EP4271938A1 - Double wall for aircraft gas turbine combustion chamber and method of producing same - Google Patents

Double wall for aircraft gas turbine combustion chamber and method of producing same

Info

Publication number
EP4271938A1
EP4271938A1 EP21839570.5A EP21839570A EP4271938A1 EP 4271938 A1 EP4271938 A1 EP 4271938A1 EP 21839570 A EP21839570 A EP 21839570A EP 4271938 A1 EP4271938 A1 EP 4271938A1
Authority
EP
European Patent Office
Prior art keywords
wall
internal wall
combustion chamber
projecting member
double wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21839570.5A
Other languages
German (de)
French (fr)
Inventor
Thomas Sébastien Alexandre GRESY
Jean-Paul Didier AUTRET
Nicolas Roland Guy SAVARY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Helicopter Engines SAS
Original Assignee
Safran Helicopter Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Helicopter Engines SAS filed Critical Safran Helicopter Engines SAS
Publication of EP4271938A1 publication Critical patent/EP4271938A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03043Convection cooled combustion chamber walls with means for guiding the cooling air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03045Convection cooled combustion chamber walls provided with turbolators or means for creating turbulences to increase cooling

Definitions

  • the present invention relates to the field of aircraft gas turbine combustion chambers, in particular for helicopters.
  • a combustion chamber 101 comprises a double wall 102, namely, an internal wall 121 in contact with the combustion reaction R and an external wall 122 which forms a thermal protection.
  • a combustion chamber 101 comprises a double wall 102, namely, an internal wall 121 in contact with the combustion reaction R and an external wall 122 which forms a thermal protection.
  • orifices 103 in the external wall 122 so as to allow the circulation of cooling air flows F which cool the internal wall 121 by impact. and thus increase its lifespan.
  • bridges 104 connecting the internal wall 121 and the external wall 122 as illustrated in .
  • the bridges 104 are mounted in an attached manner, in particular, by welding to the walls 121, 122 of the double wall 102.
  • such bridges are known for example from the patent application FR3072448A1.
  • the temperature of the internal wall 121 is higher than that of the external wall 122, which causes, due to thermal expansion, a relative displacement between the internal wall 121 and the external wall 122.
  • the bridges 104 are then likely to break as illustrated in , which modifies the spacing between the internal wall 121 and the external wall 122.
  • the flow of cooling air F is likely to be deflected at the level of the rupture zones of the bridges 104.
  • the internal wall 121 may include zones of high temperature Z, which affects its service life.
  • the invention relates to a double wall for an aircraft gas turbine combustion chamber comprising an internal wall configured to be in contact with the combustion reaction and an external wall, spaced from the internal wall, comprising a plurality of so as to allow the circulation of cooling air flows, outside the outer wall, which come to cool the inner wall.
  • the internal wall is free of perforations so as to prevent any circulation of a flow of cooling air towards the center of the combustion chamber.
  • the invention is remarkable in that the internal wall comprises a plurality of members projecting towards the external wall, each projecting member extending into an orifice so as to define a calibrated passage section between the projecting member and the orifice for the passage of a flow of cooling air.
  • the plurality of projecting members makes it possible to increase the exchange surface between the flow of cooling air and the internal wall, which improves the life of the combustion chamber.
  • the positioning of the projecting member in an orifice makes it possible to define a calibrated passage section, which makes it possible to precisely regulate the flow of cooling air.
  • protruding members do not have a significant thermal gradient during use, which increases the service life.
  • protruding members make it possible to support the internal wall during additive manufacturing.
  • each orifice having a peripheral edge each projecting member extends away from the peripheral edge of the orifice.
  • each projecting member extends away from the peripheral edge of the orifice.
  • each protruding member is remote from the outer wall, that is to say without contact, so as to avoid any thermal conduction.
  • the protruding members are advantageously free relative to the outer wall.
  • the calibrated passage section is peripheral, preferably annular.
  • each projecting member has a flared section towards the internal wall.
  • the protruding member has a sturdy base, which increases the service life.
  • each projecting member has an end face extending in the extension of the outer face of the outer wall.
  • the double wall is manufactured additively. Such a manufacturing process makes it possible to guarantee precise positioning of the projecting member in an orifice.
  • the invention also relates to a method of manufacturing a double wall as presented above, in which the internal wall and the external wall are manufactured additively.
  • the inner wall and the outer wall are attached to a temporary support by incremental addition of metal powders then separated from the temporary support by cutting at the interface between the walls and the temporary support.
  • the assembly is depowdered and then heat treated.
  • the invention also relates to a combustion chamber for an aircraft gas turbine comprising a double wall as presented above, in which the internal wall is configured to be in contact with the combustion reaction.
  • the invention also relates to a gas turbine, in particular for an aircraft, comprising a combustion chamber as presented above.
  • each projecting member expands thermally, each projecting member in the expanded state extends away from the peripheral edge of the orifice in which it extends.
  • The is a schematic representation of a double wall of a combustion chamber with bridges according to the prior art.
  • The is a schematic representation of the double wall of the when the jumper link breaks.
  • The is a schematic representation of a helicopter gas turbine engine combustion chamber.
  • The is a cross-sectional schematic representation of a double wall of a combustion chamber.
  • The is a schematic representation from the outside of the double wall of the .
  • The is a schematic sectional representation of the positioning of a projecting member in an orifice in the outer wall of the double wall.
  • The is a cross-sectional schematic representation of the additive manufacturing of the double wall
  • The is a cross-sectional schematic representation of the circulation of a cooling air flow in the double wall during the use of the combustion chamber.
  • the invention will be presented for a combustion chamber for an aircraft gas turbine. With reference to the , there is shown a combustion chamber 1 of a gas turbine for a helicopter. It goes without saying that the invention also applies to other types of aircraft gas turbines.
  • Combustion chamber is advantageously understood to mean any enclosure in which a combustion reaction takes place and the temperature of which must be controlled.
  • the combustion chamber 1 comprises a double wall 2 comprising an internal wall 21 configured to be in contact with the combustion reaction R and an external wall 22, separated from the internal wall 21, in order to form a thermal protection.
  • the walls 21, 22 are metallic.
  • the double wall 2 is shown in more detail in Figures 4 to 6.
  • the outer wall 22 comprises a plurality of orifices 3 so as to allow the circulation of cooling air flows F which come to cool the inner wall 21 by circulation in the spacing space formed between the two walls 21, 22.
  • the orifices 3 are distributed over the outer wall 22 so as to allow uniform cooling.
  • the orifices 4 are organized in rows and columns.
  • the orifices 3 are of circular section and have a radius r3 ( ) but it goes without saying that they could be of different section.
  • Each orifice 3 has a peripheral edge 30 which is, in this example, circular. According to one aspect of the invention, the number of orifices 3 is higher in the zones facing the internal wall 21 which are the hottest.
  • the internal wall 21 is sealed, that is to say, free of perforation so as to prevent any circulation of a flow of cooling air F towards the center of the combustion chamber 1, which would impact the combustion performance.
  • Such an internal wall 21 makes it possible to improve the combustion efficiency of the combustion chamber.
  • the internal wall 21 comprises a plurality of projecting members 4 towards the external wall 22, each projecting member 4 extending into an orifice 3 so as to define a passage section calibrated for the passage of the flow of cooling air F.
  • each orifice 3 is associated with a projecting member 4. It goes without saying that some orifices 3 could have no projecting member 4.
  • the projecting members 4 make it possible to increase the heat exchange surface of the internal wall 21 with the cooling air flows F, which improves the cooling of the internal wall 21.
  • a section calibrated passage allows precise control of the supply of cooling air flow F in order to use it sparingly.
  • the protruding member 4 has a flared section towards the internal wall 21.
  • a flared section allows the protruding member 4 to have a wide base guaranteeing a robust connection with the internal wall 21.
  • a foot portion 4a close to the internal wall 21 and a head portion 4b, forming the free end of the projecting member 4, which extends into the orifice 3.
  • the foot portion 4a has a larger section than the head portion 4b.
  • the foot portion 4a has a tapered section ensuring high robustness.
  • the head portion 4b is for its part cylindrical and preferably has a circular section of radius r4.
  • the foot portion 4a has a section at least 50%, preferably at least 100% greater than the radius r4.
  • each projecting member 4 extends at a distance from the peripheral edge 30 of the orifice 3 in which it extends. In other words, there is no contact capable of causing thermal conduction between the projecting member 4 belonging to the internal wall 21 and the peripheral edge 30 of the orifice 3 belonging to the external wall 22. There is no heat transfer by conduction between the inner wall 21 and the outer wall 22 via the projecting members.
  • the projecting member 4 is centered in the orifice 3 so that the calibrated section is fitted between the head portion 4b and the orifice 30, preferably of annular shape.
  • the calibrated section makes it possible to adapt the flow rate of the cooling air flow in order to use the cooling air flow sparingly.
  • the radius r3 of the orifice 3 is greater than the radius r4 of the projecting member 4 so as to define a sufficient passage section for the cooling air F.
  • the radius r3 of the orifice 3 is greater than radius r4 by at least 10%, more preferably by at least 30%, more preferably by at least 100%.
  • the space between the protruding member 4 and the peripheral edge 30 of the orifice 3 defines a clearance which allows the expansion of the protruding member 4.
  • each projecting member 4 extends at a distance from the peripheral edge 30 of the orifice 3 in which it extends.
  • any heat conduction is avoided between a projecting member 4 and the outer wall 22.
  • each projecting member 4 is in the form of a part of revolution around an axis X which is locally orthogonal to the walls 21, 22.
  • the head portion 4b has a planar end face 40.
  • the planar end face 40 extends in continuity with the outer surface of the outer wall 22 as illustrated in .
  • the projecting member 4 does not extend externally to the outer wall 22, which prevents the formation of turbulence and improves the circulation of the flow of cooling air.
  • the double wall 2 is manufactured in an additive manner in order to obtain an optimal alignment between the protruding members 4 and the orifices 3.
  • the double wall 2 is formed on a temporary support 5 then the double wall 2 is formed by successive depositions incrementally in a vertical direction FA.
  • the outer wall 22 and the head portion 4b of the protruding member 4 are made before the foot portion 4a of the protruding member 4 and the inner wall 21.
  • the protruding members 4 advantageously fill a support function of the internal wall 21 during additive manufacturing, which makes it possible to obtain an optimal alignment between the protruding members 4 and the orifices 3.
  • the walls 21, 22 are secured to the temporary support 5 by incremental addition of metal powders.
  • the assembly is then depowdered and then heat treated.
  • the walls 21, 22 are detached from the temporary support 5 by cutting at the interface between the walls 21, 22 and the temporary support 5.
  • Such additive manufacturing advantageously makes it possible to obtain original and innovative geometries while reducing the thicknesses.
  • such additive manufacturing does not require the use of a mold for manufacturing, which is a source of savings.
  • the walls 21, 22 could also be manufactured by combining mechanically welded parts or parts obtained by foundry.
  • each protruding member 4 cooperates in an optimal manner with an orifice 3 to provide a calibrated passage section between the protruding member 4 and the orifice 3 for the passage of an air flow of cooling F.
  • An assembly by means of digons or the like can be implemented.
  • the flow of cooling air F moves in the space E formed between the internal wall 21 and the external wall 22 via the calibrated passage section.
  • the cooling air flow F makes it possible to come into contact with the entire surface of the projecting member 4, which makes it possible to maximize the heat exchanges.
  • each projecting member 4 expands thermally. In the expanded state, each projecting member 4 extends away from the peripheral edge 30 of the orifice 3 in which it extends. Thus, any heat conduction is avoided between a projecting member 4 and the outer wall 22.
  • the double wall 2 can be optimally cooled by flows of cooling air F without the risk of creating points of weakness or breakage.
  • the presence of protruding members 4 makes it possible to increase the heat exchange surface and to calibrate the passage section of the cooling air flow F.

Abstract

A double wall (2) for an aircraft gas turbine combustion chamber (1) comprising an internal wall (21) which is configured to be in contact with the combustion reaction, and an external wall (22) which is at a distance from the internal wall (21), comprising a plurality of openings (3) so as to allow the circulation of cooling air streams (F), outside the external wall (22), which cool the internal wall (21), the internal wall (21) being free of perforations so as to prevent any circulation of a cooling air stream (F) towards the centre of the combustion chamber (1). The double wall (2) is characterised in that the internal wall (21) comprises a plurality of members (4) projecting towards the external wall (22), each projecting member (4) comprising a foot portion (4a) and a cylindrical head portion (4b) with a circular cross-section, the head portion (4b) extending into an opening (3) with a circular cross-section so as to define a calibrated cross-sectional area between the projecting member (4) and the opening (3), through which area a cooling air stream (F) can flow.

Description

    Double paroi pour chambre de combustion de turbine à gaz d’aéronef et procédé de fabrication d’une telle double paroiDouble wall for an aircraft gas turbine combustion chamber and method of manufacturing such a double wall
  • La présente invention concerne le domaine des chambres de combustion de turbine à gaz d’aéronef, en particulier, pour hélicoptère.The present invention relates to the field of aircraft gas turbine combustion chambers, in particular for helicopters.
  • De manière connue, en référence à la , une chambre de combustion 101 comporte une double paroi 102, à savoir, une paroi interne 121 en contact avec la réaction de combustion R et une paroi externe 122 qui forme une protection thermique. Afin de limiter la propagation de chaleur issue de la paroi interne 121, il est connu de prévoir des orifices 103 dans la paroi externe 122 de manière à permettre la circulation de flux d’air de refroidissement F qui viennent refroidir par impact la paroi interne 121 et ainsi augmenter sa durée de vie. Afin de permettre une fabrication de la double paroi 2 et garantir un écartement entre la paroi interne 121 et la paroi externe 122, il est connu de prévoir des pontets 104 reliant la paroi interne 121 et la paroi externe 122 comme illustré à la . En pratique, les pontets 104 sont montés de manière rapportée, en particulier, par soudage aux parois 121, 122 de la double paroi 102. Dans l’art antérieur, on connaît par exemple de tels pontets par la demande de brevet FR3072448A1.As is known, with reference to the , a combustion chamber 101 comprises a double wall 102, namely, an internal wall 121 in contact with the combustion reaction R and an external wall 122 which forms a thermal protection. In order to limit the propagation of heat from the internal wall 121, it is known to provide orifices 103 in the external wall 122 so as to allow the circulation of cooling air flows F which cool the internal wall 121 by impact. and thus increase its lifespan. In order to allow manufacture of the double wall 2 and guarantee a spacing between the internal wall 121 and the external wall 122, it is known to provide bridges 104 connecting the internal wall 121 and the external wall 122 as illustrated in . In practice, the bridges 104 are mounted in an attached manner, in particular, by welding to the walls 121, 122 of the double wall 102. In the prior art, such bridges are known for example from the patent application FR3072448A1.
  • En fonctionnement, au cours de la réaction de combustion R, la température de la paroi interne 121 est plus élevée que celle de la paroi externe 122, ce qui entraine, du fait des dilatations thermiques, un déplacement relatif entre la paroi interne 121 et la paroi externe 122. Les pontets 104 sont alors susceptibles de se rompre comme illustré à la , ce qui modifie l’écartement entre la paroi interne 121 et la paroi externe 122. Aussi, le flux d’air de refroidissement F est susceptible d’être dévié au niveau des zones de rupture des pontets 104. Il en résulte que le refroidissement de la paroi interne 121 n’est pas optimal. La paroi interne 121 peut comprendre des zones de haute température Z, ce qui affecte sa durée de vie.In operation, during the combustion reaction R, the temperature of the internal wall 121 is higher than that of the external wall 122, which causes, due to thermal expansion, a relative displacement between the internal wall 121 and the external wall 122. The bridges 104 are then likely to break as illustrated in , which modifies the spacing between the internal wall 121 and the external wall 122. Also, the flow of cooling air F is likely to be deflected at the level of the rupture zones of the bridges 104. As a result, the cooling of the inner wall 121 is not optimal. The internal wall 121 may include zones of high temperature Z, which affects its service life.
  • Une solution immédiate pour éliminer cet inconvénient serait de renforcer la liaison de chaque pontet mais cela induit un temps et un coût de fabrication important. L’invention vise ainsi à éliminer au moins certains de ces inconvénients.An immediate solution to eliminate this drawback would be to reinforce the connection of each bridge, but this incurs significant manufacturing time and cost. The invention thus aims to eliminate at least some of these drawbacks.
  • On connaît dans l’art antérieur par la demande de brevet US20130047618A1 une double paroi pour une chambre de combustion d’une turbine à gaz comportant des protrusions en forme de bosse.Known in the prior art by the patent application US20130047618A1 a double wall for a combustion chamber of a gas turbine comprising bump-shaped protrusions.
  • PRESENTATION DE L’INVENTIONPRESENTATION OF THE INVENTION
  • L’invention concerne une double paroi pour chambre de combustion de turbine à gaz d’aéronef comportant une paroi interne configurée pour être en contact avec la réaction de combustion et une paroi externe, écartée de la paroi interne, comportant une pluralité d’orifices de manière à permettre la circulation de flux d’air de refroidissement, extérieurs à la paroi externe, qui viennent refroidir la paroi interne. La paroi interne est exempte de perforation de manière à interdire toute circulation d’un flux d’air de refroidissement vers le centre de la chambre de combustion.The invention relates to a double wall for an aircraft gas turbine combustion chamber comprising an internal wall configured to be in contact with the combustion reaction and an external wall, spaced from the internal wall, comprising a plurality of so as to allow the circulation of cooling air flows, outside the outer wall, which come to cool the inner wall. The internal wall is free of perforations so as to prevent any circulation of a flow of cooling air towards the center of the combustion chamber.
  • L’invention est remarquable en ce que la paroi interne comporte une pluralité d’organes en saillie vers la paroi externe, chaque organe en saillie s’étendant dans un orifice de manière à définir une section de passage calibrée entre l’organe en saillie et l’orifice pour le passage d’un flux d’air de refroidissement.The invention is remarkable in that the internal wall comprises a plurality of members projecting towards the external wall, each projecting member extending into an orifice so as to define a calibrated passage section between the projecting member and the orifice for the passage of a flow of cooling air.
  • De manière avantageuse, la pluralité d’organes en saillie permet d’augmenter la surface d’échange entre le flux d’air de refroidissement et la paroi interne, ce qui améliore la durée de vie de la chambre de combustion. En outre, le positionnement de l’organe en saillie dans un orifice permet de définir une section de passage calibrée, ce qui permet de réguler de manière précise le flux d’air de refroidissement. Enfin, de tels organes en saillie ne possèdent pas un gradient thermique important los de l’utilisation, ce qui augmente la durée de vie. Enfin, de tels organes en saillie permettent de supporter la paroi interne lors d’une fabrication additive.Advantageously, the plurality of projecting members makes it possible to increase the exchange surface between the flow of cooling air and the internal wall, which improves the life of the combustion chamber. In addition, the positioning of the projecting member in an orifice makes it possible to define a calibrated passage section, which makes it possible to precisely regulate the flow of cooling air. Finally, such protruding members do not have a significant thermal gradient during use, which increases the service life. Finally, such protruding members make it possible to support the internal wall during additive manufacturing.
  • De préférence, chaque orifice ayant un bord périphérique, chaque organe en saillie s’étend à distance du bord périphérique de l’orifice. Ainsi, il n’existe pas de conduction thermique directe entre l’organe en saillie et la paroi externe. En outre, cela permet d’autoriser une dilatation différentielle lors du fonctionnement étant donné que les températures des parois sont différentes.Preferably, each orifice having a peripheral edge, each projecting member extends away from the peripheral edge of the orifice. Thus, there is no direct heat conduction between the protruding member and the external wall. In addition, it allows for differential expansion during operation as the wall temperatures are different.
  • De préférence, chaque organe en saillie est distant de la paroi externe, c’est-à-dire sans contact, de manière à éviter toute conduction thermique. Les organes en saillie sont avantageusement libres par rapport à la paroi externe.Preferably, each protruding member is remote from the outer wall, that is to say without contact, so as to avoid any thermal conduction. The protruding members are advantageously free relative to the outer wall.
  • De manière avantageuse, les flux d’air de refroidissement circulent de manière périphérique autour de chaque organe en saillie, ce qui améliore le refroidissement. De manière préférée, la section de passage calibrée est périphérique, de préférence, annulaire.Advantageously, the cooling air flows circulate peripherally around each protruding member, which improves cooling. Preferably, the calibrated passage section is peripheral, preferably annular.
  • Selon un aspect de l’invention, chaque organe en saillie possède une section évasée vers la paroi interne. Ainsi, l’organe en saillie possède une base robuste, ce qui augmente la durée de vie.According to one aspect of the invention, each projecting member has a flared section towards the internal wall. Thus, the protruding member has a sturdy base, which increases the service life.
  • De manière préférée, la paroi externe comportant une face externe, chaque organe en saillie comporte une face d’extrémité s’étendant dans le prolongement de la face externe de la paroi externe. Une telle caractéristique est avantageuse étant donné qu’elle permet d’améliorer la circulation du flux d’air de refroidissement en évitant de former un relief susceptible d’entraîner la formation de turbulences. Une telle caractéristique est obtenue de manière avantageuse lors d’une fabrication additive comme cela sera présenté par la suite.Preferably, the outer wall having an outer face, each projecting member has an end face extending in the extension of the outer face of the outer wall. Such a characteristic is advantageous given that it makes it possible to improve the circulation of the flow of cooling air by avoiding the formation of a relief liable to cause the formation of turbulence. Such a characteristic is advantageously obtained during additive manufacturing as will be presented later.
  • Selon un aspect préféré de l’invention, la double paroi est fabriquée de manière additive. Un tel procédé de fabrication permet de garantir un positionnement précis de l’organe en saillie dans un orifice.According to a preferred aspect of the invention, the double wall is manufactured additively. Such a manufacturing process makes it possible to guarantee precise positioning of the projecting member in an orifice.
  • L’invention concerne également un procédé de fabrication d’une double paroi telle que présentée précédemment, dans laquelle la paroi interne et la paroi externe sont fabriquées de manière additive.The invention also relates to a method of manufacturing a double wall as presented above, in which the internal wall and the external wall are manufactured additively.
  • De préférence, la paroi interne et la paroi externe sont solidarisées à un support temporaire par addition incrémentale de poudres métalliques puis désolidarisées du support temporaire par découpe à l’interface entre les parois et le support temporaire. De manière préférée, préalablement à la désolidarisation, l’ensemble est dépoudré puis traité thermiquement.Preferably, the inner wall and the outer wall are attached to a temporary support by incremental addition of metal powders then separated from the temporary support by cutting at the interface between the walls and the temporary support. Preferably, prior to separation, the assembly is depowdered and then heat treated.
  • L’invention concerne aussi une chambre de combustion pour turbine à gaz d’aéronef comportant une double paroi telle que présentée précédemment, dans laquelle la paroi interne est configurée pour être en contact avec la réaction de combustion.The invention also relates to a combustion chamber for an aircraft gas turbine comprising a double wall as presented above, in which the internal wall is configured to be in contact with the combustion reaction.
  • L’invention concerne également une turbine à gaz, en particulier pour aéronef, comportant une chambre de combustion telle que présentée précédemment.The invention also relates to a gas turbine, in particular for an aircraft, comprising a combustion chamber as presented above.
  • L’invention vise également un procédé d’utilisation d’une chambre de combustion telle que présentée précédemment, comprenant :
    • une étape de combustion dans la chambre de combustion élevant la température de la paroi interne et
    • une étape de circulation d’un flux d’air de refroidissement depuis l’extérieur via chaque section de passage calibrée de la paroi externe, définie entre un organe en saillie et l’orifice dans lequel il s’étend, de manière à refroidir la paroi interne.
    The invention also relates to a method of using a combustion chamber as presented previously, comprising:
    • a combustion stage in the combustion chamber raising the temperature of the internal wall and
    • a step of circulating a flow of cooling air from the outside via each calibrated passage section of the outer wall, defined between a projecting member and the orifice in which it extends, so as to cool the inner wall.
  • De préférence, chaque organe en saillie se dilatant thermiquement, chaque organe en saillie à l’état dilaté s’étend à distance du bord périphérique de l’orifice dans lequel il s’étend.Preferably, each projecting member expands thermally, each projecting member in the expanded state extends away from the peripheral edge of the orifice in which it extends.
  • PRESENTATION DES FIGURESPRESENTATION OF FIGURES
  • L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d’exemple, et se référant aux figures suivantes, données à titre d’exemples non limitatifs, dans lesquelles des références identiques sont données à des objets semblables.The invention will be better understood on reading the following description, given by way of example, and referring to the following figures, given by way of non-limiting examples, in which identical references are given to similar objects. .
  • La est une représentation schématique d’une double paroi d’une chambre de combustion avec des pontets selon l’art antérieur.The is a schematic representation of a double wall of a combustion chamber with bridges according to the prior art.
  • La est une représentation schématique de la double paroi de la lors de la rupture de la liaison de pontets. The is a schematic representation of the double wall of the when the jumper link breaks.
  • La est une représentation schématique d’une chambre de combustion d’une turbine à gaz d’hélicoptère.The is a schematic representation of a helicopter gas turbine engine combustion chamber.
  • La est une représentation schématique en coupe d’une double paroi d’une chambre à combustion.The is a cross-sectional schematic representation of a double wall of a combustion chamber.
  • La est une représentation schématique depuis l’extérieur de la double paroi de la .The is a schematic representation from the outside of the double wall of the .
  • La est une représentation schématique en coupe du positionnement d’un organe en saillie dans un orifice de la paroi externe de la double paroi.The is a schematic sectional representation of the positioning of a projecting member in an orifice in the outer wall of the double wall.
  • La est une représentation schématique en coupe de la fabrication de manière additive de la double paroi etThe is a cross-sectional schematic representation of the additive manufacturing of the double wall and
  • La est une représentation schématique en coupe de la circulation d’un flux d’air de refroidissement dans la double paroi lors de l’utilisation de la chambre de combustion.The is a cross-sectional schematic representation of the circulation of a cooling air flow in the double wall during the use of the combustion chamber.
  • Il faut noter que les figures exposent l’invention de manière détaillée pour mettre en œuvre l’invention, lesdites figures pouvant bien entendu servir à mieux définir l’invention le cas échéant.It should be noted that the figures expose the invention in detail to implement the invention, said figures can of course be used to better define the invention if necessary.
  • DESCRIPTION DETAILLEE DE L’INVENTIONDETAILED DESCRIPTION OF THE INVENTION
  • L’invention va être présentée pour une chambre de combustion pour turbine à gaz d’aéronef. En référence à la , il est représenté une chambre de combustion 1 d’une turbine à gaz pour hélicoptère. Il va de soi que l’invention s’applique également à d’autres types de turbines à gaz d’aéronef.The invention will be presented for a combustion chamber for an aircraft gas turbine. With reference to the , there is shown a combustion chamber 1 of a gas turbine for a helicopter. It goes without saying that the invention also applies to other types of aircraft gas turbines.
  • Par chambre de combustion, on entend de manière avantageuse toute enceinte dans laquelle il est réalisé une réaction de combustion et dont la température doit être maitrisée.Combustion chamber is advantageously understood to mean any enclosure in which a combustion reaction takes place and the temperature of which must be controlled.
  • Comme illustré sur la qui est schématique, la chambre à combustion 1 comporte une double paroi 2 comportant une paroi interne 21 configurée pour être en contact avec la réaction de combustion R et une paroi externe 22, écartée de la paroi interne 21, afin de former une protection thermique. De manière préférée, les parois 21, 22 sont métalliques. La double paroi 2 est représentée de manière plus détaillée aux figures 4 à 6. As illustrated on the which is schematic, the combustion chamber 1 comprises a double wall 2 comprising an internal wall 21 configured to be in contact with the combustion reaction R and an external wall 22, separated from the internal wall 21, in order to form a thermal protection. Preferably, the walls 21, 22 are metallic. The double wall 2 is shown in more detail in Figures 4 to 6.
  • Comme illustré aux figures 4 et 5, la paroi externe 22 comporte une pluralité d’orifices 3 de manière à permettre la circulation de flux d’air de refroidissement F qui viennent refroidir la paroi interne 21 par circulation dans l’espace d’écartement formé entre les deux parois 21, 22. Les orifices 3 sont répartis sur la paroi externe 22 de manière à permettre un refroidissement homogène. En référence à la , les orifices 4 sont organisés en lignes et en colonnes. De manière préférée, les orifices 3 sont de section circulaire et possèdent un rayon r3 ( ) mais il va de soi qu’ils pourraient être de section différente. Chaque orifice 3 comporte un bord périphérique 30 qui est, dans cet exemple, circulaire. Selon un aspect de l’invention, le nombre d’orifices 3 est plus élevé dans les zones en regard de la paroi interne 21 qui sont les plus chaudes.As illustrated in Figures 4 and 5, the outer wall 22 comprises a plurality of orifices 3 so as to allow the circulation of cooling air flows F which come to cool the inner wall 21 by circulation in the spacing space formed between the two walls 21, 22. The orifices 3 are distributed over the outer wall 22 so as to allow uniform cooling. With reference to the , the orifices 4 are organized in rows and columns. Preferably, the orifices 3 are of circular section and have a radius r3 ( ) but it goes without saying that they could be of different section. Each orifice 3 has a peripheral edge 30 which is, in this example, circular. According to one aspect of the invention, the number of orifices 3 is higher in the zones facing the internal wall 21 which are the hottest.
  • La paroi interne 21 est étanche, c’est à dire, exempte de perforation de manière à interdire toute circulation d’un flux d’air de refroidissement F vers le centre de la chambre de combustion 1, ce qui impacterait les performances de combustion. Une telle paroi interne 21 permet d’améliorer le rendement de combustion de la chambre de combustion.The internal wall 21 is sealed, that is to say, free of perforation so as to prevent any circulation of a flow of cooling air F towards the center of the combustion chamber 1, which would impact the combustion performance. Such an internal wall 21 makes it possible to improve the combustion efficiency of the combustion chamber.
  • Selon l’invention, la paroi interne 21 comporte une pluralité d’organes en saillie 4 vers la paroi externe 22, chaque organe en saillie 4 s’étendant dans un orifice 3 de manière à définir une section de passage calibrée pour le passage du flux d’air de refroidissement F. Dans cet exemple, chaque orifice 3 est associé à un organe en saillie 4. Il va de soi que certains orifices 3 pourraient être dépourvus d’organe en saillie 4.According to the invention, the internal wall 21 comprises a plurality of projecting members 4 towards the external wall 22, each projecting member 4 extending into an orifice 3 so as to define a passage section calibrated for the passage of the flow of cooling air F. In this example, each orifice 3 is associated with a projecting member 4. It goes without saying that some orifices 3 could have no projecting member 4.
  • De manière avantageuse, les organes en saillie 4 permettent d’augmenter la surface d’échange thermique de la paroi interne 21 avec les flux d’air de refroidissement F, ce qui améliore le refroidissement de la paroi interne 21. En outre, une section de passage calibrée permet de contrôler précisément l’alimentation en flux d’air de refroidissement F afin de l’utiliser avec parcimonie.Advantageously, the projecting members 4 make it possible to increase the heat exchange surface of the internal wall 21 with the cooling air flows F, which improves the cooling of the internal wall 21. In addition, a section calibrated passage allows precise control of the supply of cooling air flow F in order to use it sparingly.
  • En référence à la , il est représenté une vue en coupe schématique d’un organe en saillie 4 monté dans un orifice 3. With reference to the , there is shown a schematic sectional view of a projecting member 4 mounted in an orifice 3.
  • Dans cet exemple, l’organe en saillie 4 possède une section évasée vers la paroi interne 21. Une section évasée permet à l’organe en saillie 4 de posséder une base large garantissant une liaison robuste avec la paroi interne 21. In this example, the protruding member 4 has a flared section towards the internal wall 21. A flared section allows the protruding member 4 to have a wide base guaranteeing a robust connection with the internal wall 21.
  • Par la suite, en référence à la , on définit, pour chaque organe en saillie 4, une portion de pied 4a proche de la paroi interne 21 et une portion de tête 4b, formant l’extrémité libre de l’organe en saillie 4, qui s’étend dans l’orifice 3. La portion de pied 4a possède une section plus grande que la portion de tête 4b. Dans cet exemple, la portion de pied 4a possède une section tronconique assurant une robustesse élevée. La portion de tête 4b est pour sa part cylindrique et possède, de préférence une section circulaire de rayon r4. De préférence, la portion de pied 4a possède une section au moins 50%, de préférence, au moins 100% supérieure au rayon r4.Subsequently, with reference to the , is defined, for each projecting member 4, a foot portion 4a close to the internal wall 21 and a head portion 4b, forming the free end of the projecting member 4, which extends into the orifice 3. The foot portion 4a has a larger section than the head portion 4b. In this example, the foot portion 4a has a tapered section ensuring high robustness. The head portion 4b is for its part cylindrical and preferably has a circular section of radius r4. Preferably, the foot portion 4a has a section at least 50%, preferably at least 100% greater than the radius r4.
  • En référence à la , chaque organe en saillie 4 s’étend à distance du bord périphérique 30 de l’orifice 3 dans lequel il s’étend. Autrement dit, il n’existe pas de contact pouvant entrainer une conduction thermique entre l’organe en saillie 4 appartenant à la paroi interne 21 et le bord périphérique 30 de l’orifice 3 appartenant à la paroi externe 22. Il n’existe pas de transfert thermique par conduction entre la paroi interne 21 et la paroi externe 22 via les organes en saillie.With reference to the , each projecting member 4 extends at a distance from the peripheral edge 30 of the orifice 3 in which it extends. In other words, there is no contact capable of causing thermal conduction between the projecting member 4 belonging to the internal wall 21 and the peripheral edge 30 of the orifice 3 belonging to the external wall 22. There is no heat transfer by conduction between the inner wall 21 and the outer wall 22 via the projecting members.
  • De manière avantageuse, l’organe en saillie 4 est centré dans l’orifice 3 de manière à ce que la section calibrée soit adaptée entre la portion de tête 4b et l’orifice 30, de préférence, de forme annulaire. Lorsque la chambre de combustion va monter en température, les dilatations thermiques vont augmenter la section de passage du flux d’air de refroidissement pour obtenir un refroidissement optimal. La section calibrée permet d’adapter le débit du flux d’air de refroidissement afin d’utiliser le flux d’air de refroidissement avec parcimonie.Advantageously, the projecting member 4 is centered in the orifice 3 so that the calibrated section is fitted between the head portion 4b and the orifice 30, preferably of annular shape. When the combustion chamber will rise in temperature, the thermal expansions will increase the passage section of the cooling air flow to obtain optimal cooling. The calibrated section makes it possible to adapt the flow rate of the cooling air flow in order to use the cooling air flow sparingly.
  • De manière préférée, le rayon r3 de l’orifice 3 est plus grand que le rayon r4 de l’organe en saillie 4 de manière à définir une section de passage suffisante pour l’air de refroidissement F. Le rayon r3 de l’orifice 3 est plus grand que le rayon r4 d’au moins 10%, de préférence encore, d’au moins 30%, préférence encore, d’au moins 100%. L’espace entre l’organe en saillie 4 et le bord périphérique 30 de l’orifice 3 définit un jeu qui autorise la dilatation de l’organe en saillie 4. Comme cela sera présenté par la suite, à l’état dilaté, chaque organe en saillie 4 s’étend à distance du bord périphérique 30 de l’orifice 3 dans lequel il s’étend. Ainsi, toute conduction thermique est évitée entre un organe en saillie 4 et la paroi externe 22. De préférence, comme illustré à la , chaque organe en saillie 4 se présente sous la forme d’une pièce de révolution autour d’un axe X qui est orthogonal localement aux parois 21, 22.Preferably, the radius r3 of the orifice 3 is greater than the radius r4 of the projecting member 4 so as to define a sufficient passage section for the cooling air F. The radius r3 of the orifice 3 is greater than radius r4 by at least 10%, more preferably by at least 30%, more preferably by at least 100%. The space between the protruding member 4 and the peripheral edge 30 of the orifice 3 defines a clearance which allows the expansion of the protruding member 4. As will be presented subsequently, in the expanded state, each projecting member 4 extends at a distance from the peripheral edge 30 of the orifice 3 in which it extends. Thus, any heat conduction is avoided between a projecting member 4 and the outer wall 22. Preferably, as illustrated in , each projecting member 4 is in the form of a part of revolution around an axis X which is locally orthogonal to the walls 21, 22.
  • Toujours en référence à la , la portion de tête 4b possède une face d’extrémité plane 40. Dans cet exemple, la face d’extrémité plane 40 s’étend dans la continuité de la surface extérieure de la paroi externe 22 comme illustré à la . Ainsi, l’organe en saillie 4 ne s’étend pas extérieurement à la paroi externe 22, ce qui évite la formation de turbulences et améliore la circulation du flux d’air de refroidissement.Still with reference to the , the head portion 4b has a planar end face 40. In this example, the planar end face 40 extends in continuity with the outer surface of the outer wall 22 as illustrated in . Thus, the projecting member 4 does not extend externally to the outer wall 22, which prevents the formation of turbulence and improves the circulation of the flow of cooling air.
  • De manière préférée, en référence à la , la double paroi 2 est fabriquée de manière additive afin d’obtenir un alignement optimal entre les organes en saillie 4 et les orifices 3. Comme illustré à la , la double paroi 2 est formée sur un support temporaire 5 puis la double paroi 2 est formée par dépôts successifs de manière incrémentale selon une direction verticale FA. Ainsi, la paroi extérieure 22 et la portion de tête 4b de l’organe en saillie 4 sont réalisées préalablement à la portion de pied 4a de l’organe en saillie 4 et à la paroi intérieure 21. Les organes en saillie 4 remplissent avantageusement une fonction de support de la paroi interne 21 au cours de la fabrication additive, ce qui permet d’obtenir un alignement optimal entre les organes en saillie 4 et les orifices 3.Preferably, with reference to the , the double wall 2 is manufactured in an additive manner in order to obtain an optimal alignment between the protruding members 4 and the orifices 3. As illustrated in , the double wall 2 is formed on a temporary support 5 then the double wall 2 is formed by successive depositions incrementally in a vertical direction FA. Thus, the outer wall 22 and the head portion 4b of the protruding member 4 are made before the foot portion 4a of the protruding member 4 and the inner wall 21. The protruding members 4 advantageously fill a support function of the internal wall 21 during additive manufacturing, which makes it possible to obtain an optimal alignment between the protruding members 4 and the orifices 3.
  • Selon un exemple de mise en œuvre, lors de la fabrication, les parois 21, 22 sont solidarisées au support temporaire 5 par addition incrémentale de poudres métalliques. L’ensemble est ensuite dépoudré puis traité thermiquement. Les parois 21, 22 sont désolidarisées du support temporaire 5 par découpe à l’interface entre les parois 21, 22 et le support temporaire 5. Une telle fabrication additive permet avantageusement de d’obtenir des géométries originales et innovantes tout en réduisant les épaisseurs. De plus, une telle fabrication additive ne nécessite pas d’utiliser un moule pour la fabrication, ce qui est une source d’économie. Il va de soi que les parois 21, 22 pourraient également être fabriquées par association de pièces mécano-soudées ou obtenues par fonderie.According to an example of implementation, during manufacture, the walls 21, 22 are secured to the temporary support 5 by incremental addition of metal powders. The assembly is then depowdered and then heat treated. The walls 21, 22 are detached from the temporary support 5 by cutting at the interface between the walls 21, 22 and the temporary support 5. Such additive manufacturing advantageously makes it possible to obtain original and innovative geometries while reducing the thicknesses. In addition, such additive manufacturing does not require the use of a mold for manufacturing, which is a source of savings. It goes without saying that the walls 21, 22 could also be manufactured by combining mechanically welded parts or parts obtained by foundry.
  • La paroi interne 21 et la paroi externe 22 sont ensuite montées dans la chambre de combustion 1 de manière à ménager entre elles un espace E comme illustré à la . Du fait de la fabrication précise, chaque organe en saillie 4 coopère de manière optimale avec un orifice 3 pour offrir une section de passage calibrée entre l’organe en saillie 4 et l’orifice 3 pour le passage d’un flux d’air de refroidissement F. Un montage au moyen de digons ou analogue peut être mise en œuvre.The inner wall 21 and the outer wall 22 are then mounted in the combustion chamber 1 so as to leave between them a space E as illustrated in . Due to the precise manufacture, each protruding member 4 cooperates in an optimal manner with an orifice 3 to provide a calibrated passage section between the protruding member 4 and the orifice 3 for the passage of an air flow of cooling F. An assembly by means of digons or the like can be implemented.
  • Un exemple de mise en œuvre de l’invention va être dorénavant présenté en référence à la . Lors du fonctionnement de la turbomachine, le procédé comprend :
    • une étape de combustion R dans la chambre de combustion 1 qui élève la température de la paroi interne 21 et
    • une étape de circulation d’un flux d’air de refroidissement F depuis l’extérieur via chaque section de passage calibrée de la paroi externe définie entre un organe en saillie 4 et l’orifice 3 dans lequel il s’étend de manière à refroidir la paroi interne 21.
    An example of implementation of the invention will now be presented with reference to the . During operation of the turbomachine, the method comprises:
    • a combustion stage R in the combustion chamber 1 which raises the temperature of the internal wall 21 and
    • a step of circulating a flow of cooling air F from the outside via each calibrated passage section of the outer wall defined between a projecting member 4 and the orifice 3 in which it extends so as to cool the inner wall 21.
  • De manière avantageuse, le flux d’air de refroidissement F se déplace dans l’espace E formé entre la paroi interne 21 et la paroi externe 22 via la section de passage calibrée. Le flux d’air de refroidissement F permet d’entrer en contact avec toute la surface de l’organe en saillie 4, ce qui permet de maximiser les échanges thermiques.Advantageously, the flow of cooling air F moves in the space E formed between the internal wall 21 and the external wall 22 via the calibrated passage section. The cooling air flow F makes it possible to come into contact with the entire surface of the projecting member 4, which makes it possible to maximize the heat exchanges.
  • De préférence, lors du fonctionnement, chaque organe en saillie 4 se dilate thermiquement. A l’état dilaté, chaque organe en saillie 4 s’étend à distance du bord périphérique 30 de l’orifice 3 dans lequel il s’étend. Ainsi, toute conduction thermique est évitée entre un organe en saillie 4 et la paroi externe 22.Preferably, during operation, each projecting member 4 expands thermally. In the expanded state, each projecting member 4 extends away from the peripheral edge 30 of the orifice 3 in which it extends. Thus, any heat conduction is avoided between a projecting member 4 and the outer wall 22.
  • Grâce à l’invention, la double paroi 2 peut être refroidie de manière optimale par des flux d’air de refroidissement F sans risque de création de points de faiblesse ou de rupture. La présence d’organes en saillie 4 permet d’augmenter la surface d’échange thermique et de calibrer la section de passage du flux d’air de refroidissement F.Thanks to the invention, the double wall 2 can be optimally cooled by flows of cooling air F without the risk of creating points of weakness or breakage. The presence of protruding members 4 makes it possible to increase the heat exchange surface and to calibrate the passage section of the cooling air flow F.

Claims (11)

  1. Double paroi (2) pour chambre de combustion (1) pour turbine à gaz d’aéronef, la double paroi (2) comportant une paroi interne (21) configurée pour être en contact avec la réaction de combustion et une paroi externe (22), écartée de la paroi interne (21), comportant une pluralité d’orifices (3) de manière à permettre la circulation de flux d’air de refroidissement (F), extérieurs à la paroi externe (22), qui viennent refroidir la paroi interne (21), la paroi interne (21) étant exempte de perforation de manière à interdire toute circulation d’un flux d’air de refroidissement (F) vers le centre de la chambre de combustion (1), double paroi (2) caractérisée par le fait que la paroi interne (21) comporte une pluralité d’organes en saillie (4) vers la paroi externe (22), chaque organe en saillie (4) comportant une portion de pied (4a) et une portion de tête (4b) cylindrique de section circulaire, la portion de tête (4b) s’étendant dans un orifice (3) de section circulaire de manière à définir une section de passage calibrée entre l’organe en saillie (4) et l’orifice (3) pour le passage d’un flux d’air de refroidissement (F).Double wall (2) for a combustion chamber (1) for an aircraft gas turbine, the double wall (2) comprising an internal wall (21) configured to be in contact with the combustion reaction and an external wall (22) , separated from the internal wall (21), comprising a plurality of orifices (3) so as to allow the circulation of cooling air flows (F), external to the external wall (22), which come to cool the wall internal wall (21), the internal wall (21) being free of perforation so as to prevent any circulation of a flow of cooling air (F) towards the center of the combustion chamber (1), double wall (2) characterized in that the internal wall (21) comprises a plurality of projecting members (4) towards the external wall (22), each projecting member (4) comprising a foot portion (4a) and a head portion (4b) cylindrical of circular section, the head portion (4b) extending into an orifice (3) of circular section so as to define ir a calibrated passage section between the projecting member (4) and the orifice (3) for the passage of a flow of cooling air (F).
  2. Double paroi (2) selon la revendication 1, dans laquelle, chaque orifice (3) ayant un bord périphérique (30), chaque organe en saillie (4) s’étend à distance du bord périphérique (30) de l’orifice (3).Double wall (2) according to claim 1, in which, each orifice (3) having a peripheral edge (30), each projecting member (4) extends at a distance from the peripheral edge (30) of the orifice (3 ).
  3. Double paroi (2) selon l’une des revendications 1 à 2, dans laquelle chaque organe en saillie (4) est distant de la paroi externe (22).Double wall (2) according to one of claims 1 to 2, in which each projecting member (4) is remote from the outer wall (22).
  4. Double paroi (2) selon l’une des revendications 1 à 3, dans laquelle la section de passage calibrée est périphérique, de préférence, annulaire.Double wall (2) according to one of Claims 1 to 3, in which the calibrated passage section is peripheral, preferably annular.
  5. Double paroi (2) selon l’une des revendications 1 à 4, dans laquelle la portion de pied (4b) possède une section évasée vers la paroi interne (21).Double wall (2) according to one of Claims 1 to 4, in which the foot portion (4b) has a flared section towards the internal wall (21).
  6. Double paroi (2) selon l’une des revendications 1 à 5, dans laquelle, la paroi externe (22) comportant une face externe, chaque organe en saillie (4) comporte une face d’extrémité (40) s’étendant dans le prolongement de la face externe de la paroi externe (22).Double wall (2) according to one of claims 1 to 5, in which, the outer wall (22) having an outer face, each projecting member (4) has an end face (40) extending into the extension of the outer face of the outer wall (22).
  7. Procédé de fabrication d’une double paroi (2) selon l’une des revendications 1 à 6, dans lequel la paroi interne (21) et la paroi externe (22) sont fabriquées de manière additive.Method of manufacturing a double wall (2) according to one of Claims 1 to 6, in which the internal wall (21) and the external wall (22) are manufactured additively.
  8. Procédé de fabrication d’une double paroi (2) selon la revendication 7, dans lequel la paroi interne (21) et la paroi externe (22) sont solidarisées à un support temporaire (5) par addition incrémentale de poudres métalliques puis désolidarisées du support temporaire (5) par découpe à l’interface entre les parois (21, 22) et le support temporaire (5).Method of manufacturing a double wall (2) according to claim 7, in which the internal wall (21) and the external wall (22) are secured to a temporary support (5) by incremental addition of metal powders then separated from the support temporary (5) by cutting at the interface between the walls (21, 22) and the temporary support (5).
  9. Chambre de combustion (1) pour turbine à gaz d’aéronef comportant une double paroi (2) selon l’une des revendications 1 à 6, dans laquelle la paroi interne (21) est configurée pour être en contact avec la réaction de combustion.Combustion chamber (1) for an aircraft gas turbine comprising a double wall (2) according to one of Claims 1 to 6, in which the internal wall (21) is configured to be in contact with the combustion reaction.
  10. Turbine à gaz d’aéronef comportant une chambre de combustion (1) selon la revendication 9.Aircraft gas turbine comprising a combustion chamber (1) according to claim 9.
  11. Procédé d’utilisation d’une chambre de combustion (1) selon la revendication 9, comprenant :
    • une étape de combustion dans la chambre de combustion (1) élevant la température de la paroi interne (21) et
    • une étape de circulation d’un flux d’air de refroidissement (F) depuis l’extérieur via chaque section de passage calibrée de la paroi externe (22), définie entre un organe en saillie (4) et l’orifice (3) dans lequel il s’étend, de manière à refroidir la paroi interne (21).
    A method of using a combustor (1) according to claim 9, comprising:
    • a combustion stage in the combustion chamber (1) raising the temperature of the internal wall (21) and
    • a step of circulating a flow of cooling air (F) from the outside via each calibrated passage section of the outer wall (22), defined between a projecting member (4) and the orifice (3) in which it extends, so as to cool the internal wall (21).
EP21839570.5A 2021-01-04 2021-12-20 Double wall for aircraft gas turbine combustion chamber and method of producing same Pending EP4271938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2100013A FR3118658B1 (en) 2021-01-04 2021-01-04 Double wall for aircraft gas turbine combustion chamber and method of manufacturing such a double wall
PCT/EP2021/086791 WO2022144206A1 (en) 2021-01-04 2021-12-20 Double wall for aircraft gas turbine combustion chamber and method of producing same

Publications (1)

Publication Number Publication Date
EP4271938A1 true EP4271938A1 (en) 2023-11-08

Family

ID=74669127

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21839570.5A Pending EP4271938A1 (en) 2021-01-04 2021-12-20 Double wall for aircraft gas turbine combustion chamber and method of producing same

Country Status (5)

Country Link
US (1) US20240044492A1 (en)
EP (1) EP4271938A1 (en)
CN (1) CN116601437A (en)
FR (1) FR3118658B1 (en)
WO (1) WO2022144206A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235001A (en) * 1985-08-09 1987-02-16 Toshiba Corp Gas turbine air cooled blade
GB2219653B (en) * 1987-12-18 1991-12-11 Rolls Royce Plc Improvements in or relating to combustors for gas turbine engines
US5353865A (en) * 1992-03-30 1994-10-11 General Electric Company Enhanced impingement cooled components
GB201114745D0 (en) * 2011-08-26 2011-10-12 Rolls Royce Plc Wall elements for gas turbine engines
JP5821550B2 (en) * 2011-11-10 2015-11-24 株式会社Ihi Combustor liner
US20170356652A1 (en) * 2016-06-13 2017-12-14 General Electric Company Combustor Effusion Plate Assembly
US10830448B2 (en) * 2016-10-26 2020-11-10 Raytheon Technologies Corporation Combustor liner panel with a multiple of heat transfer augmentors for a gas turbine engine combustor
FR3072448B1 (en) 2017-10-12 2019-10-18 Safran Aircraft Engines TURBOMACHINE COMBUSTION CHAMBER
US11359810B2 (en) * 2017-12-22 2022-06-14 Raytheon Technologies Corporation Apparatus and method for mitigating particulate accumulation on a component of a gas turbine

Also Published As

Publication number Publication date
FR3118658A1 (en) 2022-07-08
FR3118658B1 (en) 2024-01-26
WO2022144206A1 (en) 2022-07-07
US20240044492A1 (en) 2024-02-08
CN116601437A (en) 2023-08-15

Similar Documents

Publication Publication Date Title
EP3737837B1 (en) Turbine ring assembly
EP0248731B1 (en) Gas turbine combustion chamber having mixing orifices which assure the positioning of a hot wall on a cool wall
FR3056633A1 (en) TURBINE RING ASSEMBLY COMPRISING A COOLING AIR DISTRIBUTION ELEMENT
FR3055147A1 (en) TURBINE RING ASSEMBLY
FR3056637A1 (en) TURBINE RING ASSEMBLY WITH COLD SETTING
CA2608268A1 (en) Turbine ring sector of turbomachinery
EP1840331A1 (en) Blade and cooling jacket assembly, turbomachine nozzle comprising the assembly, turbomachine, method of installing and repairing the assembly
FR3019584A1 (en) SYSTEM FOR VENTILATION OF A TURBINE USING CROSSING ORIFICES AND LUNULES
JP2010159960A (en) Cooling of one-piece can combustor and method related to the same
EP3870807A1 (en) Turbine ring assembly with curved rectilinear seatings
FR3090732A1 (en) Turbine ring assembly with indexed flanges.
WO2022144206A1 (en) Double wall for aircraft gas turbine combustion chamber and method of producing same
EP3430238B1 (en) Turbine rotor comprising a ventilation spacer
JP4165759B2 (en) Connecting device for connecting between turbomachine nozzle and supply enclosure for supplying cooling fluid to injector
FR3026827A1 (en) TURBOMACHINE COMBUSTION CHAMBER
FR3109402A1 (en) Turbine for a turbomachine
EP3768949B1 (en) Turbine vane comprising impingement cooling features
EP3759394B1 (en) Combustion chamber having a double chamber bottom
EP3320186B1 (en) Assembly of a gas turbine
EP3853445B1 (en) Turbine seal
EP3973149B1 (en) Turbine for a turbomachine, for example an aircraft turboreactor or turboprop engine
EP4111036B1 (en) Nozzle vane for turbomachine, corresponding high or low pressure nozzle for turbomachine, turbomachine and method of manufacturing a vane of a nozzle for turbomachine
FR2991376A1 (en) ALIGNMENT OF STATIC PARTS IN A GAS TURBINE.
FR3055145A1 (en) ANGULAR TURBOMACHINE STATOR VANE SECTOR
FR3061738A1 (en) TURBINE RING ASSEMBLY

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)