EP4271973A1 - Procede de fabrication d'un dispositif de detection comportant une structure d'encapsulation comportant une couche mince opaque reposant sur une paroi peripherique minerale - Google Patents
Procede de fabrication d'un dispositif de detection comportant une structure d'encapsulation comportant une couche mince opaque reposant sur une paroi peripherique mineraleInfo
- Publication number
- EP4271973A1 EP4271973A1 EP21844791.0A EP21844791A EP4271973A1 EP 4271973 A1 EP4271973 A1 EP 4271973A1 EP 21844791 A EP21844791 A EP 21844791A EP 4271973 A1 EP4271973 A1 EP 4271973A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- thin
- mineral
- matrix
- opaque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052500 inorganic mineral Inorganic materials 0.000 title claims abstract description 121
- 239000011707 mineral Substances 0.000 title claims abstract description 121
- 238000001514 detection method Methods 0.000 title claims abstract description 87
- 230000002093 peripheral effect Effects 0.000 title claims abstract description 68
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 53
- 230000000284 resting effect Effects 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000003486 chemical etching Methods 0.000 claims abstract description 30
- 239000010410 layer Substances 0.000 claims description 255
- 239000011159 matrix material Substances 0.000 claims description 123
- 238000005538 encapsulation Methods 0.000 claims description 74
- 239000000758 substrate Substances 0.000 claims description 67
- 230000005670 electromagnetic radiation Effects 0.000 claims description 56
- 239000000463 material Substances 0.000 claims description 46
- 230000036961 partial effect Effects 0.000 claims description 27
- 230000003014 reinforcing effect Effects 0.000 claims description 23
- 239000012528 membrane Substances 0.000 claims description 22
- 230000002745 absorbent Effects 0.000 claims description 20
- 239000002250 absorbent Substances 0.000 claims description 20
- 239000011241 protective layer Substances 0.000 claims description 18
- 238000004873 anchoring Methods 0.000 claims description 15
- 238000000151 deposition Methods 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 10
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 230000002787 reinforcement Effects 0.000 claims description 5
- 239000012808 vapor phase Substances 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 230000008030 elimination Effects 0.000 claims description 2
- 238000003379 elimination reaction Methods 0.000 claims description 2
- 238000005530 etching Methods 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910003481 amorphous carbon Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000007373 indentation Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 2
- 239000012777 electrically insulating material Substances 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminium flouride Chemical compound F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910020177 SiOF Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- -1 TEOS compound Chemical class 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000005383 fluoride glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000001995 intermetallic alloy Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005478 sputtering type Methods 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/0225—Shape of the cavity itself or of elements contained in or suspended over the cavity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/04—Casings
- G01J5/041—Mountings in enclosures or in a particular environment
- G01J5/045—Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/0225—Shape of the cavity itself or of elements contained in or suspended over the cavity
- G01J5/024—Special manufacturing steps or sacrificial layers or layer structures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
- G01J5/064—Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/70—Passive compensation of pyrometer measurements, e.g. using ambient temperature sensing or sensing of temperature within housing
Definitions
- the field of the invention is that of devices for detecting electromagnetic radiation, in particular infrared or terahertz, comprising an encapsulation structure in which is located a matrix of thermal compensation detectors, the encapsulation structure comprising a thin upper layer opaque to the radiation to be detected.
- the invention applies in particular to the field of infrared or terahertz imaging, thermography, or even gas detection.
- a device for detecting electromagnetic radiation may comprise a matrix of sensitive pixels each containing a thermal detector.
- Thermal detectors are made from a reading substrate containing a reading and control integrated circuit (ROIC).
- the thermal detectors can be of the type with an absorbent membrane thermally insulated from the reading substrate.
- the absorbent membrane comprises an absorber of the electromagnetic radiation to be detected associated with a thermometric transducer whose electrical property varies in intensity as a function of its heating.
- the absorbent membrane is usually thermally insulated from the substrate and from the reading circuit, which is placed in the substrate.
- the absorbent membrane is generally suspended above the substrate by anchoring pillars, and is thermally insulated therefrom by holding and thermal insulation arms.
- anchoring pillars and insulation arms also have an electrical function by ensuring the electrical connection of the suspended membrane to the reading circuit arranged in the substrate.
- the detection device when reading an electrical signal from the thermal detector during the absorption of electromagnetic radiation, the useful part of the measured electrical signal, which is associated with heating of the thermometric transducer (induced by the absorption of to be detected), remains low compared to the intensity of the electrical signal measured.
- the detection device usually comprises detectors so-called compensation thermal signals intended to measure the non-useful part of the electrical signal, also called common mode, associated with the environment of the thermal detector, which is then subtracted from the response signal to deduce the useful part therefrom.
- the detection device in particular when it operates in 'rolling shutter' mode, can then comprise a matrix of sensitive pixels, and a matrix of compensation pixels usually smaller than the matrix of sensitive pixels, and an integrator CTIA type placed at the foot of each column of pixels.
- the matrix of sensitive pixels is read line by line.
- the integrator receives the response signal k from the thermal detector and subtracts from it the common mode electrical signal l c measured by the corresponding compensation detector.
- the non-useful part contained in the response signal k is compensated by the common mode l c .
- the useful part ld-lc associated with the absorption of the electromagnetic radiation to be detected is thus obtained, without it being necessary to specifically regulate the temperature of the substrate.
- the document WO2012/056124A1 describes an example of a detection device comprising a matrix of sensitive pixels and a matrix of compensation pixels.
- Each pixel comprises an absorbent membrane thermal detector suspended above the reading substrate.
- the thermal detectors are made on and through a first sacrificial layer of polyimide, and are covered by a second sacrificial layer.
- a compensation structure forms a cavity in which the array of compensation pixels is located. It comprises a thin opaque layer making it possible to screen the compensation pixels, that is to say not to transmit the electromagnetic radiation to be detected.
- the thin opaque layer is produced by conformal deposition so as to continuously cover the upper face and the sides of the two sacrificial layers.
- the thin opaque layer comprises an upper wall extending above the compensation pixels and a peripheral wall, which rests on the reading substrate, extending around the latter.
- the object of the invention is to remedy, at least in part, the drawbacks of the prior art.
- the object of the invention is a method of manufacturing a device for detecting electromagnetic radiation, comprising the following steps: o production, on and through a first sacrificial layer resting on a substrate of reading, of a detection matrix formed of thermal detectors intended to detect the electromagnetic radiation, and of at least one so-called compensation matrix formed of thermal detectors intended not to detect the electromagnetic radiation, a second sacrificial layer covering the thermal detectors and the first sacrificial layer; the thermal detectors (20s) of the compensation matrix (2s) being adapted to detect electromagnetic radiation and structurally identical to the thermal detectors (20p) of the detection matrix (2p); o production of a so-called secondary encapsulation structure delimiting a secondary cavity in which the compensation matrix is located, and comprising a peripheral wall as well as an opaque upper wall resting on the peripheral wall and formed of at least one thin layer opaque.
- the first and second sacrificial layers are made of an inorganic material.
- the step of producing the encapsulation structure comprises the following steps: producing the thin opaque layer so that it extends in a continuously planar manner only over an upper surface of the second mineral sacrificial layer; o production, in the thin opaque layer, of vents arranged facing the compensation matrix; o partial removal of the first and second mineral sacrificial layers through the vents, by chemical etching, so as to release the detection matrix and the compensation matrix, and to obtain the peripheral wall then formed of a non-etched portion of the sacrificial layers minerals and surrounding the compensation matrix, the thin opaque layer then being suspended above the compensation matrix and resting on the peripheral wall.
- the first and second sacrificial layers can be made of the same mineral material based on an oxide or a silicon nitride.
- the thermal detectors of the detection matrix can each comprise an absorbent membrane capable of absorbing the electromagnetic radiation to be detected and can comprise a thermometric transducer, suspended above the reading substrate by anchor pillars and support and thermal insulation arms.
- the thermal detectors of the detection matrix and/or the thermal detectors of the compensation matrix can each comprise a reflective layer, which rests on the reading substrate, below each absorbent membrane.
- the opaque upper wall may comprise an interference stack that absorbs the electromagnetic radiation to be detected
- the thin opaque layer can be a layer that reflects or absorbs the electromagnetic radiation to be detected.
- the thin opaque layer may have a uniform thickness.
- the upper opaque wall may further comprise at least one thin reinforcing layer covering the thin opaque layer, and may have a border projecting vis-à-vis the peripheral wall in a plane parallel to the reading substrate, the projecting border comprising the thin opaque layer and/or the thin reinforcing layer.
- the secondary cavity may have a length and a width in a plane parallel to the reading substrate, the width being less than or equal to 200 ⁇ m. The width is less than the length.
- the opaque top wall may not include reinforcing pillars, made in one piece and of the same material with a thin layer of the opaque top wall, located in the secondary cavity and coming to rest on the reading substrate .
- the mineral sacrificial layers can be made of a material that absorbs the electromagnetic radiation to be detected.
- the thin opaque layer can be made of a material with a getter effect.
- the manufacturing process may comprise the following steps: o before the partial elimination step, production of the opaque upper wall formed of a stack comprising a thin protective layer made of amorphous carbon inert to an etchant used during the partial removal step and located in contact with the second mineral sacrificial layer, the thin opaque layer extending only over and in contact with the thin protective layer, so that, during the partial removal step, the thin opaque layer is protected by the thin protective layer; o after the partial removal step, removal of at least part of the thin protective layer by chemical etching, so as to free a lower face of the opaque thin layer.
- the manufacturing method may comprise a step of producing a main encapsulation structure delimiting a main cavity in which the detection matrix is located, and comprising a main upper wall comprising a thin encapsulation layer resting on a main peripheral wall, by the following steps: o deposition of the thin encapsulation layer on the second mineral sacrificial layer, extending above the detection matrix and the compensation matrix; o production, in the thin encapsulation layer, of main vents arranged facing the detection matrix; o the partial removal of the first and second mineral sacrificial layers being carried out so as to form the main peripheral wall then formed of an unetched portion of the mineral sacrificial layers and surrounding the detection matrix, the thin encapsulation layer then being suspended from the above the detection matrix and resting on the main peripheral wall.
- the manufacturing method may comprise a step of producing a communication chamber connecting the secondary cavity and the main cavity, the communication chamber being delimited laterally by a non-etched portion of the first and second mineral sacrificial layers.
- the manufacturing method may include a step of producing reinforcing pillars of the thin encapsulation layer, resting on the reading substrate, preferably by means of anchoring pillars of the thermal detectors of the matrix of detection.
- the chemical etching in an acid medium can be carried out with hydrofluoric acid in the vapor phase, and the first and second mineral sacrificial layers can be made of a silicon-based mineral material, and preferably of a silicon oxide. It can be performed using a fluorocarbon etchant in the gas phase, in particular when the mineral sacrificial layers are made based on a silicon nitride.
- the invention also relates to a device for detecting electromagnetic radiation, comprising: o a reading substrate; o a detection matrix formed of thermal detectors intended to detect the electromagnetic radiation; o at least one so-called compensation matrix formed of thermal detectors intended not to detect electromagnetic radiation, adapted to detect electromagnetic radiation, and structurally identical to the thermal detectors (20p) of the detection matrix (2p); o a so-called secondary encapsulation structure delimiting a secondary cavity in which the compensation matrix is located, and comprising a peripheral wall as well as an opaque upper wall resting on the peripheral wall and formed of at least one opaque thin layer; o the opaque thin layer extending continuously flat, and the peripheral wall being made of a mineral material.
- FIGS. 1A to 1F are schematic and partial views illustrating various stages of a method of manufacturing a detection device according to one embodiment
- Figure 2 is a top view, schematic and partial, of a detection device according to a variant of the embodiment illustrated in fig.lF, in which it comprises several secondary cavities
- FIGS. 3A to 3F are schematic and partial views illustrating various steps of a method of manufacturing a detection device according to an embodiment variant, in which the thin opaque layer is made of a material with a getter effect
- FIGS. 1A to 1F are schematic and partial views illustrating various stages of a method of manufacturing a detection device according to one embodiment
- Figure 2 is a top view, schematic and partial, of a detection device according to a variant of the embodiment illustrated in fig.lF, in which it comprises several secondary cavities
- FIGS. 3A to 3F are schematic and partial views illustrating various steps of a method of manufacturing a detection device according to an embodiment variant, in which the thin opaque layer is made of a material with a getter effect
- FIGS. 4A to 4D are schematic and partial views illustrating various steps of a method of manufacturing a detection device according to another embodiment, in which the encapsulation structure of the detection matrix comprises an attached cover and assembled to the reading substrate.
- the invention generally relates to a method of manufacturing a device for detecting infrared or terahertz electromagnetic radiation.
- This detection device comprises a plurality of thermal detectors, which are distributed so as to form at least one so-called sensitive matrix, or detection matrix, of thermal detectors intended to detect electromagnetic radiation, and at least one so-called compensation of thermal detectors intended not to detect electromagnetic radiation.
- the manufacturing method comprises a step of producing the matrix of thermal detectors by means of so-called mineral sacrificial layers, made of a mineral or inorganic material, these sacrificial layers being intended to form a peripheral wall of a structure of encapsulation.
- This is a dielectric material based on silicon also allowing the production of an inter-metal dielectric layer of the read circuit, that is to say an electrically insulating material, with for example a dielectric constant, or relative permittivity, less than or equal to 3.9, thus limiting parasitic capacitance between the interconnects.
- This mineral material does not comprise carbon chains, and it can be based on a silicon oxide, for example be a silicon oxide SiO x , possibly organosilicon such as SiOC, SiOCH, or a material of the fluoride glass type. such as SiOF. It can also be based on a silicon nitride, for example be a silicon nitride Si x N y . It is preferably a silicon oxide SiO x .
- the manufacturing process also includes a step of partially removing the mineral sacrificial layers by chemical etching, optionally chemical etching in an acid medium, for example with hydrofluoric acid in the vapor phase (HF vapour), in particular when the material mineral is based on a silicon oxide.
- chemical etching optionally chemical etching in an acid medium, for example with hydrofluoric acid in the vapor phase (HF vapour), in particular when the material mineral is based on a silicon oxide.
- the partial etching can be carried out using a chemical gas-phase fluorocarbon. Be that as it may, other etchants can be used depending on the nature of the mineral material used.
- the compensation matrix is located in a cavity, preferably hermetic, formed by an encapsulation structure which extends above and around the compensation thermal detectors.
- the encapsulation structure comprises at least: a mineral peripheral wall which extends around the compensation matrix and laterally delimits the cavity.
- the mineral peripheral wall is formed of a non-etched portion of the mineral sacrificial layers; an opaque upper wall, which extends above the compensation matrix and vertically delimits the cavity.
- This opaque upper wall comprises at least one thin opaque layer of a material opaque to the electromagnetic radiation to be detected, that is to say whose transmission is less than or equal to 5%, or even less than or equal to 1%.
- thin layer is meant a layer formed by microelectronic material deposition techniques, the thickness of which is preferably less than or equal to 10 ⁇ m. Furthermore, a thin layer is said to be transparent when it has a transmission rate greater than or equal to 50%, preferably 75%, or even 90% for a central wavelength of the spectral range of the electromagnetic radiation to be detected. .
- the absorption rate of the thin layer is preferably less than or equal to 50%, preferably 25%, and more preferably 10%.
- the encapsulation structure defining the main cavity in which the detection matrix is located may thus be an encapsulation structure entirely made by depositing thin transparent layers on and through mineral sacrificial layers; or an encapsulation structure of which at least a part is transferred and assembled to the reading substrate.
- FIGS IA to 1F illustrate, schematically and partially, different steps of a method of manufacturing a detection device 1 according to one embodiment, in which the encapsulation structures 30s, 30p of the matrix compensation 2s and the detection matrix 2p are produced by depositing thin layers on and through the mineral sacrificial layers 41, 42.
- the detection device 1 comprises a compensation matrix 2s located in a cavity secondary 3s, but it can alternatively comprise several compensation matrices each located in a dedicated secondary 3s cavity (see fig.2).
- XYZ a direct three-dimensional reference XYZ
- the XY plane is substantially parallel to the plane of the reading substrate 10
- the Z axis being oriented in a direction substantially orthogonal to the plane of the substrate of reading 10 towards thermal detectors 20p, 20s.
- the terms “vertical” and “vertically” are understood as being relative to an orientation substantially parallel to the Z axis
- the terms “lower” and “upper” are understood as being relative to an increasing positioning as one moves away from the reading substrate 10 along the direction +Z.
- the detection device 1 comprises: a so-called sensitive matrix 2p of thermal detectors 20p intended to receive and detect the electromagnetic radiation of interest, the detection matrix 2p preferably being located in a main cavity 3p defined by a main encapsulation structure 30p; at least one so-called compensation matrix 2s of thermal detectors 20s intended not to receive the electromagnetic radiation of interest, the compensation matrix 2s being located in a secondary cavity 3s defined by a secondary encapsulation structure 30s.
- This secondary encapsulation structure 30s comprises an opaque upper wall 32s resting on a mineral peripheral wall 31s and comprising at least one thin opaque layer 33.
- the thermal detectors 20p are here suitable for detecting infrared radiation in the LWIR (Long Wavelength Infrared) range, the wavelength of which is between approximately 8 ⁇ m and 14 ⁇ m.
- Thermal detectors 20p and 20s are connected to a read circuit 14 located in substrate 10 (then called read substrate).
- the sensitive thermal detectors 20p thus form sensitive pixels preferably arranged periodically, and may have a lateral dimension in the plane of the reading substrate 10, of the order of a few tens of microns, for example equal to approximately 10 ⁇ m or even less.
- the thermal compensation detectors 20s are structurally similar or identical to the sensitive thermal detectors 20p in the sense that they comprise a suspended membrane 22 by holding arms (not shown) and anchoring pillars 21.
- the suspended membrane 22 may also include a thermometric transducer. They can then provide the reading circuit 14 with an electrical signal representative of heating by the Joule effect During the lecture.
- certain compensation thermal detectors can also supply read circuit 14 with an electrical signal that is also representative of the temperature of read substrate 10 (common mode). For this, these thermal detectors are thermalized to the read substrate 10 insofar as the holding arms do not ensure the thermal insulation of the absorbent membrane 22 vis-à-vis the read substrate 10.
- the detection matrix 2p and the compensation matrix 2s are produced from the reading substrate 10, on and through a first mineral sacrificial layer 41.
- the reading substrate 10 is made from silicon, and is formed of a support substrate 11 containing the read circuit 14 suitable for controlling and reading the thermal detectors 20p, 20s.
- the read circuit 14 is presented here in the form of a CMOS integrated circuit. It comprises, among other things, portions of conductive lines separated from each other by inter-metal insulating layers made of a dielectric material, for example a silicon-based mineral material such as a silicon oxide SiO x , a silicon nitride SiN x , among others.
- Conductive portions 12 are flush with the surface of the support substrate 11, and ensure the electrical connection of the anchoring pillars 21 of the thermal detectors 20p, 20s to the reading circuit 14.
- one or more connection portions or pads 7 are flush with the surface of the support substrate 11, and make it possible to connect the reading circuit 14 to an external electronic device (not shown).
- the reading circuit 14 is adapted to read an electrical signal emitted by the thermal compensation detectors 20s, which is representative of heating by Joule effect during reading (and possibly representative of the temperature of the reading substrate 10) .
- Each sensitive thermal detector 20s and preferably each compensation thermal detector 20p, comprises a reflective layer 23 (reflector), which rests on the reading substrate 10 and is located opposite (and therefore below) each absorbent membrane 22.
- the reflector 23 may be formed by a portion of a conductive line of the last interconnection level, the latter being made of a material suitable for reflecting the electromagnetic radiation to be detected, or be a layer deposited on the layer protection 13 shown below. It extends opposite the absorbent membrane 22 of the sensitive thermal detector 20p, and is intended to form therewith a quarter-wave interference cavity vis-à-vis electromagnetic radiation to be detected. It preferably also extends opposite the absorbent membrane 22 of the thermal compensation detector 20s.
- the reading substrate 10 here comprises a protective layer 13 so as to cover in particular the upper inter-metal insulating layer.
- This protective layer 13 here corresponds to an etching stop layer made of a material substantially inert to the chemical etching agent subsequently used to remove the various mineral sacrificial layers, for example in the HF medium in the vapor phase.
- This protective layer 13 thus forms a hermetic and chemically inert layer, and electrically insulating to avoid any short-circuit between the anchoring pillars 21. It thus makes it possible to prevent the underlying inter-metal insulating layers from being etched during this step of removing the mineral sacrificial layers. It can be formed from an aluminum oxide or nitride, or even from aluminum trifluoride, or else from unintentionally doped amorphous silicon.
- the thermal detectors 20p, 20s are then produced on the reading substrate 10. These production steps are identical or similar to those described in particular in the document EP3239670A1.
- the sensitive thermal detectors 20p and the compensation thermal detectors 20s here advantageously have a similar structure. They are here microbolometers each comprising an absorbent membrane 22, i.e. capable of absorbing the electromagnetic radiation to be detected, suspended above the reading substrate 10 by anchoring pillars 21 and holding arms (not shown). The holding arms also ensure the thermal insulation of the absorbent membranes vis-à-vis the reading substrate 10. This is of course the case of the sensitive thermal detectors 20p, but also of the thermal compensation detectors 20s which thus supply a signal electricity representative of heating by the Joule effect during reading.
- absorbent membranes 22 are conventionally carried out by surface micro-machining techniques consisting in producing the anchoring pillars 21 through a first mineral sacrificial layer 41, and the holding arms as well as the membranes absorbents 22 on the upper face of the mineral sacrificial layer 41.
- Each absorbent membrane 22 further comprises a thermometric transducer, for example a thermistor material, connected to the reading circuit 14 by electrical connections provided in the thermal insulation arms and in anchor pillars 21.
- the sensitive thermal detectors 20p are located in a main zone of the surface of the reading substrate 10 intended to correspond to the main cavity 3p (detection cavity), and the compensation thermal detectors 20s are located in a secondary zone of this surface intended to correspond to the secondary cavity 3s (compensation cavity).
- the detection matrix 2p can contain a large number of thermal detectors 20p, for example 640 ⁇ 480.
- the 2s compensation matrix can, for example, contain 4 ⁇ 480 20s thermal detectors.
- the main zone therefore has a larger surface than the secondary zone.
- a second mineral sacrificial layer 42 is then deposited, preferably of the same nature as the mineral sacrificial layer 41.
- the mineral sacrificial layer 42 thus covers the mineral sacrificial layer 41 as well as the sensitive thermal detectors 20p and the compensating thermal detectors 20s. It has a substantially planar free upper face.
- the various mineral sacrificial layers 41, 42 can be a silicon oxide obtained from a TEOS compound (tetraethyl orthosilicate) deposited by PECVD.
- Mineral sacrificial layers 41, 42 can be made of the same mineral material.
- the thin opaque layer 33 is produced intended to screen the compensation matrix 2s, that is to say to avoid the transmission of the electromagnetic radiation to be detected in the direction of the thermal compensation detectors 20s.
- Thin opaque layer 33 can be a layer that reflects or absorbs the electromagnetic radiation of interest.
- the thin opaque layer 33 is made so that it extends in a continuously flat manner only on an upper surface (on part of the upper face) of the mineral sacrificial layer 42.
- a thin opaque layer 33 is deposited on and in contact with the second sacrificial mineral layer 42.
- one or more thin layers may have been previously deposited on the second sacrificial mineral layer 42.
- the layer thin opaque 33 is deposited so as to extend in a continuously planar manner above the compensation matrix 2s.
- continuously planar it is meant that the thin opaque layer 33 extends planarly in the XY plane over its entire surface area. It is deposited so that it has a substantially constant thickness.
- a reflective material it may be aluminum, gold, tungsten, copper or titanium, with a constant thickness for example between 1000 nm and a few hundred nanometers. , for example equal to approximately 300 nm.
- the thickness of the thin opaque layer 33 is less than or equal to lpm so as not to complicate the manufacturing process.
- These materials of the opaque thin layer 33 are advantageously substantially inert (or weakly reactive) to the chemical etching implemented to partially remove the mineral sacrificial layers 41, 42.
- the thickness of the material deposited will be slightly greater than the desired final thickness, to take into account a slight partial etching (thinning) during the chemical etching step.
- the thin opaque layer 33 can be deposited by thin layer deposition techniques guaranteeing uniformity of its thickness, for example by physical vapor deposition (PVD, for Physical Vapor Deposition, in English), of the sputtering type. cathode of a metal target or by vacuum evaporation of a metal heated in a crucible.
- PVD physical vapor deposition
- the thin opaque layer 33 is then structured by lithography and localized etching, so that it does not extend above the detection matrix 2p. It can thus extend everywhere on the second mineral sacrificial layer 42 (except above the detection matrix 2p - as illustrated in FIG. 4A), or can only extend above the matrix of 2s compensation and secondary zone (as shown in fig.lF). Be that as it may, the thin opaque layer 33 extends at least partly above the area where the mineral peripheral wall 31s of the secondary encapsulation structure 30s will be located.
- indentations 43 are made here and preferably insulating portions 44 for the production of reinforcing pillars 35 of thin encapsulation layer 34 of the main encapsulation structure 30p.
- indentations 43 are made which extend from the upper face of the second mineral sacrificial layer 42 along the Z axis to lead to the anchoring pillars 21 of the sensitive thermal detectors 20p.
- insulating portions 44 are advantageously made in the notches 43.
- These insulating portions 44 are portions of a thin layer made of an electrically insulating material. They make it possible to avoid electrical contact between the sensitive thermal detectors 20p and the thin encapsulation layer 34 via its reinforcing pillars 35.
- a thin insulating layer is deposited on the free surface of the anchoring pillars 21 to inside the notches 43.
- the thin insulating layer is here advantageously etched locally above the sensitive thermal detectors 20p, so as not to disturb or reduce the transmission of the electromagnetic radiation to be detected, but it could not be etched. It may have a thickness of between 10 nm and approximately 200 nm. It is made of a material inert to the chemical etching implemented during the removal of the mineral sacrificial layers, which can be chosen from AIN, ALOs, HfO 2 .
- the thin encapsulation layer 34 of the main encapsulation structure 30p is produced, this thin encapsulation layer 34 being formed of a portion upper extending above the detection matrix 2p, and comprising reinforcing pillars 35 located in the main zone, distinct from each other, and resting on the reading substrate 10 via the anchoring pillars 21 of the detectors sensitive thermals 20p.
- the conformal deposition of the thin encapsulation layer 34 is carried out, made of a material transparent to the electromagnetic radiation of interest and inert to the chemical etching implemented subsequently, with a thickness comprised for example between 200 nm and 2 pm , for example equal to approximately 800 nm or even less, for example amorphous silicon, amorphous germanium, an amorphous silicon-germanium alloy, among others.
- the thin encapsulation layer 34 is deposited on the mineral sacrificial layer 42 as well as in the notches 43, for example by a technique of chemical vapor deposition (CVD for Chemical Vapor Deposition, in English).
- the thin encapsulation layer 34 thus comprises, made in one piece and from the same material or materials: an upper portion, substantially planar in the XY plane, which extends above along the Z axis of the matrix of detection 2p, and reinforcement pillars 35 which rest on the reading substrate 10, here indirectly via the anchoring pillars 21.
- the thin encapsulation layer 34 here forms a quarter-wave plate with respect to the electromagnetic radiation of interest.
- the opaque upper wall 32s comprising the thin opaque layer 33 and the thin encapsulation layer 34 (quarter-wave plate) forms an interference stack which, while remaining opaque to the electromagnetic radiation of interest, makes it possible to reduce the reflection of the latter by absorption in the quarter-wave plate liable to form parasitic images by the detection device 1.
- the opaque upper wall 32s can of course comprise additional thin layers, thus improving the interference properties of this stack .
- the opaque thin layer 33 can be an absorbent multilayer such as a stack (multilayer) formed by alternating elementary metallic and dielectric thin layers, thus reducing parasitic reflections.
- the thin encapsulation layer 34 can also be a stack formed of alternating metallic and dielectric layers, which however remains transparent to the electromagnetic radiation of interest when it extends above the detection matrix 2p (cf. fig.1E, 3E) or which can be opaque (absorbent multilayer) when it does not extend above the detection matrix 2p (cf. fig.4C).
- one and/or the other of the multilayers of the opaque upper wall 32s can thus form an absorbing interference stack reducing parasitic reflections and thus improving the performance of the detection device 1.
- the thin opaque layer 33 and/or the part of the thin encapsulation layer 34 located above the , and more broadly the opaque upper wall 32s may also have lateral structuring, in the XY plane, improving the opacity properties, in particular by absorption of the electromagnetic radiation of interest.
- the reinforcing pillars 35 have dimensions in the XY plane of the order of those of the anchor pillars 21.
- the anchor pillars 21 can each comprise a vertical portion of dimensions in the XY plane of the order of 0.5pm to lpm surmounted by an upper portion projecting laterally of the order of 0.2pm to 0.5pm vis-à-vis the vertical portion.
- the reinforcing pillars 35 may here have dimensions in the XY plane of the order of 0.5 ⁇ m to 2 ⁇ m approximately.
- Vents 36p, 36s are then made, making it possible to produce the main 3p and secondary 3s cavities. These vents 36p, 36s lead to the sacrificial mineral layer 42 and are intended to allow the evacuation of the various sacrificial mineral layers 41, 42 out of the main cavity 3p and the secondary cavity 3s.
- First vents 36p are made through the thin encapsulation layer 34 and are intended for the formation of the main cavity 3p.
- Second vents 36s are made through the thin encapsulation layer 34 and the thin opaque layer 33, and are intended for the formation of the secondary cavity 3s.
- the vents 36p, 36s are arranged only opposite the main zone and the secondary zone, for example at the rate of one vent per thermal detector.
- vents 36p, 36s are located perpendicular to the suspended membranes of the sensitive thermal detectors 20p and the compensation thermal detectors 20s, but they can be arranged differently, in particular perpendicular to their anchoring pillars 21.
- vents 36p, 36s can have different shapes in the XY plane, for example a circular shape with a diameter of 0.4 ⁇ m or even less.
- the first vents 36p do not or only slightly disturb the transmission of the electromagnetic radiation of interest
- the second vents 36s do not or only slightly disturb the screening vis-à-vis this electromagnetic radiation of interest.
- a chemical etching is carried out adapted to partially remove the mineral sacrificial layers 41, 42.
- the chemical etching is an etching, for example with hydrofluoric acid in the vapor phase, in particular when the layers sacrificial minerals 41, 42 are made based on a silicon oxide.
- the products of the chemical reaction are evacuated through vents 36p, 36s.
- the etching agent completely removes the mineral sacrificial layers 41, 42 located in these areas, but the chemical etching is performed so that the etching agent does not etch a peripheral portion of the mineral sacrificial layers 41, 42 which extends around the compensation matrix 2s, and here also around the detection matrix 2p.
- the mineral peripheral wall 31s surrounds the compensation matrix 2s and laterally delimits the secondary cavity 3s.
- a mineral peripheral wall also surrounds the detection matrix 2p and laterally delimits the main cavity 3p (cf. fig.LF).
- the two mineral peripheral walls 31s, 31p coincide between the main cavity 3p and the secondary cavity 3s.
- the thin opaque layer 33 and the thin encapsulation layer 34 together form an upper opaque wall 32s, suspended above the compensation matrix 2s, which rests on the mineral peripheral wall 31s. It participates in delimiting, with the latter, the secondary cavity 3s. And the thin encapsulation layer 34 is suspended above the detection matrix 2p, and participates in delimiting the main cavity 3p. It rests on the mineral peripheral wall 31p.
- the encapsulation structure 30s of the secondary cavity 3s does not include a peripheral wall formed of a thin layer which would extend above and around the compensation matrix 2s , and would come to the reading substrate 10.
- the encapsulation structure 30s of the secondary cavity 3s comprises the mineral peripheral wall 31s and an opaque upper wall 32s which rests on the latter, and s 'extends continuously planar above the compensation matrix 2s.
- a sealing layer 37 is deposited on the thin encapsulation layer 34 with a sufficient thickness to ensure the sealing, ie the plugging, of the vents 36s, 36p. It extends at least opposite the main cavity 3p and the secondary cavity 3s.
- the sealing layer 37 is transparent to the electromagnetic radiation to be detected, and can be made of germanium with a thickness of approximately 1.7 ⁇ m by vacuum deposition for placing the thermal detectors under vacuum. It is also possible to deposit an antireflection layer (not represented) making it possible to optimize the transmission of electromagnetic radiation through the main encapsulation structure 30p.
- This anti-reflective layer can be made of zinc sulphide with a thickness of approximately 1.2 ⁇ m.
- the compensation matrix 2s is located in the secondary cavity 3s, which is delimited laterally by the mineral peripheral wall 31s (whose inner border is represented by a dotted line) and vertically by the thin opaque layer 33 (solid line). The latter extends in a continuously planar manner above the compensation matrix 2s, with a constant thickness, and rests on the mineral peripheral wall 31s.
- the detection matrix 2p is located in the main cavity 3p, which is delimited laterally by the mineral peripheral wall 31p (dotted line) and vertically by the thin encapsulation layer 34 (not shown).
- Connection pads 7 are here located at the edge of the matrices of thermal detectors 20p, 20s, and make it possible to connect the read circuit 14 to an external electrical circuit (not shown). They are accessible from the outside through openings made in non-etched portions of the mineral sacrificial layers (through layers 37, 34, 42 then 41). It is noted that the secondary cavity 3s has a lateral dimension smaller than the dimensions of the main cavity 3p. It can thus be less than or equal to 200pm. This width is defined so that the secondary encapsulation structure 30s does not require reinforcing pillars 35, unlike here the main encapsulation structure 30p, which would be made in one piece and from the same material with a thin layer (here the thin layer 34) of the opaque upper wall 32s.
- a secondary hermetic cavity 3s is thus obtained, preferably under vacuum or at reduced pressure, in which the compensation thermal detectors 20s are housed.
- the secondary encapsulation structure 30s therefore comprises an opaque upper wall 32s formed here of the thin opaque layer 33, of the thin encapsulation layer 34, and of the thin sealing layer 37, this opaque upper wall 32s resting on the wall mineral device 31s.
- the secondary encapsulation structure 30s does not comprise any support structure for the opaque upper wall 32s on the reading substrate 10 other than the mineral peripheral wall 31s, which comes from the mineral sacrificial layers 41, 42 necessary to the realization of thermal detectors 20p, 20s. It therefore does not include a peripheral wall in a thin layer, produced through the mineral sacrificial layers 41, 42, which would come to rest directly on the reading substrate 10, as in document WO2012/056124A1. Moreover, the mineral peripheral wall 31s is not reflective, which makes it possible to prevent stray light from being reflected towards the sensitive thermal detectors 20p.
- the mechanical strength of the encapsulation structure 30s is improved insofar as the opaque upper wall 32s is assembled to the reading substrate 10 by a mineral peripheral wall 31s which has an interface with the reading substrate 10 of greater surface than in the case of a peripheral wall in a thin layer.
- the absence of reinforcing pillars 35 in the secondary cavity 3s makes it possible to avoid a variation in the topology of the thin opaque layer 33 in the XY plane, or even a variation in thickness. Such variations can result in a degradation of the optical property of opacity of the thin opaque layer 33.
- such reinforcing pillars would extend through openings made in the thin opaque layer 33; these openings would degrade the screening of the 2s compensation matrix.
- the thin opaque layer 33 can remain continuously flat and of constant thickness, thus preserving the good uniformity of its optical property of opacity.
- the fact of producing the thin opaque layer 33 by PVD deposition opens up a greater choice of possible materials, in particular metallic, than in the case where the thin opaque layer 33 forms a peripheral wall in a thin layer, as in WO2012/056124A1. Indeed, in this case, it would be necessary to use specific deposition techniques, such as for example chemical vapor deposition (CVD, for Chemical Vapor Deposition, in English), which limits the choice of possible materials. Furthermore, a greater choice of possible materials makes it possible to choose an opaque material having an additional function, such as a getter function, as described later with reference to FIGS. 3A to 3F.
- CVD chemical vapor deposition
- the thin opaque layer 33 resting on the mineral peripheral wall 31s, can overflow laterally vis-à-vis the compensation matrix 2s, which makes it possible to obtain good screening efficiency.
- the screening efficiency is also all the greater since the material of the mineral peripheral wall 31s can participate in laterally screening the electromagnetic radiation of interest. Indeed, by way of example, a silicon oxide has a high absorption in the spectral band between 8 and 14 ⁇ m.
- the opaque top wall 32s is described in this example for illustrative purposes. Other configurations are of course possible.
- the upper opaque wall 32s can comprise other thin layers, located under or on the thin opaque layer 33.
- the arrangement thin layers in the opaque upper wall 32s can be chosen so as to take account of the differences in mechanical stresses in each of the thin layers.
- FIG. 2 is a top view, schematic and partial, of a detection device 1 according to a variant of that illustrated in fig.LF.
- the detection device 1 differs from that described in FIG. 1F essentially in that it comprises several secondary cavities, here two, which each house a compensation matrix 2s.
- the two secondary cavities are adjacent and are separated by the same mineral peripheral wall 31s.
- the thin opaque layer 33 here extends continuously above the two compensation matrices 2s. It therefore rests on the mineral peripheral wall 31s located between the two secondary cavities.
- the secondary encapsulation structures 30 s can each comprise a dedicated thin opaque layer 33 .
- thermal compensation detectors 20s it is advantageous to provide several secondary cavities when the required number of thermal compensation detectors 20s does not allow them all to be housed in the same secondary cavity without having to make reinforcing pillars 35 similar to those of the main cavity.
- thermal compensation detectors 20s it is advantageous to house the thermal compensation detectors 20s in several secondary cavities of a sufficiently small lateral dimension to avoid having to make reinforcement pillars 35, for example less than or equal to approximately 200 ⁇ m.
- FIGS 3A to 3F illustrate, schematically and partially, different steps of a manufacturing process according to a variant of the embodiment illustrated in fig.lA to 1F.
- thin opaque layer 33 is made of a material having a getter function.
- a material with a getter effect is a material intended to be exposed to the atmosphere of the hermetic cavity and capable of performing gas pumping by absorption and/or adsorption. It may be the metallic material reflecting the electromagnetic radiation of interest, for example titanium.
- the metallic material is sensitive to the etchant used during the chemical etching used for the partial removal of the mineral sacrificial layers 41, 42. Also, it is protected from this etchant by a layer sacrificial protection 38 made of amorphous carbon.
- the amorphous carbon may optionally be of the DLC (Diamond Like Carbon) type, that is to say it has a high sp 3 carbon hybridization rate. It is substantially inert with respect to the chemical etching carried out to partially remove the layers sacrificial minerals 41, 42, that is to say that it reacts little or not with the chemical etching agent. Also, after this partial removal step, it still protects the getter material.
- the sacrificial protective layer 38 is adapted to be removed by a second chemical etching such as dry chemical etching, an etching agent of which is for example oxygen contained in a plasma.
- the detection matrix 2p and the compensation matrix 2s are produced on and through the first mineral sacrificial layer 41.
- the second mineral sacrificial layer 42 covers the two matrices of thermal detectors 20p, 20s as well as the first mineral sacrificial layer 41. It has a flat upper face. This step is identical to that described previously.
- an opaque stack is produced formed of a thin protective layer 38 and of the thin opaque layer 33.
- This stack extends in a planar and continuous manner above the matrix of 2s compensation, and does not extend above the 2p detection matrix. It is intended to rest on the mineral peripheral wall 31s.
- the thin protective layer 38 rests on and in contact with the second sacrificial mineral layer 42. It is intended to protect the thin opaque layer 33 during the chemical etching implemented during the partial removal of the sacrificial mineral layers 41 , 42. It is intended to be removed during a second chemical etching, in which the thin opaque layer 33 is substantially inert, for example by dry chemical etching. It is made of amorphous carbon and has a thickness for example of between 50 nm and 500 nm.
- the thin opaque layer 33 rests on and in contact with the thin protective layer 38, and is therefore not in contact with the second mineral sacrificial layer 42. It is made of a metallic material that reflects the electromagnetic radiation to be detected. and has a getter effect, for example in titanium.
- the indentations 43 and the insulating portions 44 are also produced, intended for the production of the reinforcing pillars 35 of the thin encapsulation layer 34 of the main encapsulation structure 30p, in the same manner as described above.
- the thin encapsulation layer 34 is then deposited, so as to cover the opaque stack here and to extend above the detection matrix 2p. It fills the notches 43 and forms the reinforcing pillars 35.
- the first and second vents 36p, 36s are also produced.
- the chemical etching is carried out so as to partially remove the mineral sacrificial layers 41, 42, and thus form the main cavities 3p and secondary 3s delimited by the mineral peripheral walls 31s, 31p (cf. fig.3F).
- the upper opaque wall 32s is then suspended above the compensation matrix 2s and rests on the mineral peripheral wall 31s.
- the thin protective layer 38 has a part of its underside which has been made free. However, it protected the thin opaque layer 33 against the etchant used. The structural integrity of the thin opaque layer 33 has therefore been preserved, and therefore also its optical properties and its getter effect.
- a second chemical etching is carried out, to which the thin protective layer 38 is sensitive, for example a dry chemical etching, to remove the part having its free lower surface. Lateral over-etching may also occur. A part of the lower face of the thin opaque layer 33 is thus made free.
- the sealing layer is then deposited to close the vents 36p, 36s.
- the chemisorption of the getter-effect material of the thin opaque layer 33 is then activated by subjecting the detection device 1 to an appropriate heat treatment, for example in an oven or an oven.
- the fig.3F is a top view, schematic and partial, of the detection device 1 thus obtained.
- a communication chamber 6 is made, which ensures the gaseous communication between the two cavities. It is delimited laterally by a non-etched portion of the mineral sacrificial layers and is delimited here vertically by the opaque upper wall 32s.
- vents 36s, 36p were previously made through the opaque upper wall 32s, and placed above the area intended to form the communication chamber 6. Vents 36s here pass through layers 34, 33 and 38, while vents 36p only pass through layer 34.
- Figures 4A to 4D illustrate, schematically and partially, different steps of a manufacturing method according to another embodiment. It differs from those described previously essentially in that the main encapsulation structure 30p does not comprise a thin encapsulation layer 34, but an attached rigid cover 9, that is to say a cover made beforehand then added and assembled to the reading substrate 10 so as to encapsulate the detection matrix 2p (the cover 9 here also encapsulates the compensation matrix 2s).
- the main encapsulation structure 30p is here similar or identical to that described in the document EP3239670A1.
- the cover 9 can be made from a silicon substrate, and structured so as to include a peripheral wall intended to be assembled to the reading substrate 10.
- the peripheral wall is fixed to the reading substrate 10 by the intermediary of a hermetic seal 8, the latter preferably being in contact with an attachment portion of a metallic layer.
- the hermetic seal 8 can be obtained by the recasting of a fusible metal or by the formation of an intermetallic alloy.
- the method then includes a step of producing (FIG. 4A) the detection matrix 2p and the compensation matrix on the read substrate 10, as described above.
- the upper opaque wall 32s is here formed of a stack comprising the thin opaque layer 33 and a thin reinforcing layer 39.
- the thin reinforcing layer 39 can form a quarter-wave plate, as described above. It participates here in reinforcing the mechanical strength of the opaque upper wall 32s.
- the opaque upper wall 32s extends in the secondary zone, and possibly around the main zone, but does not extend above the detection matrix 2p. In this example, it is intended to extend beyond the mineral peripheral wall 31s, so as to form a cantilevered portion (a part which projects laterally beyond the mineral peripheral wall 31s along a opposite direction to the secondary cavity 3s).
- the partial removal of the mineral sacrificial layers 41, 42 is then carried out (fig.4B) by chemical etching.
- the detection matrix 2p is thus released, as well as the compensation matrix 2s, which is surrounded by the mineral peripheral wall 31s.
- the opaque upper wall 32s presents the cantilevered portion located between the compensation matrix 2s and the detection matrix 2p.
- this cantilevered portion is formed of two thin layers 33, 39, but as a variant, it may be formed only of the thin reinforcing layer 39 (the opaque thin layer 33 stopping at the above the mineral peripheral wall 31s). The choice between these two configurations may depend on the difference in mechanical stresses between these thin layers 33, 39.
- a configuration where the cantilevered portion would be formed only of the thin reinforcing layer 39 is advantageous to avoid an imbalance of the mechanical stresses between the two layers 33, 39 and to correct any deflection of the cantilevered portion.
- a chemical attack in an acid medium of the mineral sacrificial layers 41, 42 in a confined medium has a lateral etching speed (in the XY plane) greater than the etching speed vertical (along the Z axis).
- the release of the detection matrix 2p and the formation of the secondary cavity 3s are obtained at the same time (etching of the layers 41 and 42 and evacuation through the vents 36s).
- a line of sealing material intended to form the hermetic seal 8 is then deposited (fig.4C), which rests on the reading substrate 10 and surrounds the detection matrix 2p. It also surrounds the 2s compensation matrix here.
- This line of sealing material was deposited before the partial removal of the mineral sacrificial layers 41, 42, for example in a peripheral trench crossing the mineral sacrificial layers and surrounding the detection matrix 2p.
- the cover 9 is then transferred to the hermetic seal 8 and it is assembled to the reading substrate 10. It is noted that the cover 9 ensures the sealing of the vents 36s. Thus, the cavity 3s is contained in the cavity 3p.
- the fig.4D is a top view, schematic and partial, of the detection device 1 obtained after the step of producing the hermetic seal 8 and before the postponement of the cover 9.
- the mineral peripheral wall 31s of the structure of the secondary encapsulation 30s here has a width less than its length, and extends longitudinally around the compensation matrix 2s.
- the thin opaque layer 33 extends above the compensation matrix 2s, rests on the mineral peripheral wall 31s, and here has a cantilevered portion. The rest of the surface of reading substrate 10 is thus not covered by a non-etched portion of mineral sacrificial layers.
- the main encapsulation structure 30p can, as a variant, be similar or identical to that described in the document EP3399290A1.
- Such an encapsulation structure comprises a peripheral wall which surrounds the detection matrix 2p, and which is produced by a thin layer deposition technique.
- a top wall can be transferred and assembled on the peripheral wall by means of a temporary handle.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Micromachines (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Radiation Pyrometers (AREA)
Abstract
L'invention porte sur un procédé de fabrication d'un dispositif de détection (1) comportant les étapes de : o réalisation de détecteurs thermiques répartis en une matrice de détection (2p) et une matrice de compensation (2s) au moyen de couches sacrificielles minérales (41, 42); o réalisation d'une structure d'encapsulation (30s) comportant une couche mince opaque (33) s'étendant au-dessus de la matrice de compensation (2s); o suppression partielle des couches sacrificielles minérales (41, 42) par gravure chimique, de manière à libérer la matrice de détection (2p) et la matrice de compensation (2s), et à obtenir une paroi périphérique (31s) alors formée d'une portion non gravée des couches sacrificielles minérales (41, 42) et entourant la matrice de compensation (2s), la couche mince opaque (33) étant alors suspendue au-dessus de la matrice de compensation (2s) et reposant sur la paroi périphérique.
Description
PROCEDE DE FABRICATION D'UN DISPOSITIF DE DETECTION COMPORTANT UNE STRUCTURE D'ENCAPSULATION COMPORTANT UNE COUCHE MINCE OPAQUE REPOSANT SUR UNE PAROI PERIPHERIQUE MINERALE
DOMAINE TECHNIQUE
[001] Le domaine de l'invention est celui des dispositifs de détection d'un rayonnement électromagnétique, en particulier infrarouge ou térahertz, comportant une structure d'encapsulation dans laquelle est située une matrice de détecteurs thermiques de compensation, la structure d'encapsulation comportant une couche mince supérieure opaque au rayonnement à détecter. L'invention s'applique notamment au domaine de l'imagerie infrarouge ou térahertz, de la thermographie, voire de la détection de gaz.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
[002] Un dispositif de détection d'un rayonnement électromagnétique peut comporter une matrice de pixels sensibles contenant chacun un détecteur thermique. Les détecteurs thermiques sont réalisés à partir d'un substrat de lecture contenant un circuit intégré (ROIC) de lecture et commande. Les détecteurs thermiques peuvent être du type à membrane absorbante isolée thermiquement du substrat de lecture. La membrane absorbante comporte un absorbeur du rayonnement électromagnétique à détecter associé à un transducteur thermométrique dont une propriété électrique varie en intensité en fonction de son échauffement.
[003] La température du transducteur thermométrique étant cependant grandement dépendante de son environnement, la membrane absorbante est habituellement isolée thermiquement du substrat et du circuit de lecture, lequel est disposé dans le substrat. Ainsi, la membrane absorbante est généralement suspendue au-dessus du substrat par des piliers d'ancrage, et en est isolée thermiquement par des bras de maintien et d'isolation thermique. Ces piliers d'ancrage et bras d'isolation présentent également une fonction électrique en assurant la connexion électrique de la membrane suspendue au circuit de lecture disposé dans le substrat.
[004] Cependant, lors de la lecture d'un signal électrique du détecteur thermique lors de l'absorption du rayonnement électromagnétique, la part utile du signal électrique mesuré, qui est associée à réchauffement du transducteur thermométrique (induit par l'absorption du rayonnement électromagnétique à détecter), reste faible par rapport à l'intensité du signal électrique mesuré. Aussi, le dispositif de détection comporte habituellement des détecteurs
thermiques dits de compensation destinés à mesurer la part non utile du signal électrique, également appelé mode commun, associée à l'environnement du détecteur thermique, laquelle est ensuite soustraite au signal de réponse pour en déduire la part utile.
[005] Le dispositif de détection, en particulier lorsqu'il fonctionne en mode 'rolling shutter', peut alors comporter une matrice de pixels sensibles, et une matrice de pixels de compensation habituellement plus petite que la matrice de pixels sensibles, et un intégrateur de type CTIA disposé au pied de chaque colonne de pixels. En fonctionnement, la matrice de pixels sensibles est lue ligne par ligne. L'intégrateur reçoit le signal de réponse k du détecteur thermique et lui soustrait le signal électrique lc de mode commun mesuré par le détecteur de compensation correspondant. Ainsi, la part non utile contenue dans le signal de réponse k est compensée par le mode commun lc. On obtient ainsi la part utile ld-lc associée à l'absorption du rayonnement électromagnétique à détecter, sans qu'il soit nécessaire de réguler spécifiquement la température du substrat.
[006] Le document WO2012/056124A1 décrit un exemple de dispositif de détection comportant une matrice de pixels sensibles et une matrice de pixels de compensation. Chaque pixel comporte un détecteur thermique à membrane absorbante suspendue au-dessus du substrat de lecture. Les détecteurs thermiques sont réalisés sur et au travers d'une première couche sacrificielle de polyimide, et sont recouverts par une deuxième couche sacrificielle. Une structure de compensation forme une cavité dans laquelle est située la matrice de pixels de compensation. Elle comporte une couche mince opaque permettant d'écranter les pixels de compensation, c'est-à-dire de ne pas transmettre le rayonnement électromagnétique à détecter. Pour cela, la couche mince opaque est réalisée par dépôt conforme de manière à recouvrir continûment la face supérieure et les flancs des deux couches sacrificielles. Aussi, la couche mince opaque comporte une paroi supérieure s'étendant au-dessus des pixels de compensation et une paroi périphérique, qui reposent sur le substrat de lecture, s'étendant autour de ces derniers.
[007] Il existe cependant un besoin de disposer d'un procédé de fabrication d'un tel dispositif de détection permettant d'améliorer la tenue mécanique de la structure d'encapsulation de la matrice de compensation, sans dégrader la qualité de l'écrantage optique, et sans complexifier les étapes de réalisation.
[008] On connaît par ailleurs le document US2009/0146059A1 qui décrit un dispositif de détection comportant des détecteurs thermiques et des éléments de compensation. Cependant, ces derniers sont structurellement différents des détecteurs thermiques qui assurent la détection du rayonnement électromagnétique d'intérêt, ce qui peut nuire à la qualité de la compensation effectuée.
EXPOSÉ DE L'INVENTION
[009] L'invention a pour objectif de remédier au moins en partie aux inconvénients de l'art antérieur. Pour cela, l'objet de l'invention est un procédé de fabrication d'un dispositif de détection d'un rayonnement électromagnétique, comportant les étapes suivantes : o réalisation, sur et au travers d'une première couche sacrificielle reposant sur un substrat de lecture, d'une matrice de détection formée de détecteurs thermiques destinés à détecter le rayonnement électromagnétique, et d'au moins une matrice dite de compensation formée de détecteurs thermiques destinés à ne pas détecter le rayonnement électromagnétique, une deuxième couche sacrificielle recouvrant les détecteurs thermiques et la première couche sacrificielle ; les détecteurs thermiques (20s) de la matrice de compensation (2s) étant adaptés à détecter le rayonnement électromagnétique et structurellement identiques aux détecteurs thermiques (20p) de la matrice de détection (2p) ; o réalisation d'une structure d'encapsulation dite secondaire délimitant une cavité secondaire dans laquelle est située la matrice de compensation, et comportant une paroi périphérique ainsi qu'une paroi supérieure opaque reposant sur la paroi périphérique et formée d'au moins une couche mince opaque.
[0010] Selon l'invention, les première et deuxième couches sacrificielles sont réalisées en un matériau minéral. De plus, l'étape de réalisation de la structure d'encapsulation comporte les étapes suivantes : o réalisation de la couche mince opaque de sorte qu'elle s'étende de manière continûment plane seulement sur une surface supérieure de la deuxième couche sacrificielle minérale ; o réalisation, dans la couche mince opaque, d'évents disposés en regard de la matrice de compensation ; o suppression partielle des première et deuxième couches sacrificielles minérales au travers des évents, par gravure chimique, de manière à libérer la matrice de détection et la matrice de compensation, et à obtenir la paroi périphérique alors formée d'une portion non gravée des couches sacrificielles minérales et entourant la matrice de compensation, la couche mince opaque étant alors suspendue au-dessus de la matrice de compensation et reposant sur la paroi périphérique.
[0011] Certains aspects préférés, mais non limitatifs de ce procédé sont les suivants.
[0012] Les première et deuxième couches sacrificielles peuvent être réalisées en un même matériau minéral à base d'un oxyde ou d'un nitrure de silicium.
[0013] Les détecteurs thermiques de la matrice de détection comme les détecteurs thermiques de la matrice de compensation peuvent comporter chacun une membrane absorbante apte à absorber le rayonnement électromagnétique à détecter et peuvent comporter un transducteur thermométrique, suspendue au-dessus du substrat de lecture par des piliers d'ancrage et des bras de maintien et d'isolation thermique.
[0014] Les détecteurs thermiques de la matrice de détection et/ou les détecteurs thermiques de la matrice de compensation peuvent comporter chacun une couche réflectrice, qui repose sur le substrat de lecture, en-dessous de chaque membrane absorbante.
[0015] La paroi supérieure opaque peut comporter un empilement interférentiel absorbant au rayonnement électromagnétique à détecter
[0016] La couche mince opaque peut être une couche réfléchissante ou absorbante au rayonnement électromagnétique à détecter.
[0017] La couche mince opaque peut présenter une épaisseur uniforme.
[0018] La paroi supérieure opaque peut comporter en outre au moins une couche mince de renfort recouvrant la couche mince opaque, et peut présenter une bordure en saillie vis-à-vis de la paroi périphérique dans un plan parallèle au substrat de lecture, la bordure en saillie comportant la couche mince opaque et/ou la couche mince de renfort.
[0019] La cavité secondaire peut présenter une longueur et une largeur dans un plan parallèle au substrat de lecture, la largeur étant inférieure ou égale à 200pm. La largeur est inférieure à la longueur.
[0020] La paroi supérieure opaque peut ne pas comporter de piliers de renfort, réalisés d'un seul tenant et en un même matériau avec une couche mince de la paroi supérieure opaque, situés dans la cavité secondaire et venant reposer sur le substrat de lecture.
[0021] Les couches sacrificielles minérales peuvent être réalisées en un matériau absorbant au rayonnement électromagnétique à détecter.
[0022] La couche mince opaque peut être réalisée en un matériau à effet getter.
[0023] Le procédé de fabrication peut comporter les étapes suivantes : o avant l'étape de suppression partielle, réalisation de la paroi supérieure opaque formée d'un empilement comportant une couche mince de protection réalisée en carbone amorphe inerte à un agent de gravure utilisé lors de l'étape de suppression partielle et située au contact de la deuxième couche sacrificielle minérale, la couche mince opaque s'étendant uniquement sur et au contact de la couche mince de protection, de sorte que,
lors de l'étape de suppression partielle, la couche mince opaque est protégée par la couche mince de protection ; o après l'étape de suppression partielle, suppression d'au moins une partie de la couche mince de protection par gravure chimique, de manière à rendre libre une face inférieure de la couche mince opaque.
[0024] Le procédé de fabrication peut comporter une étape de réalisation d'une structure d'encapsulation principale délimitant une cavité principale dans laquelle est située la matrice de détection, et comportant une paroi supérieure principale comportant une couche mince d'encapsulation reposant sur une paroi périphérique principale, par les étapes suivantes : o dépôt de la couche mince d'encapsulation sur la deuxième couche sacrificielle minérale, s'étendant au-dessus de la matrice de détection et de la matrice de compensation ; o réalisation, dans la couche mince d'encapsulation, d'évents principaux disposés en regard de la matrice de détection ; o la suppression partielle des première et deuxième couches sacrificielles minérales étant effectuée de manière à former la paroi périphérique principale alors formée d'une portion non gravée des couches sacrificielles minérales et entourant la matrice de détection, la couche mince d'encapsulation étant alors suspendue au-dessus de la matrice de détection et reposant sur la paroi périphérique principale.
[0025] Le procédé de fabrication peut comporter une étape de réalisation d'une chambre de communication reliant la cavité secondaire et la cavité principale, la chambre de communication étant délimitée latéralement par une portion non gravée des première et deuxième couches sacrificielles minérales.
[0026] Le procédé de fabrication peut comporter une étape de réalisation de piliers de renfort de la couche mince d'encapsulation, reposant sur le substrat de lecture, de préférence par l'intermédiaire de piliers d'ancrage des détecteurs thermiques de la matrice de détection.
[0027] La gravure chimique en milieu acide peut être effectuée à l'acide fluorhydrique en phase vapeur, et les première et deuxième couches sacrificielles minérales peuvent être réalisées en un matériau minéral à base de silicium, et de préférence en un oxyde de silicium. Elle peut être effectuée à l'aide d'un agent de gravure fluorocarboné en phase gazeuse, en particulier lorsque les couches sacrificielles minérales sont réalisées à base d'un nitrure de silicium.
[0028] L'invention porte également sur un dispositif de détection d'un rayonnement électromagnétique, comportant : o un substrat de lecture ;
o une matrice de détection formée de détecteurs thermiques destinés à détecter le rayonnement électromagnétique ; o au moins une matrice dite de compensation formée de détecteurs thermiques destinés à ne pas détecter le rayonnement électromagnétique, adaptés à détecter le rayonnement électromagnétique, et structurellement identiques aux détecteurs thermiques (20p) de la matrice de détection (2p) ; o une structure d'encapsulation dite secondaire délimitant une cavité secondaire dans laquelle est située la matrice de compensation, et comportant une paroi périphérique ainsi qu'une paroi supérieure opaque reposant sur la paroi périphérique et formée d'au moins une couche mince opaque ; o la couche mince opaque s'étendant de manière continûment plane, et la paroi périphérique étant réalisée en un matériau minéral.
BRÈVE DESCRIPTION DES DESSINS
[0029] D'autres aspects, buts, avantages et caractéristiques de l'invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels : les figures IA à 1F sont des vues schématiques et partielles illustrant différentes étapes d'un procédé de fabrication d'un dispositif de détection selon un mode de réalisation ; la figure 2 est une vue de dessus, schématique et partielle, d'un dispositif de détection selon une variante au mode de réalisation illustré sur la fig.lF, dans lequel il comporte plusieurs cavités secondaires ; les figures 3A à 3F sont des vues schématiques et partielles illustrant différentes étapes d'un procédé de fabrication d'un dispositif de détection selon une variante de réalisation, dans laquelle la couche mince opaque est réalisée en un matériau à effet getter ; les figures 4A à 4D sont des vues schématiques et partielles illustrant différentes étapes d'un procédé de fabrication d'un dispositif de détection selon un autre mode de réalisation, dans lequel la structure d'encapsulation de la matrice de détection comporte un capot rapporté et assemblé au substrat de lecture.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
[0030] Sur les figures et dans la suite de la description, les mêmes références représentent les éléments identiques ou similaires. De plus, les différents éléments ne sont pas représentés à l'échelle de manière à privilégier la clarté des figures. Par ailleurs, les différents modes de réalisation et variantes ne sont pas exclusifs les uns des autres et peuvent être combinés entre eux. Sauf indication contraire, les termes « sensiblement », « environ », « de l'ordre de » signifient à 10% près, et de préférence à 5% près. Par ailleurs, les termes « compris entre ... et ... » et équivalents signifient que les bornes sont incluses, sauf mention contraire.
[0031] L'invention porte d'une manière générale sur un procédé de fabrication d'un dispositif de détection d'un rayonnement électromagnétique infrarouge ou térahertz.
[0032] Ce dispositif de détection comporte une pluralité de détecteurs thermiques, lesquels sont répartis de manière à former au moins une matrice dite sensible, ou matrice de détection, de détecteurs thermiques destinés à détecter le rayonnement électromagnétique, et au moins une matrice dite de compensation de détecteurs thermiques destinés à ne pas détecter le rayonnement électromagnétique.
[0033] Le procédé de fabrication comporte une étape de réalisation de la matrice de détecteurs thermiques au moyen de couches sacrificielles dites minérales, réalisées en un matériau minéral ou inorganique, ces couches sacrificielles étant destinées à former une paroi périphérique d'une structure d'encapsulation. Il s'agit ici d'un matériau diélectrique à base de silicium permettant également la réalisation d'une couche diélectrique inter-métal du circuit de lecture, c'est-à-dire un matériau électriquement isolant, avec par exemple une constante diélectrique, ou permittivité relative, inférieure ou égale à 3,9, limitant ainsi la capacité parasite entre les interconnexions. Ce matériau minéral ne comporte pas de chaînes carbonées, et il peut être à base d'un oxyde de silicium, par exemple être un oxyde de silicium SiOx, éventuellement organosilicié tel que du SiOC, du SiOCH, ou un matériau de type verre fluoré tel que du SiOF. Il peut également être à base d'un nitrure de silicium, par exemple être un nitrure de silicium SixNy. Il s'agit de préférence d'un oxyde de silicium SiOx.
[0034] Le procédé de fabrication comporte également une étape de suppression partielle des couches sacrificielles minérales par une gravure chimique, éventuellement une gravure chimique en milieu acide, par exemple à l'acide fluorhydrique en phase vapeur (HF vapeur) en particulier lorsque le matériau minéral est à base d'un oxyde de silicium. Dans le cas d'un matériau minéral à base d'un nitrure de silicium, la gravure partielle peut être effectuée à l'aide d'une chimie
fluorocarbonée en phase gazeuse. Quoi qu'il en soit, d'autres agents de gravure peuvent être utilisés en fonction de la nature du matériau minéral utilisé.
[0035] La matrice de compensation est située dans une cavité, de préférence hermétique, formée par une structure d'encapsulation qui s'étend au-dessus et autour des détecteurs thermiques de compensation. La structure d'encapsulation comporte au moins : une paroi périphérique minérale qui s'étend autour de la matrice de compensation et délimite latéralement la cavité. Comme explicité plus loin, la paroi périphérique minérale est formée d'une portion non gravée des couches sacrificielles minérales ; une paroi supérieure opaque, qui s'étend au-dessus de la matrice de compensation et délimite verticalement la cavité. Cette paroi supérieure opaque comporte au moins une couche mince opaque en un matériau opaque au rayonnement électromagnétique à détecter, c'est-à-dire dont la transmission est inférieure ou égale à 5%, voire inférieure ou égale à 1%.
[0036] Par couche mince, on entend une couche formée par les techniques de dépôt de matériau de la microélectronique, dont l'épaisseur est de préférence inférieure ou égale à 10pm. Par ailleurs, une couche mince est dite transparente lorsqu'elle présente un taux de transmission supérieur ou égal à 50%, de préférence à 75%, voire à 90% pour une longueur d'onde centrale de la gamme spectrale du rayonnement électromagnétique à détecter. Le taux d'absorption de la couche mince est de préférence inférieur ou égal à 50%, de préférence à 25%, et de préférence encore à 10%.
[0037] Différents modes de réalisation sont illustrés par la suite, et diffèrent essentiellement en ce qui concerne la structure d'encapsulation définissant la cavité principale dans laquelle est située la matrice de détection. Il peut ainsi s'agir d'une structure d'encapsulation entièrement réalisée par dépôt de couches minces transparentes sur et au travers des couches sacrificielles minérales ; ou d'une structure d'encapsulation dont au moins une partie est reportée et assemblée au substrat de lecture.
[0038] Les figures IA à 1F illustrent, de manière schématique et partielle, différentes étapes d'un procédé de fabrication d'un dispositif de détection 1 selon un mode de réalisation, dans lequel les structures d'encapsulation 30s, 30p de la matrice de compensation 2s et de la matrice de détection 2p sont réalisées par dépôt de couches minces sur et au travers des couches sacrificielles minérales 41, 42. Par souci de clarté, seule une partie de la matrice de détection 2p et de la structure d'encapsulation 30p correspondante sont représentées sur les figures. Dans cet exemple, le dispositif de détection 1 comporte une matrice de compensation 2s située dans une cavité
secondaire 3s, mais il peut en variante comporter plusieurs matrices de compensation situées chacune dans une cavité secondaire 3s dédiée (cf. fig.2).
[0039] On définit ici et pour la suite de la description un repère direct tridimensionnel XYZ, où le plan XY est sensiblement parallèle au plan du substrat de lecture 10, l'axe Z étant orienté suivant une direction sensiblement orthogonale au plan du substrat de lecture 10 en direction des détecteurs thermiques 20p, 20s. Les termes « vertical » et « verticalement » s'entendent comme étant relatifs à une orientation sensiblement parallèle à l'axe Z, et les termes « horizontal » et « horizontalement » comme étant relatifs à une orientation sensiblement parallèle au plan XY. Par ailleurs, les termes « inférieur » et « supérieur » s'entendent comme étant relatifs à un positionnement croissant lorsqu'on s'éloigne du substrat de lecture 10 suivant la direction +Z.
[0040] Le dispositif de détection 1 comporte : une matrice 2p, dite sensible, de détecteurs thermiques 20p destinés à recevoir et détecter le rayonnement électromagnétique d'intérêt, la matrice de détection 2p étant de préférence située dans une cavité principale 3p définie par une structure d'encapsulation principale 30p ; au moins une matrice 2s, dite de compensation, de détecteurs thermiques 20s destinés à ne pas recevoir le rayonnement électromagnétique d'intérêt, la matrice de compensation 2s étant située dans une cavité secondaire 3s définie par une structure d'encapsulation secondaire 30s. Cette structure d'encapsulation secondaire 30s comporte une paroi supérieure opaque 32s reposant sur une paroi périphérique minérale 31s et comportant a minima une couche mince opaque 33.
[0041] A titre d'exemple, les détecteurs thermiques 20p sont ici adaptés à détecter un rayonnement infrarouge dans la gamme LWIR (Long Wavelength Infrared, en anglais) dont la longueur d'onde est comprise entre 8pm et 14pm environ. Les détecteurs thermiques 20p et 20s sont connectés à un circuit de lecture 14 situé dans le substrat 10 (dit alors substrat de lecture). Les détecteurs thermiques sensibles 20p forment ainsi des pixels sensibles agencés préférentiellement de manière périodique, et peuvent présenter une dimension latérale dans le plan du substrat de lecture 10, de l'ordre de quelques dizaines de microns, par exemple égale à 10pm environ voire moins.
[0042] Les détecteurs thermiques de compensation 20s sont structurellement similaires ou identiques aux détecteurs thermiques sensibles 20p dans le sens où ils comportent une membrane suspendue 22 par des bras de maintien (non représentés) et des piliers d'ancrage 21. La membrane suspendue 22 peut également comporter un transducteur thermométrique. Ils peuvent alors fournir au circuit de lecture 14 un signal électrique représentatif d'un échauffement par effet Joule
lors de la lecture. Notons par ailleurs que certains détecteurs thermiques de compensation peuvent également fournir au circuit de lecture 14 un signal électrique représentatif, en outre, de la température du substrat de lecture 10 (mode commun). Pour cela, ces détecteurs thermiques sont thermalisés au substrat de lecture 10 dans la mesure où les bras de maintien n'assurent pas l'isolation thermique de la membrane absorbante 22 vis-à-vis du substrat de lecture 10.
[0043] En référence à la fig.lA, on réalise la matrice de détection 2p et la matrice de compensation 2s, à partir du substrat de lecture 10, sur et au travers d'une première couche sacrificielle minérale 41. Le substrat de lecture 10 est réalisé à base de silicium, et est formé d'un substrat support 11 contenant le circuit de lecture 14 adapté à commander et lire les détecteurs thermiques 20p, 20s. Le circuit de lecture 14 se présente ici sous la forme d'un circuit intégré CMOS. Il comporte entre autres des portions de lignes conductrices séparées les unes des autres par des couches isolantes inter-métal réalisées en un matériau diélectrique, par exemple un matériau minéral à base de silicium tel qu'un oxyde de silicium SiOx, un nitrure de silicium SiNx, entre autres. Des portions conductrices 12 affleurent la surface du substrat support 11, et assurent la connexion électrique des piliers d'ancrage 21 des détecteurs thermiques 20p, 20s au circuit de lecture 14. De plus, une ou plusieurs portions ou plots de connexion 7 (cf. fig.lF) affleurent la surface du substrat support 11, et permettent de connecter le circuit de lecture 14 à un dispositif électronique externe (non représenté). Dans cet exemple, le circuit de lecture 14 est adapté à lire un signal électrique émis par les détecteurs thermiques de compensation 20s, qui est représentatif de réchauffement par effet Joule lors de la lecture (et éventuellement représentatif de la température du substrat de lecture 10). Ainsi, en faisant une lecture différentielle du détecteur thermique sensible 20p et du détecteur thermique de compensation 20s, on peut soustraire du signal électrique 'brut' la composante parasite liée à réchauffement par effet Joule (et éventuellement la composante liée à la température du substrat) pour ne conserver que la partie utile liée à la détection du rayonnement électromagnétique d'intérêt.
[0044] Chaque détecteur thermique sensible 20s, et de préférence chaque détecteur thermique 20p de compensation, comporte une couche réflectrice 23 (réflecteur), qui repose sur le substrat de lecture 10 et est situé en regard (et donc en-dessous) de chaque membrane absorbante 22. Le réflecteur 23 peut être formé par une portion d'une ligne conductrice du dernier niveau d'interconnexion, celle-ci étant réalisée en un matériau adapté à réfléchir le rayonnement électromagnétique à détecter, ou être une couche déposée sur la couche de protection 13 présentée ci-après. Il s'étend en regard de la membrane absorbante 22 du détecteur thermique sensible 20p, et est destiné à former avec celle-ci une cavité interférentielle quart d'onde vis-à-vis
du rayonnement électromagnétique à détecter. Il s'étend de préférence également en regard de la membrane absorbante 22 du détecteur thermique de compensation 20s.
[0045] Enfin, le substrat de lecture 10 comporte ici une couche de protection 13 de manière à recouvrir notamment la couche isolante inter-métal supérieure. Cette couche de protection 13 correspond ici à une couche d'arrêt de gravure réalisée en un matériau sensiblement inerte à l'agent de gravure chimique utilisé ultérieurement pour supprimer les différentes couches sacrificielles minérales, par exemple au milieu HF en phase vapeur. Cette couche de protection 13 forme ainsi une couche hermétique et chimiquement inerte, et électriquement isolante pour éviter tout court-circuit entre les piliers d'ancrage 21. Elle permet ainsi d'éviter que les couches isolantes inter-métal sous-jacentes ne soient gravées lors de cette étape de suppression des couches sacrificielles minérales. Elle peut être formée en un oxyde ou nitrure d'aluminium, voire en trifluorure d'aluminium, ou encore en silicium amorphe non intentionnellement dopé.
[0046] On réalise ensuite les détecteurs thermiques 20p, 20s sur le substrat de lecture 10. Ces étapes de réalisation sont identiques ou similaires à celles décrites notamment dans le document EP3239670A1. Les détecteurs thermiques sensibles 20p et les détecteurs thermiques de compensation 20s présentent ici avantageusement une structure similaire. Ils sont ici des microbolomètres comportant chacun une membrane absorbante 22, i.e. apte à absorber le rayonnement électromagnétique à détecter, suspendue au-dessus du substrat de lecture 10 par des piliers d'ancrage 21 et des bras de maintien (non représentés). Les bras de maintien assurent également l'isolation thermique des membranes absorbantes vis-à-vis du substrat de lecture 10. C'est le cas bien entendu des détecteurs thermiques sensibles 20p, mais également des détecteurs thermiques de compensation 20s qui fournissent ainsi un signal électrique représentatif d'un échauffement par effet Joule lors de la lecture.
[0047] La réalisation de membranes absorbantes 22 est classiquement effectuée par des techniques de micro-usinage de surface consistant à réaliser les piliers d'ancrage 21 au travers d'une première couche sacrificielle minérale 41, et les bras de maintien ainsi que les membranes absorbantes 22 sur la face supérieure de la couche sacrificielle minérale 41. Chaque membrane absorbante 22 comporte en outre un transducteur thermométrique, par exemple un matériau thermistance, relié au circuit de lecture 14 par des connexions électriques prévues dans les bras d'isolation thermique et dans les piliers d'ancrage 21.
[0048] Les détecteurs thermiques sensibles 20p sont situés dans une zone principale de la surface du substrat de lecture 10 destinée à correspondre à la cavité principale 3p (cavité de détection), et les détecteurs thermiques de compensation 20s sont situés dans une zone secondaire de cette
surface destinée à correspondre à la cavité secondaire 3s (cavité de compensation). Notons que la matrice de détection 2p peut contenir un grand nombre de détecteurs thermiques 20p, par exemple 640x480. La matrice de compensation 2s peut, à titre d'exemple, contenir 4x480 détecteurs thermiques 20s. La zone principale présente donc une plus grande surface que la zone secondaire.
[0049] On dépose ensuite une deuxième couche sacrificielle minérale 42 préférentiellement de même nature que la couche sacrificielle minérale 41. La couche sacrificielle minérale 42 recouvre ainsi la couche sacrificielle minérale 41 ainsi que les détecteurs thermiques sensibles 20p et les détecteurs thermiques de compensation 20s. Elle présente une face supérieure libre sensiblement plane. D'une manière générale, les différentes couches sacrificielles minérales 41, 42 peuvent être un oxyde de silicium obtenu à partir d'un composé TEOS (orthosilicate de tétraéthyle) déposé par PECVD. Les couches sacrificielles minérales 41, 42 peuvent être réalisées en le même matériau minéral.
[0050] En référence à la fig.lB, on réalise la couche mince opaque 33 destinée à écranter la matrice de compensation 2s, c'est-à-dire à éviter la transmission du rayonnement électromagnétique à détecter en direction des détecteurs thermiques de compensation 20s. La couche mince opaque 33 peut être une couche réfléchissante ou absorbante du rayonnement électromagnétique d'intérêt. La couche mince opaque 33 est réalisée de sorte qu'elle s'étende de manière continûment plane seulement sur une surface supérieure (sur une partie de la face supérieure) de la couche sacrificielle minérale 42.
[0051] Dans cet exemple, on dépose une couche mince opaque 33 sur et au contact de la deuxième couche sacrificielle minérale 42. En variante, une ou plusieurs couches minces peuvent avoir été déposées au préalable sur la deuxième couche sacrificielle minérale 42. La couche mince opaque 33 est déposée de manière à s'étendre de manière continûment plane au-dessus de la matrice de compensation 2s. Par continûment plane, on entend que la couche mince opaque 33 s'étend de manière planaire dans le plan XY sur toute son étendue surfacique. Elle est déposée de sorte qu'elle présente une épaisseur sensiblement constante.
[0052] Dans le cas d'un matériau réfléchissant, il peut s'agir de l'aluminium, de l'or, du tungstène, du cuivre ou du titane, avec une épaisseur constante par exemple comprise entre lOOnm et quelques centaines de nanomètres, par exemple égale à 300nm environ. De préférence l'épaisseur de la couche mince opaque 33 est inférieure ou égale à lpm pour ne pas complexifier le procédé de fabrication. Ces matériaux de la couche mince opaque 33 sont avantageusement sensiblement inertes (ou faiblement réactifs) à la gravure chimique mise en œuvre pour supprimer partiellement
les couches sacrificielles minérales 41, 42. Dans le cas où le matériau est faiblement réactif à l'agent de gravure utilisé, l'épaisseur du matériau déposé sera légèrement supérieure à l'épaisseur finale souhaitée, pour tenir compte d'une légère gravure partielle (amincissement) lors de l'étape de gravure chimique.
[0053] La couche mince opaque 33 peut être déposée par des techniques de dépôt en couche mince garantissant une uniformité de son épaisseur, par exemple par dépôt physique en phase vapeur (PVD, pour Physical Vapor Deposition, en anglais), du type par pulvérisation cathodique d'une cible métallique ou par évaporation sous vide d'un métal chauffé dans un creuset.
[0054] On structure ensuite la couche mince opaque 33 par lithographie et gravure localisée, de sorte qu'elle ne s'étende pas au-dessus de la matrice de détection 2p. Elle peut ainsi s'étendre partout sur la deuxième couche sacrificielle minérale 42 (hormis au-dessus de la matrice de détection 2p - comme illustré sur la fig.4A), ou peut ne s'étendre qu'au-dessus de la matrice de compensation 2s et de la zone secondaire (comme illustré sur la fig.lF). Quoi qu'il en soit, la couche mince opaque 33 s'étend au moins en partie au-dessus de la zone où sera localisée la paroi périphérique minérale 31s de la structure d'encapsulation secondaire 30s.
[0055] De préférence, on réalise ici des échancrures 43 et de préférence des portions isolantes 44 en vue de la réalisation de piliers de renfort 35 de couche mince d'encapsulation 34 de la structure d'encapsulation principale 30p. Dans un premier temps, on réalise plusieurs échancrures 43 qui s'étendent à partir de la face supérieure de la deuxième couche sacrificielle minérale 42 suivant l'axe Z pour déboucher sur des piliers d'ancrage 21 des détecteurs thermiques sensibles 20p. Ensuite, on réalise avantageusement une pluralité de portions isolantes 44 dans les échancrures 43. Ces portions isolantes 44 sont des portions d'une couche mince réalisée en un matériau électriquement isolant. Elles permettent d'éviter un contact électrique entre les détecteurs thermiques sensibles 20p et la couche mince d'encapsulation 34 via ses piliers de renfort 35. Pour cela, on dépose une couche mince isolante sur la surface rendue libre des piliers d'ancrage 21 à l'intérieur des échancrures 43. La couche mince isolante est ici avantageusement gravée localement au-dessus des détecteurs thermiques sensibles 20p, de manière à ne pas perturber ou réduire la transmission du rayonnement électromagnétique à détecter, mais elle pourrait ne pas être gravée. Elle peut présenter une épaisseur comprise entre lOnm et 200nm environ. Elle est réalisée en un matériau inerte à la gravure chimique mise en œuvre lors de la suppression des couches sacrificielles minérales, qui peut être choisi parmi l'AIN, l'ALOs, l'HfO2.
[0056] En référence à la fig.lC, on réalise la couche mince d'encapsulation 34 de la structure d'encapsulation principale 30p, cette couche mince d'encapsulation 34 étant formée d'une portion
supérieure s'étendant au-dessus de la matrice de détection 2p, et comportant des piliers de renfort 35 situés dans la zone principale, distincts les uns des autres, et reposant sur le substrat de lecture 10 via les piliers d'ancrage 21 des détecteurs thermiques sensibles 20p. Pour cela, on procède au dépôt conforme de la couche mince d'encapsulation 34, réalisée en un matériau transparent au rayonnement électromagnétique d'intérêt et inerte à la gravure chimique mise en œuvre ultérieurement, d'une épaisseur comprise par exemple entre 200nm et 2pm, par exemple égale à 800nm environ voire moins, par exemple du silicium amorphe, du germanium amorphe, un alliage silicium-germanium amorphe, entre autres. La couche mince d'encapsulation 34 est déposée sur la couche sacrificielle minérale 42 ainsi que dans les échancrures 43, par exemple par une technique de dépôt chimique en phase vapeur (CVD pour Chemical Vapor Deposition, en anglais). De préférence, elle recouvre également la couche mince opaque 33, assurant ainsi un renforcement de la tenue mécanique de ce qui sera la paroi supérieure opaque 32s de la structure d'encapsulation secondaire 30s. La couche mince d'encapsulation 34 comprend ainsi, réalisés d'un seul tenant et en le ou les mêmes matériaux : une portion supérieure, sensiblement plane dans le plan XY, qui s'étend au-dessus suivant l'axe Z de la matrice de détection 2p, et des piliers de renfort 35 qui reposent sur le substrat de lecture 10, ici de manière indirecte via les piliers d'ancrage 21.
[0057] La couche mince d'encapsulation 34 forme ici une lame quart d'onde vis-à-vis du rayonnement électromagnétique d'intérêt. Ainsi, dans le cas du silicium amorphe et pour une bande spectrale de détection allant de 8pm à 14pm, elle présente avantageusement une épaisseur de 800nm environ. Ainsi, la paroi supérieure opaque 32s comportant la couche mince opaque 33 et la couche mince d'encapsulation 34 (lame quart d'onde) forme un empilement interférentiel qui, tout en restant opaque au rayonnement électromagnétique d'intérêt, permet de réduire la réflexion de ce dernier par absorption dans la lame quart d'onde susceptibles de former des images parasites par le dispositif de détection 1. Notons ici que la paroi supérieure opaque 32s peut bien entendu comporter des couches minces supplémentaires, améliorant ainsi les propriétés interférentielles de cet empilement.
[0058] Plus largement, la couche mince opaque 33 peut être un multicouche absorbant tel qu'un empilement (multicouche) formé d'une alternance de couches minces élémentaires métalliques et diélectriques, réduisant ainsi les réflexions parasites. La couche mince d'encapsulation 34 peut également être un empilement formé d'une alternance de couches métalliques et diélectriques, qui reste toutefois transparent au rayonnement électromagnétique d'intérêt lorsqu'elle s'étend au- dessus de la matrice de détection 2p (cf. fig.lE, 3E) ou qui peut être opaque (multicouche absorbant) lorsqu'elle ne s'étend pas au-dessus de la matrice de détection 2p (cf. fig.4C). Quoi qu'il en soit, l'un et/ou l'autre des multicouches de la paroi supérieure opaque 32s peuvent ainsi former
un empilement interférentiel absorbant réduisant les réflexions parasites et améliorant ainsi les performances du dispositif de détection 1. Par ailleurs, la couche mince opaque 33 et/ou la partie de la couche mince d'encapsulation 34 située au-dessus de la matrice de compensation 2s, et plus largement la paroi supérieure opaque 32s, peuvent également présenter des structurations latérales, dans le plan XY, améliorant les propriétés d'opacité, notamment par absorption du rayonnement électromagnétique d'intérêt.
[0059] Les piliers de renfort 35 présentent des dimensions dans le plan XY de l'ordre de celles des piliers d'ancrage 21. Ainsi, les piliers d'ancrage 21 peuvent comporter chacun une portion verticale de dimensions dans le plan XY de l'ordre de 0.5pm à lpm surmontée par une portion supérieure débordant latéralement de l'ordre de 0.2pm à 0.5pm vis-à-vis de la portion verticale. Les piliers de renfort 35 peuvent présenter ici des dimensions dans le plan XY de l'ordre de 0.5pm à 2pm environ.
[0060] On réalise ensuite des évents 36p, 36s permettant de réaliser les cavités principale 3p et secondaire 3s. Ces évents 36p, 36s débouchent sur la couche sacrificielle minérale 42 et sont destinés à permettre l'évacuation des différentes couches sacrificielles minérales 41, 42 hors de la cavité principale 3p et de la cavité secondaire 3s. Des premiers évents 36p sont réalisés au travers de la couche mince d'encapsulation 34 et sont destinés à la formation de la cavité principale 3p. Des deuxièmes évents 36s sont réalisés au travers de la couche mince d'encapsulation 34 et de la couche mince opaque 33, et sont destinés à la formation de la cavité secondaire 3s. Les évents 36p, 36s sont disposés uniquement en regard de la zone principale et de la zone secondaire, par exemple à raison de un évent par détecteur thermique. Ainsi, ils permettront de libérer totalement la surface du substrat de lecture 10 dans les zones principale et secondaire, et de former la paroi périphérique minérale 31s. Dans cet exemple, les évents 36p, 36s sont situés à la perpendiculaire des membranes suspendues des détecteurs thermiques sensibles 20p et des détecteurs thermiques de compensation 20s, mais ils peuvent être disposés différemment, notamment à la perpendiculaire de leurs piliers d'ancrage 21. Les évents 36p, 36s peuvent présenter différentes formes dans le plan XY, par exemple une forme circulaire d'un diamètre de 0.4pm voire moins. Ainsi, les premiers évents 36p ne perturbent pas ou peu la transmission du rayonnement électromagnétique d'intérêt, et les deuxièmes évents 36s ne perturbent pas ou peu l'écrantage vis-à-vis de ce rayonnement électromagnétique d'intérêt.
[0061] En référence à la fig.lD, on effectue une gravure chimique adaptée à supprimer partiellement les couches sacrificielles minérales 41, 42. La gravure chimique est une gravure par exemple à l'acide fluorhydrique en phase vapeur, en particulier lorsque les couches sacrificielles minérales 41, 42 sont réalisées à base d'un oxyde de silicium. Les produits de la réaction chimique sont évacués au travers des évents 36p, 36s.
[0062] Du fait de la disposition des évents 36p, 36s situés uniquement en regard des matrices de détection 2p et de compensation 2s, l'agent de gravure supprime entièrement les couches sacrificielles minérales 41, 42 situées dans ces zones, mais la gravure chimique est effectuée de sorte que l'agent de gravure ne grave pas une portion périphérique des couches sacrificielles minérales 41, 42 qui s'étend autour de la matrice de compensation 2s, et ici également autour de la matrice de détection 2p. Ainsi, la paroi périphérique minérale 31s entoure la matrice de compensation 2s et délimite latéralement la cavité secondaire 3s. Une paroi périphérique minérale entoure également la matrice de détection 2p et délimite latéralement la cavité principale 3p (cf. fig.lF). Les deux parois périphériques minérales 31s, 31p sont confondues entre la cavité principale 3p et la cavité secondaire 3s.
[0063] Ainsi, la couche mince opaque 33 et la couche mince d'encapsulation 34 forment ensemble une paroi supérieure opaque 32s, suspendue au-dessus de la matrice de compensation 2s, qui repose sur la paroi périphérique minérale 31s. Elle participe à délimiter, avec cette dernière, la cavité secondaire 3s. Et la couche mince d'encapsulation 34 est suspendue au-dessus de la matrice de détection 2p, et participe à délimiter la cavité principale 3p. Elle repose sur la paroi périphérique minérale 31p.
[0064] A la différence du document WO2012/056124A1, la structure d'encapsulation 30s de la cavité secondaire 3s ne comporte pas une paroi périphérique formée d'une couche mince qui s'étendrait au-dessus et autour de la matrice de compensation 2s, et viendrait jusqu'au substrat de lecture 10. Dans le cadre de l'invention, la structure d'encapsulation 30s de la cavité secondaire 3s comporte la paroi périphérique minérale 31s et une paroi supérieure opaque 32s qui repose sur cette dernière, et s'étend de manière continûment plane au-dessus de la matrice de compensation 2s.
[0065] En référence à la fig.lE, on dépose une couche de scellement 37 sur la couche mince d'encapsulation 34 avec une épaisseur suffisante pour assurer le scellement, i.e. le bouchage, des évents 36s, 36p. Elle s'étend au moins en regard de la cavité principale 3p et de la cavité secondaire 3s. La couche de scellement 37 est transparente au rayonnement électromagnétique à détecter, et peut être réalisée en germanium avec une épaisseur de 1.7pm environ par un dépôt sous vide pour une mise sous vide des détecteurs thermiques. On peut également déposer une couche antireflet (non représentée) permettant d'optimiser la transmission du rayonnement électromagnétique au travers de la structure d'encapsulation principale 30p. Cette couche antireflet peut être réalisée en sulfure de zinc avec une épaisseur de 1.2pm environ.
[0066] La fig. IF illustre en vue de dessus, de manière schématique et partielle, le dispositif de détection 1. La matrice de compensation 2s est située dans la cavité secondaire 3s, laquelle est délimitée latéralement par la paroi périphérique minérale 31s (dont la bordure intérieure est représentée par un trait en pointillé) et verticalement par la couche mince opaque 33 (trait continu). Cette dernière s'étend de manière continûment planaire au-dessus de la matrice de compensation 2s, avec une épaisseur constante, et repose sur la paroi périphérique minérale 31s. La matrice de détection 2p est située dans la cavité principale 3p, laquelle est délimitée latéralement par la paroi périphérique minérale 31p (trait en pointillé) et verticalement par la couche mince d'encapsulation 34 (non représentée). Des plots de connexion 7 sont ici situés en bordure des matrices de détecteurs thermiques 20p, 20s, et permettent de connecter le circuit de lecture 14 à un circuit électrique externe (non représenté). Ils sont accessibles de l'extérieur par des ouvertures réalisées dans des portions non gravées des couches sacrificielles minérales (au travers des couches 37, 34, 42 puis 41). On note que la cavité secondaire 3s présente une dimension latérale inférieure aux dimensions de la cavité principale 3p. Elle peut ainsi être inférieure ou égale à 200pm. Cette largeur est définie de sorte que la structure d'encapsulation secondaire 30s ne nécessite pas de piliers de renfort 35, à la différence ici de la structure d'encapsulation principale 30p, qui seraient réalisés d'un seul tenant et en un même matériau avec une couche mince (ici la couche mince 34) de la paroi supérieure opaque 32s.
[0067] On obtient ainsi une cavité hermétique secondaire 3s, de préférence sous vide ou à pression réduite, dans laquelle sont logés les détecteurs thermiques de compensation 20s. La structure d'encapsulation secondaire 30s comporte donc une paroi supérieure opaque 32s formée ici de la couche mince opaque 33, de la couche mince d'encapsulation 34, et de la couche mince de scellement 37, cette paroi supérieure opaque 32s reposant sur la paroi périphérique minérale 31s.
[0068] Ainsi, la structure d'encapsulation secondaire 30s ne comporte pas de structure de support de la paroi supérieure opaque 32s sur le substrat de lecture 10 autre que la paroi périphérique minérale 31s, laquelle est issue des couches sacrificielles minérales 41, 42 nécessaires à la réalisation des détecteurs thermiques 20p, 20s. Elle ne comporte donc pas une paroi périphérique en couche mince, réalisée au travers des couches sacrificielles minérales 41, 42, qui viendrait reposer directement sur le substrat de lecture 10, comme dans le document WO2012/056124A1. De plus, la paroi périphérique minérale 31s n'est pas réfléchissante, ce qui permet d'éviter que de la lumière parasite soit réfléchie vers les détecteurs thermiques sensibles 20p.
[0069] Outre le fait que cela permet de réduire la complexité du procédé de fabrication (en nombre d'étapes de réalisation, notamment), on évite également d'effectuer une gravure localisée des couches sacrificielles minérales 41, 42 qui viendrait déboucher sur la couche de protection 13
du substrat de lecture 10. On évite ainsi tout risque de dégradation de cette couche de protection 13, notamment en termes d'étanchéité, ce qui écarte les risques de dégradation du substrat de lecture 10 lors de la gravure chimique à l'HF vapeur. De plus, on améliore la tenue mécanique de la structure d'encapsulation 30s dans la mesure où la paroi supérieure opaque 32s est assemblée au substrat de lecture 10 par une paroi périphérique minérale 31s qui présente une interface avec le substrat de lecture 10 de plus grande surface que dans le cas d'une paroi périphérique en couche mince.
[0070] De plus, l'absence de piliers de renfort 35 dans la cavité secondaire 3s permet d'éviter une variation de la topologie de la couche mince opaque 33 dans le plan XY, voire une variation d'épaisseur. De telles variations peuvent se traduire par une dégradation de la propriété optique d'opacité de la couche mince opaque 33. De plus, de tels piliers de renfort s'étendraient au travers d'ouvertures pratiquées dans la couche mince opaque 33 ; ces ouvertures dégraderaient l'écrantage de la matrice de compensation 2s. Aussi, par l'absence des piliers de renfort 35 dans la cavité secondaire 3s, la couche mince opaque 33 peut rester continûment plane et d'épaisseur constante, préservant ainsi la bonne uniformité de sa propriété optique d'opacité.
[0071] Par ailleurs, le fait de réaliser la couche mince opaque 33 par dépôt PVD ouvre un plus grand choix de matériaux possibles, notamment métalliques, que dans le cas où la couche mince opaque 33 forme une paroi périphérique en couche mince, comme dans le WO2012/056124A1. En effet, dans ce cas, il serait nécessaire d'utiliser des techniques de dépôt spécifiques, comme par exemple le dépôt chimique en phase vapeur (CVD, pour Chemical Vapor Deposition, en anglais), ce qui limite le choix des matériaux possibles. Par ailleurs, un plus grand choix des matériaux possibles permet de choisir un matériau opaque présentant une fonction supplémentaire, telle qu'une fonction getter, comme décrit plus loin en référence aux fig.3A à 3F.
[0072] Par ailleurs, la couche mince opaque 33, en reposant sur la paroi périphérique minérale 31s, peut déborder latéralement vis-à-vis de la matrice de compensation 2s, ce qui permet d'obtenir une bonne efficacité d'écrantage. L'efficacité d'écrantage est d'ailleurs d'autant plus importante que le matériau de la paroi périphérique minérale 31s peut participer à écranter latéralement le rayonnement électromagnétique d'intérêt. En effet, à titre d'exemple, un oxyde de silicium présente une absorption élevée dans la bande spectrale entre 8 et 14pm.
[0073] Enfin, la paroi supérieure opaque 32s est décrite dans cet exemple à titre illustratif. D'autres configurations sont bien entendu possibles. Ainsi, la paroi supérieure opaque 32s peut comporter d'autres couches minces, situées sous ou sur la couche mince opaque 33. Par ailleurs, l'agencement
des couches minces dans la paroi supérieure opaque 32s peut être choisi de manière à tenir compte des différences de contraintes mécaniques dans chacune des couches minces.
[0074] La figure 2 est une vue de dessus, schématique et partielle, d'un dispositif de détection 1 selon une variante de celui illustré sur la fig.lF. Dans cet exemple, le dispositif de détection 1 se distingue de celui décrit sur la fig.lF essentiellement en ce qu'il comporte plusieurs cavités secondaires, ici deux, qui logent chacune une matrice de compensation 2s. Les deux cavités secondaires sont adjacentes et sont séparées par une même paroi périphérique minérale 31s. La couche mince opaque 33 s'étend ici de manière continue au-dessus des deux matrices de compensation 2s. Elle repose donc sur la paroi périphérique minérale 31s située entre les deux cavités secondaires. En variante, les structures d'encapsulation secondaires 30s peuvent comporter chacune une couche mince opaque 33 dédiée. Quoi qu'il en soit, il est avantageux de prévoir plusieurs cavités secondaires lorsque le nombre requis de détecteurs thermiques de compensation 20s ne permet pas de les loger tous dans une même cavité secondaire sans avoir à réaliser des piliers de renfort 35 similaires à ceux de la cavité principale. Autrement dit, il est avantageux de loger les détecteurs thermiques de compensation 20s dans plusieurs cavités secondaires d'une dimension latérale suffisamment réduite pour éviter d'avoir à réaliser des piliers de renfort 35, par exemple inférieure ou égale à 200pm environ.
[0075] Les figures 3A à 3F illustrent, de manière schématique et partielle, différentes étapes d'un procédé de fabrication selon une variante du mode de réalisation illustré sur les fig.lA à 1F. Dans cet exemple, la couche mince opaque 33 est réalisée en un matériau présentant une fonction de getter. D'une manière générale, un matériau à effet getter est un matériau destiné à être exposé à l'atmosphère de la cavité hermétique et apte à réaliser un pompage gazeux par absorption et/ou adsorption. Il peut s'agir du matériau métallique réfléchissant au rayonnement électromagnétique d'intérêt, par exemple le titane.
[0076] Dans cet exemple, le matériau métallique est sensible à l'agent de gravure utilisé lors de la gravure chimique utilisée pour la suppression partielle des couches sacrificielles minérales 41, 42. Aussi, il est protégé de cet agent de gravure par une couche sacrificielle de protection 38 réalisée en carbone amorphe.
[0077] Le carbone amorphe peut éventuellement être de type DLC (pour Diamond Like Carbon, en anglais), c'est-à-dire qu'il présente un fort taux d'hybridation en carbone sp3. Il est sensiblement inerte vis-à-vis de la gravure chimique effectuée pour supprimer partiellement les couches
sacrificielles minérales 41, 42, c'est-à-dire qu'il réagit peu ou pas avec l'agent de la gravure chimique. Aussi, à l'issue de cette étape de suppression partielle, il protège toujours le matériau getter. La couche sacrificielle de protection 38 est adaptée à être supprimée par une deuxième gravure chimique telle qu'une gravure chimique sèche dont un agent de gravure est par exemple de l'oxygène contenu dans un plasma.
[0078] En référence à la fig.3A, on réalise la matrice de détection 2p et la matrice de compensation 2s, sur et au travers de la première couche sacrificielle minérale 41. La deuxième couche sacrificielle minérale 42 recouvre les deux matrices de détecteurs thermiques 20p, 20s ainsi que la première couche sacrificielle minérale 41. Elle présente une face supérieure plane. Cette étape est identique à celle décrite précédemment.
[0079] En référence à la fig.3B, on réalise un empilement opaque formée d'une couche mince de protection 38 et de la couche mince opaque 33. Cet empilement s'étend de manière planaire et continue au-dessus de la matrice de compensation 2s, et ne s'étend pas au-dessus de la matrice de détection 2p. Il est destiné à reposer sur la paroi périphérique minérale 31s.
[0080] La couche mince de protection 38 repose sur et au contact de la deuxième couche sacrificielle minérale 42. Elle est destinée à protéger la couche mince opaque 33 lors de la gravure chimique mise en œuvre lors de la suppression partielle des couches sacrificielles minérales 41, 42. Elle est destinée à être supprimée lors d'une deuxième gravure chimique, à laquelle la couche mince opaque 33 est sensiblement inerte, par exemple par gravure chimique sèche. Elle est réalisée en carbone amorphe et présente une épaisseur par exemple comprise entre 50nm et 500nm.
[0081] La couche mince opaque 33 repose sur et au contact de la couche mince de protection 38, et n'est donc pas au contact de la deuxième couche sacrificielle minérale 42. Elle est réalisée en un matériau métallique réfléchissant au rayonnement électromagnétique à détecter et présente un effet getter, par exemple en titane.
[0082] On réalise également les échancrures 43 et les portions isolantes 44, destinées à la réalisation des piliers de renfort 35 de la couche mince d'encapsulation 34 de la structure d'encapsulation principale 30p, de la même manière que décrit précédemment.
[0083] En référence à la fig.3C, on dépose ensuite la couche mince d'encapsulation 34, de manière à recouvrir ici l'empilement opaque et à s'étendre au-dessus de la matrice de détection 2p. Elle remplit les échancrures 43 et forme les piliers de renfort 35. On réalise également les premiers et deuxièmes évents 36p, 36s.
[0084] En référence à la fig.3D, on effectue la gravure chimique de manière à supprimer partiellement les couches sacrificielles minérales 41, 42, et former ainsi les cavités principale 3p et
secondaire 3s délimitées par les parois périphériques minérales 31s, 31p (cf. fig.3F). La paroi supérieure opaque 32s est alors suspendue au-dessus de la matrice de compensation 2s et repose sur la paroi périphérique minérale 31s. La couche mince de protection 38 présente une partie de sa face inférieure qui a été rendue libre. Cependant, elle a protégé la couche mince opaque 33 vis-à- vis de l'agent de gravure utilisée. L'intégrité structurelle de la couche mince opaque 33 a donc été préservée, et donc également ses propriétés optiques et son effet getter.
[0085] En référence à la fig.3E, on effectue une deuxième gravure chimique, à laquelle la couche mince de protection 38 est sensible, par exemple une gravure chimique sèche, pour supprimer la partie ayant sa surface inférieure libre. Une sur-gravure latérale peut également avoir lieu. On rend ainsi libre une partie de la face inférieure de la couche mince opaque 33. La couche de scellement est ensuite déposée pour obturer les évents 36p, 36s. On active ensuite la chimisorption du matériau à effet getter de la couche mince opaque 33 en soumettant le dispositif de détection 1 à un traitement thermique adéquat, par exemple dans un four ou une étuve.
[0086] La fig.3F est une vue de dessus, schématique et partielle, du dispositif de détection 1 ainsi obtenu. Pour que le matériau getter de la couche mince opaque 33 puisse assurer le pompage gazeux des cavités secondaire et principale, une chambre de communication 6 est réalisée, qui assure la communication gazeuse entre les deux cavités. Elle est délimitée latéralement par une portion non gravée des couches sacrificielles minérales et est délimitée ici verticalement par la paroi supérieure opaque 32s. Pour obtenir cette chambre de communication 6 lors de l'étape de suppression partielle des couches sacrificielles minérales, des évents 36s, 36p sont été préalablement réalisés au travers de la paroi supérieure opaque 32s, et disposés au-dessus de la zone destinée à former la chambre de communication 6. Les évents 36s traversent ici les couches 34, 33 et 38, alors que les évents 36p ne traversent que la couche 34.
[0087] Les figures 4A à 4D illustrent, de manière schématique et partielle, différentes étapes d'un procédé de fabrication selon un autre mode de réalisation. Il diffère de ceux décrits précédemment essentiellement en ce que la structure d'encapsulation principale 30p ne comporte pas une couche mince d'encapsulation 34, mais un capot rigide rapporté 9, c'est-à-dire un capot préalablement réalisé puis rapporté et assemblé au substrat de lecture 10 de manière à encapsuler la matrice de détection 2p (le capot 9 encapsule ici également la matrice de compensation 2s). La structure d'encapsulation principale 30p est ici similaire ou identique à celle décrite dans le document EP3239670A1.
[0088] Le capot 9 peut être réalisé à partir d'un substrat en silicium, et structuré de manière à comporter une paroi périphérique destinée à être assemblée au substrat de lecture 10. La paroi périphérique est fixée au substrat de lecture 10 par l'intermédiaire d'un joint hermétique 8, ce dernier étant de préférence au contact d'une portion d'accroche d'une couche métallique. Le joint hermétique 8 peut être obtenu par la refonte d'un métal fusible ou par la formation d'un alliage intermétallique.
[0089] Le procédé comporte alors une étape de réalisation (fig.4A) de la matrice de détection 2p et de la matrice de compensation sur le substrat de lecture 10, comme décrit précédemment. La paroi supérieure opaque 32s est ici formée d'un empilement comportant la couche mince opaque 33 et une couche mince de renfort 39. La couche mince de renfort 39 peut former une lame quart d'onde, comme décrit précédemment. Elle participe ici à renforcer la tenue mécanique de la paroi supérieure opaque 32s. La paroi supérieure opaque 32s s'étend dans la zone secondaire, et éventuellement autour de la zone principale, mais ne s'étend pas au-dessus de la matrice de détection 2p. Dans cet exemple, elle est destinée à s'étendre au-delà de la paroi périphérique minérale 31s, de manière à former une portion en porte-à-faux (une partie qui dépasse latéralement au-delà de la paroi périphérique minérale 31s suivant une direction opposée à la cavité secondaire 3s).
[0090] On effectue ensuite (fig.4B) la suppression partielle des couches sacrificielles minérales 41, 42 par gravure chimique. On libère ainsi la matrice de détection 2p, ainsi que la matrice de compensation 2s, laquelle est entourée par la paroi périphérique minérale 31s. La paroi supérieure opaque 32s présente alors la portion en porte-à-faux située entre la matrice de compensation 2s et la matrice de détection 2p. Dans cet exemple, cette portion en porte-à-faux est formée des deux couches minces 33, 39, mais en variante, elle peut n'être formée que de la couche mince de renfort 39 (la couche mince opaque 33 s'arrêtant au-dessus de la paroi périphérique minérale 31s). Le choix entre ces deux configurations peut dépendre de la différence de contraintes mécaniques entre ces couches minces 33, 39. Ainsi, une configuration où la portion en porte-à-faux ne serait formée que de la couche mince de renfort 39 est avantageuse pour éviter un déséquilibre des contraintes mécaniques entre les deux couches 33, 39 et corriger une éventuelle déflexion de la portion en porte-à-faux. Notons qu'il apparaît qu'une attaque chimique en milieu acide des couches sacrificielles minérales 41, 42 en milieu confiné (i.e. sous la paroi supérieure opaque 32s) présente une vitesse de gravure latérale (dans le plan XY) supérieure à la vitesse de gravure verticale (suivant l'axe Z). Aussi, on obtient dans le même temps la libération de la matrice de détection 2p et la formation de la cavité secondaire 3s (gravure des couches 41 et 42 et évacuation au travers des évents 36s).
[0091] On dépose ensuite (fig.4C) une ligne d'un matériau de scellement destiné à former le joint hermétique 8, qui repose sur le substrat de lecture 10 et entoure la matrice de détection 2p. Il entoure ici également la matrice de compensation 2s. Cette ligne de matériau de scellement a été déposée avant la suppression partielle des couches sacrificielles minérales 41, 42, par exemple dans une tranchée périphérique traversant les couches sacrificielles minérales et entourant la matrice de détection 2p. On reporte ensuite le capot 9 sur le joint hermétique 8 et on l'assemble au substrat de lecture 10. On note que le capot 9 assure l'obturation des évents 36s. Ainsi, la cavité 3s est contenue dans la cavité 3p.
[0092] La fig.4D est une vue de dessus, schématique et partielle, du dispositif de détection 1 obtenu après l'étape de réalisation du joint hermétique 8 et avant le report du capot 9. La paroi périphérique minérale 31s de la structure d'encapsulation secondaire 30s présente ici une largeur inférieure à sa longueur, et s'étend longitudinalement autour de la matrice de compensation 2s. La couche mince opaque 33 s'étend au-dessus de la matrice de compensation 2s, repose sur la paroi périphérique minérale 31s, et présente ici une portion en porte-à-faux. Le reste de la surface du substrat de lecture 10 n'est ainsi pas recouvert par une portion non gravée des couches sacrificielles minérales.
[0093] Des modes de réalisation particuliers viennent d'être décrits. Différentes variantes et modifications sont possibles tout en restant dans le cadre de l'invention.
[0094] Ainsi, la structure d'encapsulation principale 30p peut, en variante, être similaire ou identique à celle décrite dans le document EP3399290A1. Une telle structure d'encapsulation comporte une paroi périphérique qui entoure la matrice de détection 2p, et qui est réalisée par une technique de dépôt de couche mince. Une paroi supérieure peut être reportée et assemblée sur la paroi périphérique au moyen d'une poignée temporaire.
Claims
1. Procédé de fabrication d'un dispositif de détection (1) d'un rayonnement électromagnétique, comportant les étapes suivantes : o réalisation d'une matrice de détection (2p) formée de détecteurs thermiques (20p) destinés à détecter le rayonnement électromagnétique, et d'au moins une matrice dite de compensation (2s) formée de détecteurs thermiques (20s) destinés à ne pas détecter le rayonnement électromagnétique, sur et au travers d'une première couche sacrificielle (41) reposant sur un substrat de lecture (10),
• les détecteurs thermiques (20s) de la matrice de compensation (2s) étant adaptés à détecter le rayonnement électromagnétique et structurellement identiques aux détecteurs thermiques (20p) de la matrice de détection (2p) ; o réalisation d'une deuxième couche sacrificielle (42) recouvrant les détecteurs thermiques (20s, 20p) et la première couche sacrificielle (41) ; o réalisation d'une structure d'encapsulation dite secondaire (30s) délimitant une cavité secondaire (3s) dans laquelle est située la matrice de compensation (2s), et comportant une paroi périphérique (31s) ainsi qu'une paroi supérieure opaque (32s) reposant sur la paroi périphérique (31s) et formée d'au moins une couche mince opaque (33) ; o caractérisé en ce que : o les première et deuxième couches sacrificielles (41, 42) sont réalisées en un matériau minéral ; o l'étape de réalisation de la structure d'encapsulation secondaire (30s) comporte les étapes suivantes :
• réalisation de la couche mince opaque (33) de sorte qu'elle s'étende de manière continûment plane seulement sur une surface supérieure de la deuxième couche sacrificielle minérale (42) ;
• réalisation, dans la couche mince opaque (33), d'évents (36s) disposés en regard de la matrice de compensation (2s) ;
• suppression partielle des première et deuxième couches sacrificielles minérales (41, 42) au travers des évents (36s), par gravure chimique, de manière à libérer la matrice de détection (2p) et la matrice de compensation (2s), et à obtenir la paroi périphérique (31s) alors formée d'une portion non gravée des couches sacrificielles minérales (41, 42) et entourant la matrice de compensation (2s), la couche mince opaque (33) étant alors suspendue au-dessus de la matrice de compensation (2s) et reposant sur la paroi périphérique (31s).
2. Procédé de fabrication selon la revendication 1, dans lequel les première et deuxième couches sacrificielles (41, 42) sont réalisées en un même matériau minéral à base d'un oxyde ou d'un nitrure de silicium.
3. Procédé de fabrication selon la revendication 1 ou 2, dans lequel les détecteurs thermiques (20p) de la matrice de détection (2p) comme les détecteurs thermiques (20s) de la matrice de compensation (2s) comportent chacun une membrane absorbante (22) apte à absorber le rayonnement électromagnétique à détecter et comportant un transducteur thermométrique, suspendue au-dessus du substrat de lecture (10) par des piliers d'ancrage (21) et des bras de maintien et d'isolation thermique.
4. Procédé de fabrication selon la revendication 3, dans lequel les détecteurs thermiques (20p) de la matrice de détection (2p) et/ou les détecteurs thermiques (20s) de la matrice de compensation (2s) comportent chacun une couche réflectrice (23), qui repose sur le substrat de lecture (10), en-dessous de chaque membrane absorbante (22).
5. Procédé de fabrication selon l'une quelconque des revendications 1 à 4, dans lequel la paroi supérieure opaque (32s) comporte un empilement interférentiel absorbant au rayonnement électromagnétique à détecter.
6. Procédé de fabrication selon l'une quelconque des revendications 1 à 5, dans lequel la paroi supérieure opaque (32s) comporte en outre au moins une couche mince de renfort (39) recouvrant la couche mince opaque (33), et présente une bordure en saillie vis-à-vis de la paroi périphérique (31s) dans un plan parallèle au substrat de lecture (10), la bordure en saillie comportant la couche mince opaque (33) et/ou la couche mince de renfort (39).
7. Procédé de fabrication selon l'une quelconque des revendications 1 à 6, dans lequel la cavité secondaire (3s) présente une longueur et une largeur dans un plan parallèle au substrat de lecture (10), la largeur étant inférieure ou égale à 200pm, la paroi supérieure opaque (32s) ne comportant pas de piliers de renfort, réalisés d'un seul tenant et en un même matériau avec une couche mince de la paroi supérieure opaque (32s), situés dans la cavité secondaire (3s) et venant reposer sur le substrat de lecture (10).
8. Procédé de fabrication selon l'une quelconque des revendications 1 à 7, dans lequel les couches sacrificielles minérales (41, 42) sont réalisées en un matériau absorbant au rayonnement électromagnétique à détecter.
9. Procédé de fabrication selon l'une quelconque des revendications 1 à 8, dans lequel la couche mince opaque (33) est réalisée en un matériau à effet getter.
10. Procédé de fabrication selon la revendication 9, comportant les étapes suivantes : o avant l'étape de suppression partielle, réalisation de la paroi supérieure opaque (32s) formée d'un empilement comportant une couche mince de protection (38) réalisée en carbone amorphe inerte à un agent de gravure utilisé lors de l'étape de suppression partielle et située au contact de la deuxième couche sacrificielle minérale (42), la couche mince opaque (33) s'étendant uniquement sur et au contact de la couche mince de protection (38) ;
• de sorte que, lors de l'étape de suppression partielle, la couche mince opaque (33) est protégée par la couche mince de protection (38), o après l'étape de suppression partielle, suppression d'au moins une partie de la couche mince de protection (38) par gravure chimique, de manière à rendre libre une face inférieure de la couche mince opaque (33).
11. Procédé de fabrication selon l'une quelconque des revendications 1 à 10, comportant une étape de réalisation d'une structure d'encapsulation principale (30p) délimitant une cavité principale (3p) dans laquelle est située la matrice de détection (2p), et comportant une paroi supérieure principale (32p) comportant une couche mince d'encapsulation (34) reposant sur une paroi périphérique principale (31p), par les étapes suivantes : o dépôt de la couche mince d'encapsulation (34) sur la deuxième couche sacrificielle minérale (42), s'étendant au-dessus de la matrice de détection (2p) et de la matrice de compensation (2s) ; o réalisation, dans la couche mince d'encapsulation (34), d'évents principaux (36p) disposés en regard de la matrice de détection (2p) ; o la suppression partielle des première et deuxième couches sacrificielles minérales (41, 42) étant effectuée de manière à former la paroi périphérique principale (31p) alors formée d'une portion non gravée des couches sacrificielles minérales (41, 42) et entourant la matrice de détection (2p), la couche mince d'encapsulation (34) étant alors suspendue au-dessus de la matrice de détection (2p) et reposant sur la paroi périphérique principale (31p).
12. Procédé de fabrication selon la revendication 9 ou 10, et selon de la revendication 11, comportant une étape de réalisation d'une chambre de communication (6) reliant la cavité secondaire (2s) et la cavité principale (2p), la chambre de communication (6) étant délimitée latéralement par une portion non gravée des première et deuxième couches sacrificielles minérales (41, 42).
27
13. Procédé de fabrication selon la revendication 11 ou 12, comportant une étape de réalisation de piliers de renfort (35) de la couche mince d'encapsulation (34), reposant sur le substrat de lecture (10), de préférence par l'intermédiaire de piliers d'ancrage (21) des détecteurs thermiques (20p) de la matrice de détection (2p).
14. Procédé de fabrication selon l'une quelconque des revendications 1 à 13, dans lequel la gravure chimique est effectuée à l'acide fluorhydrique en phase vapeur, et les première et deuxième couches sacrificielles minérales (41, 42) sont réalisées en un matériau minéral à base d'un oxyde de silicium.
15. Dispositif de détection d'un rayonnement électromagnétique, comportant : o un substrat de lecture (10) ; o une matrice de détection (2p) formée de détecteurs thermiques (20p) destinés à détecter le rayonnement électromagnétique ; o au moins une matrice dite de compensation (2s) formée de détecteurs thermiques (20s) destinés à ne pas détecter le rayonnement électromagnétique, adaptés à détecter le rayonnement électromagnétique, et structurellement identiques aux détecteurs thermiques (20p) de la matrice de détection (2p) ; o une structure d'encapsulation dite secondaire (30s) délimitant une cavité secondaire (3s) dans laquelle est située la matrice de compensation (2s), et comportant une paroi périphérique (31s) ainsi qu'une paroi supérieure opaque (32s) reposant sur la paroi périphérique (31s) et formée d'au moins une couche mince opaque (33) ; o caractérisé en ce que :
• la couche mince opaque (33) s'étend de manière continûment plane ;
• la paroi périphérique (31s) est réalisée en un matériau minéral.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2100043A FR3118663B1 (fr) | 2021-01-04 | 2021-01-04 | Procédé de fabrication d’un dispositif de détection comportant une structure d’encapsulation comportant une couche mince opaque reposant sur une paroi périphérique minérale |
PCT/EP2021/087868 WO2022144427A1 (fr) | 2021-01-04 | 2021-12-30 | Procede de fabrication d'un dispositif de detection comportant une structure d'encapsulation comportant une couche mince opaque reposant sur une paroi peripherique minerale |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4271973A1 true EP4271973A1 (fr) | 2023-11-08 |
Family
ID=75953943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21844791.0A Pending EP4271973A1 (fr) | 2021-01-04 | 2021-12-30 | Procede de fabrication d'un dispositif de detection comportant une structure d'encapsulation comportant une couche mince opaque reposant sur une paroi peripherique minerale |
Country Status (8)
Country | Link |
---|---|
US (1) | US20240295439A1 (fr) |
EP (1) | EP4271973A1 (fr) |
KR (1) | KR20230128301A (fr) |
CN (1) | CN116829914A (fr) |
CA (1) | CA3203028A1 (fr) |
FR (1) | FR3118663B1 (fr) |
IL (1) | IL303960A (fr) |
WO (1) | WO2022144427A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3138517A1 (fr) * | 2022-07-28 | 2024-02-02 | Lynred | Micro-bolometre d’imagerie infrarouge aveugle et procede de realisation |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10058864B4 (de) * | 2000-11-27 | 2009-06-25 | Pyreos Ltd. | Mikromechanikstruktur für integrierte Sensoranordnungen und Verfahren zur Herstellung einer Mikromechanikstruktur |
US7825379B2 (en) * | 2007-11-09 | 2010-11-02 | Mitsubishi Electric Corporation | Thermal-type infrared image sensing device and method of producing the same |
FR2966596B1 (fr) * | 2010-10-26 | 2012-12-07 | Commissariat Energie Atomique | Dispositif de detection d'un rayonnement electromagnetique. |
FR2966595B1 (fr) | 2010-10-26 | 2013-01-25 | Commissariat Energie Atomique | Dispositif de detection d'un rayonnement electromagnetique. |
US9064982B2 (en) * | 2012-12-21 | 2015-06-23 | Robert Bosch Gmbh | Thin-film encapsulated infrared sensor |
FR3050870B1 (fr) | 2016-04-28 | 2018-05-25 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de realisation d’un dispositif de detection de rayonnement electromagnetique comportant une couche en un materiau getter |
FR3066044B1 (fr) | 2017-05-02 | 2020-02-21 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Detecteur de rayonnement electromagnetique, encapsule par report de couche mince. |
-
2021
- 2021-01-04 FR FR2100043A patent/FR3118663B1/fr active Active
- 2021-12-30 KR KR1020237024248A patent/KR20230128301A/ko unknown
- 2021-12-30 EP EP21844791.0A patent/EP4271973A1/fr active Pending
- 2021-12-30 CN CN202180092419.2A patent/CN116829914A/zh active Pending
- 2021-12-30 IL IL303960A patent/IL303960A/en unknown
- 2021-12-30 WO PCT/EP2021/087868 patent/WO2022144427A1/fr active Application Filing
- 2021-12-30 US US18/260,173 patent/US20240295439A1/en active Pending
- 2021-12-30 CA CA3203028A patent/CA3203028A1/fr active Pending
Also Published As
Publication number | Publication date |
---|---|
FR3118663A1 (fr) | 2022-07-08 |
FR3118663B1 (fr) | 2024-07-12 |
KR20230128301A (ko) | 2023-09-04 |
US20240295439A1 (en) | 2024-09-05 |
WO2022144427A1 (fr) | 2022-07-07 |
CN116829914A (zh) | 2023-09-29 |
CA3203028A1 (fr) | 2022-07-07 |
IL303960A (en) | 2023-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3239670B1 (fr) | Procede de realisation d'un dispositif de detection de rayonnement electromagnetique comportant une couche en un materiau getter | |
EP3067674B1 (fr) | Dispositif de detection de rayonnement comportant une structure d'encapsulation a tenue mecanique amelioree | |
EP3067675B1 (fr) | Dispositif de detection de rayonnement electromagnetique a structure d'encapsulation hermetique a event de liberation | |
EP3399290A1 (fr) | Détecteur de rayonnement électromagnétique, encapsulé par report de couche mince | |
CA2853751A1 (fr) | Detecteur infrarouge a base de micro-planches bolometriques suspendues | |
EP3637071B1 (fr) | Procede de fabrication d'un dispositif de detection d'un rayonnement electromagnetique a structure d'encapsulation amelioree | |
EP4062451B1 (fr) | Procede de fabrication d'un dispositif de detection presentant une protection amelioree du getter | |
EP3067676B1 (fr) | Dispositif de detection de rayonnement comportant une structure d'encapsulation a tenue mecanique amelioree | |
EP4038355B1 (fr) | Procede de fabrication d'un dispositif de detection de rayonnement electromagnetique comportant un materiau getter | |
EP4271973A1 (fr) | Procede de fabrication d'un dispositif de detection comportant une structure d'encapsulation comportant une couche mince opaque reposant sur une paroi peripherique minerale | |
EP3828936B1 (fr) | Procédé de fabrication d'un dispositif de détection comportant une étape de report et de collage direct d'une couche mince munie d'un materiau getter | |
EP3828521A1 (fr) | Procede de fabrication d'un dispositif de detection comportant une etape de collage direct d'une couche mince de scellement munie d'un materiau getter | |
FR3087260A1 (fr) | Procede de fabrication d'un dispositif de detection d'un rayonnement electromagnetique comportant un element de detection suspendu | |
EP4136420B1 (fr) | Procede de fabrication d'un dispositif de detection comportant une paroi peripherique en un materiau mineral | |
FR3081990A1 (fr) | Dispositif de detection a detecteur thermique et comportant une couche de scellement et de focalisation | |
FR3066017B1 (fr) | Dispositif pyroelectrique de detection infrarouge comportant un emetteur infrarouge de modulation | |
FR3142546A1 (fr) | Dispositif de détection d’un rayonnement électromagnétique et procédé de fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230629 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |