Zn-TMPyP à 3.5 mM (Figure 1). [0129] Tobacco and vine [0120] The tobacco and vine seedlings show considerable inhibition of their development after respectively one and a half and two months of culture on a medium rich in Zn-TMPyP at 3.5 mM ( Figure 1).
[0121] Conclusion : effet biocide in vitro de Zn-TMPyP sur les plantes d’intérêt agronomique [0122] Après traitement avec Zn-TMPyP, les plantes d’intérêt agronomique présentent au mieux un retard de croissance. Dans la majorité des cas, la croissance de ces plantes est inhibée par Zn-TMPyP, comparativement au milieu témoin. Il apparaît ainsi très clairement que Zn-TMPyP a un effet biocide in vitro sur les plantes d’intérêt agronomique. [0121] Conclusion: in vitro biocidal effect of Zn-TMPyP on plants of agronomic interest [0122] After treatment with Zn-TMPyP, plants of agronomic interest exhibit at best a delay in growth. In the majority of cases, the growth of these plants is inhibited by Zn-TMPyP, compared to the control medium. It thus appears very clearly that Zn-TMPyP has a biocidal effect in vitro on plants of agronomic interest.
[0123] B. Effet biocide in vitro : cas des adventices [0124] Les résultats sont présentés à la Figure 2. [0123] B. Biocidal effect in vitro: case of weeds [0124] The results are presented in Figure 2.
[0125] Ortie et Arabidopsis [0125] Nettle and Arabidopsis
[0126] L’ortie et arabidopsis montrent une inhibition très importante de croissance sur un milieu traité avec la Zn-TMPyP (3.5 mM) au bout de 18 jours et 1 mois respectivement. The nettle and arabidopsis show a very significant inhibition of growth on a medium treated with Zn-TMPyP (3.5 mM) after 18 days and 1 month respectively.
[0127] Coquelicot [0128] Pour le coquelicot, les plantules montrent des réponses différentes qui témoignent d’une altération et inhibition remarquable au bout de 6 semaines. [0127] Poppy [0128] For the poppy, the seedlings show different responses which testify to a remarkable alteration and inhibition after 6 weeks.
[0129] Conclusion : effet biocide in vitro de Zn-TMPyP sur les adventices [0130] Conformément aux résultats obtenus sur les plantes d’intérêt agronomique, la croissance des adventices est inhibée par Zn-TMPyP, témoignant de son effet biocide in vitro. [0129] Conclusion: in vitro biocidal effect of Zn-TMPyP on weeds [0130] In accordance with the results obtained on plants of agronomic interest, the growth of weeds is inhibited by Zn-TMPyP, testifying to its biocidal effect in vitro.
[0131] Les résultats in vitro témoignent d’un effet herbicide racinaire de Zn-TMPyP. The in vitro results testify to a root herbicidal effect of Zn-TMPyP.
[0132] C. Effet herbicide foliaire sélectif : essais sous serre [0133] Les résultats sont présentés aux figures 3 à 6. [0132] C. Selective foliar herbicide effect: greenhouse trials [0133] The results are shown in Figures 3 to 6.
[0134] Des essais sur deux systèmes de culture associées avec leurs adventices ont été réalisés : [0134] Tests on two cropping systems associated with their weeds were carried out:
- l’orge (graminée) avec le coquelicot (dicot) - barley (grass) with poppy (dicot)
- la tomate (dicot) avec le millet (graminée)
avec une pulvérisation de 50 mM de Zn-TMPyP en deux temps espacés de 48 h une semaine après la mise en germination. Les plantules ont été suivies chaque 48 h. Le milieu témoin a été pulvérisé avec de l’eau à la même fréquence. - tomato (dicot) with millet (grass) with a spray of 50 mM of Zn-TMPyP in two stages spaced 48 hours apart one week after germination. Seedlings were monitored every 48 h. The control medium was sprayed with water at the same frequency.
[0135] Les résultats au bout d’un mois et deux mois montrent que les plantes d’intérêt poussent parfaitement que ce soit dans la condition « témoin » ou suite à leur traitement (environ 10 pulvérisations foliaires) par 50 mM de Zn-TMPyP. A l’inverse, le coquelicot et le millet sont complètement morts suite à leur traitement. Les premiers symptômes apparaissent 24 h après le premier traitement et le coquelicot est détruit au bout de 48 heures après le premier traitement (10 premières pulvérisations) [0136] Alors que la croissance de l’orge et de la tomate était drastiquement altérée in vitro par 3.5mM de Zn-TMPyP, l’application par pulvérisation foliaire de 50 mM de Zn-TMPyP n’a eu aucun effet sur la croissance des plantes d’intérêt agronomique. En revanche, la même dose de Zn-TMPyP entraîne la mort des adventices témoignant de l’effet herbicide sélectif lorsque Zn-TMPyP est appliqué par pulvérisation foliaire. Ces résultats témoignent de l’effet herbicide foliaire sélectif de Zn-TMPyP. The results after one month and two months show that the plants of interest grow perfectly whether in the "control" condition or following their treatment (approximately 10 foliar sprays) with 50 mM of Zn-TMPyP . Conversely, poppy and millet died completely following their treatment. The first symptoms appear 24 hours after the first treatment and the poppy is destroyed after 48 hours after the first treatment (first 10 sprays) Whereas the growth of barley and tomato was drastically altered in vitro by 3.5mM Zn-TMPyP, foliar spray application of 50 mM Zn-TMPyP had no effect on the growth of plants of agronomic interest. On the other hand, the same dose of Zn-TMPyP leads to the death of weeds testifying to the selective herbicidal effect when Zn-TMPyP is applied by foliar spraying. These results testify to the selective foliar herbicidal effect of Zn-TMPyP.
[0137] Ces essais confirment également que les résultats obtenus in vitro ne sont pas forcément et automatiquement transposables à l’échelle sous serre. En effet, l’orge et la tomate montrent un développement significativement inhibé in vitro. En revanche, aucun effet visible n’est remarqué sur ces cultures sous serre. D’un autre côté, le coquelicot est complètement détruit suite à la pulvérisation foliaire sous serre tandis qu’on observe des réponses différentes des plantules cultivées in vitro : des plantules présente une inhibition significative de croissance et d’autres témoignent d’un retard de croissance. These tests also confirm that the results obtained in vitro are not necessarily and automatically transposable to the greenhouse scale. Indeed, barley and tomato show significantly inhibited development in vitro. On the other hand, no visible effect is noticed on these greenhouse crops. On the other hand, the poppy is completely destroyed following foliar spraying in the greenhouse, while we observe different responses from the seedlings cultivated in vitro: some seedlings present a significant inhibition of growth and others show a delay in growth. growth.
D. Mécanisme d’action D. Mechanism of Action
[0138] Les thiols totaux, ainsi que l’activité enzymatique (activité catalase et activité guaïcol peroxydase) ont été déterminées sur des plantules cultivées in vitro sur le milieu riche en Zn-TMPyP 3.5 mM (Figure 9) et sur des plantules soumises à 50 mM de Zn-TMPyP par application foliaire (Figure 10). The total thiols, as well as the enzymatic activity (catalase activity and guaicol peroxidase activity) were determined on seedlings cultured in vitro on the medium rich in Zn-TMPyP 3.5 mM (FIG. 9) and on seedlings subjected to 50 mM Zn-TMPyP per foliar application (Figure 10).
[0139] La machinerie antioxydante est significativement inhibée dans les plantules cultivées sur le milieu riche en Zn-TMPyP 3.5 mM. Par contre, les molécules et les enzymes antioxydantes restent constantes chez les plantules traitées par 50 mM de Zn-TMPyP sous serre à part une augmentation des thiols dans les racines (Figure 11). The antioxidant machinery is significantly inhibited in the seedlings cultivated on the medium rich in Zn-TMPyP 3.5 mM. On the other hand, the molecules and the antioxidant enzymes remain constant in the seedlings treated with 50 mM of Zn-TMPyP under greenhouse except for an increase in thiols in the roots (FIG. 11).
[0140] Ces essais confirment que la capacité de Zn-TMPyP à être une herbicide foliaire sélectif était inattendue, sur la base des essais in vitro. [0140] These tests confirm that the ability of Zn-TMPyP to be a selective foliar herbicide was unexpected, based on in vitro tests.
[0141] Enfin, il est à noter que l’effet suite à la pulvérisation foliaire de Zn-TMPyP n’est pas prévisible selon la nature du groupe de la plante : le développement de l’orge (graminée) et de la tomate (dicot) n’est pas affecté suite à la pulvérisation foliaire de Zn-TMPyP. En
revanche l’effet inverse est obtenu sur les plantes du même groupe : le coquelicot (dicot) et le millet (graminée) sont complètement morts après pulvérisation foliaire de Zn-TMPyP. Finally, it should be noted that the effect following foliar spraying of Zn-TMPyP is not predictable depending on the nature of the group of the plant: the development of barley (grass) and tomato ( dicot) is not affected following foliar spraying of Zn-TMPyP. In on the other hand, the opposite effect is obtained on the plants of the same group: the poppy (dicot) and the millet (grass) are completely dead after foliar spraying of Zn-TMPyP.
[0142] Exemple 2 : Détermination de la non-toxicité de Zn-TMPyP pour des vers de pêche (asticots) [0143] Les asticots ont été placés dans des boîtes de Pétri sous photopériode (16h) ou dans des conditions d'obscurité dans un phytotron (24 °C) pendant 24h. 30 asticots par boîte de pétri ont été soumis à 10 pulvérisations de H20 ou 50 mM de Zn-TMPyP. Le pourcentage de viabilité a été déterminé après 24 h. [0142] Example 2: Determination of the non-toxicity of Zn-TMPyP for peach worms (maggots) [0143] The maggots were placed in Petri dishes under photoperiod (16 h) or under dark conditions in a phytotron (24°C) for 24 hours. 30 maggots per petri dish were subjected to 10 sprays of H 2 0 or 50 mM of Zn-TMPyP. Percent viability was determined after 24 h.
[0144] 5 à 10 % des asticots meurent dans les conditions normales (pulvérisation de H20) et après traitement avec Zn-TMPyP, établissant l’innocuité de Zn-TMPyP sur les vers de pêche (Figure 7). 5 to 10% of the maggots die under normal conditions (H 2 O spray) and after treatment with Zn-TMPyP, establishing the safety of Zn-TMPyP on peach worms (FIG. 7).
[0145] Zn-TMPyP est avantageusement plus respectueuse de l’environnement en ayant un impact réduit sur la biodiversité animale. Zn-TMPyP is advantageously more respectful of the environment by having a reduced impact on animal biodiversity.
[0146] Exemple 3 : Photostabilité / photodéqradation de Zn-TMPyP [0147] A l’obscurité, la Zn-TMPyP reste parfaitement stable que ce soit avec ou sans surfactant durant 29 jours de suivi (Figure 8). [0146] Example 3: Photostability/photodegradation of Zn-TMPyP [0147] In the dark, Zn-TMPyP remains perfectly stable whether with or without surfactant for 29 days of follow-up (FIG. 8).
[0148] Sous photopériode (16 h lumière/8 h obscurité), la stabilité de la Zn-TMPyP (avec ou sans surfactant) chute fortement à partir du 10ème jour. Celle-ci est complètement photodégradée entre le 17éme et le 19ème jour. Quant à a solution sans surfactant, environ 93 % de Zn-TMPyP sont photodégradées au bout de 19 jours sous photopériode, ensuite cette solution continue à se photodégrader lentement pour disparaître au bout de 29 jours de photopériode. Under photoperiod (16 h light/8 h dark), the stability of Zn-TMPyP (with or without surfactant) drops sharply from the 10th day. This is completely photodegraded between the 17th and 19th day. As for a solution without surfactant, about 93% of Zn-TMPyP is photodegraded after 19 days under photoperiod, then this solution continues to photodegrade slowly to disappear after 29 days of photoperiod.
[0149] Ce suivi a été réalisé en effectuant 3 expériences indépendantes. This follow-up was carried out by carrying out 3 independent experiments.
[0150] Le suivi démontre que le temps de demi-vie de la solution du désherbant dans l’eau est de deux semaines quand elle est exposée à la lumière (c’est le cas quand la solution sera pulvérisée sur les plantes dans la nature). La stabilité absolue de la solution à l’obscurité assurera le bon stockage du produit pour de longues périodes, dans son emballage opaque, jusqu’à son utilisation. [0150] Monitoring shows that the half-life of the weedkiller solution in water is two weeks when it is exposed to light (this is the case when the solution is sprayed on plants in nature ). The absolute stability of the solution in the dark will ensure the good storage of the product for long periods, in its opaque packaging, until its use.
[0151] Ainsi, la photodégradabilité de Zn-TMPyP permet de limiter ses effets à long terme et plaide en faveur de son innocuité pour l’environnement et l’homme. Thus, the photodegradability of Zn-TMPyP makes it possible to limit its long-term effects and pleads in favor of its harmlessness for the environment and for humans.
[0152] Exemple 4 Effet herbicide foliaire sélectif de Zn-TMPyP - Essai sous serreExample 4 Selective Foliar Herbicidal Effect of Zn-TMPyP - Greenhouse Trial
[0153] Matériels et Méthodes
[0154] Des essais complémentaires sous serre ont été réalisés. Toutes les plantes ont subi 5 traitements (pulvérisations foliaires) avec 3 closes différentes C1 , C2 ou C3 de Zn-TMPyP, chaque traitement étant espacé de 48 heures chacun. Les traitements ont débuté au stade cotylédons. La récolte a été réalisée 6 semaines après la mise en germination (et 10 semaines pour l’orge). [0153] Materials and Methods [0154] Additional greenhouse tests were carried out. All the plants underwent 5 treatments (foliar sprays) with 3 different C1, C2 or C3 doses of Zn-TMPyP, each treatment being spaced 48 hours apart. Treatments started at the cotyledon stage. Harvesting was carried out 6 weeks after germination (and 10 weeks for barley).
[0155] Les doses de Zn-TMPyP sont les suivantes : The doses of Zn-TMPyP are as follows:
C1=50 mM ; C2=75 mM ; 03=100 mM C1=50mM; C2=75mM; 03=100mM
Zn-TMPyP a été formulée avec 0,1% v/v de Polyoxyethylène nonylphenylether. Zn-TMPyP was formulated with 0.1% v/v Polyoxyethylene nonylphenylether.
Les espèces des plantes utilisées figurent dans le tableau ci-dessous : [0156] [Tableau 2]
The species of plants used are shown in the table below: [0156] [Table 2]
[0157] Résultats [0157] Results
[0158] Les résultats au bout de 6 semaines (10 pour l’orge) démontrent que le traitement par Zn-TMPyP altère drastiquement la croissance des adventices, soit de manière dose- dépendante, soit à une dose spécifique. Certaines concentrations de Zn-TMPyP détruisent totalement les adventices. (Figure 12). The results after 6 weeks (10 for barley) demonstrate that treatment with Zn-TMPyP drastically alters the growth of weeds, either in a dose-dependent manner or at a specific dose. Certain concentrations of Zn-TMPyP completely destroy weeds. (Figure 12).
[0159] Au contraire, et peu importe les concentrations appliquées, les plantes d’intérêt poussent parfaitement après application de Zn-TMPyP par pulvérisation foliaire. La croissance des plantes d’intérêt n’est en effet pas altérée. Seule la croissance de l’épinard est légèrement affectée. (Figure 13). [0160] Ces résultats confirment l’effet herbicide foliaire sélectif de Zn-TMPyP.
On the contrary, and regardless of the concentrations applied, the plants of interest grow perfectly after application of Zn-TMPyP by foliar spraying. The growth of the plants of interest is in fact not altered. Only spinach growth is slightly affected. (Figure 13). These results confirm the selective foliar herbicidal effect of Zn-TMPyP.
Claims
[Revendication 1] Utilisation de porphyrines cationiques choisies parmi la zinc-tetra (N- methylpyridyl) porphyrine tetrachloride et la tetra (N-methylpyridyl) porphyrine tetrachloride ou leur mélange en tant qu’herbicide foliaire sélectif. [Claim 1] Use of cationic porphyrins selected from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride and tetra (N-methylpyridyl) porphyrin tetrachloride or mixtures thereof as a selective foliar herbicide.
[Revendication 2] Utilisation selon la revendication 1 , caractérisée en ce que les porphyrines sont des zinc-tetra (N-methylpyridyl) porphyrines tetrachloride. [Claim 2] Use according to claim 1, characterized in that the porphyrins are zinc-tetra (N-methylpyridyl) porphyrin tetrachloride.
[Revendication 3] Utilisation selon la revendication 1 ou 2, caractérisée en ce que lesdites porphyrines sont pulvérisées sur un espace de culture choisi parmi champ, une serre, une prairie, une cour, une allée, un jardin, un potager. [Claim 3] Use according to claim 1 or 2, characterized in that said porphyrins are sprayed on a culture space chosen from a field, a greenhouse, a meadow, a courtyard, an alley, a garden, a vegetable patch.
[Revendication 4] Utilisation selon l’une quelconque des revendications 1 à 3 pour le traitement de cultures choisies parmi les cultures du genre Nicotiana, du genre Solanum, du genre Vitis, du genre Hordeaum, du genre Triticum , du genre Zeya, du genre Helianthus, du genre Allium, du genre Spinacia, du genre Frugaria et du genre (Brassica). [Claim 4] Use according to any one of Claims 1 to 3 for the treatment of cultures chosen from cultures of the genus Nicotiana, of the genus Solanum, of the genus Vitis, of the genus Hordeaum, of the genus Triticum, of the genus Zeya, of the genus Helianthus, genus Allium, genus Spinacia, genus Frugaria and genus (Brassica).
[Revendication 5] Utilisation selon l’une quelconque des revendications 1 à 4 pour le traitement des cultures choisies parmi les cultures de blé ( Triticum sativum), d’orge ( Hordeum vulgare), de maïs ( Zeya mays), de tournesol ( Helianthus annuus), de navet ( Brassica rapa), de tomate ( Solanum lycopersicum), d’oignon ( Allium cepa), d’épinard ( Spinacia oleracea). [Claim 5] Use according to any one of claims 1 to 4 for the treatment of crops chosen from wheat (Triticum sativum), barley (Hordeum vulgare), corn (Zeya mays), sunflower (Helianthus annuus), turnip (Brassica rapa), tomato (Solanum lycopersicum), onion (Allium cepa), spinach (Spinacia oleracea).
[Revendication 6] Utilisation selon l’une quelconque des revendications 1 à 5, caractérisée en ce que lesdites porphyrines cationiques ont un effet herbicide sur des adventices du genre Urtica, du genre Echinochloa, du genre Papaver, du genre Lolium, du genre Datura, du genre Stellaria, du genre Chenopodium, du genre Panicum, du genre Taraxacum, du genre Rumex, du genre Solanum. [Claim 6] Use according to any one of Claims 1 to 5, characterized in that the said cationic porphyrins have a herbicidal effect on weeds of the genus Urtica, of the genus Echinochloa, of the genus Papaver, of the genus Lolium, of the genus Datura, of the genus Stellaria, of the genus Chenopodium, of the genus Panicum, of the genus Taraxacum, of the genus Rumex, of the genus Solanum.
[Revendication 7] Utilisation selon l’une quelconque des revendications 1 à 6, caractérisée en ce que lesdites porphyrines cationiques ont un effet herbicide sur des adventices choisies parmi la morelle noire (Solanum nigrum), le pissenlit (Taraxacum officinale), le chenopode blanc (Chenopodium album), le rumex (Rumex crispus), le ray gras d’italie (Lolium multiforum), le faux millet (Panicum miliaceum), le mouron blanc (Stellaria media), le millet (Echinochloa frumentacea),le coquelicot (Papaver rhoeas). [Revendication 8] Procédé sélectif de désherbage consistant en l’application de porphyrines cationiques choisies parmi la zinc-tetra (N-methylpyridyl) porphyrine tetrachloride, la tetra (N-methylpyridyl) porphyrine tetrachloride ou leur mélange, lesdites porphyrines étant appliquées par pulvérisation foliaire sur un espace de culture tel qu’un champ, une serre, une prairie, une cour, une allée, un jardin, un potager.
[Revendication 9] Procédé sélectif de désherbage selon la revendication 8 ou 9, caractérisé en ce que lesdites porphyrines sont appliqués au stade cotylédon et/ou au stade premières feuilles tel que le stade 2 feuilles et/ou 4 feuilles.
[Claim 7] Use according to any one of Claims 1 to 6, characterized in that the said cationic porphyrins have a herbicidal effect on weeds chosen from black nightshade (Solanum nigrum), dandelion (Taraxacum officinale), lamb's-quarters (Chenopodium album), dock (Rumex crispus), Italian rye (Lolium multiforum), false millet (Panicum miliaceum), white pimpernel (Stellaria media), millet (Echinochloa frumentacea), poppy (Papaver rhoeas). [Claim 8] Selective weed control process consisting of the application of cationic porphyrins chosen from zinc-tetra (N-methylpyridyl) porphyrin tetrachloride, tetra (N-methylpyridyl) porphyrin tetrachloride or their mixture, said porphyrins being applied by foliar spraying on a growing space such as a field, a greenhouse, a meadow, a courtyard, an alley, a garden, a vegetable patch. [Claim 9] Selective weed control method according to Claim 8 or 9, characterized in that the said porphyrins are applied at the cotyledon stage and/or at the first leaf stage such as the 2-leaf and/or 4-leaf stage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2101599A FR3119732B1 (en) | 2021-02-18 | 2021-02-18 | Use of cationic porphyrins as a selective weedkiller |
PCT/FR2022/050290 WO2022175633A1 (en) | 2021-02-18 | 2022-02-17 | Use of cationic porphyrins as selective herbicide |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4294188A1 true EP4294188A1 (en) | 2023-12-27 |
Family
ID=75746832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22710652.3A Pending EP4294188A1 (en) | 2021-02-18 | 2022-02-17 | Use of cationic porphyrins as selective herbicide |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240156098A1 (en) |
EP (1) | EP4294188A1 (en) |
FR (1) | FR3119732B1 (en) |
WO (1) | WO2022175633A1 (en) |
-
2021
- 2021-02-18 FR FR2101599A patent/FR3119732B1/en active Active
-
2022
- 2022-02-17 EP EP22710652.3A patent/EP4294188A1/en active Pending
- 2022-02-17 US US18/546,845 patent/US20240156098A1/en active Pending
- 2022-02-17 WO PCT/FR2022/050290 patent/WO2022175633A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20240156098A1 (en) | 2024-05-16 |
WO2022175633A1 (en) | 2022-08-25 |
FR3119732B1 (en) | 2023-10-13 |
FR3119732A1 (en) | 2022-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh | Alleviation of allelopathic stress of benzoic acid by indole acetic acid in Solanum lycopersicum | |
EP4138562A1 (en) | Method for preventive treatment of a crop plant to limit the loss of dry matter due to abiotic and/or biotic stress | |
Guillaumot et al. | Synergistic enhancement of tolerance mechanisms in response to photoactivation of cationic tetra (N-methylpyridyl) porphyrins in tomato plantlets | |
WO2019030443A1 (en) | Composition made from polyol(s) and sterol(s) for use in the agricultural field | |
EP3541182A1 (en) | Stable solid composition based on an aromatic compound and uses thereof | |
Bafort et al. | The Lactoperoxidase System: a Natural Biochemical Biocontrol Agent for Pre‐and Postharvest Applications | |
EP4294188A1 (en) | Use of cationic porphyrins as selective herbicide | |
Horotan et al. | Effects of fungicide and acetylsalicylic acid treatments on the physiological and enzymatic activity in tomato (Lycopersicon esculentum Mill.) | |
CA2890289C (en) | Bacterial composition for improving plant growth | |
FR2914822A1 (en) | USE OF A PLANT PROTECTION COMPOUND AGAINST LIVING PATHOGENIC ORGANISMS. | |
Singh et al. | Autotoxicity of maize and its mitigation by plant growth promoting rhizobacterium Paenibacillus polymyxa | |
FR2575902A1 (en) | PROCESS FOR TREATING VIRAL DISEASES IN PLANTS BY 1-B-D-RIBOFURANNOSYL-1,2,4-TRIAZOLE-3-CARBOXAMIDE AND ITS 2,3,5-TRIACETYL OR 5'-BUTYRYLIC DERIVATIVES | |
BE1029718B1 (en) | BIOLOGICAL HERBICIDE ENHANCING AGENT AND METHOD FOR USING THE SAME | |
DK2493317T3 (en) | Treatment of plants and såmateriale against a / by an attack of bacterial pathogens | |
KR100384694B1 (en) | Process for Cultivationg Bean-vegetables | |
EP3621440B1 (en) | Use of an extract of part of a rocket plant for stimulating the defenses of plants and trees and associated composition and method | |
Alkolaly et al. | Impact of powdery mildew and sooty mold diseases on mango by natural fungicide | |
Ambrosini | Antimicrobial Photodynamic treatment as pest management. A study of the effects of photoactivated TPPS and Chlorophyllin on the fungus pathogen Botrytis cinerea, and on two plant models: Grapevine (Vitis vinifera) and Potato (Solanum tuberosum) | |
Pant et al. | Variations in biochemical attributes of Cassia tora L. and C. auriculata L. under temperature stress | |
Ambrosini et al. | Photodynamic inactivation of Botrytis cinerea for a safe pest management of grapevine | |
Smitha | Endosulfan induced stress responses in Cowpea (Vigna sinensis L.) var. kanjikuzhy | |
FR3131180A1 (en) | Use of phenylphenalenones as a selective herbicide | |
Sau | MASTER OF SCIENCE (Agriculture) IN PLANT PATHOLOGY | |
Karabulut et al. | Effects of Glyphosate Herbicide on Photosynthetic Pigments and Antioxidant Enzyme Activities in Corn (Zea mays L.) and Wheat (Triticum aestivum L.) Varieties | |
Shrivastva et al. | MINIMIZATION OF PHYSIOLOGICAL LOSSES AND ENHANCEMENT OF SHELF LIFE OF BER (ZIZIPHUS MAURTIANA LAMK) FRUITS CV BANARASI KARAKA THROUGH SALICYLIC ACID AND PROPYL GALLATE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230816 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |