EP4284620A1 - Copolymer comprising polyamide blocks and polyether blocks for producing a foamed article - Google Patents

Copolymer comprising polyamide blocks and polyether blocks for producing a foamed article

Info

Publication number
EP4284620A1
EP4284620A1 EP22708581.8A EP22708581A EP4284620A1 EP 4284620 A1 EP4284620 A1 EP 4284620A1 EP 22708581 A EP22708581 A EP 22708581A EP 4284620 A1 EP4284620 A1 EP 4284620A1
Authority
EP
European Patent Office
Prior art keywords
copolymer
blocks
mol
expanded particles
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22708581.8A
Other languages
German (de)
French (fr)
Inventor
Blandine Testud
Quentin Pineau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4284620A1 publication Critical patent/EP4284620A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • B29C44/3453Feeding the blowing agent to solid plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • B29C44/3465Making or treating expandable particles by compressing particles in vacuum, followed by expansion in normal pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/205Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising surface fusion, and bonding of particles to form voids, e.g. sintering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/005Methods for mixing in batches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/081Specified dimensions, e.g. values or ranges
    • B29C2949/082Diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • B29C44/3426Heating by introducing steam in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/048Expandable particles, beads or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/007Hardness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof

Definitions

  • the present invention relates to a copolymer with polyamide blocks and with polyether blocks (PEBA) which can be used for the manufacture of an article, preferably a foamed article.
  • PEBA polyether blocks
  • the invention also relates to expanded particles prepared from said copolymer and the manufacture of a foamed article from said expanded particles.
  • copolymers with polyamide blocks and polyether blocks and more advantageously articles foamed from this type of copolymers in the field of sports equipment, such as soles or sole components, gloves, rackets or balls.
  • golf individual protection elements in particular for the practice of sport (vests, interior parts of helmets, hulls, etc.), thanks to their mechanical properties and their lightness.
  • Foamed articles can be prepared by different foaming technologies including injection processes, extrusion, the so-called “autoclave” method or even techniques from expanded particles ("foam beads” in English ).
  • document US 2016/0121524 describes a method for manufacturing expanded particles called "foaming-extrusion" of a thermoplastic elastomer, comprising an extrusion step molten thermoplastic elastomer comprising a physical blowing agent such as CO2, N2;
  • document US 2016/0297943 describes a process for manufacturing expanded particles by the so-called “autoclave” method, comprising a step of impregnating the thermoplastic elastomer granules in a gaseous medium at a temperature and a particular pressure, and an expansion step at a reduced pressure compared to the pressure applied during the impregnation step.
  • foamed articles often molded, from expanded particles generally involves the assembly of these expanded particles by fusion, as described in WO 16030333 where the expanded particles have been welded in a mold by thermal energy input to obtain a foamed and molded article (e.g. shoe soles).
  • This thermal input of energy can be provided by a flow of pressurized steam, electromagnetic radiation or microwaves.
  • the expanded particles are partially melted on the surface allowing the inter-diffusion of polymer chains between neighboring expanded particles, thus ensuring their adhesion.
  • Good cohesion of the expanded particles as well as a low macro-void content are necessary to ensure good mechanical properties of foamed and molded articles.
  • Document EP 3053732 describes a process for manufacturing foamed articles by assembling expanded particles under electromagnetic radiation.
  • Document JP 2016188342 describes an article foamed by molding. It describes that it is possible to improve the melting property between the expanded particles by decreasing the crystallinity of the surface layer of the particles. For this, he proposes impregnating a crystallinity inhibitor of the phenolic compound type on the surface of the particles.
  • the object of the present invention is therefore to provide copolymers with polyamide blocks and with polyether blocks, making it possible to prepare foamed articles, preferably from the expanded particles produced from said copolymers, of low densities, improved homogeneities and good properties.
  • mechanical such as the ability to rebound, low compression set, the ability to withstand repeated impacts without deforming and the ability to return to the initial shape.
  • the present invention relates to a copolymer with polyamide blocks and with polyether blocks (PEBA), suitable for the preparation of expanded particles, having:
  • VST Vicat softening temperature
  • the present invention provides a particular copolymer allowing the formation of a foamed article of said regular copolymer, homogeneous, having a low density and having one or more advantageous properties among: a high capacity to restore elastic energy during stresses under low stress , low compression set (and therefore improved durability), high resistance to compression fatigue, excellent resilience properties, and in particular resistance to abrasion.
  • the enthalpy of fusion is preferably equal to or greater than 18 J/g, even more preferably equal to or greater than 20 J/g.
  • the Vicat softening temperature is preferably greater than or equal to 80°C, even more preferably equal to or greater than 90°C, and preferably less than or equal to 115°C, even more preferably less than or equal to 110°C.
  • the polyamide blocks of the PEBA copolymer are copolyamide blocks.
  • the polyamide blocks of the PEBA copolymer are chosen from the polyamide blocks resulting from the condensation of an ⁇ ,co-aminocarboxylic acid or of a lactam, preferably chosen from the blocks PA 11 , PA 12, said copolymer having a number-average molar mass (Mn) of the polyamide blocks of 400 to 1500 g/mol, more preferentially from 500 to 1200 g/mol, and even more preferentially from 500 to 1000 g/mol and/or the average molar mass in number (Mn) of the polyether blocks from 400 to 2000 g/mol, more preferentially from 500 to 1500 g/mol, and even more preferentially from 500 to 1000 g/mol.
  • Mn number-average molar mass of the polyamide blocks of 400 to 1500 g/mol, more preferentially from 500 to 1200 g/mol, and even more preferentially from 500 to 1000 g/mol and/or the average molar mass in number (Mn) of the polyether blocks from 400 to 2000
  • the copolymer can have an instantaneous hardness less than or equal to 72 Shore D, more preferably less than or equal to 55 Shore D, more preferably less than 45 Shore D.
  • the invention relates to expanded particles of the copolymer as described below.
  • the present invention provides expanded particles made from specific PEBA copolymers, having improved moldability for the manufacture of a foamed article by molding, while retaining the good mechanical properties required as mentioned above and improved lightness.
  • the present invention relates to an article, preferably a foamed article, comprising at least one element consisting of a PEBA copolymer as defined above or expanded particles described above.
  • the article may be selected from shoe soles, including sports shoe soles, footballs or balls, gloves, personal protective equipment, rail soles, automotive parts, construction parts and electrical and electronic equipment.
  • the present invention also relates to a process for the preparation of foamed articles by molding comprising a step of assembling the expanded particles in a mould.
  • VST Vicat softening temperatures
  • the resistance to compression deformation of foamed articles is measured according to the ISO 7214: 2012 standard, with a deformation of 50%, a holding time of 6 hours at a temperature of 50°C, and by carrying out a first measurement after 30 minutes and a second measurement after 24 hours of recovery.
  • PA Z Z represents the number of carbon atoms of the polyamide units resulting from the condensation of an amino acid or lactam.
  • PA notation "XY” designating a polyamide resulting from the condensation of a diamine with a dicarboxylic acid
  • X represents the number of carbon atoms of the diamine
  • Y represents the number of carbon atoms of the dicarboxylic acid .
  • XY, Z, X'Y', Z' etc. represent homopolyamide units XY, Z as described above, X'Y' being identical to or different from XY, Z' being identical to or different from Z;
  • volume median diameter are measured according to the ISO 9276-2:2014 standard.
  • the copolymer with polyamide blocks and with polyether blocks of the present invention may preferably be a linear (non-crosslinked) copolymer.
  • PEBA copolymers can result from the polycondensation of polyamide (PA) blocks with reactive ends with polyether (PE) blocks with reactive ends, such as:
  • Polyamide blocks with dicarboxylic chain ends come, for example, from the condensation of polyamide precursors in the presence of a chain-limiting dicarboxylic acid.
  • Polyamide blocks with diamine chain ends come, for example, from the condensation of polyamide precursors in the presence of a diamine chain limiter.
  • Two types of polyamide blocks can advantageously be used.
  • the Polyamide blocks are copolyamide blocks. These blocks can be obtained for example by condensation of one or more a, co-aminocarboxylic acids or lactams, and at least one diamine and at least one dicarboxylic acid.
  • the polyamide blocks result from the condensation of at least two a,co-aminocarboxylic acids or of at least two lactams having from 6 to 12 carbon atoms or of a lactam and an a,co -aminocarboxylic of different number of carbon atoms.
  • Examples of a,co-amino carboxylic acid mention may be made of a,co-amino carboxylic acids having 4 to 12 carbon atoms, and in particular aminocaproic, amino-7-heptanoic, amino-11 -undecanoic acid and 12-amino-dodecanoic acid.
  • lactams As examples of lactams, mention may be made of lactams having 6 to 12 carbon atoms, and in particular caprolactam, oenantholactam and lauryllactam. Particularly preferred are the blocks PA 6, PA 11 and PA 12, as well as their mixtures.
  • the dicarboxylic acid can contain 4 to 36, preferably 6 to 18 carbon atoms. It is preferably an aliphatic, in particular linear, cycloaliphatic or aromatic dicarboxylic acid.
  • it is an aliphatic, in particular linear, dicarboxylic acid.
  • dimerized fatty acids preferably have a dimer content of at least 98%; preferably they are hydrogenated; these are, for example, products marketed under the brand PRIPOL® by the company CRODA, or under the brand EMPOL® by the company BASF, or under the brand RADIACID® by the company OLEON and polyoxyalkylene a, co-diacids.
  • the diamine may in particular contain 2 to 20, preferably 6 to 14 carbon atoms.
  • BAMN 2,6-bis-
  • the homopolyamide units come from the condensation of a dicarboxylic acid with an aliphatic, cycloaliphatic or aromatic diamine, preferably an aliphatic diamine.
  • PA 66 PA 610, PA 612, PA 1010, PA 1012, PA 1014, as well as mixtures thereof.
  • the polyamide blocks result from the condensation of an a,co-aminocarboxylic acid or a lactam.
  • ⁇ , ⁇ -aminocarboxylic acids and lactams can be chosen in particular from those listed above for the polyamide blocks of the first type. Particularly preferred are the blocks PA 11 , PA 12.
  • These polyamide blocks can be prepared by polycondensation of the monomers in the presence of a suitable chain limiter.
  • chain limiters are, for example, dicarboxylic acids and diamines, as mentioned above. Also, it is possible to use as a chain limiter the dicarboxylic acid or the diamine used as monomer, which is introduced in excess.
  • a chain limiter can be added to the monomers. Mention may also be made of dimerized fatty acids.
  • dimerized fatty acids preferably have a dimer content of at least 98%; preferably they are hydrogenated; these are, for example, products marketed under the brand PRIPOL® by the company CRODA, or under the brand EMPOL® by the company BASF, or under the brand RADIACID® by the company OLEON and polyoxyalkylene a, codiacids.
  • the polyether blocks of PEBA essentially comprise or consist of alkylene oxide units.
  • the polyether blocks can be derived from alkylene glycols such as PEG (polyethylene glycol), PPG (propylene glycol), PO3G (polytrimethylene glycol) or PTMG (polytetramethylene glycol), preferably PTMG. They can also be derived from copolyethers comprising different alkylene oxides distributed in the chain in a regular manner, in particular in blocks, or in a random manner.
  • the polyether blocks can also be obtained by oxyethylation of bisphenols, such as bisphenol A. These products are described in particular in document EP 613919 A1.
  • the polyether blocks can also be ethoxylated primary amines, such as the products of formula:
  • polyether blocks can comprise or consist of polyoxyalkylene blocks with ends of NH 2 chains. Such blocks can be obtained by cyanoacetylation of polyetherdiols.
  • polyethers are sold by the company Huntsman under the name Jeffamine® or Elastamine® (for example Jeffamine® D400, D2000, ED 2003, XTJ 542).
  • a two-step method for the preparation of PEBA having ester bonds between the PA blocks and the PE blocks is described in document FR 2846332 A1.
  • a method for preparing PEBA having amide bonds between the PA blocks and the PE blocks is described in document EP 1482011 A1.
  • the polyether blocks can also be mixed with polyamide precursors and a diacid chain limiter to prepare PEBAs by a one-step process.
  • the PEBAs generally comprise a polyamide block and a polyether block, they can also comprise two, three, four or even more different blocks chosen from those described.
  • the preferred PEBA copolymers are copolymers comprising blocks of copolyamides and blocks derived from PTMG, for example: PA 6/11 and derived from PTMG, PA 6/12 and derived from PTMG, PA 11/12 and derived from PTMG, PA 6/11/12 and derived from PTMG, PA 6/66/12 and derived from PTMG, PA 6/1010 and derived from PTMG, PA 6/1012 and derived from PTMG, PA 6/1010/ 1012 and derived from PTMG, PA 6/1012/12 and derived from PTMG.
  • the number-average molar mass (Mn) of the polyamide blocks in the PEBA copolymer is from 400 to 20,000 g/mol, more preferably from 500 to 10,000 g / mol, preferably from 500 to 4000 g/mol, and even more preferably from 600 to 2000 g/mol.
  • the number-average molar mass of the polyamide blocks in the PEBA copolymer can be from 400 to 1000 g/mol, or from 1000 to 1500 g/mol, or from 1500 to 2000 g/mol, or from 2000 to 2500 g /mol, or from 2500 to 3000 g/mol, or from 3000 to 3500 g/mol, or from 3500 to 4000 g/mol, or from 4000 to 5000 g/mol, or from 5000 to 6000 g/mol, or from 6000 to 7000 g/mol, or 7000 to 8000 g/mol, or 8000 to 9000 g/mol, or 9000 to 10000 g/mol, or 10000 to 11000 g/mol, or 11000 to 12000 g/ mol, or from 12000 to 13000 g/mol, or from 13000 to 14000 g/mol, or from 14000 to 15000 g/mol, or from 15000 to 16000 g/mol, or from 16000 to 17000 g/mol,
  • the number-average molar mass (Mn) of the polyether blocks is from 100 to 6000 g/mol, more preferentially from 200 to 3000 g/mol, and even more preferentially from 200 to 2000 g/mol.
  • the number average molar mass of the polyether blocks can be from 100 to 200 g/mol, or from 200 to 500 g/mol, or from 500 to 800 g/mol, or from 800 to 1000 g/mol, or from 1000 to 1500 g/mol, or 1500 to 2000 g/mol, or 2000 to 2500 g/mol, or 2500 to 3000 g/mol, or 3000 to 3500 g/mol, or 3500 to 4000 g/mol, or from 4000 to 4500 g/mol, or from 4500 to 5000 g/mol, or from 5000 to 5500 g/mol, or from 5500 to 6000 g/mol.
  • the number-average molar mass (Mn ) of the polyamide blocks in the PEBA copolymer is preferably from 400 to 1500 g/mol, more preferably from 500 to 1200 g/mol, preferably from 500 to 1000 g/mol.
  • the number average molar mass (Mn) of the blocks polyamides in the PEBA copolymer can be 400 to 600 g/mol, or 600 to 900 g/mol, or 900 to 1000 g/mol, or 1000 to 1200 g/mol, or 1200 to 1300 g/mol , or from 1300 to 1400 g/mol, or from 1400 to 1500 g/mol.
  • the number-average molar mass (Mn) of the polyether blocks is preferably from 400 to 1500 g/mol, more preferably from 500 to 1200 g/mol, and even more preferably from 500 to 1000 g/mol .
  • the number average molar mass of the polyether blocks can be from 400 to 600 g/mol, or from 600 to 900 g/mol, or from 900 to 1000 g/mol, or from 1000 to 1200 g/mol, or from 1200 to 1300 g/mol, or from 1300 to 1400 g/mol, or from 1400 to 1500 g/mol.
  • the preferred PEBA copolymers are copolymers comprising blocks of polyamides resulting from the condensation of an ⁇ ,co-aminocarboxylic acid or of a lactam and blocks derived from PTMG, for example: PA 11 and derived of PTMG, PA 12 and derived from PTMG, and mixtures thereof.
  • the number-average molar mass (Mn) is fixed by the content of chain limiter. It can be calculated according to the relationship:
  • M n n monomer X Mw repeat unit / n chain limiter + Mw chain limiter
  • n monomer represents the number of moles of monomer
  • n chain limiter represents the number of excess moles of limiter (e.g. diacid)
  • M w repeating unit represents the molar mass of the repeating unit
  • Mw chain limiter represents the molar mass of excess limiter (e.g. diacid).
  • the mass proportion of polyether blocks in the copolymer is at least 50% relative to the total weight of the copolymer.
  • the mass proportion of polyether blocks is from 55 to 85% relative to the total weight of the copolymer, and more preferably from 60 to 80% relative to the total weight of the copolymer.
  • the mass proportions of blocks in the copolymer can be determined from the number-average molar masses of the blocks.
  • the PEBA copolymer of the present invention may contain at least one usual additive such as thermal stabilizers (eg antioxidant, anti-UV), glass fibers, carbon fibers, a flame retardant, talc, a nucleating agent, a plasticizer , a dye, a fluorinated agent, a lubricant, a stearate such as zinc stearate or calcium stearate or magnesium stearate.
  • the PEBA copolymer can be obtained at least partially from bio-resourced raw materials.
  • raw materials of renewable origin or bio-resourced raw materials we mean materials which comprise bio-resourced carbon or carbon of renewable origin.
  • materials composed of renewable raw materials contain 14 C.
  • the "carbon content of renewable origin” or “bio-resourced carbon content” is determined in application of the standards ASTM D 6866 (ASTM D 6866-06) and ASTM D 7026 (ASTM D 7026-04).
  • PEBAs comprising PA 11 blocks come at least in part from bio-resourced raw materials and have a bio-resourced carbon content of at least 1%, which corresponds to an isotopic ratio of 12 C / 14 C of at least 1.2 x 10' 14 .
  • the PEBAs comprise at least 50% by mass of bio-resourced carbon over the total mass of carbon, which corresponds to a 12 C/ 14 C isotopic ratio of at least 0.6 ⁇ 10 ⁇ 12 .
  • This content is advantageously higher, in particular up to 100%, which corresponds to a 12 C/ 14 C isotopic ratio of 1.2 x 10' 12 , in the case for example of PEBA with PA 11 blocks and PE blocks comprising PTMG from raw materials of renewable origin.
  • Polyamide block and polyether block copolymers as defined above can be used to prepare expanded particles.
  • the expanded particles according to the present invention preferably have a density less than or equal to 200 kg/m 3 , or better still less than or equal to 150 kg/m 3 , more preferably less than or equal to 100 kg/m 3 Density control can be achieved by adapting the parameters of its manufacturing process by those skilled in the art.
  • the expanded particles can comprise one or more polymers other than the PEBA copolymer as described above, for example, polyamides, functional polyolefins, copolyetheresters, thermoplastic polyurethanes (TPU), copolymers of ethylene and vinyl acetate (for example the products marketed under the Evatane® brand by SK functional polymer), or copolymers of ethylene and acrylate, or copolymers of ethylene and alkyl(meth)acrylate (for example the products marketed under the Lotryl® brand by SK functional polymer).
  • TPU thermoplastic polyurethanes
  • copolymers of ethylene and vinyl acetate for example the products marketed under the Evatane® brand by SK functional polymer
  • copolymers of ethylene and acrylate for example the products marketed under the Lotryl® brand by SK functional polymer
  • These additives can make it possible to adjust the hardness of the particles, their appearance and their comfort.
  • the additives can be added in a content of
  • the expanded particles can also include one or more additives, such as pigments (Ti®2 and other compatible colored pigments), adhesion promoters (to improve the adhesion of the expanded foam to other materials), fillers ( e.g., calcium carbonate, barium sulfate and/or silicon oxide), nucleating agents (in pure form or in concentrated form, e.g., CaCOs, ZnO, SiO2, or combinations of two or more of these ci), rubbers (to improve rubbery elasticity, such as natural rubber, SBR, polybutadiene and/or ethylene propylene terpolymer), stabilizers e.g.
  • additives such as pigments (Ti®2 and other compatible colored pigments), adhesion promoters (to improve the adhesion of the expanded foam to other materials), fillers (e.g., calcium carbonate, barium sulfate and/or silicon oxide), nucleating agents (in pure form or in concentrated form, e.g., CaCOs, ZnO
  • antioxidants for example, stearic acid.
  • additives can preferably be added in a content of 0 to 10% by weight relative to the total weight of the PEBA copolymer.
  • the expanded particles according to the invention can be used to manufacture sports equipment, such as soles of sports shoes, ski boots, intermediate soles, insoles, or even functional components of soles, in the form of inserts in different parts of the sole (heel or arch for example), or even components of shoe uppers in the form of reinforcements or inserts in the structure of the shoe upper, in the form of protections.
  • sports equipment such as soles of sports shoes, ski boots, intermediate soles, insoles, or even functional components of soles, in the form of inserts in different parts of the sole (heel or arch for example), or even components of shoe uppers in the form of reinforcements or inserts in the structure of the shoe upper, in the form of protections.
  • balls can also be used to manufacture balls, sports gloves (for example football gloves), golf ball components, rackets, protective elements (vests, interior elements of helmets, hulls, etc.). ).
  • the expanded particles can be prepared according to methods known to those skilled in the art.
  • the expanded particles can be prepared by a manufacturing process comprising an impregnation step and an expansion step.
  • the impregnation step can be carried out in water (known as "wet impregnation") in which the PEBA copolymer as defined above is mixed, in the form of granules, with a dispersant, optionally one or more polymers other than the PEBA copolymer and/or one or more additives as described above, in an autoclave. Then, stirring is typically applied at temperature and under pressure to obtain a dispersion and the blowing agent is introduced under pressure into the dispersion, the blowing agent thus impregnated in the granules of the copolymers.
  • wet impregnation water
  • stirring is typically applied at temperature and under pressure to obtain a dispersion and the blowing agent is introduced under pressure into the dispersion, the blowing agent thus impregnated in the granules of the copolymers.
  • the dispersant can be calcium phosphate, magnesium pyrophosphate, sodium pyrophosphate and magnesium oxide; or a surfactant such as sodium dodecylbenzenesulfonate.
  • the impregnation step can be carried out by introducing the blowing agent under pressure into the copolymer granules in an autoclave to obtain the granules impregnated with the blowing agent (so-called “dry impregnation”). ").
  • the expansion step generally includes a pressure reduction step allowing the gas generated by the blowing agent to dissipate to produce the expanded particles of the copolymer.
  • the expanded particles can also be prepared by an extrusion process, comprising a step of extrusion in the molten state of a mixture of the PEBA copolymer as defined above, in the form of granules, with optionally one or more polymers other than the PEBA copolymer and/or one or more additives as described above, and an expansion agent, for example, in an extruder, inducing the foaming of the said mixture directly at the outlet of the extrusion die, the expanded particles that can be recovered from the cooling water during granulation.
  • an extrusion process comprising a step of extrusion in the molten state of a mixture of the PEBA copolymer as defined above, in the form of granules, with optionally one or more polymers other than the PEBA copolymer and/or one or more additives as described above, and an expansion agent, for example, in an extruder, inducing the foaming of the said mixture directly at the outlet of the extrusion die, the expanded particles that can be recovered
  • the blowing agent can be a chemical or physical agent, or even a mixture of these.
  • it is a physical agent, for example aliphatic hydrocarbons such as butane, alicyclic hydrocarbons such as cyclobutane, and inorganic gases such as carbon dioxide, nitrogen and air.
  • the physical blowing agent can be mixed with the copolymer in liquid or supercritical form, then converted into the gas phase during the foaming step.
  • the physical blowing agent can remain present in the pores of the foam, especially if it is a closed-pore foam, and/or dissipate.
  • Chemical blowing agent is an agent that generates gas by chemical reaction or pyrolysis.
  • examples include azodicarbonamide or mixtures of citric acid and sodium hydrogencarbonate (NaHCCh) (such as products marketed under the Hydrocerol® brand by Clariant).
  • the expanded particles thus formed essentially consist, or even consist, of the copolymer described above (or the mixture, if a mixture of polymers is used) and optionally one or more additives being dispersed in the matrix.
  • the foamed article may comprise in addition to the copolymer described above (or the mixture, if a mixture of polymers is used), the decomposition products of the blowing agent. chemical expansion, these being dispersed in the matrix.
  • the expanded particles can typically have a spherical, ellipsoid or triangular shape.
  • the expanded particles have a spherical shape, which can have an average size D50 comprised between 2 to 20 mm, preferably from 2 to 10 mm.
  • the expanded particles of the present invention can be recycled, for example by melting them in an extruder equipped with a degassing outlet (optionally after having cut them into pieces).
  • the article preferably the foamed article, comprises at least one element consisting of a PEBA copolymer as defined above or of the expanded particles described above.
  • the article, preferably the foamed article can be chosen from sports equipment, such as soles of sports shoes, ski boots, intermediate soles, insoles, or even functional components of soles, in the form of inserts in different parts of the sole (heel or arch for example), or even components of shoe uppers in the form of reinforcements or inserts in the structure of the shoe upper, in the form of protections.
  • It can also be chosen from balls, sports gloves (for example football gloves), golf ball components, rackets, protective elements (vests, interior elements of helmets, hulls, etc.) . It can also be chosen from the soles of railway rails, or various parts in the automotive industry, in transport, in electrical and electronic equipment, in construction or in the manufacturing industry.
  • the article preferably the foamed article, is chosen from shoe soles, in particular sports shoe soles, footballs or balls, gloves, personal protective equipment, soles for rails, automotive parts, construction parts and electrical and electronic equipment parts.
  • the article preferably the foamed article, may comprise one or more polymers other than the PEBA copolymer and/or one or more additives, chosen in particular from those listed above for the expanded particles.
  • the foamed article according to the present invention preferably has a density less than or equal to 200 kg/m 3 , or better still less than or equal to 180 kg/m 3 , more preferably less than or equal to 150 kg/m 3 .
  • the foamed article has a rebound resilience greater than or equal to 50%, preferably greater than or equal to 60%.
  • the foamed article has a compression set that is less than or equal to 50%, and more particularly preferably less than or equal to 45%, or 40%, or 35%.
  • Another advantage of the article, preferably the foamed article, of the present invention is to provide better adhesion to other elements to facilitate complex assembly. This is particularly interesting in the production of multilayer structures by overmolding processes, for example, in the context of the preparation of a shoe sole which often comes in the form of multilayers.
  • the foamed article of the present invention can preferably be prepared by a molding process, for example by compression-molding of the expanded particles or injection molding from the copolymers in the form of granules.
  • the foamed article of the present invention is prepared by assembling the expanded particles as described above in a mold.
  • the assembly step can be carried out by hot pressing using a temperature press (“hot pressing” in English) and/or steam welding (“steam chest” in English) of the expanded particles in a mould.
  • a temperature press hot pressing” in English
  • steam welding steam chest
  • a binder may be suitably used to promote assembly of the expanded particles.
  • binder include surface modifiers such as urethanes. These binders can be used individually or in combination. Preferably, the binders can be used during hot pressing.
  • the preparation of the expanded particles and the preparation of the foamed articles from these can be carried out in one and the same equipment, preferably in a mould.
  • the process for preparing a foamed article comprises:
  • the invention is particularly concerned with the preparation of foamed articles by assembling the expanded particles.
  • the process may comprise a step of injecting a mixture comprising the PEBA copolymer as defined above, in the form of granules, optionally one or more polymers other than the PEBA copolymer and/or one or more additives as described above. above, and a blowing agent in a mold and a step of foaming said mixture.
  • the foaming is produced either during the injection into the mold of a volume of polymer lower than that of the mold, or by the opening of the mold.
  • injection foaming techniques that can be used in the context of the present invention are in particular injection foaming with a breathable mold, with application of a gas counter-pressure, under dosage, or with a mold equipped with a Variotherm® system. .
  • the foamed article according to the present invention can be recycled, for example by melting them in an extruder equipped with a degassing outlet (optionally after having cut them into pieces).
  • Table 1 shows the different raw materials used and their respective suppliers. All compounds were used as received.
  • the compounds PTMG 650, PTMG 1000 and PTMG 2000 are products marketed under the name PolyTHF® 650, PolyTHF® 1000 and PolyTHF® 2000.
  • PEBA copolymers various PEBA copolymers have been prepared.
  • Example B refers to a PEBA copolymer whose PA block consists of a PA11/12 copolyamide (PA11/12 mass ratio: 70/30).
  • Examples B to G were prepared and adapted according to the protocols of example 1 with quantities presented in Table 3.
  • Table 4 shows the Vicat softening temperatures (TVST) and enthalpies of fusion measured for each of the PEBA copolymers A to G as well as the moldability of the expanded particles obtained from said PEBA copolymers in an assembly process by compression- molding in the presence of water vapor (called “steam chest”).
  • the expanded particles are prepared according to the following method. Case of example F: 100 g of granules are impregnated with CO2 in an autoclave reactor at a pressure of 170 bars and a temperature of 135° C. for 4 hours. This dry impregnation step is followed by a step of expansion of the gas dissolved in the PEBA resin by reducing the pressure to ambient. After the reactor has cooled, the expanded PEBA particles can be collected.
  • the CO2 impregnation conditions depend on the copolymer constituting the expanded particles and can be adjusted by those skilled in the art.
  • Examples A to E and G were prepared and adapted according to protocols of example F.
  • Examples A to D and counter-examples E to G show that a PEBA copolymer having a Vicat softening temperature of between 75° C. and 120° C. and a minimum crystallinity as defined by the DSC measurement of the enthalpy of fusion of the amide units during the second heating at a rate of 20° C./minute, ie greater than or equal to 15 J/g, gives the expanded particles produced from said PEBA copolymer an improved mouldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyamides (AREA)

Abstract

The invention relates to a copolymer that comprises polyamide blocks and polyether blocks (PEBA) and can be used for the production of an article, preferably a foamed article. The invention also relates to expanded particles prepared from said copolymer and to the production of a foamed article from said expanded particles.

Description

DESCRIPTION DESCRIPTION
Titre de l’invention : Copolymère à blocs polyamides et à blocs polyéthers pour la fabrication d’un article moussé Title of the invention: Copolymer with polyamide blocks and polyether blocks for the manufacture of a foamed article
Domaine de l’invention Field of invention
La présente invention concerne un copolymère à blocs polyamides et à blocs polyéthers (PEBA) pouvant être utilisé pour la fabrication d’un article, de préférence un article moussé. L’invention concerne également des particules expansées préparées à partir dudit copolymère et la fabrication d’un article moussé à partir desdits particules expansées. The present invention relates to a copolymer with polyamide blocks and with polyether blocks (PEBA) which can be used for the manufacture of an article, preferably a foamed article. The invention also relates to expanded particles prepared from said copolymer and the manufacture of a foamed article from said expanded particles.
Arrière-plan technique Technical background
Il est connu d’utiliser des copolymères à blocs polyamides et à blocs polyéthers et plus avantageusement des articles moussés à partir de ce type de copolymères dans le domaine des équipements sportifs, tels que des semelles ou composants de semelles, des gants, raquettes ou balles de golf, des éléments de protection individuelle en particulier pour la pratique du sport (gilets, pièces intérieures de casques, de coques...), grâce à leurs propriétés mécaniques et leur légèreté. It is known to use copolymers with polyamide blocks and polyether blocks and more advantageously articles foamed from this type of copolymers in the field of sports equipment, such as soles or sole components, gloves, rackets or balls. golf, individual protection elements in particular for the practice of sport (vests, interior parts of helmets, hulls, etc.), thanks to their mechanical properties and their lightness.
Les articles moussés (appelés aussi « article en mousse ») peuvent être préparés par différentes technologies de moussage incluant des procédés d’injection, extrusion, méthode dite « autoclave » ou encore des techniques à partir des particules expansées (« foam beads » en anglais). Foamed articles (also called "foamed article") can be prepared by different foaming technologies including injection processes, extrusion, the so-called "autoclave" method or even techniques from expanded particles ("foam beads" in English ).
Plus particulièrement, la préparation de particules expansées peut être réalisée selon différents procédés, par exemples : le document US 2016/0121524 décrit un procédé de fabrication des particules expansées dit « moussage-extrusion » d’un élastomère thermoplastique, comprenant une étape d’extrusion de l’élastomère thermoplastique à l’état fondu comprenant un agent d’expansion physique tel que CO2, N2 ; le document US 2016/0297943 décrit un procédé de fabrication des particules expansées par méthode dite « autoclave », comprenant une étape d’imprégnation des granulés d’élastomères thermoplastiques dans un milieu gazeux à une température et une pression particulières, et une étape d’expansion à une pression réduite par rapport à la pression appliquée lors de l’étape d’imprégnation. More particularly, the preparation of expanded particles can be carried out according to various methods, for example: document US 2016/0121524 describes a method for manufacturing expanded particles called "foaming-extrusion" of a thermoplastic elastomer, comprising an extrusion step molten thermoplastic elastomer comprising a physical blowing agent such as CO2, N2; document US 2016/0297943 describes a process for manufacturing expanded particles by the so-called “autoclave” method, comprising a step of impregnating the thermoplastic elastomer granules in a gaseous medium at a temperature and a particular pressure, and an expansion step at a reduced pressure compared to the pressure applied during the impregnation step.
La production des articles moussés, souvent moulés, à partir de particules expansées implique généralement l’assemblage de ces particules expansées par fusion, comme telle décrite dans WO 16030333 où les particules expansées ont été soudées dans un moule par apport thermique d’énergie pour obtenir un article moussé et moulé (e.g. semelles de chaussures). Cet apport thermique d’énergie peut être fourni par un flux de vapeur sous pression, un rayonnement électromagnétique ou micro-ondes. Sous l’effet de la pression et de la température, les particules expansées sont partiellement fondues en surface permettant l’inter-diffusion de chaînes polymères entre des particules expansées voisines, assurant ainsi leur adhésion. Une bonne cohésion des particules expansées ainsi qu’une faible teneur en macro-vides sont nécessaires pour assurer de bonnes propriétés mécaniques aux articles moussés et moulés. The production of foamed articles, often molded, from expanded particles generally involves the assembly of these expanded particles by fusion, as described in WO 16030333 where the expanded particles have been welded in a mold by thermal energy input to obtain a foamed and molded article (e.g. shoe soles). This thermal input of energy can be provided by a flow of pressurized steam, electromagnetic radiation or microwaves. Under the effect of pressure and temperature, the expanded particles are partially melted on the surface allowing the inter-diffusion of polymer chains between neighboring expanded particles, thus ensuring their adhesion. Good cohesion of the expanded particles as well as a low macro-void content are necessary to ensure good mechanical properties of foamed and molded articles.
Le document EP 3053732 décrit un procédé de fabrication d’articles moussés par assemblage sous rayonnement électromagnétique des particules expansées. Document EP 3053732 describes a process for manufacturing foamed articles by assembling expanded particles under electromagnetic radiation.
Cependant, il n’est pas toujours facile de préparer un article moussé à partir des particules expansées, notamment dans le cas où l’assemblage de ces particules expansées se fait par moulage. En effet, pendant la mise en forme, les particules expansées ne sont pas toujours capables d’épouser parfaitement la forme du moule avec une forme prédéfinie, surtout lorsque la forme est complexe. However, it is not always easy to prepare a foamed article from the expanded particles, in particular in the case where the assembly of these expanded particles is done by molding. Indeed, during shaping, the expanded particles are not always able to perfectly match the shape of the mold with a predefined shape, especially when the shape is complex.
Pour tenter de résoudre ce problème, une pression élevée peut être appliquée pour « forcer » les particules expansées à épouser la forme du moule, mais cela conduit généralement à l’augmentation de la densité et à la destruction de la bonne tenue mécanique des articles moulés suite à l’écrasement des particules expansées lors de l’assemblage. On peut également augmenter la température pour fondre davantage les particules, mais cela induit généralement des défauts de surfaces aux articles moulés. In an attempt to solve this problem, high pressure can be applied to "force" the expanded particles to conform to the shape of the mould, but this generally leads to the increase in density and the destruction of the good mechanical strength of the molded articles. following the crushing of the expanded particles during assembly. It is also possible to increase the temperature to further melt the particles, but this generally induces surface defects in the molded articles.
Le document JP 2016188342 décrit un article moussé par moulage. Il décrit qu’il est possible d’améliorer la propriété de fusion entre les particules expansées en diminuant la cristallinité de la couche superficielle des particules. Pour cela, il propose d’imprégner un inhibiteur de cristallinité de type composé phénoliques sur la surface des particules. Il existe une demande continue sur le marché pour des articles moussés toujours plus légers et plus performants, à savoir des articles moussés aux propriétés améliorées en terme de densité, d’homogénéité, tout en conservant des propriétés mécaniques requises pour une application finale. Document JP 2016188342 describes an article foamed by molding. It describes that it is possible to improve the melting property between the expanded particles by decreasing the crystallinity of the surface layer of the particles. For this, he proposes impregnating a crystallinity inhibitor of the phenolic compound type on the surface of the particles. There is a continuous demand on the market for ever lighter and more efficient foamed articles, namely foamed articles with improved properties in terms of density, homogeneity, while retaining the mechanical properties required for a final application.
La présente invention a donc pour but de fournir des copolymères à blocs polyamides et à blocs polyéthers, permettant de préparer des articles moussés, de préférence à partir des particules expansées fabriquées à partir desdits copolymères, de faibles densités, de homogénéités améliorées et de bonnes propriétés mécaniques, telles que l’aptitude au rebond, faible déformation rémanente en compression, l’aptitude à endurer des impacts répétés sans se déformer et aptitude à revenir à la forme initiale. The object of the present invention is therefore to provide copolymers with polyamide blocks and with polyether blocks, making it possible to prepare foamed articles, preferably from the expanded particles produced from said copolymers, of low densities, improved homogeneities and good properties. mechanical, such as the ability to rebound, low compression set, the ability to withstand repeated impacts without deforming and the ability to return to the initial shape.
Résumé de l’invention Summary of the invention
Selon un premier aspect, la présente invention concerne un copolymère à blocs polyamide et à blocs polyéther (PEBA), adapté à la préparation des particules expansées, présentant : According to a first aspect, the present invention relates to a copolymer with polyamide blocks and with polyether blocks (PEBA), suitable for the preparation of expanded particles, having:
- une cristallinité telle que l’enthalpie de fusion mesurée en DSC lors de la deuxième chauffe à une vitesse de 20°C/minute selon la norme ISO 11357-3 (delta Hm(2)), soit égale ou supérieure à 15 J/g, cette fusion correspondant à celle des motifs amide,- a crystallinity such that the enthalpy of fusion measured by DSC during the second heating at a rate of 20°C/minute according to the ISO 11357-3 standard (delta Hm(2)), either equal to or greater than 15 J/ g, this fusion corresponding to that of the amide units,
- une température de ramollissement Vicat (VST) supérieure ou égale à 75°C et inférieure ou égale à 120°C selon la norme ISO 306 (méthode A50). - a Vicat softening temperature (VST) greater than or equal to 75°C and less than or equal to 120°C according to the ISO 306 standard (A50 method).
La présente invention fournit un copolymère particulier permettant la formation d’un article moussé dudit copolymère régulier, homogène, présentant une faible densité et ayant une ou plusieurs propriétés avantageuses parmi : une capacité élevée à restituer de l’énergie élastique lors de sollicitations sous faible contrainte, une faible déformation rémanente en compression (et donc une durabilité améliorée), une résistance élevée à la fatigue en compression, d’excellentes propriétés de résilience, et notamment une résistance à l’abrasion. The present invention provides a particular copolymer allowing the formation of a foamed article of said regular copolymer, homogeneous, having a low density and having one or more advantageous properties among: a high capacity to restore elastic energy during stresses under low stress , low compression set (and therefore improved durability), high resistance to compression fatigue, excellent resilience properties, and in particular resistance to abrasion.
L’enthalpie de fusion est de préférence égale ou supérieure à 18 J/g, encore plus préférentiellement égale ou supérieure à 20 J/g. The enthalpy of fusion is preferably equal to or greater than 18 J/g, even more preferably equal to or greater than 20 J/g.
La température de ramollissement Vicat est de préférence supérieure ou égale à 80°C, encore plus préférentielle égale ou supérieure à 90 °C, et de préférence inférieure ou égale à 115 °C, encore plus préférentiellement inférieure ou égale à 110 °C. Selon un mode de réalisation, les blocs polyamides du copolymère PEBA sont des blocs copolyamides. The Vicat softening temperature is preferably greater than or equal to 80°C, even more preferably equal to or greater than 90°C, and preferably less than or equal to 115°C, even more preferably less than or equal to 110°C. According to one embodiment, the polyamide blocks of the PEBA copolymer are copolyamide blocks.
Selon un mode de réalisation, les blocs polyamides du copolymère PEBA sont choisis parmi les blocs polyamides résultant de la condensation d’un acide a,co-aminocarboxylique ou d’un lactame, de préférence choisis parmi les blocs PA 11 , PA 12, ledit copolymère ayant une masse molaire moyenne en nombre (Mn) des blocs polyamides de 400 à 1500 g/mol, plus préférentiellement de 500 à 1200 g/mol, et encore plus préférentiellement de 500 à 1000 g/mol et/ou la masse molaire moyenne en nombre (Mn) des blocs polyéthers de 400 à 2000 g/mol, plus préférentiellement de 500 à 1500 g/mol, et encore plus préférentiellement de 500 à 1000 g/mol. According to one embodiment, the polyamide blocks of the PEBA copolymer are chosen from the polyamide blocks resulting from the condensation of an α,co-aminocarboxylic acid or of a lactam, preferably chosen from the blocks PA 11 , PA 12, said copolymer having a number-average molar mass (Mn) of the polyamide blocks of 400 to 1500 g/mol, more preferentially from 500 to 1200 g/mol, and even more preferentially from 500 to 1000 g/mol and/or the average molar mass in number (Mn) of the polyether blocks from 400 to 2000 g/mol, more preferentially from 500 to 1500 g/mol, and even more preferentially from 500 to 1000 g/mol.
Le copolymère peut avoir une dureté instantanée inférieure ou égale à 72 Shore D, de préférence encore inférieure ou égale à 55 Shore D, de préférence encore inférieure à 45 Shore D. The copolymer can have an instantaneous hardness less than or equal to 72 Shore D, more preferably less than or equal to 55 Shore D, more preferably less than 45 Shore D.
Selon un autre aspect, l’invention concerne des particules expansées du copolymère tel que décrit ci-dessous. According to another aspect, the invention relates to expanded particles of the copolymer as described below.
Il a été observé dans le cadre de la présente invention, lors d’une étape d’assemblage par moulage, ces particules expansées particulières épousent aisément la forme du moule, permettant de préparer des articles moussés de forme complexe. It has been observed in the context of the present invention, during an assembly step by molding, these particular expanded particles easily match the shape of the mold, making it possible to prepare foamed articles of complex shape.
Ainsi, la présente invention propose des particules expansées fabriquées à partir des copolymères PEBA particuliers, ayant une moulabilité améliorée pour la fabrication d’un article moussé par moulage, tout en conservant les bonnes propriétés mécaniques demandées telles que précitées et une légèreté améliorée. Thus, the present invention provides expanded particles made from specific PEBA copolymers, having improved moldability for the manufacture of a foamed article by molding, while retaining the good mechanical properties required as mentioned above and improved lightness.
Selon un autre aspect, la présente invention concerne un article, de préférence un article moussé, comprenant au moins un élément constitué d’un copolymère PEBA tel que défini ci-dessus ou des particules expansées décrites ci-dessus. According to another aspect, the present invention relates to an article, preferably a foamed article, comprising at least one element consisting of a PEBA copolymer as defined above or expanded particles described above.
L’article peut être choisi parmi les semelles de chaussures, notamment les semelles de chaussures de sport, les ballons ou balles, les gants, les équipements de protection individuels, les semelles pour rails, les pièces automobiles, les pièces de construction et les pièces d’équipements électriques et électroniques. La présente invention concerne également un procédé pour la préparation des articles moussés par moulage comprenant une étape d’assemblage des particules expansées dans un moule. The article may be selected from shoe soles, including sports shoe soles, footballs or balls, gloves, personal protective equipment, rail soles, automotive parts, construction parts and electrical and electronic equipment. The present invention also relates to a process for the preparation of foamed articles by molding comprising a step of assembling the expanded particles in a mould.
L’invention est maintenant décrite en détail et de façon non limitative dans la description qui suit. The invention is now described in detail and in a non-limiting manner in the description which follows.
Description de l’invention Définition Description of the invention Definition
Dans la présente description de l’invention, y-compris dans les exemples ci-après :In the present description of the invention, including in the examples below:
- Les températures de ramollissement Vicat (VST) sont mesurées selon la norme ISO 306 : 2013 (méthode A50); - Vicat softening temperatures (VST) are measured according to ISO 306: 2013 (A50 method);
- les densités des particules expansées ou des articles moussés sont mesurées selon la norme ISO 845 : 2009 ; - the densities of the expanded particles or of the foamed articles are measured according to standard ISO 845: 2009;
- Les masse molaires en nombre Mn sont mesurées par chromatographie d’exclusion stérique (ou chromatographie par perméation de gel) selon ISO 16014-- The molar masses in Mn number are measured by steric exclusion chromatography (or gel permeation chromatography) according to ISO 16014-
1 :2012. Le produit est solubilisé dans de l’hexafluoroisopropanol stabilisé avec 0,05 M trifluoroacétate de potassium pendant 24 h à température ambiante à une concentration de 1 g/L. La solution obtenue est ensuite filtrée sur membrane PTFE de porosité 0,2pm, puis injectée à un débit de 1 mL/min, dans un système de chromatographie liquide équipé d’un jeu de colonnes PFG de Polymer Standards Service constitué d’une pré-colonne de dimensions 50 x 8 mm, d’une colonne 1000 Â, de dimensions 300 x 8 mm et de taille de particule 7 pm, et d’une colonne 100 Â, de dimensions 300 x 8 mm et de taille de particule 7 pm, Les masses molaires sont mesurées par l’indice de réfraction et sont exprimées en équivalents PMMA (utilisé comme étalon de calibration) ; 1:2012. The product is dissolved in hexafluoroisopropanol stabilized with 0.05 M potassium trifluoroacetate for 24 hours at room temperature at a concentration of 1 g/L. The solution obtained is then filtered on a PTFE membrane with a porosity of 0.2 μm, then injected at a flow rate of 1 mL/min, into a liquid chromatography system equipped with a set of PFG columns from Polymer Standards Service consisting of a pre- column of dimensions 50 x 8 mm, of a column of 1000 Å, of dimensions 300 x 8 mm and of particle size 7 µm, and of a column of 100 Å, of dimensions 300 x 8 mm and of particle size 7 µm , The molar masses are measured by the refractive index and are expressed in PMMA equivalents (used as calibration standard);
- Les duretés instantanées du copolymère PEBA sont mesurées selon la norme ISO 868:2003 ; - The instantaneous hardnesses of the PEBA copolymer are measured according to standard ISO 868:2003;
- les résiliences de rebondissement des articles moussés sont mesurées selon la norme ISO 8307 :2007; - the rebound resiliences of the foamed articles are measured according to the ISO 8307:2007 standard;
- les résistances à la déformation en compression des articles moussés est mesurée selon la norme ISO 7214 : 2012, avec une déformation de 50 %, un temps de maintien de 6 h à une température de 50°C, et en effectuant une première mesure après 30 minutes et une seconde mesure après 24 h de recouvrance. - the resistance to compression deformation of foamed articles is measured according to the ISO 7214: 2012 standard, with a deformation of 50%, a holding time of 6 hours at a temperature of 50°C, and by carrying out a first measurement after 30 minutes and a second measurement after 24 hours of recovery.
- La nomenclature utilisée pour désigner les polyamides suit la norme ISO 1874-1. En particulier, dans la notation PA « Z », Z représente le nombre d’atomes de carbone des motifs polyamide issus de la condensation d’un aminoacide ou lactame. Dans la notation PA « XY » désignant un polyamide issu de la condensation d’une diamine avec un acide dicarboxylique, X représente le nombre d’atomes de carbone de la diamine et Y représente le nombre d’atomes de carbone de l’acide dicarboxylique. La notation PA Z/XY, PA Z/Z’, PA Z/XY/X’Y’, PA Z/Z7XY, PA Z/Z’/XYZX’Y’, etc. se rapporte à des copolyamides dans lesquels XY, Z, X’Y’, Z’ etc. représentent des unités homopolyamide XY, Z telles que décrites ci-dessus, X’Y’ étant identique ou différent du XY, Z’ étant identique ou différent du Z ; - The nomenclature used to designate polyamides follows the ISO 1874-1 standard. In particular, in the notation PA “Z”, Z represents the number of carbon atoms of the polyamide units resulting from the condensation of an amino acid or lactam. In the PA notation "XY" designating a polyamide resulting from the condensation of a diamine with a dicarboxylic acid, X represents the number of carbon atoms of the diamine and Y represents the number of carbon atoms of the dicarboxylic acid . The notation PA Z/XY, PA Z/Z', PA Z/XY/X'Y', PA Z/Z7XY, PA Z/Z'/XYZX'Y', etc. refers to copolyamides in which XY, Z, X'Y', Z' etc. represent homopolyamide units XY, Z as described above, X'Y' being identical to or different from XY, Z' being identical to or different from Z;
- les tailles D50 appelées ici « diamètre médian en volume » sont mesurées selon la norme ISO 9276-2 :2014. - the D50 sizes, referred to here as “volume median diameter” are measured according to the ISO 9276-2:2014 standard.
Copolymère à blocs polyamides et à blocs polyéthers (PEBA) Copolymer with polyamide blocks and polyether blocks (PEBA)
Le copolymère à blocs polyamides et à blocs polyéthers de la présente invention peut s’agir de préférence, d’un copolymère linéaire (non réticulé). The copolymer with polyamide blocks and with polyether blocks of the present invention may preferably be a linear (non-crosslinked) copolymer.
Les copolymères PEBA peuvent résulter de la polycondensation de blocs polyamides (PA) à extrémités réactives avec des blocs polyéthers (PE) à extrémités réactives, telle que : PEBA copolymers can result from the polycondensation of polyamide (PA) blocks with reactive ends with polyether (PE) blocks with reactive ends, such as:
1 ) des blocs polyamides à bouts de chaîne diamines avec des blocs polyoxyalkylènes à bouts de chaînes dicarboxyliques ; 1) polyamide blocks with diamine chain ends with polyoxyalkylene blocks with dicarboxylic chain ends;
2) des blocs polyamides à bouts de chaînes dicarboxyliques avec des blocs polyoxyalkylènes à bouts de chaînes diamines; 2) dicarboxylic chain-ended polyamide blocks with diamine chain-ended polyoxyalkylene blocks;
3) des blocs polyamides à bouts de chaînes dicarboxyliques avec des polyétherdiols, les produits obtenus étant, dans ce cas particulier, des polyétheresteramides. 3) polyamide blocks with dicarboxylic chain ends with polyetherdiols, the products obtained being, in this particular case, polyetheresteramides.
Les blocs polyamides à bouts de chaînes dicarboxyliques proviennent, par exemple, de la condensation de précurseurs de polyamides en présence d’un diacide carboxylique limiteur de chaîne. Les blocs polyamides à bouts de chaînes diamines proviennent par exemple de la condensation de précurseurs de polyamides en présence d’une diamine limiteur de chaîne. Polyamide blocks with dicarboxylic chain ends come, for example, from the condensation of polyamide precursors in the presence of a chain-limiting dicarboxylic acid. Polyamide blocks with diamine chain ends come, for example, from the condensation of polyamide precursors in the presence of a diamine chain limiter.
On peut utiliser avantageusement deux types de blocs polyamides. Two types of polyamide blocks can advantageously be used.
Selon un premier type (du type PA « Z/XY, PA Z/Z’, PA Z/XY/X’Y’, PA Z/Z7XY, PA Z/Z7XY/X’Y’, etc. »), les blocs polyamides sont des blocs copolyamides. Ces blocs peuvent être obtenus par exemple par condensation d’un ou plusieurs acides a,co-aminocarboxyliques ou lactames, et d’au moins une diamine et au moins un diacide carboxylique. According to a first type (of the PA type "Z/XY, PA Z/Z', PA Z/XY/X'Y', PA Z/Z7XY, PA Z/Z7XY/X'Y', etc."), the Polyamide blocks are copolyamide blocks. These blocks can be obtained for example by condensation of one or more a, co-aminocarboxylic acids or lactams, and at least one diamine and at least one dicarboxylic acid.
Selon une variante, les blocs polyamides résultent de la condensation d’au moins deux acides a,co-aminocarboxyliques ou d’au moins deux lactames ayant de 6 à 12 atomes de carbone ou d’un lactame et d’un acide a,co-aminocarboxylique de nombre d’atomes de carbone différent. According to one variant, the polyamide blocks result from the condensation of at least two a,co-aminocarboxylic acids or of at least two lactams having from 6 to 12 carbon atoms or of a lactam and an a,co -aminocarboxylic of different number of carbon atoms.
A titre d’exemples d’acide a,co-amino carboxylique, on peut citer les acides a,co-amino carboxyliques ayant 4 à 12 atomes de carbone, et en particulier les acides aminocaproïque, amino-7-heptanoïque, amino-11-undécanoïque et amino-12- dodécanoïque. Examples of a,co-amino carboxylic acid, mention may be made of a,co-amino carboxylic acids having 4 to 12 carbon atoms, and in particular aminocaproic, amino-7-heptanoic, amino-11 -undecanoic acid and 12-amino-dodecanoic acid.
A titre d’exemples de lactames, on peut citer les lactames ayant 6 à 12 atomes de carbone, et en particulier le caprolactame, l’oenantholactame et le lauryllactame. Particulièrement préférés sont les blocs PA 6, PA 11 et PA 12, ainsi que leurs mélanges. As examples of lactams, mention may be made of lactams having 6 to 12 carbon atoms, and in particular caprolactam, oenantholactam and lauryllactam. Particularly preferred are the blocks PA 6, PA 11 and PA 12, as well as their mixtures.
A titre d’exemples des acides dicarboxyliques, l’acide dicarboxylique peut comporter 4 à 36, de préférence 6 à 18 atomes de carbone. Il s’agit de préférence d’un diacide carboxylique aliphatique, en particulier linéaire, cycloaliphatique ou aromatique. As examples of dicarboxylic acids, the dicarboxylic acid can contain 4 to 36, preferably 6 to 18 carbon atoms. It is preferably an aliphatic, in particular linear, cycloaliphatic or aromatic dicarboxylic acid.
De préférence, il s’agit d’un diacide carboxylique aliphatique, en particulier linéaire. A titre d’exemples, on peut citer les acides butanedioïque, adipique, azélaïque, subérique, sébacique, dodécanedicarboxylique, octadécanedicarboxylique téréphtalique et isophtalique, et les acides gras dimérisés. Ces acides gras dimérisés ont de préférence une teneur en dimère d’au moins 98 % ; de préférence ils sont hydrogénés ; il s’agit par exemple des produit commercialisés sous la marque PRIPOL® par la société CRODA, ou sous la marque EMPOL® par la société BASF, ou sous la marque RADIACID® par la société OLEON et des polyoxyalkylènes a, co-diacides. Preferably, it is an aliphatic, in particular linear, dicarboxylic acid. By way of examples, mention may be made of butanedioic, adipic, azelaic, suberic, sebacic, dodecanedicarboxylic, octadecanedicarboxylic terephthalic and isophthalic acids, and dimerized fatty acids. These dimerized fatty acids preferably have a dimer content of at least 98%; preferably they are hydrogenated; these are, for example, products marketed under the brand PRIPOL® by the company CRODA, or under the brand EMPOL® by the company BASF, or under the brand RADIACID® by the company OLEON and polyoxyalkylene a, co-diacids.
A titre d’exemples de diamines, la diamine peut comporter notamment 2 à 20, de préférence 6 à 14 atomes de carbone. A titre d’exemples, on peut citer la tétraméthylène diamine, la 1 ,5-pentanediamine, la 2-méthylpentane-1 ,5-diamine l’hexaméthylènediamine, la 1 ,10-décaméthylènediamine, la dodécaméthylènediamine, la triméthylhexaméthylène diamine, les isomères des bis-(4-aminocyclohexyl)-méthane (BACM), bis-(3-méthyl-4-aminocyclohexyl)méthane (BMACM), et 2-2-bis-(3-méthyl-4- aminocyclohexyl)-propane (BMACP), et paraamino-di-cyclo-hexyl-méthane (PACM), et l’isophoronediamine (IPDA), la 2,6-bis-(aminométhyl)-norbornane (BAMN) et la pipérazine (Pip). As examples of diamines, the diamine may in particular contain 2 to 20, preferably 6 to 14 carbon atoms. By way of examples, mention may be made of tetramethylenediamine, 1,5-pentanediamine, 2-methylpentane-1,5-diamine, hexamethylenediamine, 1,10-decamethylenediamine, dodecamethylenediamine, trimethylhexamethylenediamine, isomers bis-(4-aminocyclohexyl)-methane (BACM), bis-(3-methyl-4-aminocyclohexyl)methane (BMACM), and 2-2-bis-(3-methyl-4-aminocyclohexyl)-propane (BMACP ), and paraamino-di-cyclo-hexyl-methane (PACM), and isophoronediamine (IPDA), 2,6-bis-(aminomethyl)-norbornane (BAMN) and piperazine (Pip).
Les unités homopolyamides (du type PA « XY ») proviennent de la condensation d’un diacide carboxylique avec une diamine aliphatique, cycloaliphatique ou aromatique, de préférence un diamine aliphatique. The homopolyamide units (of the PA “XY” type) come from the condensation of a dicarboxylic acid with an aliphatic, cycloaliphatic or aromatic diamine, preferably an aliphatic diamine.
Préférés sont les PA 66, PA 610, PA 612, PA 1010, PA 1012, PA 1014, ainsi que leurs mélanges. Preferred are PA 66, PA 610, PA 612, PA 1010, PA 1012, PA 1014, as well as mixtures thereof.
Selon ce premier type, particulièrement préférés sont les blocs PA 6/11 , PA 6/12, PA 11/12, PA 6/11/12, PA 6/66/12, PA 6/1010, PA 6/1012, PA 6/1010/1012, PA 6/1012/12, PA 6/66/11/12, PA 6/1010/1012/1014, ainsi que leurs mélanges. According to this first type, particularly preferred are the blocks PA 6/11, PA 6/12, PA 11/12, PA 6/11/12, PA 6/66/12, PA 6/1010, PA 6/1012, PA 6/1010/1012, PA 6/1012/12, PA 6/66/11/12, PA 6/1010/1012/1014, as well as mixtures thereof.
Selon un deuxième type, les blocs polyamides (du type PA « Z ») résultent de la condensation d’un acide a,co-aminocarboxylique ou d’un lactame. According to a second type, the polyamide blocks (of the PA “Z” type) result from the condensation of an a,co-aminocarboxylic acid or a lactam.
Les acides a,co-aminocarboxyliques et lactames peuvent être choisis notamment parmi ceux énumérés ci-dessus pour les blocs polyamide du premier type. Particulièrement préférés sont les blocs PA 11 , PA 12. The α,α-aminocarboxylic acids and lactams can be chosen in particular from those listed above for the polyamide blocks of the first type. Particularly preferred are the blocks PA 11 , PA 12.
Ces blocs polyamide peuvent être préparés par polycondensation des monomères en présence d‘un limiteur de chaîne approprié. De tels limiteurs de chaîne sont par exemple les acides dicarboxyliques et les diamines, tels que précités. Aussi, on peut utiliser comme limiteur de chaîne le diacide carboxylique ou la diamine mis en oeuvre à titre de monomère, que l’on introduit en excès. En cas de polycondensation d’acides o,co- aminocarboxyliques ou de lactames, un limiteur de chaîne peut être ajouté aux monomères. On peut également citer les acides gras dimérisés. Ces acides gras dimérisés ont de préférence une teneur en dimère d’au moins 98 % ; de préférence ils sont hydrogénés ; il s’agit par exemple des produit commercialisés sous la marque PRIPOL® par la société CRODA, ou sous la marque EMPOL® par la société BASF, ou sous la marque RADIACID® par la société OLEON et des polyoxyalkylènes a, codiacides. These polyamide blocks can be prepared by polycondensation of the monomers in the presence of a suitable chain limiter. Such chain limiters are, for example, dicarboxylic acids and diamines, as mentioned above. Also, it is possible to use as a chain limiter the dicarboxylic acid or the diamine used as monomer, which is introduced in excess. In case of polycondensation of o,co-aminocarboxylic acids or lactams, a chain limiter can be added to the monomers. Mention may also be made of dimerized fatty acids. These dimerized fatty acids preferably have a dimer content of at least 98%; preferably they are hydrogenated; these are, for example, products marketed under the brand PRIPOL® by the company CRODA, or under the brand EMPOL® by the company BASF, or under the brand RADIACID® by the company OLEON and polyoxyalkylene a, codiacids.
Les blocs polyéther du PEBA comprennent essentiellement ou sont constitués de motifs d’oxyde d'alkylène. Les blocs polyéthers peuvent être issus d’alkylène glycols tels que le PEG (polyéthylène glycol), le PPG (propylène glycol), le PO3G (polytriméthylène glycol) ou le PTMG (polytétraméthylène glycol), de préférence le PTMG. Ils peuvent également être issus de copolyéthers comprenant différents oxydes d’alkylène distribués dans la chaîne de manière régulière, notamment par blocs, ou de manière statistique. The polyether blocks of PEBA essentially comprise or consist of alkylene oxide units. The polyether blocks can be derived from alkylene glycols such as PEG (polyethylene glycol), PPG (propylene glycol), PO3G (polytrimethylene glycol) or PTMG (polytetramethylene glycol), preferably PTMG. They can also be derived from copolyethers comprising different alkylene oxides distributed in the chain in a regular manner, in particular in blocks, or in a random manner.
Les blocs polyéther peuvent également être obtenus par oxyéthylation de bisphénols, tels que le bisphénol A. Ces produits sont décrits notamment dans le document EP 613919 A1. The polyether blocks can also be obtained by oxyethylation of bisphenols, such as bisphenol A. These products are described in particular in document EP 613919 A1.
Les blocs polyéthers peuvent aussi être des amines primaires éthoxylées, comme les produits de formule : The polyether blocks can also be ethoxylated primary amines, such as the products of formula:
[Chem 1] [Chem 1]
H - (OCH2CH2)m —N - (CH2CH2O)n— H H - (OCH 2 CH 2 ) m —N - (CH 2 CH 2 O) n — H
(CH2)X ( CH2 ) X
CH3 dans laquelle m et n sont des entiers compris entre 1 et 20 et x un entier entre 8 et 18.CH 3 in which m and n are integers between 1 and 20 and x an integer between 8 and 18.
Ces produits sont par exemple disponibles dans le commerce sous la marque NORAMOX® de la société CECA et sous la marque GENAMIN® de la société CLARIANT. These products are, for example, commercially available under the brand NORAMOX® from the company CECA and under the brand GENAMIN® from the company CLARIANT.
Les blocs polyéthers peuvent enfin comprendre ou être constitués des blocs polyoxyalkylène à bouts de chaînes NH2. De tels blocs pouvant être obtenus par cyanoacétylation de polyétherdiols. De tels polyéthers sont vendus par la société Huntsman sous le nom Jeffamine® ou Elastamine® (par exemple Jeffamine® D400, D2000, ED 2003, XTJ 542). Finally, the polyether blocks can comprise or consist of polyoxyalkylene blocks with ends of NH 2 chains. Such blocks can be obtained by cyanoacetylation of polyetherdiols. Such polyethers are sold by the company Huntsman under the name Jeffamine® or Elastamine® (for example Jeffamine® D400, D2000, ED 2003, XTJ 542).
Une méthode de préparation en deux étapes de PEBA ayant des liaisons esters entre les blocs PA et les blocs PE est décrite dans le document FR 2846332 A1 . Une méthode de préparation de PEBA ayant des liaisons amides entre les blocs PA et les blocs PE est décrite dans le document EP 1482011 A1. Les blocs polyéther peuvent être aussi mélangés avec des précurseurs de polyamide et un limiteur de chaîne diacide pour préparer des PEBA par un procédé en une étape. A two-step method for the preparation of PEBA having ester bonds between the PA blocks and the PE blocks is described in document FR 2846332 A1. A method for preparing PEBA having amide bonds between the PA blocks and the PE blocks is described in document EP 1482011 A1. The polyether blocks can also be mixed with polyamide precursors and a diacid chain limiter to prepare PEBAs by a one-step process.
Si les PEBA comprennent généralement un bloc polyamide et un bloc polyéther, ils peuvent aussi comprendre deux, trois, quatre voire plus de blocs différents choisis parmi ceux décrits. Selon un mode de réalisation, les copolymères PEBA préférés sont les copolymères comportant des blocs de copolyamides et des blocs issus de PTMG, par exemple : PA 6/11 et issus de PTMG, PA 6/12 et issus de PTMG, PA 11/12 et issus de PTMG, PA 6/11/12 et issus de PTMG, PA 6/66/12 et issus de PTMG, PA 6/1010 et issus de PTMG, PA 6/1012 et issus de PTMG, PA 6/1010/1012 et issus de PTMG, PA 6/1012/12 et issus de PTMG. If the PEBAs generally comprise a polyamide block and a polyether block, they can also comprise two, three, four or even more different blocks chosen from those described. According to one embodiment, the preferred PEBA copolymers are copolymers comprising blocks of copolyamides and blocks derived from PTMG, for example: PA 6/11 and derived from PTMG, PA 6/12 and derived from PTMG, PA 11/12 and derived from PTMG, PA 6/11/12 and derived from PTMG, PA 6/66/12 and derived from PTMG, PA 6/1010 and derived from PTMG, PA 6/1012 and derived from PTMG, PA 6/1010/ 1012 and derived from PTMG, PA 6/1012/12 and derived from PTMG.
Selon le mode de réalisation où les blocs polyamides du copolymère PEBA sont des blocs copolyamides, la masse molaire moyenne en nombre (Mn) des blocs polyamides dans le copolymère PEBA est de 400 à 20 000 g/mol, plus préférentiellement de 500 à 10000 g/mol, préférentiellement de 500 à 4000 g/mol, et encore plus préférentiellement de 600 à 2000 g/mol. Par exemple, la masse molaire moyenne en nombre des blocs polyamides dans le copolymère PEBA peut être de 400 à 1000 g/mol, ou de 1000 à 1500 g/mol, ou de 1500 à 2000 g/mol, ou de 2000 à 2500 g/mol, ou de 2500 à 3000 g/mol, ou de 3000 à 3500 g/mol, ou de 3500 à 4000 g/mol, ou de 4000 à 5000 g/mol, ou de 5000 à 6000 g/mol, ou de 6000 à 7000 g/mol, ou de 7000 à 8000 g/mol, ou de 8000 à 9000 g/mol, ou de 9000 à 10000 g/mol, ou de 10000 à 11000 g/mol, ou de 11000 à 12000 g/mol, ou de 12000 à 13000 g/mol, ou de 13000 à 14000 g/mol, ou de 14000 à 15000 g/mol, ou de 15000 à 16000 g/mol, ou de 16000 à 17000 g/mol, ou de 17000 à 18000 g/mol, ou de 18000 à 19000 g/mol, ou de 19000 à 20000 g/mol. According to the embodiment where the polyamide blocks of the PEBA copolymer are copolyamide blocks, the number-average molar mass (Mn) of the polyamide blocks in the PEBA copolymer is from 400 to 20,000 g/mol, more preferably from 500 to 10,000 g / mol, preferably from 500 to 4000 g/mol, and even more preferably from 600 to 2000 g/mol. For example, the number-average molar mass of the polyamide blocks in the PEBA copolymer can be from 400 to 1000 g/mol, or from 1000 to 1500 g/mol, or from 1500 to 2000 g/mol, or from 2000 to 2500 g /mol, or from 2500 to 3000 g/mol, or from 3000 to 3500 g/mol, or from 3500 to 4000 g/mol, or from 4000 to 5000 g/mol, or from 5000 to 6000 g/mol, or from 6000 to 7000 g/mol, or 7000 to 8000 g/mol, or 8000 to 9000 g/mol, or 9000 to 10000 g/mol, or 10000 to 11000 g/mol, or 11000 to 12000 g/ mol, or from 12000 to 13000 g/mol, or from 13000 to 14000 g/mol, or from 14000 to 15000 g/mol, or from 15000 to 16000 g/mol, or from 16000 to 17000 g/mol, or from 17000 at 18000 g/mol, or from 18000 to 19000 g/mol, or from 19000 to 20000 g/mol.
Selon ce mode de réalisation, la masse molaire moyenne en nombre (Mn) des blocs polyéthers est de 100 à 6000 g/mol, plus préférentiellement de 200 à 3000 g/mol, et encore plus préférentiellement de 200 à 2000 g/mol. La masse molaire moyenne en nombre des blocs polyéthers peut être de 100 à 200 g/mol, ou de 200 à 500 g/mol, ou de 500 à 800 g/mol, ou de 800 à 1000 g/mol, ou de 1000 à 1500 g/mol, ou de 1500 à 2000 g/mol, ou de 2000 à 2500 g/mol, ou de 2500 à 3000 g/mol, ou de 3000 à 3500 g/mol, ou de 3500 à 4000 g/mol, ou de 4000 à 4500 g/mol, ou de 4500 à 5000 g/mol, ou de 5000 à 5500 g/mol, ou de 5500 à 6000 g/mol. According to this embodiment, the number-average molar mass (Mn) of the polyether blocks is from 100 to 6000 g/mol, more preferentially from 200 to 3000 g/mol, and even more preferentially from 200 to 2000 g/mol. The number average molar mass of the polyether blocks can be from 100 to 200 g/mol, or from 200 to 500 g/mol, or from 500 to 800 g/mol, or from 800 to 1000 g/mol, or from 1000 to 1500 g/mol, or 1500 to 2000 g/mol, or 2000 to 2500 g/mol, or 2500 to 3000 g/mol, or 3000 to 3500 g/mol, or 3500 to 4000 g/mol, or from 4000 to 4500 g/mol, or from 4500 to 5000 g/mol, or from 5000 to 5500 g/mol, or from 5500 to 6000 g/mol.
Selon le mode de réalisation où les blocs polyamides du copolymère PEBA sont choisis parmi les blocs polyamides résultant de la condensation d’un acide a,co-aminocarboxylique ou lactame (du type PA « Z »), la masse molaire moyenne en nombre (Mn) des blocs polyamides dans le copolymère PEBA est de préférence de 400 à 1500 g/mol, plus préférentiellement de 500 à 1200 g/mol, préférentiellement de 500 à 1000 g/mol. Par exemple, la masse molaire moyenne en nombre (Mn) des blocs polyamides dans le copolymère PEBA peut être de 400 à 600 g/mol, ou de 600 à 900 g/mol, ou de 900 à 1000 g/mol, ou de 1000 à 1200 g/mol, ou de 1200 à 1300 g/mol, ou de 1300 à 1400 g/mol, ou de 1400 à 1500 g/mol. According to the embodiment where the polyamide blocks of the PEBA copolymer are chosen from the polyamide blocks resulting from the condensation of an a,co-aminocarboxylic acid or lactam (of the PA "Z" type), the number-average molar mass (Mn ) of the polyamide blocks in the PEBA copolymer is preferably from 400 to 1500 g/mol, more preferably from 500 to 1200 g/mol, preferably from 500 to 1000 g/mol. For example, the number average molar mass (Mn) of the blocks polyamides in the PEBA copolymer can be 400 to 600 g/mol, or 600 to 900 g/mol, or 900 to 1000 g/mol, or 1000 to 1200 g/mol, or 1200 to 1300 g/mol , or from 1300 to 1400 g/mol, or from 1400 to 1500 g/mol.
Selon ce mode de réalisation, la masse molaire moyenne en nombre (Mn) des blocs polyéthers est de préférence de 400 à 1500 g/mol, plus préférentiellement de 500 à 1200 g/mol, et encore plus préférentiellement de 500 à 1000 g/mol. Par exemple, la masse molaire moyenne en nombre des blocs polyéthers peut être de 400 à 600 g/mol, ou de 600 à 900 g/mol, ou de 900 à 1000 g/mol, ou de 1000 à 1200 g/mol, ou de 1200 à 1300 g/mol, ou de 1300 à 1400 g/mol, ou de 1400 à 1500 g/mol. According to this embodiment, the number-average molar mass (Mn) of the polyether blocks is preferably from 400 to 1500 g/mol, more preferably from 500 to 1200 g/mol, and even more preferably from 500 to 1000 g/mol . For example, the number average molar mass of the polyether blocks can be from 400 to 600 g/mol, or from 600 to 900 g/mol, or from 900 to 1000 g/mol, or from 1000 to 1200 g/mol, or from 1200 to 1300 g/mol, or from 1300 to 1400 g/mol, or from 1400 to 1500 g/mol.
Selon ce mode de réalisation, les copolymères PEBA préférés sont les copolymères comportant des blocs de polyamides résultant de la condensation d’un acide a,co-aminocarboxylique ou d’un lactame et des blocs issus de PTMG, par exemple : PA 11 et issus de PTMG, PA 12 et issus de PTMG, et leurs mélanges. According to this embodiment, the preferred PEBA copolymers are copolymers comprising blocks of polyamides resulting from the condensation of an α,co-aminocarboxylic acid or of a lactam and blocks derived from PTMG, for example: PA 11 and derived of PTMG, PA 12 and derived from PTMG, and mixtures thereof.
La masse molaire moyenne en nombre (Mn) est fixée par la teneur en limiteur de chaine. Elle peut être calculée selon la relation : The number-average molar mass (Mn) is fixed by the content of chain limiter. It can be calculated according to the relationship:
Mn = n monomère X Mw motif de répétition / n limiteur de chaîne + Mw limiteur de chaîne M n = n monomer X Mw repeat unit / n chain limiter + Mw chain limiter
Dans cette formule, nmonomère représente le nombre de moles de monomère, n limiteur de chaîne représente le nombre de moles de limiteur (par exemple diacide) en excès, Mw motif de répétition représente la masse molaire du motif de répétition, et Mw limiteur de chaîne représente la masse molaire du limiteur (par exemple diacide) en excès. In this formula, n monomer represents the number of moles of monomer, n chain limiter represents the number of excess moles of limiter (e.g. diacid), M w repeating unit represents the molar mass of the repeating unit, and Mw chain limiter represents the molar mass of excess limiter (e.g. diacid).
Selon un mode de réalisation, la proportion massique de blocs polyéthers dans le copolymère est au moins 50% par rapport au poids total du copolymère. According to one embodiment, the mass proportion of polyether blocks in the copolymer is at least 50% relative to the total weight of the copolymer.
De préférence, la proportion massique de blocs polyéther est de 55 à 85 % par rapport au poids total du copolymère, et plus préférentiellement de 60 à 80 %, par rapport au poids total du copolymère. Preferably, the mass proportion of polyether blocks is from 55 to 85% relative to the total weight of the copolymer, and more preferably from 60 to 80% relative to the total weight of the copolymer.
Les proportions massiques de blocs dans le copolymère peuvent être déterminées à partir des masses molaires moyennes en nombre des blocs. Le copolymère PEBA de la présente invention peut contenir au moins un additif usuel tel que des stabilisants thermiques (e.g. antioxydant, anti-UV), des fibres de verres, des fibres de carbone, un ignifugeant, du talc, un agent nucléant, un plastifiant, un colorant, un agent fluoré, un lubrifiant, un stéarate tels que le stéarate de zinc ou le stéarate de calcium ou stéarate de magnésium. The mass proportions of blocks in the copolymer can be determined from the number-average molar masses of the blocks. The PEBA copolymer of the present invention may contain at least one usual additive such as thermal stabilizers (eg antioxidant, anti-UV), glass fibers, carbon fibers, a flame retardant, talc, a nucleating agent, a plasticizer , a dye, a fluorinated agent, a lubricant, a stearate such as zinc stearate or calcium stearate or magnesium stearate.
Le copolymère PEBA peut être obtenu au moins partiellement à partir de matières premières bio-ressourcées. The PEBA copolymer can be obtained at least partially from bio-resourced raw materials.
Par matières premières d’origine renouvelable ou matières premières bio-ressourcées, on entend des matériaux qui comprennent du carbone bio-ressourcé ou carbone d’origine renouvelable. En effet, à la différence des matériaux issus de matières fossiles, les matériaux composés de matières premières renouvelables contiennent du 14C. La « teneur en carbone d’origine renouvelable » ou « teneur en carbone bio-ressourcé » est déterminée en application des normes ASTM D 6866 (ASTM D 6866-06) et ASTM D 7026 (ASTM D 7026-04). A titre d’exemple, les PEBA comprenant des blocs PA 11 proviennent au moins en partie de matières premières bio-ressourcées et présentent une teneur en carbone bio-ressourcé d'au moins 1%, ce qui correspond à un ratio isotopique de 12C/14C d’au moins 1 ,2 x 10'14. De préférence, les PEBA comprennent au moins 50% en masse de carbone bio-ressourcé sur la masse totale de carbone, ce qui correspond à un ratio isotopique 12C/14C d’au moins 0,6.10-12. Cette teneur est avantageusement plus élevée, notamment jusqu'à 100%, qui correspond à un ratio isotopique 12C/14C de 1 ,2 x 10'12, dans le cas par exemple de PEBA à blocs PA 11 et blocs PE comprenant du PTMG issus de matières premières d’origine renouvelable. By raw materials of renewable origin or bio-resourced raw materials, we mean materials which comprise bio-resourced carbon or carbon of renewable origin. In fact, unlike materials derived from fossil materials, materials composed of renewable raw materials contain 14 C. The "carbon content of renewable origin" or "bio-resourced carbon content" is determined in application of the standards ASTM D 6866 (ASTM D 6866-06) and ASTM D 7026 (ASTM D 7026-04). By way of example, PEBAs comprising PA 11 blocks come at least in part from bio-resourced raw materials and have a bio-resourced carbon content of at least 1%, which corresponds to an isotopic ratio of 12 C / 14 C of at least 1.2 x 10' 14 . Preferably, the PEBAs comprise at least 50% by mass of bio-resourced carbon over the total mass of carbon, which corresponds to a 12 C/ 14 C isotopic ratio of at least 0.6×10 −12 . This content is advantageously higher, in particular up to 100%, which corresponds to a 12 C/ 14 C isotopic ratio of 1.2 x 10' 12 , in the case for example of PEBA with PA 11 blocks and PE blocks comprising PTMG from raw materials of renewable origin.
Particules expansées Expanded particles
Les copolymères à blocs polyamides et à blocs polyéthers tels que définis ci-dessus peuvent être utilisés pour préparer des particules expansées. Polyamide block and polyether block copolymers as defined above can be used to prepare expanded particles.
Les particules expansées selon la présente invention présentent de préférence une densité inférieure ou égale à 200 kg/m3, ou mieux inférieure ou égale à 150 kg/m3, plus préférentiellement inférieure ou égale à 100 kg/m3 Le contrôle de la densité peut être réalisé par une adaptation des paramètres de son procédé de fabrication par l’homme du métier. The expanded particles according to the present invention preferably have a density less than or equal to 200 kg/m 3 , or better still less than or equal to 150 kg/m 3 , more preferably less than or equal to 100 kg/m 3 Density control can be achieved by adapting the parameters of its manufacturing process by those skilled in the art.
Les particules expansées peuvent comprendre un ou plusieurs polymères autres que le copolymère PEBA tel que décrit ci-dessus, par exemple, des polyamides, des polyoléfines fonctionnelles, des copolyétheresters, des polyuréthanes thermoplastiques (TPU), des copolymères d’éthylène et acétate de vinyle (par exemple les produit commercialisés sous la marque Evatane® par SK functional polymer), ou des copolymères d’éthylène et d’acrylate, ou des copolymères d’éthylène et d’alkyl(méth)acrylate (par exemple les produits commercialisé sous la marque Lotryl® par SK functional polymer). Ces additifs peuvent permettre d’ajuster la dureté des particules, leur aspect et leur confort. Les additifs peuvent être ajoutés dans une teneur de 0 à 50 % en masse, préférentiellement de 5 à 30 % en masse, par rapport au poids total du copolymère PEBA. The expanded particles can comprise one or more polymers other than the PEBA copolymer as described above, for example, polyamides, functional polyolefins, copolyetheresters, thermoplastic polyurethanes (TPU), copolymers of ethylene and vinyl acetate (for example the products marketed under the Evatane® brand by SK functional polymer), or copolymers of ethylene and acrylate, or copolymers of ethylene and alkyl(meth)acrylate (for example the products marketed under the Lotryl® brand by SK functional polymer). These additives can make it possible to adjust the hardness of the particles, their appearance and their comfort. The additives can be added in a content of 0 to 50% by mass, preferably 5 to 30% by mass, relative to the total weight of the PEBA copolymer.
Les particules expansées peuvent également comprendre un ou plusieurs additifs, tels que les pigments (Ti®2 et autres pigments colorés compatibles), les promoteurs d'adhésion (pour améliorer l'adhérence du mousse expansée à d'autres matériaux), les charges (par exemple, carbonate de calcium, sulfate de baryum et / ou oxyde de silicium), les agents de nucléation (sous forme pure ou sous forme concentrée, par exemple, CaCOs, ZnO, SiO2, ou des combinaisons de deux ou plus de ceux-ci), les caoutchoucs (pour améliorer l'élasticité caoutchouteuse, comme le caoutchouc naturel, le SBR, le polybutadiène et / ou le terpolymère d'éthylène propylène), les stabilisants par exemple les antioxydants, les absorbeurs d'UV et / ou les retardateurs de flamme et des additifs pour améliorer la processabilité (« processing aids » en anglais), par exemple, l’acide stéarique. Les additifs peuvent être ajoutés de préférence dans une teneur de 0 à 10 % en poids par rapport au poids total du copolymère PEBA. The expanded particles can also include one or more additives, such as pigments (Ti®2 and other compatible colored pigments), adhesion promoters (to improve the adhesion of the expanded foam to other materials), fillers ( e.g., calcium carbonate, barium sulfate and/or silicon oxide), nucleating agents (in pure form or in concentrated form, e.g., CaCOs, ZnO, SiO2, or combinations of two or more of these ci), rubbers (to improve rubbery elasticity, such as natural rubber, SBR, polybutadiene and/or ethylene propylene terpolymer), stabilizers e.g. antioxidants, UV absorbers and/or flame retardants and additives to improve processability (“processing aids”), for example, stearic acid. The additives can preferably be added in a content of 0 to 10% by weight relative to the total weight of the PEBA copolymer.
Les particules expansées selon l’invention peuvent être utilisées pour fabriquer des équipements de sport, tels que des semelles de chaussures de sport, de chaussures de ski, des semelles intermédiaires, des semelles intérieures, ou encore des composants fonctionnels de semelles, sous forme d’inserts dans différentes parties de la semelle (talon ou voûte plantaire par exemple), ou encore des composants des dessus de chaussures sous forme de renforts ou d’inserts dans la structure du dessus de chaussure, sous forme de protections. The expanded particles according to the invention can be used to manufacture sports equipment, such as soles of sports shoes, ski boots, intermediate soles, insoles, or even functional components of soles, in the form of inserts in different parts of the sole (heel or arch for example), or even components of shoe uppers in the form of reinforcements or inserts in the structure of the shoe upper, in the form of protections.
Elles peuvent également être utilisées pour fabriquer des ballons, des gants de sport (par exemple des gants de football), des composants de balles de golf, des raquettes, des éléments de protection (gilets, éléments intérieurs de casques, de coques...).They can also be used to manufacture balls, sports gloves (for example football gloves), golf ball components, rackets, protective elements (vests, interior elements of helmets, hulls, etc.). ).
Elles peuvent aussi être utilisées pour la fabrication de semelles de rails de chemin de fer, ou de diverses pièces dans l’industrie automobile, dans les transports, dans les équipements électriques et électroniques, dans la construction ou dans l’industrie manufacturière. Les particules expansées peuvent être préparées selon les procédés connus de l’homme du métier. They can also be used for the manufacture of railway rail soles, or various parts in the automotive industry, in transport, in electrical and electronic equipment, in construction or in the manufacturing industry. The expanded particles can be prepared according to methods known to those skilled in the art.
A titre d’exemple, les particules expansées peuvent être préparées par un procédé de fabrication comprenant une étape d’imprégnation et une étape d’expansion. By way of example, the expanded particles can be prepared by a manufacturing process comprising an impregnation step and an expansion step.
L’étape d’imprégnation peut être réalisée dans l’eau (dite « imprégnation humide ») dans laquelle on mélange du copolymère PEBA tel que défini ci-dessus, sous forme de granulés, avec un dispersant, optionnellement un ou plusieurs polymères autres que le copolymère PEBA et/ou un ou plusieurs additifs tels que décrits ci-dessus, dans un autoclave. Ensuite, on applique une agitation typiquement en température et sous pression pour obtenir une dispersion et on introduit l’agent d’expansion sous pression dans la dispersion, l’agent d’expansion ainsi imprégné dans les granulés des copolymères. The impregnation step can be carried out in water (known as "wet impregnation") in which the PEBA copolymer as defined above is mixed, in the form of granules, with a dispersant, optionally one or more polymers other than the PEBA copolymer and/or one or more additives as described above, in an autoclave. Then, stirring is typically applied at temperature and under pressure to obtain a dispersion and the blowing agent is introduced under pressure into the dispersion, the blowing agent thus impregnated in the granules of the copolymers.
Le dispersant peut être le phosphate de calcium, le pyrophosphate de magnésium, le pyrophosphate de sodium et l'oxyde de magnésium; ou un tensioactif tels que le dodécylbenzènesulfonate de sodium. The dispersant can be calcium phosphate, magnesium pyrophosphate, sodium pyrophosphate and magnesium oxide; or a surfactant such as sodium dodecylbenzenesulfonate.
Alternativement, l’étape d’imprégnation peut être réalisée par l’introduction de l’agent d’expansion sous pression dans les granulés de copolymères dans un autoclave pour obtenir les granulés imprégnés de l’agent d’expansion (imprégnation dite « à sec »). Alternatively, the impregnation step can be carried out by introducing the blowing agent under pressure into the copolymer granules in an autoclave to obtain the granules impregnated with the blowing agent (so-called “dry impregnation”). ").
L’étape d’expansion comprend généralement une étape de réduction de la pression permettant au gaz généré par l’agent d’expansion de se dissiper pour produire les particules expansées du copolymère. The expansion step generally includes a pressure reduction step allowing the gas generated by the blowing agent to dissipate to produce the expanded particles of the copolymer.
Les particules expansées peuvent aussi être préparées par un procédé d’extrusion, comprenant une étape d’extrusion à l’état fondu d’un mélange du copolymère PEBA tel que défini ci-dessus, sous forme de granulés, avec optionnellement un ou plusieurs polymères autres que le copolymère PEBA et/ou un ou plusieurs additifs tels que décrits ci-dessus, et un agent d’expansion, par exemple, dans une extrudeuse, induisant le moussage dudit mélange directement en sortie de filière d’extrusion, les particules expansées pouvant être récupérées dans l’eau de refroidissement durant la granulation. The expanded particles can also be prepared by an extrusion process, comprising a step of extrusion in the molten state of a mixture of the PEBA copolymer as defined above, in the form of granules, with optionally one or more polymers other than the PEBA copolymer and/or one or more additives as described above, and an expansion agent, for example, in an extruder, inducing the foaming of the said mixture directly at the outlet of the extrusion die, the expanded particles that can be recovered from the cooling water during granulation.
L’agent d’expansion peut être un agent chimique ou physique, ou encore un mélange de ceux-ci. De préférence, il s’agit d’un agent physique, par exemple les hydrocarbures aliphatiques tels que le butane, les hydrocarbures alicycliques tels que le cyclobutane, et les gaz inorganiques tels que le gaz carbonique, l'azote et l'air. The blowing agent can be a chemical or physical agent, or even a mixture of these. Preferably, it is a physical agent, for example aliphatic hydrocarbons such as butane, alicyclic hydrocarbons such as cyclobutane, and inorganic gases such as carbon dioxide, nitrogen and air.
L’agent d’expansion physique peut être mélangé avec le copolymère sous forme liquide ou supercritique, puis converti en phase gazeuse lors de l’étape de moussage. L’agent d’expansion physique peut demeurer présent dans les pores de la mousse, notamment s’il s’agit d’une mousse à pores fermées et/ou se dissiper. The physical blowing agent can be mixed with the copolymer in liquid or supercritical form, then converted into the gas phase during the foaming step. The physical blowing agent can remain present in the pores of the foam, especially if it is a closed-pore foam, and/or dissipate.
L’agent d’expansion chimique est un agent qui génère un gaz par réaction chimique ou pyrolyse. Des exemples comprennent l’azodicarbonamide ou des mélanges à base d’acide citrique et d’hydrogénocarbonate de sodium (NaHCCh) (tel que les produits commercialisés sous la marque Hydrocerol® par Clariant). Chemical blowing agent is an agent that generates gas by chemical reaction or pyrolysis. Examples include azodicarbonamide or mixtures of citric acid and sodium hydrogencarbonate (NaHCCh) (such as products marketed under the Hydrocerol® brand by Clariant).
Les particules expansées ainsi formés consistent essentiellement, voire consistent, en le copolymère décrit ci-dessus (ou le mélange, si un mélange de polymères est utilisé) et optionnellement l’un ou plusieurs additifs se trouvant dispersé(s) dans la matrice. Dans le cas où un agent d’expansion chimique est employé, l’article moussé peut comprendre en plus du copolymère décrit ci-dessus (ou le mélange, si un mélange de polymères est utilisé), les produits de décomposition de l’agent d’expansion chimique, ceux-ci se trouvant dispersés dans la matrice. The expanded particles thus formed essentially consist, or even consist, of the copolymer described above (or the mixture, if a mixture of polymers is used) and optionally one or more additives being dispersed in the matrix. In the case where a chemical blowing agent is employed, the foamed article may comprise in addition to the copolymer described above (or the mixture, if a mixture of polymers is used), the decomposition products of the blowing agent. chemical expansion, these being dispersed in the matrix.
Les particules expansées peuvent typiquement avoir une forme sphérique, ellipsoïde ou triangulaire. De préférence, les particules expansées ont une forme sphérique, qui peuvent avoir une taille moyenne D50 compris entre 2 à 20 mm, de préférence de 2 à 10 mm. The expanded particles can typically have a spherical, ellipsoid or triangular shape. Preferably, the expanded particles have a spherical shape, which can have an average size D50 comprised between 2 to 20 mm, preferably from 2 to 10 mm.
Les particules expansées de la présente invention peuvent être recyclées, par exemple en les fondant dans une extrudeuse équipée d’une sortie de dégazage (optionnellement après les avoir découpées en morceaux). The expanded particles of the present invention can be recycled, for example by melting them in an extruder equipped with a degassing outlet (optionally after having cut them into pieces).
Article Article
L’article, de préférence l’article moussé, comprend au moins un élément constitué d’un copolymère PEBA tel que défini ci-dessus ou des particules expansées décrites ci- dessus. L’article, de préférence l’article moussé, peut être choisi parmi des équipements de sport, tels que des semelles de chaussures de sport, de chaussures de ski, des semelles intermédiaires, des semelles intérieures, ou encore des composants fonctionnels de semelles, sous forme d’inserts dans différentes parties de la semelle (talon ou voûte plantaire par exemple), ou encore des composants des dessus de chaussures sous forme de renforts ou d’inserts dans la structure du dessus de chaussure, sous forme de protections. The article, preferably the foamed article, comprises at least one element consisting of a PEBA copolymer as defined above or of the expanded particles described above. The article, preferably the foamed article, can be chosen from sports equipment, such as soles of sports shoes, ski boots, intermediate soles, insoles, or even functional components of soles, in the form of inserts in different parts of the sole (heel or arch for example), or even components of shoe uppers in the form of reinforcements or inserts in the structure of the shoe upper, in the form of protections.
Il peut également être choisi parmi des ballons, des gants de sport (par exemple des gants de football), des composants de balles de golf, des raquettes, des éléments de protection (gilets, éléments intérieurs de casques, de coques...). Il peut aussi être choisi parmi des semelles de rails de chemin de fer, ou de diverses pièces dans l’industrie automobile, dans les transports, dans les équipements électriques et électroniques, dans la construction ou dans l’industrie manufacturière. It can also be chosen from balls, sports gloves (for example football gloves), golf ball components, rackets, protective elements (vests, interior elements of helmets, hulls, etc.) . It can also be chosen from the soles of railway rails, or various parts in the automotive industry, in transport, in electrical and electronic equipment, in construction or in the manufacturing industry.
Selon un mode de réalisation, l’article, de préférence l’article moussé, est choisi parmi les semelles de chaussures, notamment les semelles de chaussures de sport, les ballons ou balles, les gants, les équipements de protection individuels, les semelles pour rails, les pièces automobiles, les pièces de construction et les pièces d’équipements électriques et électroniques. According to one embodiment, the article, preferably the foamed article, is chosen from shoe soles, in particular sports shoe soles, footballs or balls, gloves, personal protective equipment, soles for rails, automotive parts, construction parts and electrical and electronic equipment parts.
L’article, de préférence l’article moussé, peut comprendre un ou plusieurs polymères autres que le copolymère PEBA et/ou un ou plusieurs additifs, choisis notamment parmi ceux énumérés ci-dessus pour les particules expansées. The article, preferably the foamed article, may comprise one or more polymers other than the PEBA copolymer and/or one or more additives, chosen in particular from those listed above for the expanded particles.
L’article moussé selon la présente invention présente de préférence une densité inférieure ou égale à 200 kg/m3, ou mieux inférieure ou égale à 180 kg/m3, plus préférentiellement inférieure ou égale à 150 kg/m3. De préférence, l’article moussé présente une résilience de rebondissement, supérieure ou égale à 50%, de préférence supérieure ou égale à 60 %. The foamed article according to the present invention preferably has a density less than or equal to 200 kg/m 3 , or better still less than or equal to 180 kg/m 3 , more preferably less than or equal to 150 kg/m 3 . Preferably, the foamed article has a rebound resilience greater than or equal to 50%, preferably greater than or equal to 60%.
De préférence, l’article moussé présente une déformation rémanente en compression inférieure ou égale à 50%, et de manière plus particulièrement préférée inférieure ou égale à 45 %, ou à 40%, ou à 35%. Preferably, the foamed article has a compression set that is less than or equal to 50%, and more particularly preferably less than or equal to 45%, or 40%, or 35%.
Un autre avantage de l’article, de préférence l’article moussé, de la présente invention est de fournir une meilleure adhésion sur les autres éléments pour faciliter un assemblage complexe. Ceci est particulièrement intéressant dans la réalisation de structures multicouches par des procédés de surmoulage, par exemple, dans le cadre de la préparation d’une semelle de chaussure qui se présente souvent sous forme de multicouches. Another advantage of the article, preferably the foamed article, of the present invention is to provide better adhesion to other elements to facilitate complex assembly. This is particularly interesting in the production of multilayer structures by overmolding processes, for example, in the context of the preparation of a shoe sole which often comes in the form of multilayers.
L’article moussé de la présente invention peut être préparé de préférence par un procédé de moulage, par exemple par compression-moulage des particules expansées ou moulage par injection à partir des copolymères sous forme des granulés. The foamed article of the present invention can preferably be prepared by a molding process, for example by compression-molding of the expanded particles or injection molding from the copolymers in the form of granules.
Selon un mode de réalisation, l’article moussé de la présente invention est préparé par assemblage des particules expansées telles que décrites ci-dessus dans un moule. According to one embodiment, the foamed article of the present invention is prepared by assembling the expanded particles as described above in a mold.
L’étape d’assemblage peut être réalisée par pressage à chaud en utilisant une presse en température (« hot pressing » en anglais) et/ou un soudage à la vapeur (« steam chest » en anglais) des particules expansées dans un moule. The assembly step can be carried out by hot pressing using a temperature press (“hot pressing” in English) and/or steam welding (“steam chest” in English) of the expanded particles in a mould.
On peut se référer à l’article « Past and present developments in polymer bead foams and bead foaming technology » de Daniel Raps et al. (Polymer, 56 (2015), 5-19) pour la technologie de compression moulage (ou soudage) à la vapeur. Les conditions de température et/ou de pression de vapeur dépendent du copolymère PEBA constituant les particules expansées et peuvent être ajustées par l’homme du métier. We can refer to the article “Past and present developments in polymer bead foams and bead foaming technology” by Daniel Raps et al. (Polymer, 56 (2015), 5-19) for steam compression molding (or welding) technology. The temperature and/or vapor pressure conditions depend on the PEBA copolymer constituting the expanded particles and can be adjusted by those skilled in the art.
Un liant peut être utilisé de manière appropriée pour favoriser l’assemblage des particules expansées. Des exemples de liant comprennent des modificateurs de surface tels que les uréthanes. Ces liants peuvent être utilisés individuellement ou en combinaison. De préférence, les liants peuvent être utilisés pendant la pressage à chaud. A binder may be suitably used to promote assembly of the expanded particles. Examples of binder include surface modifiers such as urethanes. These binders can be used individually or in combination. Preferably, the binders can be used during hot pressing.
Selon un mode de réalisation préférentiel, la préparation des particules expansées et la préparation des articles moussés à partir des celles-ci peuvent être réalisées dans un seul et même équipement, de préférence dans un moule. According to a preferred embodiment, the preparation of the expanded particles and the preparation of the foamed articles from these can be carried out in one and the same equipment, preferably in a mould.
Ainsi, le procédé de préparation d’un article moussé comprend : Thus, the process for preparing a foamed article comprises:
- une étape d’imprégnation dans un moule d’un copolymère PEBA tel que décrit ci- dessus, sous forme de granulés, avec un agent d’expansion, optionnellement un ou plusieurs polymères autres que le copolymère et/ou un ou plusieurs additifs; - a step of impregnation in a mold of a PEBA copolymer as described above, in the form of granules, with a blowing agent, optionally one or more polymers other than the copolymer and/or one or more additives;
- une étape d’expansion pour produire les particules expansées du copolymère ; et- an expansion step to produce the expanded particles of the copolymer; and
- une étape d’assemblage des particules expansées pour former l’article moussé dans le moule, les étapes d’expansion et d’assemblage ayant lieu simultanément. L’invention s’intéresse particulièrement à la préparation des articles moussés par assemblage des particules expansées. Mais on ne sortirait pas du cadre de l'invention pour la préparation des articles moussés par injection moussage à partir des copolymères PEBA sous forme de granulés. - a step of assembling the expanded particles to form the foamed article in the mould, the expansion and assembly steps taking place simultaneously. The invention is particularly concerned with the preparation of foamed articles by assembling the expanded particles. However, it would not be departing from the scope of the invention for the preparation of articles foamed by injection foaming from PEBA copolymers in the form of granules.
Le procédé peut comprendre une étape d’injection d’un mélange comprenant le copolymère PEBA tel que défini ci-dessus, sous forme de granulés, optionnellement un ou plusieurs polymères autres que le copolymère PEBA et/ou un ou plusieurs additifs tels que décrits ci-dessus, et un agent d’expansion dans un moule et une étape de moussage dudit mélange. The process may comprise a step of injecting a mixture comprising the PEBA copolymer as defined above, in the form of granules, optionally one or more polymers other than the PEBA copolymer and/or one or more additives as described above. above, and a blowing agent in a mold and a step of foaming said mixture.
Le moussage est produit soit pendant l’injection dans le moule d’un volume de polymère inférieur à celui du moule, soit par l’ouverture du moule. Ces deux techniques, chacune ou en combinaison, permettent de produire directement des objets moussés tridimensionnels aux géométries complexes à partir des granulés des copolymères. The foaming is produced either during the injection into the mold of a volume of polymer lower than that of the mold, or by the opening of the mold. These two techniques, each or in combination, make it possible to directly produce three-dimensional foamed objects with complex geometries from the granules of the copolymers.
D’autres techniques de moussage en injection utilisables dans le cadre de la présente invention sont notamment le moussage en injection avec moule respirant, avec application d’une contre-pression de gaz, sous dosage, ou avec moule équipé d’un système Variotherm®. Other injection foaming techniques that can be used in the context of the present invention are in particular injection foaming with a breathable mold, with application of a gas counter-pressure, under dosage, or with a mold equipped with a Variotherm® system. .
L’article moussé selon la présente invention peut être recyclée, par exemple en les fondant dans une extrudeuse équipée d’une sortie de dégazage (optionnellement après les avoir découpés en morceaux). The foamed article according to the present invention can be recycled, for example by melting them in an extruder equipped with a degassing outlet (optionally after having cut them into pieces).
L’invention sera davantage explicitée de manière non limitative à l’aide de l’Exemple qui suit. The invention will be further explained in a non-limiting manner with the aid of the Example which follows.
Exemples Examples
Exemple 1 Example 1
Matériaux utilisés : le Tableau 1 montre les différentes matières premières employées et leurs fournisseurs respectifs. Tous les composés ont été utilisés tels que reçus. Materials used: Table 1 shows the different raw materials used and their respective suppliers. All compounds were used as received.
[Tableau 1] [Table 1]
Les composés PTMG 650, PTMG 1000 et PTMG 2000 sont des produits commercialisés sous l’appellation PolyTHF® 650, PolyTHF® 1000 et PolyTHF® 2000. The compounds PTMG 650, PTMG 1000 and PTMG 2000 are products marketed under the name PolyTHF® 650, PolyTHF® 1000 and PolyTHF® 2000.
Copolymères PEBA : différents copolymères PEBA ont été préparés. La nature et la masse molaire moyenne en nombre (Mn) des blocs polyamides (PA) et polyéthers (PE) des exemples A à D, et contre-exemples E à G figurent dans le Tableau 2 ci-après.PEBA copolymers: various PEBA copolymers have been prepared. The nature and the number-average molar mass (Mn) of the polyamide (PA) and polyether (PE) blocks of examples A to D, and counter-examples E to G appear in Table 2 below.
[T ableau 2] [T able 2]
Lorsque le bloc PA est copolymérisé, la proportion en poids de chaque constituant du motif amide est précisée. Par exemple, l’exemple B fait référence à un copolymère PEBA dont le bloc PA est constitué d’un copolyamide PA11/12 (ratio massique PA11/12 : 70/30). When the PA block is copolymerized, the proportion by weight of each constituent of the amide unit is specified. For example, Example B refers to a PEBA copolymer whose PA block consists of a PA11/12 copolyamide (PA11/12 mass ratio: 70/30).
Procédé de préparation : les copolymères PEBA ont été synthétisés selon le protocole suivant. Preparation process: the PEBA copolymers were synthesized according to the following protocol.
Cas de l’exemple A : 35,02 g de l’amino 11 , 9,25g de l’acide adipique, 40g du PTMG 650 sont chargés dans un tube de verre de 300 mL relié à une ancre d’agitation et un condenseur. Le montage est inerté pendant 30 minutes sous flux d’azote, puis chauffé à une température de 240°C. Dès que le milieu réactionnel est agitable, l’agitation est mise en route. Après une heure sous flux d’azote, le milieu réactionnel est progressivement placé sous vide où on introduit le catalyseur. L’avancement de la réaction est assuré par le suivi du couple moteur : la réaction est terminée lorsqu’un couple de 20 N/cm est atteint à 60 rpm. Le vide, l’agitation et la chauffe sont alors coupés. Le milieu réactionnel est ensuite placé sous azote durant son refroidissement. Toutes les synthèses ont été stabilisées par 0,16 g d’anti-oxydant et catalysées par 0.59 mL de butylate de zirconium (Zr(OBu)4) dilué dans le butanol. Case of example A: 35.02 g of amino 11, 9.25 g of adipic acid, 40 g of PTMG 650 are loaded into a 300 mL glass tube connected to a stirring anchor and a condenser . The assembly is inerted for 30 minutes under a flow of nitrogen, then heated to a temperature of 240°C. As soon as the reaction medium is agitable, stirring is started. After one hour under a stream of nitrogen, the reaction medium is gradually placed under vacuum where the catalyst is introduced. The progress of the reaction is ensured by monitoring the engine torque: the reaction is complete when a torque of 20 N/cm is reached at 60 rpm. The vacuum, agitation and heating are then cut off. The reaction medium is then placed under nitrogen during its cooling. All the syntheses were stabilized by 0.16 g of antioxidant and catalyzed by 0.59 mL of zirconium butoxide (Zr(OBu)4) diluted in butanol.
Les exemples B à G ont été préparés et adaptés selon des protocoles de l’exemple 1 avec des quantités présentées dans le Tableau 3. Examples B to G were prepared and adapted according to the protocols of example 1 with quantities presented in Table 3.
Tableau 3] Table 3]
Le Tableau 4 montre les températures de ramollissement Vicat (TVST) et enthalpies de fusion mesurées pour chacun des copolymères PEBA A à G ainsi que l’aptitude au surmoulage des particules expansées obtenues à partir desdits copolymères PEBA dans un procédé d’assemblage par compression-moulage en présence de vapeur d’eau (dit « steam chest »). Table 4 shows the Vicat softening temperatures (TVST) and enthalpies of fusion measured for each of the PEBA copolymers A to G as well as the moldability of the expanded particles obtained from said PEBA copolymers in an assembly process by compression- molding in the presence of water vapor (called “steam chest”).
Les particules expansées sont préparées selon la méthode suivante. Cas du l’exemple F : 100 g de granulés sont imprégnés par du CO2 dans un réacteur autoclave à une pression de 170 bars et une température de 135°C pendant 4 heures. Cette étape d’imprégnation à sec est suivie d’une étape d’expansion du gaz dissous dans la résine PEBA par réduction de la pression jusqu’à l’ambiante. Après refroidissement du réacteur, les particules expansées de PEBA peuvent être collectées. Les conditions d’imprégnation du CO2 dépendent du copolymère constituant les particules expansées et peuvent être ajustées par l’homme du métier. The expanded particles are prepared according to the following method. Case of example F: 100 g of granules are impregnated with CO2 in an autoclave reactor at a pressure of 170 bars and a temperature of 135° C. for 4 hours. This dry impregnation step is followed by a step of expansion of the gas dissolved in the PEBA resin by reducing the pressure to ambient. After the reactor has cooled, the expanded PEBA particles can be collected. The CO2 impregnation conditions depend on the copolymer constituting the expanded particles and can be adjusted by those skilled in the art.
Les exemples A à E et G ont été préparés et adaptés selon des protocoles de l’exemple F. Examples A to E and G were prepared and adapted according to protocols of example F.
Tableau 4] Table 4]
Les exemples A à D et contre-exemples E à G montrent qu’un copolymère PEBA présentant une température de ramollissement Vicat comprise entre 75°C et 120°C et une cristallinité minimum telle que définie par la mesure en DSC de l’enthalpie de fusion des motifs amides lors la seconde chauffe à une vitesse de 20°C/minute soit supérieure ou égale à 15 J/g confère aux particules expansées produites à partir de dudit copolymère PEBA une moulabilité améliorée. Examples A to D and counter-examples E to G show that a PEBA copolymer having a Vicat softening temperature of between 75° C. and 120° C. and a minimum crystallinity as defined by the DSC measurement of the enthalpy of fusion of the amide units during the second heating at a rate of 20° C./minute, ie greater than or equal to 15 J/g, gives the expanded particles produced from said PEBA copolymer an improved mouldability.

Claims

22 Revendications 22 Claims
1 . Copolymère à blocs polyamide et à blocs polyéther (PEBA), adapté à la préparation des particules expansées, présentant une cristallinité telle que l’enthalpie de fusion mesurée en DSC lors de la deuxième chauffe à une vitesse de 20°C/minute selon la norme ISO 11357-3 (delta Hm(2)), soit égale ou supérieure à 15 J/g, cette fusion correspondant à celle des motifs amide,1 . Copolymer with polyamide blocks and polyether blocks (PEBA), suitable for the preparation of expanded particles, exhibiting a crystallinity such as the enthalpy of fusion measured by DSC during the second heating at a rate of 20°C/minute according to the standard ISO 11357-3 (delta Hm(2)), or equal to or greater than 15 J/g, this fusion corresponding to that of the amide units,
- une température de ramollissement Vicat (VST) supérieure ou égale à 75°C et inférieure ou égale à 120°C selon la norme ISO 306 (méthode A50). - a Vicat softening temperature (VST) greater than or equal to 75°C and less than or equal to 120°C according to the ISO 306 standard (A50 method).
2. Copolymère selon la revendication 1 , dans lequel les blocs polyamides du copolymère PEBA sont des blocs copolyamides. 2. Copolymer according to claim 1, in which the polyamide blocks of the PEBA copolymer are copolyamide blocks.
3. Copolymère selon la revendication 1 ou 2, dans lequel les blocs polyamides sont des blocs choisis parmi les blocs PA 6/11, PA 6/12, PA 11/12, PA 6/11/12, PA 6/66/12, PA 6/1010, PA 6/1012, PA 6/1010/1012, PA 6/1012/12, PA 6/66/11/12, PA 6/1010/1012/1014, ainsi que leurs mélanges. 3. Copolymer according to claim 1 or 2, in which the polyamide blocks are blocks chosen from the blocks PA 6/11, PA 6/12, PA 11/12, PA 6/11/12, PA 6/66/12 , PA 6/1010, PA 6/1012, PA 6/1010/1012, PA 6/1012/12, PA 6/66/11/12, PA 6/1010/1012/1014, as well as mixtures thereof.
4. Copolymère selon la revendication 1 , dans lequel les blocs polyamides du copolymère PEBA sont choisis parmi les blocs polyamides résultant de la condensation d’un acide a,co-aminocarboxylique ou d’un lactame, de préférence choisis parmi les blocs PA 11, PA 12, ledit copolymère ayant une masse molaire moyenne en nombre (Mn) des blocs polyamides de 400 à 1500 g/mol, plus préférentiellement de 500 à 1200 g/mol, et encore plus préférentiellement de 500 à 1000 g/mol et/ou la masse molaire moyenne en nombre (Mn) des blocs polyéthers de 400 à 2000 g/mol, plus préférentiellement de 500 à 1500 g/mol, et encore plus préférentiellement de 500 à 1000 g/mol. 4. Copolymer according to claim 1, in which the polyamide blocks of the PEBA copolymer are chosen from the polyamide blocks resulting from the condensation of an α,co-aminocarboxylic acid or of a lactam, preferably chosen from PA 11 blocks, PA 12, said copolymer having a number-average molar mass (Mn) of the polyamide blocks of 400 to 1500 g/mol, more preferentially from 500 to 1200 g/mol, and even more preferentially from 500 to 1000 g/mol and/or the number-average molar mass (Mn) of the polyether blocks from 400 to 2000 g/mol, more preferentially from 500 to 1500 g/mol, and even more preferentially from 500 to 1000 g/mol.
5. Copolymère selon l’une des revendications précédentes, dans lequel les blocs polyéthers sont choisis parmi des blocs issus de PEG, de PPG, de PO3G et/ou de PTMG, de préférence de PTMG. 5. Copolymer according to one of the preceding claims, in which the polyether blocks are chosen from blocks derived from PEG, PPG, PO3G and/or PTMG, preferably PTMG.
6. Copolymère selon l’une des revendications précédentes, ayant une dureté instantanée inférieure ou égale à 72 Shore D, de préférence encore inférieure ou égale à 55 Shore D, de préférence encore inférieure ou égale à 45 Shore D. 6. Copolymer according to one of the preceding claims, having an instantaneous hardness less than or equal to 72 Shore D, more preferably less than or equal to 55 Shore D, more preferably less than or equal to 45 Shore D.
7. Copolymère selon l’une des revendications précédentes, dans lequel la proportion massique de blocs polyéthers dans le copolymère est au moins 50% par rapport au poids total du copolymère. 7. Copolymer according to one of the preceding claims, in which the mass proportion of polyether blocks in the copolymer is at least 50% relative to the total weight of the copolymer.
8. Particules expansées d’un copolymère selon l’une des revendications 1 à 7. 8. Expanded particles of a copolymer according to one of claims 1 to 7.
9. Particules expansées selon la revendication 8, ayant une forme sphérique, ellipsoïde ou triangulaire, de préférence sphérique ayant une taille moyenne compris entre 2 à 20 mm. 9. Expanded particles according to claim 8, having a spherical, ellipsoid or triangular shape, preferably spherical having an average size between 2 to 20 mm.
10. Particules expansées selon l’une des revendications 8 ou 9, présentant une densité inférieure ou égale à 200 kg/m3, ou mieux inférieure ou égale à 150 kg/m3, plus préférentiellement inférieure ou égale à 100 kg/m3. 10. Expanded particles according to one of claims 8 or 9, having a density less than or equal to 200 kg/m 3 , or better still less than or equal to 150 kg/m 3 , more preferably less than or equal to 100 kg/m 3 .
11. Article, de préférence un article moussé, comprenant au moins un élément constitué d’un copolymère selon l’une des revendications 1 à 7 ou des particules expansées selon l’une des revendications 8 à 10. 11. Article, preferably a foamed article, comprising at least one element consisting of a copolymer according to one of claims 1 to 7 or expanded particles according to one of claims 8 to 10.
12. Article selon la revendication 11 étant choisi parmi les semelles de chaussures, notamment les semelles de chaussures de sport, les ballons ou balles, les gants, les équipements de protection individuels, les semelles pour rails, les pièces automobiles, les pièces de construction et les pièces d’équipements électriques et électroniques. 12. Article according to claim 11 being chosen from shoe soles, in particular the soles of sports shoes, footballs or balls, gloves, personal protective equipment, soles for rails, automobile parts, construction parts and parts of electrical and electronic equipment.
13. Procédé de préparation d’un article selon la revendication 11 ou 12 par moulage. 13. Process for preparing an article according to claim 11 or 12 by molding.
14. Procédé selon la revendication 13 comprenant une étape d’assemblage des particules expansées selon l’une des revendications 8 à 10 par pressage à chaud en utilisant une presse à chaud et/ou un soudage à la vapeur dans un moule. 14. Method according to claim 13 comprising a step of assembling the expanded particles according to one of claims 8 to 10 by hot pressing using a hot press and/or steam welding in a mould.
15. Procédé selon la revendication 13, comprenant : 15. Method according to claim 13, comprising:
- une étape d’imprégnation dans un moule d’un copolymère selon l’une des revendication 1 à 8, sous forme de granulés, avec un agent d’expansion, optionnellement un ou plusieurs polymères autres que le copolymère et/ou un ou plusieurs additifs; - a step of impregnating in a mold a copolymer according to one of claims 1 to 8, in the form of granules, with a blowing agent, optionally one or more polymers other than the copolymer and/or one or more additives;
- une étape d’expansion pour produire les particules expansées du copolymère ; et - an expansion step to produce the expanded particles of the copolymer; and
- une étape d’assemblage des particules expansées pour former l’article moussé dans le moule, les étapes d’expansion et d’assemblage ayant lieu simultanément. - a step of assembling the expanded particles to form the foamed article in the mould, the expansion and assembly steps taking place simultaneously.
EP22708581.8A 2021-02-01 2022-01-31 Copolymer comprising polyamide blocks and polyether blocks for producing a foamed article Pending EP4284620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2100968A FR3119396B1 (en) 2021-02-01 2021-02-01 Copolymer with polyamide blocks and polyether blocks for the manufacture of a foamed article
PCT/FR2022/050166 WO2022162325A1 (en) 2021-02-01 2022-01-31 Copolymer comprising polyamide blocks and polyether blocks for producing a foamed article

Publications (1)

Publication Number Publication Date
EP4284620A1 true EP4284620A1 (en) 2023-12-06

Family

ID=75108563

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22708581.8A Pending EP4284620A1 (en) 2021-02-01 2022-01-31 Copolymer comprising polyamide blocks and polyether blocks for producing a foamed article

Country Status (8)

Country Link
US (1) US20230357482A1 (en)
EP (1) EP4284620A1 (en)
JP (1) JP2024507310A (en)
KR (1) KR20230141730A (en)
CN (1) CN116583398A (en)
FR (1) FR3119396B1 (en)
TW (1) TW202242017A (en)
WO (1) WO2022162325A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652326A (en) 1993-03-03 1997-07-29 Sanyo Chemical Industries, Ltd. Polyetheresteramide and antistatic resin composition
FR2846332B1 (en) 2002-10-23 2004-12-03 Atofina TRANSPARENT COPOLYMERS WITH POLYAMIDE BLOCKS AND POLYETHER BLOCKS
US7056975B2 (en) 2003-05-27 2006-06-06 Ube Industries, Ltd. Thermoplastic resin composition having improved resistance to hydrolysis
FR2902436B1 (en) * 2006-06-14 2008-08-01 Arkema France MIXTURES AND ALLOYS BASED ON A SEMI-CRYSTALLINE AMORPHOUS COPOLYMER WITH A PATTERN OF AMIDES AND A ETHERSIC PATTERN, THESE MATERIALS HAVING IMPROVED OPTICAL PROPERTIES
WO2014198779A1 (en) 2013-06-13 2014-12-18 Basf Se Method for producing expanded granulate
TWI656153B (en) 2013-10-11 2019-04-11 巴斯夫歐洲公司 Manufacture of expanded thermoplastic elastomer beads
DE102014216992A1 (en) 2014-08-26 2016-03-03 Adidas Ag Expanded polymer pellets
JP6081674B2 (en) * 2014-09-30 2017-02-15 積水化成品工業株式会社 Amide-based elastomer expanded particles, method for producing the same, foamed molded article, and method for producing the same
DE102015202013B4 (en) 2015-02-05 2019-05-09 Adidas Ag Process for producing a plastic molding, plastic molding and shoe
JP6422806B2 (en) 2015-03-30 2018-11-14 積水化成品工業株式会社 Amide-based foamed resin particles and foamed molded article
FR3047245B1 (en) * 2016-01-29 2018-02-23 Arkema France COPOLYMER FOAM WITH POLYAMIDE BLOCKS AND POLYETHERS BLOCKS
WO2017220671A1 (en) * 2016-06-23 2017-12-28 Basf Se Method for producing foam particles made of thermoplastic elastomers with polyamide segments
CN110294860B (en) * 2018-03-21 2021-08-24 加久企业股份有限公司 Process for producing elastic composite material and product thereof
CN112280089A (en) * 2019-07-24 2021-01-29 安踏(中国)有限公司 Middle sole formed by mould pressing physical foaming and preparation method thereof

Also Published As

Publication number Publication date
WO2022162325A1 (en) 2022-08-04
CN116583398A (en) 2023-08-11
US20230357482A1 (en) 2023-11-09
JP2024507310A (en) 2024-02-19
FR3119396B1 (en) 2024-04-19
TW202242017A (en) 2022-11-01
KR20230141730A (en) 2023-10-10
FR3119396A1 (en) 2022-08-05

Similar Documents

Publication Publication Date Title
EP3408317B1 (en) Foam of a copolymer of polyamide blocks and polyether blocks
EP3580266B1 (en) Non-crosslinked copolymer foam with polyamide blocks and polyether blocks
WO2022058680A1 (en) Composition comprising a copolymer containing polyamide blocks and polyether blocks
WO2022058679A1 (en) Foamable polymer composition comprising a branched copolymer containing polyamide blocks and polyether blocks
EP4284620A1 (en) Copolymer comprising polyamide blocks and polyether blocks for producing a foamed article
WO2020008133A1 (en) Method for producing a copolymer foam with polyamide blocks and polyether blocks
FR3073852B1 (en) BLOCK COPOLYMER FOAM
EP4214271A1 (en) Polymer foam comprising an ethylene-vinyl acetate (eva) copolymer and/or an ethylene-alkyl (meth)acrylate copolymer and a copolymer comprising polyamide blocks and polyether blocks
EP3938433A1 (en) Method for producing a copolymer foam with polyamide blocks and polyether blocks
EP3938427A1 (en) Branched hard- and soft-block copolymers
WO2024089365A1 (en) Foam comprising a thermoplastic polyurethane and a copolymer with polyamide blocks and polyether blocks
WO2024089364A1 (en) Foam comprising a thermoplastic polyurethane and a copolymer having polyamide blocks and polyether blocks with amine end groups

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)