EP4267881A1 - Sealed and thermally insulating tank comprising a wave stopper - Google Patents

Sealed and thermally insulating tank comprising a wave stopper

Info

Publication number
EP4267881A1
EP4267881A1 EP21844002.2A EP21844002A EP4267881A1 EP 4267881 A1 EP4267881 A1 EP 4267881A1 EP 21844002 A EP21844002 A EP 21844002A EP 4267881 A1 EP4267881 A1 EP 4267881A1
Authority
EP
European Patent Office
Prior art keywords
corrugation
tank
thermally insulating
series
insulating barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21844002.2A
Other languages
German (de)
French (fr)
Inventor
Vincent LORIN
Marc BOYEAU
Benoît MOREL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP4267881A1 publication Critical patent/EP4267881A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/035Flow reducers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating membrane tanks.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and/or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) having for example a temperature between -50°C and 0°C, or for the transport of Liquefied Natural Gas (LNG) at around -162°C at atmospheric pressure.
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • sealed and thermally insulating tanks for storing liquefied natural gas, integrated into a supporting structure, such as the double hull of a ship intended for the transport of liquefied natural gas.
  • a supporting structure such as the double hull of a ship intended for the transport of liquefied natural gas.
  • such tanks comprise a multilayer structure having successively, in the direction of the thickness, from the outside towards the inside of the tank, a secondary thermally insulating barrier retained on the load-bearing structure, a secondary sealing membrane resting against the secondary thermally insulating barrier, a primary thermally insulating barrier resting against the secondary sealing membrane and a primary sealing membrane resting against the primary thermally insulating barrier and intended to be in contact with the liquefied natural gas contained in the tank.
  • the document WO2019102163 describes a secondary thermally insulating barrier and a primary thermally insulating barrier formed of juxtaposed insulating panels.
  • the secondary sealing membrane consists of a plurality of metal sheets comprising undulations projecting outwards from the tank and thus allowing the secondary sealing membrane to deform under the effect of thermal and mechanical stresses generated by the fluid stored in the tank.
  • An internal face of the insulating panels of the secondary thermally insulating barrier has grooves receiving the corrugations of the corrugated metal sheets of the secondary waterproof membrane. These undulations and these grooves form a mesh of channels developing along the walls of the tank.
  • the thermally insulating barrier comprises a housing intersecting the groove and having a width greater than the width of the groove.
  • the tank thus comprises a shutter arranged in the housing so that the shutter closes a portion of the groove located on the projecting side of the sealing membrane by creating a pressure drop for a flow circulating in the groove.
  • the obturator can thus move in the housing to adapt to the position of the corrugation in the groove.
  • One idea underlying the invention is to make the wave shutters more adaptable while simplifying assembly in the tank.
  • Another idea underlying the invention is to limit the presence of continuous circulation channels in the thermally insulating barriers in order to limit the phenomena of natural convection in said thermally insulating barriers.
  • the invention provides a sealed and thermally insulating tank for storing a fluid fixed to a support structure, in which a tank wall comprises at least one thermally insulating barrier and at least one membrane of sealing, the sealing membrane comprising a series of parallel undulations having a longitudinal direction, and flat portions located between said undulations, said undulations protruding from flat portions, said thermally insulating barrier being located against the sealing membrane, the thermally insulating barrier, comprising insulating panels, the insulating panels being juxtaposed to each other, in which the tank comprises at least one wave shutter located in line with a corrugation of the series of corrugations, between a corrugation of the series of undulations and a bottom of a groove of the series of grooves, the wave shutter being configured to shutter a space left free between said corrugation and one of the insulating panels, in which the corrugation shutter comprises a core of compressible material and a flexible envelope entirely covering said core so as to form a container for the core of compress
  • such a tank offers the possibility of flexibly closing grooves accommodating the undulations of the membrane despite a tolerance affecting the position of the corrugations in the grooves.
  • a tolerance may in particular arise from the manufacture and assembly of the undulations in the grooves.
  • the space between the convex side of the corrugation and the bottom of the groove, formed by the thermally insulating barrier, can be closed by the wave shutter for different positions of the ripple in the groove.
  • the core of compressible material makes it possible during its compression to simply fill this space by adapting to the position of the corrugation and by compressing more in line with the corrugation.
  • the wave shutter makes it possible to limit the formation of flows in the channels of the thermally insulating barrier, in particular the formation of thermosiphons between these channels and any flow channel located closer to the hull, by example a masticated space between the thermally insulating barrier and the load-bearing structure.
  • such a tank may include one or more of the following characteristics.
  • the thermally insulating barrier is located between the sealing membrane and the supporting structure, the corrugations projecting inwards from the tank, each insulating panel comprising a flat rigid plate forming the face in contact with the sealing membrane, the wave shutter being located between a corrugation of the series of corrugations and a rigid plate of an insulating panel.
  • said corrugations protrude from flat portions on a projecting side of the sealing membrane, said thermally insulating barrier being located on the projecting side of the sealing membrane, the thermally insulating barrier comprising a series of parallel grooves receiving the series of corrugations, said corrugation shutter being located to the right of a corrugation of the series of corrugations, between a corrugation of the series of corrugations and a bottom of a groove of the series of grooves.
  • the wave shutter is compressed by the sealing membrane so that the dimension in a direction of thickness decreases locally by at least 20% between the thickness before compression and the thickness after compression, preferably at least 30%, more preferably at least 40%, and for example of the order of 50%.
  • the envelope comprises a first ply and a second ply, the first ply being located in contact with the sealing membrane, the first ply and the second ply being fixed to one another. other on at least one part a perimeter of the first ply and of the second ply so as to form the container for the core of compressible material.
  • the first ply and the second ply are fixed to each other over the entire periphery of the first ply and the second ply so as to form a closed container for the core of material compressible.
  • the first ply is made of a more flexible material than the material of the second ply.
  • the envelope comprises a single ply comprising an internal surface located in contact with the sealing membrane, the single ply being made in the form of a flexible cylinder so as to form the container for the core in compressible material.
  • the single ply, the first ply and/or the second ply comprises at least one perforation so as to promote the exit of air during the compression of the shutter.
  • the latter may comprise at least one perforation on an external surface and/or on the internal surface of the single ply.
  • the core represents at least 50% by volume, preferably at least 90% by volume of the wave shutter, in the compressed state or in the state before compression.
  • the core is made of a non-woven, powdery or foam fibrous material.
  • the core is made of a material chosen from: mineral wool, melamine foam, polyester wadding, polyethylene wadding, synthetic plastic foam, polyamide fibers, acrylic fibers or combinations thereof.
  • the polyester wadding can be produced in the form of a mat, a ball, a ball or a quilting of fibers.
  • the casing is preferably made of a material that is not gastight and capable of creating a high pressure drop.
  • the casing comprises a woven or non-woven textile ply, consisting of mineral and/or synthetic fibers, for example glass fibers or polymer fibers of the polyester, polyamide or acrylic type.
  • a sheet is optionally combined with an aluminum sheet or a plastic film, this sheet or this film preferably being perforated to avoid complete sealing.
  • Such a sheet can also be coated in order to improve the sealing property of the sheet.
  • the tank comprises a plurality of wave shutters, each wave shutter being located between a corrugation and a groove in which said corrugation is housed.
  • the tank comprises a plurality of wave shutters, each wave shutter being located between a corrugation and an insulating panel.
  • the tank comprises a plurality of wave shutters located in line with a corrugation of the series of corrugations, between a corrugation of the series of corrugations and a groove of the series of grooves, each corrugation shutter being configured to close a space left free between said corrugation and said groove in which said corrugation is housed, the corrugation shutters being regularly spaced from each other in the longitudinal direction by a series of ripples.
  • the tank comprises a plurality of corrugation shutters located in line with a corrugation of the series of corrugations, between the corrugation of the series of corrugations and an insulating panel formed at the right of the corrugation, each corrugation shutter being configured to close a space left free between said corrugation and said insulating panel, the corrugation shutters being regularly spaced from each other in the longitudinal direction of the series of corrugations.
  • the tank comprises a plurality of wave shutters located in line with a corrugation of the series of corrugations, between a corrugation of the series of corrugations and a groove of the series of grooves, each wave shutter being configured to close a space left free between said corrugation and said groove in which said corrugation is housed, the wave shutters of said corrugations being regularly spaced from each other in the longitudinal direction.
  • the thermally insulating barrier is a first thermally insulating barrier and the tank comprises a second thermally insulating barrier located opposite the projecting side of the sealing membrane, and in which the tank comprises at at least one complementary wave shutter located opposite the at least one wave shutter so as to sandwich an undulation of the sealing membrane between the wave shutter and the complementary wave shutter, the complementary wave shutter being configured to close a space left free between said corrugation and the second thermally insulating barrier.
  • the thermally insulating barrier has an internal surface, the series of grooves being made on the internal surface and the corrugations projecting outwards from the tank.
  • the sealing membrane is a secondary sealing membrane
  • the thermally insulating barrier is a primary thermally insulating barrier
  • the corrugations projecting towards the inside of the tank and in which the tank comprises a secondary thermally insulating barrier retained on the support structure and carrying the secondary sealing membrane, the primary thermally insulating barrier being carried by the secondary sealing membrane, the tank comprising a primary sealing membrane carried by the thermally insulating barrier primary and intended to be in contact with the fluid in the tank, the series of grooves being formed on an outer surface of the primary thermally insulating barrier.
  • the thermally insulating barrier comprises insulating panels, the insulating panels being juxtaposed to each other, the insulating panels being provided with grooves forming the series of grooves so that the grooves of two insulating panels adjacent panels are aligned in the longitudinal direction, the at least one wave shutter being housed in the groove of one of the insulating panels.
  • an inter-panel space is delimited between two adjacent insulating panels, the at least one wave shutter being housed in the groove of one of the two insulating panels and being able to overflow into the inter-panel space.
  • the thermally insulating barrier comprises at least one insulating joint housed in the inter-panel space and extending in a longitudinal direction of the inter-panel space, and at least one bridging element arranged above the insulating joint, and in which the bridging element comprises a bridging plate, the bridging plate extending astride two adjacent insulating panels and being fixed to an internal face of the two insulating panels so as to oppose a separation of the two insulating panels, the internal faces of the insulating panels forming the internal surface of the thermally insulating barrier.
  • the thermally insulating barrier comprises at least one insulating seal housed in the inter-panel space and extending in a longitudinal direction of the inter-panel space, and at least one bridging element belonging to a chain of bridging elements and arranged above the insulating joint, and in which a first bridging element of the chain of bridging elements extends between two successive undulations of the series of undulations, the wave shutter being located between said first bridging element and a second bridging element of the chain of bridging elements.
  • the bridging element comprises an insulating strip assembled to the bridging plate, the insulating strip having a dimension smaller than the bridging plate in the longitudinal direction so as to be housed in the space between the panels and being compressed between the bridging plate and the insulating joint in a thickness direction of the thermally insulating barrier.
  • the thermally insulating barrier comprises a chain of bridging elements extending in the longitudinal direction of the interpanel space and comprising a plurality of bridging elements arranged astride two adjacent insulating panels and attached to each other.
  • a first bridging element of the chain of bridging elements extends between two successive undulations of the series of undulations, the wave shutter being located between said first bridging element and a second bridging element of the chain of bridging elements in line with an undulation of the series of undulations, between the sealing membrane and the thermally insulating barrier.
  • the first bridging element is fixed to the second bridging element via the wave shutter.
  • the wave shutter is fixed to a flexible sheet, two adjacent bridging elements of said chain are fixed to each other using the flexible sheet.
  • each insulating panel comprises a layer of insulating polymer foam and a rigid plate forming the face in contact with the sealing membrane, the groove of the series of grooves being formed in the rigid plate.
  • the series of corrugations is a first series of corrugations, and in which the corrugated metal sheets comprise a second series of parallel corrugations extending parallel to the transverse direction and planar portions located between said undulations.
  • Such a tank can be part of an onshore storage facility, for example for storing LNG or be installed in a floating, coastal or deep-water structure, in particular an LNG carrier, a floating storage and regasification unit. (FSRU), a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • Such a tank can also serve as a fuel tank in any type of ship.
  • a ship for transporting a cold liquid product comprises a double hull and an aforementioned tank arranged in the double hull.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to an installation floating or onshore storage facility and a pump for driving a flow of cold liquid product through the insulated pipes from or to the floating or onshore storage facility to or from the ship's tank.
  • the invention also provides a method for loading or unloading such a ship, in which a cold liquid product is conveyed through insulated pipes from or to a floating or terrestrial storage installation towards or from the vessel's tank.
  • Figure 1 shows a perspective view, cut away, of a vessel wall.
  • Figure 2 is a partial sectional view of a thermally insulating barrier on which rests a corrugated sealing membrane comprising a corrugation housed in a groove of the thermally insulating barrier and illustrating different possible positions of the corrugation in the groove .
  • Figure 3 is a perspective view of a thermally insulating barrier comprising a plurality of wave shutters according to a first embodiment.
  • Figure 4 is a sectional view along the line IV-IV of Figure 3 illustrating a wave shutter housed in a groove and before arrangement of the sealing membrane.
  • Figure 5 is a sectional view along the line IV-IV of Figure 3 illustrating a wave shutter housed in a groove and illustrating a first position of the corrugation in the groove.
  • Figure 6 is a sectional view along the line IV-IV of Figure 3 illustrating a wave shutter housed in a groove and illustrating a second position of the corrugation in the groove.
  • Figure 7 is an exploded perspective view of insulating panels of a thermally insulating barrier and of a chain of bridging elements according to one embodiment intended to be positioned astride between two rows of adjacent insulating panels.
  • Figure 8 is a partial perspective view of the thermally insulating barrier provided with a chain of bridging elements.
  • Figure 9 is a sectional view along the line IX-IX of Figure 8, with the illustration of the sealing membrane positioned on the thermally insulating barrier.
  • Figure 10 is a sectional view along line X-X of Figure 8.
  • FIG. 1 1 Figure 11 is a schematic sectional view of a shutter housed in a corrugation before compression, according to a second embodiment.
  • Figure 12 is a schematic sectional view of a shutter housed in a corrugation after compression against an insulating panel, according to the second embodiment.
  • FIG. 13 is a cutaway diagrammatic representation of an LNG carrier tank and a loading/unloading terminal for this tank.
  • Figure 1 there is shown the multilayer structure of a sealed and thermally insulating tank for storing a fluid according to one embodiment.
  • Each wall of the tank comprises, from the outside towards the inside of the tank, a secondary thermally insulating barrier 1 comprising insulating panels 2 juxtaposed and anchored to a support structure 3 by secondary retaining members, a membrane secondary sealing 4 carried by the insulating panels 2 of the secondary thermally insulating barrier 1, a primary thermally insulating barrier 5 comprising insulating panels 6 juxtaposed and anchored to the insulating panels 2 of the secondary thermally insulating barrier 1 by primary retaining members 19 and a primary sealing membrane 7, carried by the insulating panels 6 of the primary thermally insulating barrier 5 and intended to be in contact with the cryogenic fluid contained in the vessel.
  • the load-bearing structure 3 may in particular be a self-supporting sheet metal or, more generally, any type of rigid partition having appropriate mechanical properties.
  • the load-bearing structure 3 can in particular be formed by the hull or the double hull of a ship.
  • the support structure 3 comprises a plurality of walls defining the general shape of the tank, usually a polyhedral shape.
  • the secondary thermally insulating barrier 1 comprises a plurality of insulating panels 2 anchored to the supporting structure 3 by means of resin cords, not shown, and/or studs welded to the supporting structure 3.
  • the resin cords must be sufficiently adhesive when they ensure alone the anchoring of the insulating panels 2 but are not necessarily adhesive when the insulating panels 2 are anchored by means of studs.
  • the insulating panels 2 substantially have the shape of a rectangular parallelepiped.
  • the insulating panels 2, 6 each comprise a layer of insulating polymer foam 9 provided on its internal face with an internal rigid plate 10 and optionally on its external face with a plate external rigid (not shown).
  • the rigid plates, internal 10 and external are, for example, plywood plates bonded to said layer of insulating polymer foam 9.
  • the insulating polymer foam may in particular be a polyurethane-based foam.
  • the polymer foam is advantageously reinforced with glass fibers helping to reduce its thermal contraction.
  • the insulating panels 2, 6 are juxtaposed in parallel rows and separated from each other by inter-panel spaces 12 guaranteeing a functional mounting clearance.
  • the inter-panel spaces 12 are filled with an insulating joint 13, represented in FIGS. 5 and 6 in particular, such as glass wool, rock wool or flexible synthetic foam with open cells for example, and which can be wrapped in kraft paper.
  • the insulating joint 13 is advantageously made of a porous material so as to provide gas flow spaces in the inter-panel spaces 12 between the insulating panels 2.
  • Such gas flow spaces are advantageously used in order to allow a circulation of inert gas, such as nitrogen, within the secondary thermally insulating barrier 1 so as to maintain it under an inert atmosphere and thus prevent combustible gas from being in an explosive concentration range and/or in order to place the thermally insulating barrier secondary 1 in depression in order to increase its insulating power.
  • This circulation of gas is also important to facilitate the detection of any leaks of combustible gas.
  • the inter-panel spaces 12 have, for example, a width of the order of 30 mm. Insulating joints 13 are thus placed in a longitudinal direction corresponding to the greatest length of the insulating panels 2, 6, while insulating joints 13 are placed in a transverse direction perpendicular to the longitudinal direction.
  • the insulating seals 13 are sized so that their internal face directed towards the secondary sealing membrane 4 is aligned with the limit of the layer of insulating polymer foam 9 as shown in Figure 6.
  • the inner plate 10 has two series of grooves 14, 15, perpendicular to each other, so to form a network of grooves.
  • Each of the series of grooves 14, 15 is parallel to two opposite sides of the insulating panels 2.
  • the grooves 14, 15 are intended to receive corrugations, projecting towards the outside of the tank, formed on the metal sheets of the secondary sealing barrier 4.
  • the inner plate 10 comprises three grooves 14 extending along the longitudinal direction of the insulating panel 2 and nine grooves 15 extending along the transverse direction of the insulating panel 2.
  • the grooves 14, 15 pass entirely through the thickness of the inner plate 10 and thus emerge at the level of the layer of insulating polymer foam 9. Furthermore, the insulating panels 2 comprise, in the crossing zones between the grooves 14, 15, clearance orifices 16 formed in the layer of insulating polymer foam 9. The clearance orifices 16 allow the accommodation of the node zones, formed at the intersections between the corrugations of the metal sheets of the secondary sealing barrier 4. These zones node have a top projecting outward from the tank.
  • the inner plate 10 is equipped with metal plates 17, 18 for anchoring the edge of the corrugated metal sheets of the secondary sealing membrane 4 on the insulating panels 2.
  • the metal plates 17, 18 are extend in two perpendicular directions which are each parallel to two opposite sides of the insulating panels 2.
  • the metal plates 17, 18 are fixed to the inner plate 10 of the insulating panel 2, by screws, rivets or staples, for example.
  • the metal plates 17, 18 are placed in recesses made in the internal plate 10 so that the internal surface of the metal plates 17, 18 is flush with the internal surface of the internal plate 10.
  • the inner plate 10 is also equipped with threaded studs 19 projecting inwards from the tank, and intended to ensure the fixing of the primary thermally insulating barrier 5 on the insulating panels 2 of the secondary thermally insulating barrier 1.
  • the metal studs 19 pass through holes made in the metal plates 17.
  • the inner plate 10 has along its edges, in each interval between two successive grooves 14, 15, a recess 21 intended to receive a bridging element 20 which will be described in more detail later.
  • the secondary sealing membrane 4 comprises a plurality of corrugated metal sheets 24 each having a substantially rectangular shape.
  • the corrugated metal sheets 24 are arranged offset with respect to the insulating panels 2 of the secondary thermally insulating barrier 1 so that each of said corrugated metal sheets 24 extends jointly over four adjacent insulating panels 2.
  • Each corrugated metal sheet 24 has a first series of parallel corrugations 25 extending in the transverse direction and a second series of parallel corrugations 26 extending in the longitudinal direction.
  • Each of the series of corrugations 25, 26 is parallel to two opposite edges of the corrugated metal sheet 24.
  • the corrugated metal sheet 24 comprises between the corrugations 25, 26, a plurality of flat surfaces. At each crossing between two undulations 25,
  • the sheet metal has a knot area.
  • the undulations 25, 26 of the first series and of the second series have identical heights. It is however possible to provide that the undulations 25 of the first series have a greater height than the undulations 26 of the second series or vice versa.
  • the corrugations 25, 26 of the corrugated metal sheets 24 are housed in the grooves 14, 15 made in the inner plate 10 of the insulating panels 2.
  • the adjacent corrugated metal sheets 24 are welded together at recovery.
  • the anchoring of the corrugated metal sheets 24 on the metal plates 17, 18 is carried out by tacking welds.
  • the corrugated metal sheets 24 are, for example, made of Invar®: that is to say an alloy of iron and nickel whose coefficient of expansion is typically between 1, 2.10-6 and 2.10-6 K-1 , or in an iron alloy with a high manganese content whose coefficient of expansion is typically of the order of 7.10-6 K-1 .
  • the corrugated metal sheets 24 can also be made of stainless steel or aluminum.
  • the primary thermally insulating barrier 5 comprises a plurality of insulating panels 6 of substantially rectangular parallelepipedic shape.
  • the insulating panels 6 are offset here with respect to the insulating panels 2 of the secondary thermally insulating barrier 1 so that each insulating panel 6 extends over four insulating panels 2 of the secondary thermally insulating barrier 1.
  • An insulating panel 6 comprises a structure analogous to an insulating panel 2 of the secondary thermally insulating barrier 1 .
  • the primary sealing membrane 7, visible in Figure 1 is obtained by assembling a plurality of corrugated metal sheets 27.
  • Each corrugated metal sheet 27 comprises a first series of parallel undulations 28, called high, s' extending in the longitudinal direction and a second series of parallel undulations 29, called low, extending in the transverse direction.
  • the node zones have a structure close to that of the node zones of the corrugated metal sheets 24 of the secondary sealing membrane 4.
  • the corrugations 28, 29 protrude towards the inside of the tank.
  • the corrugated metal sheets 27 are, for example, made of stainless steel or aluminum.
  • the grooves 14, 15 are sized to form a zone for adjusting the arrangement of the corrugations 25, 26 in the tank.
  • these grooves 14, 15 must be dimensioned to allow variations in the dimensions of the corrugations 25, 26 linked to the manufacturing tolerances of said corrugations 25, 26 in the corrugated metal sheets 24.
  • these dimensioning must take into account the tolerances positioning insulating panels 2 and corrugated metal sheets 24 relative to each other.
  • Figure 2 illustrates a central position 35 and end positions 36 defining a range of possible positions of an undulation 25, 26 housed in a groove 14, 15.
  • the groove 14, 15 is dimensioned so to have a width 37, taken in a transverse direction perpendicular to a longitudinal direction of the corrugation 25, 26 and parallel to an internal face of the internal plate 10, greater than or equal to a width 38 of the corrugation 25, 26 according to said direction, increased by a predetermined tolerance dimension corresponding to twice the positioning tolerance of the corrugation 25, 26 in the groove 14, 15 on either side of the central position 35. Due to these dimensions, a space remains in the grooves 14, 25 between the thermally insulating barrier 1 and the sealing membrane 4.
  • grooves 14, 15 could therefore constitute a network of circulation channels.
  • Such channels developing continuously between the sealing membrane and the thermally insulating barrier throughout the vessel wall would promote convection movements, in particular on vessel walls having a significant vertical component such as transverse vessel walls. .
  • Such a network of continuous channels could generate thermosiphon phenomena promoting heat transfer by gas convection in the thermally insulating barrier.
  • One aspect of the invention starts from the idea of preventing these convection movements in the walls of the tank.
  • one aspect of the invention starts from the idea of limiting the length of the channels formed by the grooves 14, 15 of the thermally insulating barrier.
  • wave shutters 32 are inserted into one, some, or all of the grooves 14, 15 of the thermally insulating barrier. These wave shutters 32 are arranged in the grooves 14, 15 in order to be arranged between the sealing membrane 4 and the thermally insulating barrier 1.
  • the wave shutters 32 will be described below in relation to the secondary thermally insulating barrier 1 and the secondary sealing membrane 4 described above. It is obvious that the wave shutters can also be used at the level of the primary between the primary thermally insulating barrier 5 and the primary sealing membrane 7 in the case of undulations 25, 26 projecting towards the outside of the tank. , or even between the primary thermally insulating barrier 5 and the secondary sealing membrane 4 in the case of undulations 25, 26 projecting towards the inside of the tank. Finally, these wave shutters 32 could also be used for a tank provided with a single sealing membrane.
  • Figure 3 shows a first embodiment with a secondary thermally insulating barrier 1 comprising a plurality of juxtaposed insulating panels 2 provided with series of grooves 14, 15.
  • wave shutters 32 are housed in a plurality of grooves 14 of the first series of grooves of the same insulating panel 2 at a distance from the inter-panel space 12 so as to be supported by the layer of insulating polymer foam 9 and to be framed by two parts of the internal rigid plate 10.
  • the shutters 32 are aligned in the transverse direction so as to form a shutter line on the insulating panel 2.
  • the shutters 32 could be positioned staggered or even be housed in a groove 14 out of two.
  • the grooves 14 of the same insulating panel 2 comprises a single shutter 32 so that the pitch between two shutters of a groove 14 of the secondary thermally insulating barrier 1 is equal to the dimension of the insulating panel 2 in the longitudinal direction of the corrugations 25. It is obvious that in another embodiment, this pitch could be different, for example by housing two shutters 32 in a groove 14 of the same insulating panel 2.
  • the wave shutter 32 is formed of a core 33 of compressible material and an envelope 34 completely covering the core 33.
  • the core 33 is for example formed of mineral wool, melamine foam, polyamide fibers, acrylic fibers, polyethylene wadding or polyester wadding, and makes it possible to create a pressure drop in the groove 14 while making the wave shutter deformable 32 in order to adapt to the space left free between the corrugation 25 and the groove 14. Indeed, with the uncertainty of placement of the corrugation in the groove 14 due in particular to the assembly and manufacturing tolerances, it It is advantageous to place a wave shutter 32 of larger dimension, highly deformable, and of a generally complementary shape to the space remaining between the corrugation and the groove 14 so that it is thus compressed so as to fill all space.
  • the envelope 34 is for its part made for example of glass fiber fabric and acts as a container for the core 33 and an additional pressure loss role for the flow of fluid passing through the channel formed between the corrugation and the groove 14.
  • the material of the casing 34 can be chosen more or less filtering so as to fix the pressure drop of a flow passing through it.
  • a wave shutter 32 with such an envelope 34 can achieve, for example, a pressure drop of the order of 3 to 5 Pa under normal operating conditions of the vessel.
  • the casing 34 is formed of an internal layer 41 in contact with the secondary sealing membrane 4 and an outer layer 39 in contact with the insulating panel 2.
  • the two layers 39, 41 are for example fixed to each other over their entire periphery so as to form the closed container for the core 33 of compressible material.
  • the external ply 39 of the shutter wave 32 is for example glued or stapled on the two parts of the internal rigid plates 10.
  • an additional flexible ply can be located under the outer ply 39 so that the role of maintaining in the groove 14 is transferred to this additional flexible ply and not to the outer ply 39 forming the container for the core 33.
  • Figures 4 to 6 show a wave shutter 32 in a groove 14 of an insulating panel 2 at different stages of the assembly of the vessel wall and according to different placements of the corrugation 25 in the groove 14 .
  • Figure 4 shows the wave shutter 32 before the secondary sealing membrane 4 is installed so the wave shutter is in an uncompressed state.
  • Figures 5 and 6 represent the wave shutter 32 after the positioning of the secondary sealing membrane 4 and therefore of an undulation 25 in the groove 14 where the wave shutter 32 is housed, the the wave shutter 32 thus being in a compressed state.
  • FIG. 5 represents a first case in which the corrugation 25 is in a central position 35 while FIG. 6 represents a second case in which the corrugation 25 is in a extreme position 36.
  • the wave shutter 32 is fixed by the two ends of the outer layer 39 to the inner rigid plate 10 of the insulating panel 2 while the central part of the outer layer 39 rests on the layer of foam 9.
  • the corrugation stopper 30 is thus fixed in the groove 14 and already largely closes off the groove 14 by forming a corrugation stopper 30 with a U-section.
  • the core 33 of compressible material is here in a uncompressed state so that the wave shutter 32 has a generally constant initial thickness.
  • the corrugation 25 has been placed in a central position 35 inside the groove 14.
  • the corrugation 25 has thus compressed more significantly the central portion 42 of the obturator of corrugation 32 in line with the crest of corrugation 25 so as to locally greatly reduce the thickness of corrugation shutter 32, for example of the order of 50% relative to its initial value.
  • the shutter using its core 33 of compressible material thus compressed, thus obstructs the space left free between the insulating panel 2 and the sealing membrane 4 by adapting to the position of the corrugation 25.
  • the corrugation 25 has been placed in an extreme position 36 (here right side of the groove 14) inside the groove 14.
  • the corrugation 25 has thus compressed so more important a first part 43 of the wave shutter 32 located to the right of the undulation while a second part 44 of the wave shutter 32 is not compressed.
  • the straight part 43 has had its thickness greatly reduced compared to its initial value, for example of the order of 50%.
  • the left part 44 has seen its thickness slightly increased in view of the transfer by creep in this part of the compressible material of the core 33. Therefore, the shutter using its core 33 in compressible material thus compressed thus obstructs the space left free between the insulating panel 2 and the sealing membrane 4 by adapting to the position of the corrugation 25.
  • the bridging elements 20 are shown in particular in Figures 7 to 10.
  • the bridging elements 20 each comprise a bridging plate 22 which is arranged astride between two adjacent insulating panels 2, spanning the inter-panel space 12 between the insulating panels 2.
  • Each bridging plate 22 is fixed against each of the two adjacent insulating panels 2 so as to oppose their mutual spacing.
  • the bridging plates 22 have a rectangular parallelepipedal shape and are for example made of a plywood plate.
  • the outer face of the bridging plates 22 is fixed against the bottom of the recesses 21.
  • the depth of the recesses 21 is substantially equal to the thickness of the bridging plates 22 so that the inner face of the bridging plates 22 reaches substantially at the level of the other flat zones of the internal plate 10 of the insulating panel 2.
  • the bridging plates 22 are able to ensure continuity in the carrying of the secondary sealing membrane 4.
  • a plurality of bridging plates 22 extend along each edge of the internal plate 10 of the insulating panels 2, a bridging plate 22 being disposed in each interval between two adjacent grooves 14, 15 of a series of parallel grooves.
  • the bridging plates 22 extend over substantially the entire length of the interval between two adjacent grooves 14, 15.
  • the recesses 21 on either side of the interspace panel 12 form a housing for the bridging plate 22, that is to say the space formed between the edges of the recesses 21 of two insulating panels 2.
  • the housing has a transverse dimension slightly greater than the transverse dimension of the bridging plate 22 so as to overcome assembly and/or manufacturing tolerances when inserting the bridging plate 22 into the housing.
  • the bridging plates 22 can be fixed against the inner plate 10 of the insulating panels 2 by any suitable means.
  • any suitable means for example and as represented in FIG. 3, the application of an adhesive 40 in the recess 21 between the external face of the bridging plates 22 and the internal plate 10 of the insulating panels 2 makes it possible to fix the bridging plates 22 to the insulating panels 2 satisfactorily.
  • the bridging elements 20 also each comprise an insulating strip 23 fixed to the outer face of the bridging plates 22, for example by gluing.
  • the insulating strip 23 fixed to the outer face of the bridging plates 22, for example by gluing.
  • the insulating strip 23 is housed in the inter-panel space 12 between the bridging plate 22 and the insulating joint 13, and is compressed between these two elements.
  • the insulating strip 23 has a dimension in the transverse direction of the inter-panel space 12 equal to the dimension of the inter-panel space 12 in the transverse direction. of the inter-panel space 12.
  • the insulating strip 23 is for example made of a polymer foam such as polyurethane foam.
  • the insulating strip 23 has for example a longitudinal dimension equal to that of the bridging plate 22.
  • the bridging elements 20 overlapping the same two adjacent insulating panels 2 are connected in pairs so as to form a chain of bridging 30 extending in the longitudinal direction of the inter-panel space 12.
  • the bridging elements 20 may all be independent of one another.
  • Two adjacent bridging elements 20 of the chain of bridging elements 30 are fixed to each other using a wave shutter 32, as can be seen in particular in FIGS. 7 and 8. More in particular, the outer ply 39 of the wave shutter 32 is fixed to the inner plates 10 of the two insulating panels 2, for example by stapling or gluing. In this embodiment the corrugation shutter 32 is thus placed at the level of the inter-panel space and in the extension of two grooves 14 so as to be positioned between a corrugation and the insulating joint 13.
  • two adjacent bridging elements 20 of the chain of bridging elements 30 are fixed to each other using a flexible web 31, for example by stapling .
  • a wave shutter 32 is fixed, for example by gluing.
  • the bridging plates 22 located in the extension of the directions of the metal plates 17, 18 fixed on the insulating panels 2 are equipped with thermal protection strips 45, fixed against the inner face of said bridging plates 22 and intended to protect the bridging plate 22 during the welding of the sheets forming the sealing membrane.
  • Figures 9 and 10 are sectional illustrations of Figure 8 to better distinguish the relative arrangement of the various elements relative to each other in two different cutting directions.
  • FIG 9 is thus a section taken in the longitudinal direction of the interpanel space at the level of said interpanel space 12.
  • Figure 10 is a section taken in the transverse direction of the interpanel space 12. In this figure, it is thus possible to distinguish the insulating strip 23 which is compressed between the bridging plate 22 and the insulating joint 13 and which fills all the space left free by the insulating joint 13 in the direction of thickness and in the transverse direction.
  • the bridging plate 22 is housed on either side thereof in two recesses 21 of the two adjacent insulating panels 2.
  • the wave shutter 32 is housed in a groove 15 so as to be compressed between a corrugation and the bottom of a groove 15.
  • the shutter of wave 32 is also glued or stapled to the walls of the groove formed by the rigid plates 10.
  • This embodiment corresponds in particular to the case where the corrugations of the waterproofing membrane protrude outward from the tank and are housed in a groove.
  • Figures 1 1 and 12 correspond to a second embodiment which differs from the first embodiment in that the shutter 32 is this time stuck inside the corrugation and is compressed between a corrugation and the flat rigid plate 10 of an insulating panel 2, 6.
  • this second embodiment corresponds in particular to the case where the undulations of the sealing membrane protrude towards the inside of the tank 71 .
  • Figure 1 1 thus schematically represents a wave shutter 32 housed in a corrugation and before compression so that the wave shutter has a greater height than the peak height of the corrugation. Moreover, before compression, the wave shutter 32 does not necessarily have a shape complementary to the wave.
  • Figure 12 also schematically shows a wave shutter 32 housed in a corrugation but this time after compression between the flat rigid plate 10 of an insulating panel 2, 6 and the corrugation of the membrane of sealing 4, 7.
  • the wave shutter 32 has thus been compressed and deformed so as to fill all the space left free between the corrugation of one of the series of corrugations 25, 26 and the rigid plate 10.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary leaktight barrier intended to be in contact with the LNG contained in the tank, a secondary leaktight barrier arranged between the primary leaktight barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double hull 72.
  • loading/unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of LNG from or to the tub 71 .
  • FIG 13 shows an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and a shore installation 77.
  • the loading and unloading station 75 is a fixed installation off- shore comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the pipes loading/unloading 73.
  • the adjustable mobile arm 74 adapts to all sizes of LNG carriers.
  • a connecting pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the shore installation 77.
  • This comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

The invention relates to a tank in which a tank wall comprises at least one thermally insulating barrier (1, 5) and at least one sealing membrane (4, 7), the sealing membrane comprising a series of parallel corrugations (25, 26), the thermally insulating barrier (1, 5) being situated between the sealing membrane and the support structure, the thermally insulating barrier (1, 5) comprising a series of parallel grooves (14, 15) receiving the series of corrugations (25, 26), wherein the tank comprises at least one wave stopper (32) situated between a corrugation of the series of corrugations (25, 26) and an insulating panel, wherein the wave stopper (32) comprises a core made from compressible material and a casing completely covering the core, the wave stopper (32) being compressed between the sealing membrane and the thermally insulating barrier.

Description

Description Description
Titre de l'invention : Cuve étanche et thermiquement isolante comportant un obturateur d’ondeTitle of the invention: Sealed and thermally insulating tank comprising a wave shutter
Domaine technique Technical area
[0001] L’invention se rapporte au domaine des cuves étanches et thermiquement isolantes, à membranes. En particulier, l’invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de gaz liquéfié à basse température, telles que des cuves pour le transport de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL) à environ -162°C à pression atmosphérique. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottantThe invention relates to the field of sealed and thermally insulating membrane tanks. In particular, the invention relates to the field of sealed and thermally insulating tanks for the storage and/or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) having for example a temperature between -50°C and 0°C, or for the transport of Liquefied Natural Gas (LNG) at around -162°C at atmospheric pressure. These tanks can be installed on land or on a floating structure. In the case of a floating structure, the tank may be intended for the transport of liquefied gas or to receive liquefied gas used as fuel for the propulsion of the floating structure.
Arrière-plan technologique Technology background
[0002] Dans l’état de la technique, il est connu des cuves étanches et thermiquement isolantes pour le stockage de gaz naturel liquéfié, intégrées dans une structure porteuse, telle que la double coque d’un navire destiné au transport de gaz naturel liquéfié. Généralement, de telles cuves comportent une structure multicouche présentant successivement, dans le sens de l’épaisseur, depuis l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante secondaire retenue à la structure porteuse, une membrane d’étanchéité secondaire reposant contre la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire reposant contre la membrane d’étanchéité secondaire et une membrane d’étanchéité primaire reposant contre la barrière thermiquement isolante primaire et destinée à être en contact avec le gaz naturel liquéfié contenu dans la cuve. [0002] In the state of the art, sealed and thermally insulating tanks are known for storing liquefied natural gas, integrated into a supporting structure, such as the double hull of a ship intended for the transport of liquefied natural gas. . Generally, such tanks comprise a multilayer structure having successively, in the direction of the thickness, from the outside towards the inside of the tank, a secondary thermally insulating barrier retained on the load-bearing structure, a secondary sealing membrane resting against the secondary thermally insulating barrier, a primary thermally insulating barrier resting against the secondary sealing membrane and a primary sealing membrane resting against the primary thermally insulating barrier and intended to be in contact with the liquefied natural gas contained in the tank.
[0003] Le document W02019102163 décrit une barrière thermiquement isolante secondaire et une barrière thermiquement isolante primaire formées de panneaux isolants juxtaposés. Dans ce document WO2019102163, la membrane d’étanchéité secondaire est constituée d’une pluralité de tôles métalliques comportant des ondulations faisant saillies vers l’extérieur de la cuve et permettant ainsi à la membrane d’étanchéité secondaire de se déformer sous l’effet des sollicitations thermiques et mécaniques générées par le fluide emmagasiné dans la cuve. Une face interne des panneaux isolants de la barrière thermiquement isolante secondaire présente des rainures recevant les ondulations des tôles métalliques ondulées de la membrane étanche secondaire. Ces ondulations et ces rainures forment un maillage de canaux se développant le long des parois de la cuve. The document WO2019102163 describes a secondary thermally insulating barrier and a primary thermally insulating barrier formed of juxtaposed insulating panels. In this document WO2019102163, the secondary sealing membrane consists of a plurality of metal sheets comprising undulations projecting outwards from the tank and thus allowing the secondary sealing membrane to deform under the effect of thermal and mechanical stresses generated by the fluid stored in the tank. An internal face of the insulating panels of the secondary thermally insulating barrier has grooves receiving the corrugations of the corrugated metal sheets of the secondary waterproof membrane. These undulations and these grooves form a mesh of channels developing along the walls of the tank.
[0004] Afin d’obturer lesdits canaux, le document W02019102163 décrit de plus que la barrière thermiquement isolante comporte un logement coupant la rainure et présentant une largeur supérieure à la largeur de la rainure. La cuve comporte ainsi un obturateur agencé dans le logement de manière à ce que l’obturateur obture une portion de la rainure située du côté saillant de la membrane d’étanchéité en créant une perte de charge pour un écoulement circulant dans la rainure. L’obturateur peut ainsi se déplacer dans le logement pour s’adapter à la position de l’ondulation dans la rainure. [0004] In order to close said channels, the document W02019102163 further describes that the thermally insulating barrier comprises a housing intersecting the groove and having a width greater than the width of the groove. The tank thus comprises a shutter arranged in the housing so that the shutter closes a portion of the groove located on the projecting side of the sealing membrane by creating a pressure drop for a flow circulating in the groove. The obturator can thus move in the housing to adapt to the position of the corrugation in the groove.
Résumé Summary
[0005] Une idée à la base de l’invention est de rendre plus adaptable les obturateurs d’onde tout en simplifiant le montage dans la cuve. [0005] One idea underlying the invention is to make the wave shutters more adaptable while simplifying assembly in the tank.
[0006] Une autre idée à la base de l’invention est de limiter la présence de canaux de circulation continus dans les barrières thermiquement isolante afin de limiter les phénomènes de convection naturelle dans lesdites barrières thermiquement isolante. Another idea underlying the invention is to limit the presence of continuous circulation channels in the thermally insulating barriers in order to limit the phenomena of natural convection in said thermally insulating barriers.
[0007] Selon un mode de réalisation, l’invention fournit une cuve étanche et thermiquement isolante de stockage d’un fluide fixée à une structure porteuse, dans laquelle une paroi de cuve comporte au moins une barrière thermiquement isolante et au moins une membrane d’étanchéité, la membrane d’étanchéité comportant une série d’ondulations parallèles présentant une direction longitudinale, et des portions planes situées entre lesdites ondulations , lesdites ondulations faisant saillies des portions planes, ladite barrière thermiquement isolante étant située contre la membrane d’étanchéité, la barrière thermiquement isolante, comportant des panneaux isolants, les panneaux isolants étant juxtaposés les uns aux autres, dans laquelle la cuve comporte au moins un obturateur d’onde situé au droit d’une ondulation de la série d’ondulations, entre une ondulation de la série d’ondulations et un fond d’une rainure de la série de rainures, l’obturateur d’onde étant configuré pour obturer un espace laissé libre entre ladite ondulation et l’un des panneaux isolants, dans laquelle l’obturateur d’onde comporte un noyau en matériau compressible et une enveloppe souple recouvrant entièrement ledit noyau de sorte à former un contenant pour le noyau en matériau compressible, l’obturateur d’onde étant comprimé entre la membrane d’étanchéité et la barrière thermiquement isolante. According to one embodiment, the invention provides a sealed and thermally insulating tank for storing a fluid fixed to a support structure, in which a tank wall comprises at least one thermally insulating barrier and at least one membrane of sealing, the sealing membrane comprising a series of parallel undulations having a longitudinal direction, and flat portions located between said undulations, said undulations protruding from flat portions, said thermally insulating barrier being located against the sealing membrane, the thermally insulating barrier, comprising insulating panels, the insulating panels being juxtaposed to each other, in which the tank comprises at least one wave shutter located in line with a corrugation of the series of corrugations, between a corrugation of the series of undulations and a bottom of a groove of the series of grooves, the wave shutter being configured to shutter a space left free between said corrugation and one of the insulating panels, in which the corrugation shutter comprises a core of compressible material and a flexible envelope entirely covering said core so as to form a container for the core of compressible material, the wave shutter being compressed between the sealing membrane and the thermally insulating barrier.
[0008] Grâce à ces caractéristiques, une telle cuve offre la possibilité d’obturer de manière flexible des rainures accueillant les ondulations de la membrane malgré une tolérance affectant la position des ondulations dans les rainures. Une telle tolérance peut notamment découler de la fabrication et du montage des ondulations dans les rainures. En outre, grâce à ces caractéristiques, l’espace compris entre le côté convexe de l’ondulation et le fond de la rainure, formée par la barrière thermiquement isolante, peut être obturée par l’obturateur d’onde pour différentes positions de l’ondulation dans la rainure. En effet, le noyau en matériau compressible permet lors de sa compression de combler simplement cet espace en s’adaptant à la position de l’ondulation et en se comprimant plus au droit de l’ondulation. [0008] Thanks to these characteristics, such a tank offers the possibility of flexibly closing grooves accommodating the undulations of the membrane despite a tolerance affecting the position of the corrugations in the grooves. Such a tolerance may in particular arise from the manufacture and assembly of the undulations in the grooves. Furthermore, thanks to these characteristics, the space between the convex side of the corrugation and the bottom of the groove, formed by the thermally insulating barrier, can be closed by the wave shutter for different positions of the ripple in the groove. Indeed, the core of compressible material makes it possible during its compression to simply fill this space by adapting to the position of the corrugation and by compressing more in line with the corrugation.
[0009] Ainsi, l’obturateur d’onde permet de limiter la formation d’écoulements dans les canaux de la barrière thermiquement isolante, notamment la formation de thermosiphons entre ces canaux et tout canal d’écoulement situés plus près de la coque, par exemple un espace mastiqué entre la barrière thermiquement isolante et la structure porteuse. [0009] Thus, the wave shutter makes it possible to limit the formation of flows in the channels of the thermally insulating barrier, in particular the formation of thermosiphons between these channels and any flow channel located closer to the hull, by example a masticated space between the thermally insulating barrier and the load-bearing structure.
[0010] Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes. According to embodiments, such a tank may include one or more of the following characteristics.
[001 1] Selon un mode de réalisation, la barrière thermiquement isolant est située entre la membrane d’étanchéité et la structure porteuse, les ondulations faisant saillies vers l’intérieur de la cuve, chaque panneau isolant comportant une plaque rigide plane formant la face en contact avec la membrane d’étanchéité, l’obturateur d’onde étant situé entre une ondulation de la série d’ondulations et une plaque rigide d’un panneau isolant. [001 1] According to one embodiment, the thermally insulating barrier is located between the sealing membrane and the supporting structure, the corrugations projecting inwards from the tank, each insulating panel comprising a flat rigid plate forming the face in contact with the sealing membrane, the wave shutter being located between a corrugation of the series of corrugations and a rigid plate of an insulating panel.
[0012] Selon un mode de réalisation, lesdites ondulations font saillies des portions planes sur un côté saillant de la membrane d’étanchéité, ladite barrière thermiquement isolante étant située du côté saillant de la membrane d’étanchéité, la barrière thermiquement isolante comportant une série de rainures parallèles recevant la série d’ondulations, ledit obturateur d’onde étant situé au droit d’une ondulation de la série d’ondulations, entre une ondulation de la série d’ondulations et un fond d’une rainure de la série de rainures. [0012] According to one embodiment, said corrugations protrude from flat portions on a projecting side of the sealing membrane, said thermally insulating barrier being located on the projecting side of the sealing membrane, the thermally insulating barrier comprising a series of parallel grooves receiving the series of corrugations, said corrugation shutter being located to the right of a corrugation of the series of corrugations, between a corrugation of the series of corrugations and a bottom of a groove of the series of grooves.
[0013] Selon un mode de réalisation, l’obturateur d’onde est comprimé par la membrane d’étanchéité de sorte à ce que la dimension dans une direction d’épaisseur diminue localement d’au moins 20% entre l’épaisseur avant compression et l’épaisseur après compression, de préférence au moins 30%, de manière plus préférentielle au moins 40%, et par exemple de l’ordre de 50%. According to one embodiment, the wave shutter is compressed by the sealing membrane so that the dimension in a direction of thickness decreases locally by at least 20% between the thickness before compression and the thickness after compression, preferably at least 30%, more preferably at least 40%, and for example of the order of 50%.
[0014] Selon un mode de réalisation, l’enveloppe comporte une première nappe et une deuxième nappe, la première nappe étant située au contact de la membrane d’étanchéité, la première nappe et la deuxième nappe étant fixées l’une à l’autre sur au moins une partie d’un pourtour de la première nappe et de la deuxième nappe de sorte à former le contenant pour le noyau en matériau compressible. According to one embodiment, the envelope comprises a first ply and a second ply, the first ply being located in contact with the sealing membrane, the first ply and the second ply being fixed to one another. other on at least one part a perimeter of the first ply and of the second ply so as to form the container for the core of compressible material.
[0015] Selon un mode de réalisation, la première nappe et la deuxième nappe sont fixées l’une à l’autre sur tout le pourtour de la première nappe et de la deuxième nappe de sorte à former un contenant fermé pour le noyau en matériau compressible. [0015]According to one embodiment, the first ply and the second ply are fixed to each other over the entire periphery of the first ply and the second ply so as to form a closed container for the core of material compressible.
[0016] Selon un mode de réalisation, la première nappe est réalisée dans un matériau plus flexible que le matériau de la deuxième nappe. [0016]According to one embodiment, the first ply is made of a more flexible material than the material of the second ply.
[0017] Selon un mode de réalisation, l’enveloppe comporte une unique nappe comprenant une surface interne située au contact de la membrane d’étanchéité, l’unique nappe étant réalisée sous la forme d’un cylindre flexible de sorte à former le contenant pour le noyau en matériau compressible. [0017] According to one embodiment, the envelope comprises a single ply comprising an internal surface located in contact with the sealing membrane, the single ply being made in the form of a flexible cylinder so as to form the container for the core in compressible material.
[0018] Selon un mode de réalisation, l’unique nappe, la première nappe et/ou la deuxième nappe comporte au moins une perforation de sorte à favoriser la sortie de l’air lors de la compression de l’obturateur. Dans le cas de l’unique nappe, celle-ci peut comporter au moins une perforation sur une surface externe et/ou sur la surface interne de l’unique nappe. [0018]According to one embodiment, the single ply, the first ply and/or the second ply comprises at least one perforation so as to promote the exit of air during the compression of the shutter. In the case of the single ply, the latter may comprise at least one perforation on an external surface and/or on the internal surface of the single ply.
[0019] Selon un mode de réalisation, le noyau représente au moins 50% en volume, de préférence au moins 90% en volume de l’obturateur d’onde, dans l’état comprimé ou dans l’état avant compression. According to one embodiment, the core represents at least 50% by volume, preferably at least 90% by volume of the wave shutter, in the compressed state or in the state before compression.
[0020] Selon un mode de réalisation, le noyau est réalisé dans un matériau fibreux non tissé, poudreux ou en mousse. [0020]According to one embodiment, the core is made of a non-woven, powdery or foam fibrous material.
[0021] Selon un mode de réalisation, le noyau est réalisé dans un matériau choisi parmi : la laine minérale, la mousse de mélamine, l’ouate de polyesters, l’ouate de polyéthylène, la mousse synthétique de plastique, les fibres polyamides, les fibres acryliques ou leurs combinaisons. According to one embodiment, the core is made of a material chosen from: mineral wool, melamine foam, polyester wadding, polyethylene wadding, synthetic plastic foam, polyamide fibers, acrylic fibers or combinations thereof.
[0022] Par l’exemple, l’ouate de polyester peut être réalisée sous forme de mat, de bille, de boule ou de capiton de fibres. [0022] For example, the polyester wadding can be produced in the form of a mat, a ball, a ball or a quilting of fibers.
[0023] Selon un mode de réalisation, l’enveloppe est réalisée de préférence dans un matériau non étanche au gaz et susceptible de créer une forte perte de charge. [0023] According to one embodiment, the casing is preferably made of a material that is not gastight and capable of creating a high pressure drop.
[0024] Selon un mode de réalisation, l’enveloppe comporte une nappe textile tissée ou non tissée, constituée de fibres minérales et/ou synthétiques, par exemple de fibres de verre ou de fibres polymères de type polyester, polyamide ou acrylique. Une telle nappe est éventuellement combinée à une feuille d’aluminium ou un film plastique, cette feuille ou ce film étant de préférence perforés pour éviter une étanchéité complète. Une telle nappe peut également être enduite afin d’améliorer la propriété d’étanchéité de la nappe. [0024]According to one embodiment, the casing comprises a woven or non-woven textile ply, consisting of mineral and/or synthetic fibers, for example glass fibers or polymer fibers of the polyester, polyamide or acrylic type. Such a sheet is optionally combined with an aluminum sheet or a plastic film, this sheet or this film preferably being perforated to avoid complete sealing. Such a sheet can also be coated in order to improve the sealing property of the sheet.
[0025] Selon un mode de réalisation, la cuve comporte une pluralité d’obturateurs d’onde, chaque obturateur d’onde étant situé entre une ondulation et une rainure dans laquelle ladite ondulation est logée. According to one embodiment, the tank comprises a plurality of wave shutters, each wave shutter being located between a corrugation and a groove in which said corrugation is housed.
[0026] Selon un mode de réalisation, la cuve comporte une pluralité d’obturateurs d’onde, chaque obturateur d’onde étant situé entre une ondulation et un panneau isolant. According to one embodiment, the tank comprises a plurality of wave shutters, each wave shutter being located between a corrugation and an insulating panel.
[0027] Selon un mode de réalisation, la cuve comporte une pluralité d’obturateurs d’onde situés au droit d’une ondulation de la série d’ondulations, entre une ondulation de la série d’ondulations et une rainure de la série de rainures, chaque obturateur d’onde étant configuré pour obturer un espace laissé libre entre ladite ondulation et ladite rainure dans laquelle ladite ondulation est logée, les obturateurs d’onde étant espacés régulièrement les uns des autres dans la direction longitudinale d’une série d’ondulations. [0027]According to one embodiment, the tank comprises a plurality of wave shutters located in line with a corrugation of the series of corrugations, between a corrugation of the series of corrugations and a groove of the series of grooves, each corrugation shutter being configured to close a space left free between said corrugation and said groove in which said corrugation is housed, the corrugation shutters being regularly spaced from each other in the longitudinal direction by a series of ripples.
[0028] Selon un mode de réalisation, la cuve comporte une pluralité d’obturateurs d’onde situés au droit d’une ondulation de la série d’ondulations, entre l’ondulation de la série d’ondulations et un panneau isolant formé au droit de l’ondulation, chaque obturateur d’onde étant configuré pour obturer un espace laissé libre entre ladite ondulation et ledit panneau isolant, les obturateurs d’onde étant espacés régulièrement les uns des autres dans la direction longitudinale de la série d’ondulations. [0028] According to one embodiment, the tank comprises a plurality of corrugation shutters located in line with a corrugation of the series of corrugations, between the corrugation of the series of corrugations and an insulating panel formed at the right of the corrugation, each corrugation shutter being configured to close a space left free between said corrugation and said insulating panel, the corrugation shutters being regularly spaced from each other in the longitudinal direction of the series of corrugations.
[0029] Selon un mode de réalisation, la cuve comporte une pluralité d’obturateurs d’onde situés au droit d’une ondulation de la série d’ondulations, entre une ondulation de la série d’ondulations et une rainure de la série de rainures, chaque obturateur d’onde étant configuré pour obturer un espace laissé libre entre ladite ondulation et ladite rainure dans laquelle ladite ondulation est logée, les obturateurs d’onde de ladite ondulations étant espacés régulièrement les uns des autres dans la direction longitudinale. [0029]According to one embodiment, the tank comprises a plurality of wave shutters located in line with a corrugation of the series of corrugations, between a corrugation of the series of corrugations and a groove of the series of grooves, each wave shutter being configured to close a space left free between said corrugation and said groove in which said corrugation is housed, the wave shutters of said corrugations being regularly spaced from each other in the longitudinal direction.
[0030] Selon un mode de réalisation, la barrière thermiquement isolante est une première barrière thermiquement isolante et la cuve comporte une deuxième barrière thermiquement isolante située à l’opposé du côté saillant de la membrane d’étanchéité, et dans laquelle la cuve comporte au moins un obturateur d’onde complémentaire situé en regard de l’au moins un obturateur d’onde de sorte à prendre en sandwich une ondulation de la membrane d’étanchéité entre l’obturateur d’onde et l’obturateur d’onde complémentaire, l’obturateur d’onde complémentaire étant configuré pour obturer un espace laissé libre entre ladite ondulation et la deuxième barrière thermiquement isolante. [0031] Selon un mode de réalisation, la barrière thermiquement isolante comporte une surface interne, la série de rainures étant réalisée sur la surface interne et les ondulations faisant saillies vers l’extérieur de la cuve. According to one embodiment, the thermally insulating barrier is a first thermally insulating barrier and the tank comprises a second thermally insulating barrier located opposite the projecting side of the sealing membrane, and in which the tank comprises at at least one complementary wave shutter located opposite the at least one wave shutter so as to sandwich an undulation of the sealing membrane between the wave shutter and the complementary wave shutter, the complementary wave shutter being configured to close a space left free between said corrugation and the second thermally insulating barrier. [0031] According to one embodiment, the thermally insulating barrier has an internal surface, the series of grooves being made on the internal surface and the corrugations projecting outwards from the tank.
[0032] Selon un mode de réalisation, la membrane d’étanchéité est une membrane d’étanchéité secondaire, la barrière thermiquement isolante est une barrière thermiquement isolante primaire, les ondulations faisant saillies vers l’intérieur de la cuve, et dans laquelle la cuve comporte une barrière thermiquement isolante secondaire retenue sur la structure porteuse et portant la membrane d’étanchéité secondaire, la barrière thermiquement isolante primaire étant portée par la membrane d’étanchéité secondaire, la cuve comportant une membrane d’étanchéité primaire portée par la barrière thermiquement isolante primaire et destinée à être en contact avec le fluide dans la cuve, la série de rainures étant formée sur une surface externe de la barrière thermiquement isolante primaire. [0032]According to one embodiment, the sealing membrane is a secondary sealing membrane, the thermally insulating barrier is a primary thermally insulating barrier, the corrugations projecting towards the inside of the tank, and in which the tank comprises a secondary thermally insulating barrier retained on the support structure and carrying the secondary sealing membrane, the primary thermally insulating barrier being carried by the secondary sealing membrane, the tank comprising a primary sealing membrane carried by the thermally insulating barrier primary and intended to be in contact with the fluid in the tank, the series of grooves being formed on an outer surface of the primary thermally insulating barrier.
[0033] Selon un mode de réalisation, la barrière thermiquement isolante comporte des panneaux isolants, les panneaux isolants étant juxtaposés les uns aux autres, , les panneaux isolants étant munis de rainures formant la série de rainures de sorte que les rainures de deux panneaux isolants adjacents sont alignées dans la direction longitudinale, l’au moins un obturateur d’onde étant logée dans la rainure de l’un des panneaux isolants. According to one embodiment, the thermally insulating barrier comprises insulating panels, the insulating panels being juxtaposed to each other, the insulating panels being provided with grooves forming the series of grooves so that the grooves of two insulating panels adjacent panels are aligned in the longitudinal direction, the at least one wave shutter being housed in the groove of one of the insulating panels.
[0034] Selon un mode de réalisation, un espace inter-panneaux est délimité entre deux panneaux isolants adjacents, l’au moins un obturateur d’onde étant logé dans la rainure de l’un des deux panneaux isolants et pouvant déborder dans l’espace inter-panneaux. According to one embodiment, an inter-panel space is delimited between two adjacent insulating panels, the at least one wave shutter being housed in the groove of one of the two insulating panels and being able to overflow into the inter-panel space.
[0035] Selon un mode de réalisation, la barrière thermiquement isolante comporte au moins un joint isolant logé dans l’espace inter-panneaux et s’étendant selon une direction longitudinale de l’espace inter-panneaux, et au moins un élément de pontage disposé au- dessus du joint isolant, et dans laquelle l’élément de pontage comporte une plaque de pontage, la plaque de pontage s’étendant à cheval sur deux panneaux isolants adjacents et étant fixé à une face interne des deux panneaux isolants de manière à s’opposer à un écartement des deux panneaux isolants, les faces internes des panneaux isolants formant la surface interne de la barrière thermiquement isolante. According to one embodiment, the thermally insulating barrier comprises at least one insulating joint housed in the inter-panel space and extending in a longitudinal direction of the inter-panel space, and at least one bridging element arranged above the insulating joint, and in which the bridging element comprises a bridging plate, the bridging plate extending astride two adjacent insulating panels and being fixed to an internal face of the two insulating panels so as to oppose a separation of the two insulating panels, the internal faces of the insulating panels forming the internal surface of the thermally insulating barrier.
[0036] Selon un mode de réalisation, la barrière thermiquement isolante comporte au moins un joint isolant logé dans l’espace inter-panneaux et s’étendant selon une direction longitudinale de l’espace inter-panneaux, et au moins un élément de pontage appartenant à une chaîne d’éléments de pontage et disposé au-dessus du joint isolant, et dans laquelle un premier élément de pontage de la chaîne d’éléments de pontage s’étend entre deux ondulations successives de la série d’ondulations, l’obturateur d’onde étant situé entre ledit premier élément de pontage et un deuxième élément de pontage de la chaîne d’éléments de pontage. According to one embodiment, the thermally insulating barrier comprises at least one insulating seal housed in the inter-panel space and extending in a longitudinal direction of the inter-panel space, and at least one bridging element belonging to a chain of bridging elements and arranged above the insulating joint, and in which a first bridging element of the chain of bridging elements extends between two successive undulations of the series of undulations, the wave shutter being located between said first bridging element and a second bridging element of the chain of bridging elements.
[0037] Selon un mode de réalisation, l’élément de pontage comprend une bande isolante assemblée à la plaque de pontage, la bande isolante comportant une dimension inférieure à la plaque de pontage dans la direction longitudinale de manière à être logée dans l’espace inter-panneaux et étant comprimée entre la plaque de pontage et le joint isolant dans une direction d’épaisseur de la barrière thermiquement isolante. According to one embodiment, the bridging element comprises an insulating strip assembled to the bridging plate, the insulating strip having a dimension smaller than the bridging plate in the longitudinal direction so as to be housed in the space between the panels and being compressed between the bridging plate and the insulating joint in a thickness direction of the thermally insulating barrier.
[0038] Selon un mode de réalisation, la barrière thermiquement isolante comporte une chaîne d’éléments de pontage s’étendant dans la direction longitudinale de l’espace interpanneaux et comportant une pluralité d’éléments de pontage disposés à cheval sur deux panneaux isolants adjacents et fixés les uns aux autres. According to one embodiment, the thermally insulating barrier comprises a chain of bridging elements extending in the longitudinal direction of the interpanel space and comprising a plurality of bridging elements arranged astride two adjacent insulating panels and attached to each other.
[0039] Selon un mode de réalisation, un premier élément de pontage de la chaîne d’éléments de pontage s’étend entre deux ondulations successives de la série d’ondulations, l’obturateur d’onde étant situé entre ledit premier élément de pontage et un deuxième élément de pontage de la chaîne d’éléments de pontage au droit d’une ondulation de la série d’ondulations, entre la membrane d’étanchéité et la barrière thermiquement isolante. According to one embodiment, a first bridging element of the chain of bridging elements extends between two successive undulations of the series of undulations, the wave shutter being located between said first bridging element and a second bridging element of the chain of bridging elements in line with an undulation of the series of undulations, between the sealing membrane and the thermally insulating barrier.
[0040] Selon un mode de réalisation, le premier élément de pontage est fixé au deuxième élément de pontage par l’intermédiaire de l’obturateur d’onde. According to one embodiment, the first bridging element is fixed to the second bridging element via the wave shutter.
[0041] Selon un mode de réalisation, l’obturateur d’onde est fixé sur une nappe flexible, deux éléments de pontage adjacents de ladite chaîne sont fixés l’un à l’autre à l’aide de la nappe flexible. According to one embodiment, the wave shutter is fixed to a flexible sheet, two adjacent bridging elements of said chain are fixed to each other using the flexible sheet.
[0042] Selon un mode de réalisation, chaque panneau isolant comporte une couche de mousse polymère isolante et une plaque rigide formant la face en contact avec la membrane d’étanchéité, la rainure de la série de rainures étant formée dans la plaque rigide. According to one embodiment, each insulating panel comprises a layer of insulating polymer foam and a rigid plate forming the face in contact with the sealing membrane, the groove of the series of grooves being formed in the rigid plate.
[0043] Selon un mode de réalisation, la série d’ondulations est une première série d’ondulations, et dans laquelle les tôles métalliques ondulées comprennent une deuxième série d’ondulations parallèles s’étendant parallèlement à la direction transversale et des portions planes situées entre lesdites ondulations. According to one embodiment, the series of corrugations is a first series of corrugations, and in which the corrugated metal sheets comprise a second series of parallel corrugations extending parallel to the transverse direction and planar portions located between said undulations.
[0044] Une telle cuve peut faire partie d’une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Une telle cuve peut aussi servir de réservoir de carburant dans tout type de navire. [0044] Such a tank can be part of an onshore storage facility, for example for storing LNG or be installed in a floating, coastal or deep-water structure, in particular an LNG carrier, a floating storage and regasification unit. (FSRU), a floating production and remote storage unit (FPSO) and others. Such a tank can also serve as a fuel tank in any type of ship.
[0045] Selon un mode de réalisation, un navire pour le transport d’un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque. [0045] According to one embodiment, a ship for transporting a cold liquid product comprises a double hull and an aforementioned tank arranged in the double hull.
[0046] Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire. [0046] According to one embodiment, the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to an installation floating or onshore storage facility and a pump for driving a flow of cold liquid product through the insulated pipes from or to the floating or onshore storage facility to or from the ship's tank.
[0047] Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire. According to one embodiment, the invention also provides a method for loading or unloading such a ship, in which a cold liquid product is conveyed through insulated pipes from or to a floating or terrestrial storage installation towards or from the vessel's tank.
Brève description des figures Brief description of figures
[0048] L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés. The invention will be better understood, and other aims, details, characteristics and advantages thereof will appear more clearly during the following description of several particular embodiments of the invention, given for illustrative purposes only. and non-limiting, with reference to the accompanying drawings.
[0049] [Fig. 1] La figure 1 représente une vue en perspective, écorchée, d’une paroi de cuve. [0049] [Fig. 1] Figure 1 shows a perspective view, cut away, of a vessel wall.
[0050] [Fig. 2] La figure 2 est une vue partielle en coupe d’une barrière thermiquement isolante sur laquelle repose une membrane d’étanchéité ondulée comportant une ondulation logée dans une rainure de la barrière thermiquement isolant et illustrant différentes positions possibles de l’ondulation dans la rainure. [0050] [Fig. 2] Figure 2 is a partial sectional view of a thermally insulating barrier on which rests a corrugated sealing membrane comprising a corrugation housed in a groove of the thermally insulating barrier and illustrating different possible positions of the corrugation in the groove .
[0051] [Fig. 3] La figure 3 est une vue en perspective d’une barrière thermiquement isolante comportant une pluralité d’obturateurs d’onde selon un premier mode de réalisation. [0051] [Fig. 3] Figure 3 is a perspective view of a thermally insulating barrier comprising a plurality of wave shutters according to a first embodiment.
[0052] [Fig. 4] La figure 4 est une vue en coupe selon la ligne IV-IV de la figure 3 illustrant un obturateur d’onde logé dans une rainure et avant disposition de la membrane d’étanchéité. [0052] [Fig. 4] Figure 4 is a sectional view along the line IV-IV of Figure 3 illustrating a wave shutter housed in a groove and before arrangement of the sealing membrane.
[0053] [Fig. 5] La figure 5 est une vue en coupe selon la ligne IV-IV de la figure 3 illustrant un obturateur d’onde logé dans une rainure et illustrant une première position de l’ondulation dans la rainure. [0054] [Fig. 6] La figure 6 est une vue en coupe selon la ligne IV-IV de la figure 3 illustrant un obturateur d’onde logé dans une rainure et illustrant une deuxième position de l’ondulation dans la rainure. [0053] [Fig. 5] Figure 5 is a sectional view along the line IV-IV of Figure 3 illustrating a wave shutter housed in a groove and illustrating a first position of the corrugation in the groove. [0054] [Fig. 6] Figure 6 is a sectional view along the line IV-IV of Figure 3 illustrating a wave shutter housed in a groove and illustrating a second position of the corrugation in the groove.
[0055] [Fig. 7] La figure 7 est une vue éclatée en perspective de panneaux isolants d’une barrière thermiquement isolante et d’une chaîne d’éléments de pontage selon un mode de réalisation destiné à être positionné à cheval entre deux rangés de panneaux isolants adjacents. [0055] [Fig. 7] Figure 7 is an exploded perspective view of insulating panels of a thermally insulating barrier and of a chain of bridging elements according to one embodiment intended to be positioned astride between two rows of adjacent insulating panels.
[0056] [Fig. 8] La figure 8 est une vue en perspective partielle de la barrière thermiquement isolante munie d’une chaîne d’éléments de pontage. [0056] [Fig. 8] Figure 8 is a partial perspective view of the thermally insulating barrier provided with a chain of bridging elements.
[0057] [Fig. 9] La figure 9 est une vue en coupe selon la ligne IX-IX de la figure 8, avec l’illustration de la membrane d’étanchéité positionnée sur la barrière thermiquement isolante. [0057] [Fig. 9] Figure 9 is a sectional view along the line IX-IX of Figure 8, with the illustration of the sealing membrane positioned on the thermally insulating barrier.
[0058] [Fig. 10] La figure 10 est une vue en coupe selon la ligne X-X de la figure 8. [0058] [Fig. 10] Figure 10 is a sectional view along line X-X of Figure 8.
[0059] [Fig. 1 1] La figure 11 est une vue en coupe schématique d’un obturateur logé dans une ondulation avant compression, selon un deuxième mode de réalisation. [0059] [Fig. 1 1] Figure 11 is a schematic sectional view of a shutter housed in a corrugation before compression, according to a second embodiment.
[0060] [Fig. 12] La figure 12 est une vue en coupe schématique d’un obturateur logé dans une ondulation après compression contre un panneau isolant, selon le deuxième mode de réalisation. [0060] [Fig. 12] Figure 12 is a schematic sectional view of a shutter housed in a corrugation after compression against an insulating panel, according to the second embodiment.
[0061] [Fig. 13] La figure 13 est une représentation schématique écorchée d’une cuve de navire méthanier et d’un terminal de chargement/déchargement de cette cuve. [0061] [Fig. 13] Figure 13 is a cutaway diagrammatic representation of an LNG carrier tank and a loading/unloading terminal for this tank.
Description des modes de réalisation Description of embodiments
[0062] Par convention, les termes « externe » et « interne » sont utilisés pour définir la position relative d'un élément par rapport à un autre, par référence à l'intérieur et à l’extérieur de la cuve. [0062] By convention, the terms "external" and "internal" are used to define the relative position of one element with respect to another, with reference to the inside and the outside of the tank.
[0063] Sur la figure 1 , on a représenté la structure multicouche d’une cuve étanche et thermiquement isolante de stockage d’un fluide selon un mode de réalisation. In Figure 1, there is shown the multilayer structure of a sealed and thermally insulating tank for storing a fluid according to one embodiment.
[0064] Chaque paroi de la cuve comporte, depuis l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante secondaire 1 comportant des panneaux isolants 2 juxtaposés et ancrés à une structure porteuse 3 par des organes de retenue secondaires, une membrane d’étanchéité secondaire 4 portée par les panneaux isolants 2 de la barrière thermiquement isolante secondaire 1 , une barrière thermiquement isolante primaire 5 comportant des panneaux isolants 6 juxtaposés et ancrés aux panneaux isolants 2 de la barrière thermiquement isolante secondaire 1 par des organes de retenue primaires 19 et une membrane d’étanchéité primaire 7, portée par les panneaux isolants 6 de la barrière thermiquement isolante primaire 5 et destinée à être en contact avec le fluide cryogénique contenu dans la cuve. Each wall of the tank comprises, from the outside towards the inside of the tank, a secondary thermally insulating barrier 1 comprising insulating panels 2 juxtaposed and anchored to a support structure 3 by secondary retaining members, a membrane secondary sealing 4 carried by the insulating panels 2 of the secondary thermally insulating barrier 1, a primary thermally insulating barrier 5 comprising insulating panels 6 juxtaposed and anchored to the insulating panels 2 of the secondary thermally insulating barrier 1 by primary retaining members 19 and a primary sealing membrane 7, carried by the insulating panels 6 of the primary thermally insulating barrier 5 and intended to be in contact with the cryogenic fluid contained in the vessel.
[0065] La structure porteuse 3 peut notamment être une tôle métallique autoporteuse ou, plus généralement, tout type de cloison rigide présentant des propriétés mécaniques appropriées. La structure porteuse 3 peut notamment être formée par la coque ou la double coque d’un navire. La structure porteuse 3 comporte une pluralité de parois définissant la forme générale de la cuve, habituellement une forme polyédrique. [0065] The load-bearing structure 3 may in particular be a self-supporting sheet metal or, more generally, any type of rigid partition having appropriate mechanical properties. The load-bearing structure 3 can in particular be formed by the hull or the double hull of a ship. The support structure 3 comprises a plurality of walls defining the general shape of the tank, usually a polyhedral shape.
[0066] La barrière thermiquement isolante secondaire 1 comporte une pluralité de panneaux isolants 2 ancrés sur la structure porteuse 3 au moyen de cordons de résine, non illustrés, et/ou de goujons soudés sur la structure porteuse 3. Les cordons de résine doivent être suffisamment adhésifs lorsqu’ils assurent seuls l’ancrage des panneaux isolants 2 mais ne sont pas nécessairement adhésifs lorsque les panneaux isolants 2 sont ancrés au moyen des goujons. Les panneaux isolants 2 présentent sensiblement une forme de parallélépipède rectangle. The secondary thermally insulating barrier 1 comprises a plurality of insulating panels 2 anchored to the supporting structure 3 by means of resin cords, not shown, and/or studs welded to the supporting structure 3. The resin cords must be sufficiently adhesive when they ensure alone the anchoring of the insulating panels 2 but are not necessarily adhesive when the insulating panels 2 are anchored by means of studs. The insulating panels 2 substantially have the shape of a rectangular parallelepiped.
[0067] Comme illustré notamment sur les figures 3 à 10, les panneaux isolants 2, 6 comportent chacun une couche de mousse polymère isolante 9 munie sur sa face interne d’une plaque rigide interne 10 et éventuellement sur sa face externe d’une plaque rigide externe (non illustrée). Les plaques rigides, interne 10 et externe, sont, par exemple, des plaques de bois contreplaqué collées sur ladite couche de mousse polymère isolante 9. La mousse polymère isolante peut notamment être une mousse à base de polyuréthanne. La mousse polymère est avantageusement renforcée par des fibres de verre contribuant à réduire sa contraction thermique. As illustrated in particular in Figures 3 to 10, the insulating panels 2, 6 each comprise a layer of insulating polymer foam 9 provided on its internal face with an internal rigid plate 10 and optionally on its external face with a plate external rigid (not shown). The rigid plates, internal 10 and external, are, for example, plywood plates bonded to said layer of insulating polymer foam 9. The insulating polymer foam may in particular be a polyurethane-based foam. The polymer foam is advantageously reinforced with glass fibers helping to reduce its thermal contraction.
[0068] Les panneaux isolants 2, 6 sont juxtaposés selon des rangées parallèles et séparés les uns des autres par des espaces inter-panneaux 12 garantissant un jeu fonctionnel de montage. Les espaces inter-panneaux 12 sont comblés avec un joint isolant 13, représentée sur les figures 5 et 6 notamment, telle que de la laine de verre, de la laine de roche ou de la mousse synthétique souple à cellules ouvertes par exemple, et pouvant être enveloppé de papier kraft. Le joint isolant 13 est avantageusement réalisé dans un matériau poreux de sorte à ménager des espaces d’écoulement de gaz dans les espaces inter-panneaux 12 entre les panneaux isolants 2. De tels espaces d’écoulement de gaz sont avantageusement utilisés afin de permettre une circulation de gaz inerte, tel que de l’azote, au sein de la barrière thermiquement isolante secondaire 1 de sorte à la maintenir sous atmosphère inerte et ainsi éviter que du gaz combustible se trouve dans une plage de concentration explosive et/ou afin de placer la barrière thermiquement isolante secondaire 1 en dépression afin d’augmenter son pouvoir isolant. Cette circulation de gaz est aussi importante pour faciliter la détection des éventuelles fuites de gaz combustible. Les espaces inter-panneaux 12 présentent par exemple, une largeur de l’ordre de 30 mm. Des joints isolants 13 sont ainsi placés selon une direction longitudinale correspondant à la plus grande longueur des panneaux isolants 2, 6, tandis que des joints isolants 13 sont placés selon une direction transversale perpendiculaire à la direction longitudinale. Les joints isolants 13 sont dimensionnés de sorte que leur face interne dirigée vers la membrane d’étanchéité secondaire 4 soit alignée avec la limite de la couche de mousse polymère isolante 9 comme visible en figure 6. The insulating panels 2, 6 are juxtaposed in parallel rows and separated from each other by inter-panel spaces 12 guaranteeing a functional mounting clearance. The inter-panel spaces 12 are filled with an insulating joint 13, represented in FIGS. 5 and 6 in particular, such as glass wool, rock wool or flexible synthetic foam with open cells for example, and which can be wrapped in kraft paper. The insulating joint 13 is advantageously made of a porous material so as to provide gas flow spaces in the inter-panel spaces 12 between the insulating panels 2. Such gas flow spaces are advantageously used in order to allow a circulation of inert gas, such as nitrogen, within the secondary thermally insulating barrier 1 so as to maintain it under an inert atmosphere and thus prevent combustible gas from being in an explosive concentration range and/or in order to place the thermally insulating barrier secondary 1 in depression in order to increase its insulating power. This circulation of gas is also important to facilitate the detection of any leaks of combustible gas. The inter-panel spaces 12 have, for example, a width of the order of 30 mm. Insulating joints 13 are thus placed in a longitudinal direction corresponding to the greatest length of the insulating panels 2, 6, while insulating joints 13 are placed in a transverse direction perpendicular to the longitudinal direction. The insulating seals 13 are sized so that their internal face directed towards the secondary sealing membrane 4 is aligned with the limit of the layer of insulating polymer foam 9 as shown in Figure 6.
[0069] Une plaque interne 10 selon un mode de réalisation est représentée de manière détaillée sur les figures 3, 7 et 8. La plaque interne 10 présente deux séries de rainures 14, 15, perpendiculaires l’une à l’autre, de sorte à former un réseau de rainures. Chacune des séries de rainures 14, 15 est parallèle à deux côtés opposés des panneaux isolants 2. Les rainures 14, 15 sont destinées à la réception d’ondulations, faisant saillies vers l’extérieur de la cuve, formées sur les tôles métalliques de la barrière d’étanchéité secondaire 4. Dans le mode de réalisation représenté, la plaque interne 10 comporte trois rainures 14 s’étendant selon la direction longitudinale du panneau isolant 2 et neuf rainures 15 s’étendant selon la direction transversale du panneau isolant 2. An inner plate 10 according to one embodiment is shown in detail in Figures 3, 7 and 8. The inner plate 10 has two series of grooves 14, 15, perpendicular to each other, so to form a network of grooves. Each of the series of grooves 14, 15 is parallel to two opposite sides of the insulating panels 2. The grooves 14, 15 are intended to receive corrugations, projecting towards the outside of the tank, formed on the metal sheets of the secondary sealing barrier 4. In the embodiment shown, the inner plate 10 comprises three grooves 14 extending along the longitudinal direction of the insulating panel 2 and nine grooves 15 extending along the transverse direction of the insulating panel 2.
[0070] Les rainures 14, 15 traversent intégralement l’épaisseur de la plaque interne 10 et débouchent ainsi au niveau de la couche de mousse polymère isolante 9. Par ailleurs, les panneaux isolants 2 comportent dans les zones de croisement entre les rainures 14, 15, des orifices de dégagement 16 ménagés dans la couche de mousse polymère isolante 9. Les orifices de dégagements 16 permettent le logement des zones de nœud, formés aux intersections entre les ondulations des tôles métalliques de la barrière d’étanchéité secondaire 4. Ces zones de nœud présentent un sommet en saillie vers l’extérieur de la cuve. [0070] The grooves 14, 15 pass entirely through the thickness of the inner plate 10 and thus emerge at the level of the layer of insulating polymer foam 9. Furthermore, the insulating panels 2 comprise, in the crossing zones between the grooves 14, 15, clearance orifices 16 formed in the layer of insulating polymer foam 9. The clearance orifices 16 allow the accommodation of the node zones, formed at the intersections between the corrugations of the metal sheets of the secondary sealing barrier 4. These zones node have a top projecting outward from the tank.
[0071] Par ailleurs, la plaque interne 10 est équipée de platines métalliques 17, 18 pour l’ancrage du bord des tôles métalliques ondulées de la membrane d’étanchéité secondaire 4 sur les panneaux isolants 2. Les platines métalliques 17, 18 s’étendent selon deux directions perpendiculaires qui sont chacune parallèles à deux côtés opposés des panneaux isolants 2. Les platines métalliques 17, 18 sont fixées sur la plaque interne 10 du panneau isolant 2, par des vis, des rivets ou des agrafes, par exemple. Les platines métalliques 17, 18 sont mises en place dans des évidements ménagés dans la plaque interne 10 de telle sorte que la surface interne des platines métalliques 17, 18 affleure la surface interne de la plaque interne 10. [0072] La plaque interne 10 est également équipée de goujons filetés 19 faisant saillies vers l’intérieur de la cuve, et destinés à assurer la fixation de la barrière thermiquement isolante primaire 5 sur les panneaux isolants 2 de la barrière thermiquement isolante secondaire 1. Les goujons métalliques 19 passent au travers d’orifices ménagés dans les platines métalliques 17. Furthermore, the inner plate 10 is equipped with metal plates 17, 18 for anchoring the edge of the corrugated metal sheets of the secondary sealing membrane 4 on the insulating panels 2. The metal plates 17, 18 are extend in two perpendicular directions which are each parallel to two opposite sides of the insulating panels 2. The metal plates 17, 18 are fixed to the inner plate 10 of the insulating panel 2, by screws, rivets or staples, for example. The metal plates 17, 18 are placed in recesses made in the internal plate 10 so that the internal surface of the metal plates 17, 18 is flush with the internal surface of the internal plate 10. The inner plate 10 is also equipped with threaded studs 19 projecting inwards from the tank, and intended to ensure the fixing of the primary thermally insulating barrier 5 on the insulating panels 2 of the secondary thermally insulating barrier 1. The metal studs 19 pass through holes made in the metal plates 17.
[0073] Par ailleurs, la plaque interne 10 présente le long de ses bords, dans chaque intervalle entre deux rainures successives 14, 15, un décrochement 21 destiné à recevoir un élément de pontage 20 qui sera décrit plus en détail par la suite. Furthermore, the inner plate 10 has along its edges, in each interval between two successive grooves 14, 15, a recess 21 intended to receive a bridging element 20 which will be described in more detail later.
[0074] Comme visible en figures 1 et 9, l’on observe que la membrane d’étanchéité secondaire 4 comporte une pluralité de tôles métalliques ondulées 24 ayant chacune une forme sensiblement rectangulaire. Les tôles métalliques ondulées 24 sont disposées de manière décalée par rapport aux panneaux isolants 2 de la barrière thermiquement isolante secondaire 1 de telle sorte que chacune desdites tôles métalliques ondulées 24 s’étende conjointement sur quatre panneaux isolants 2 adjacents. As visible in Figures 1 and 9, it is observed that the secondary sealing membrane 4 comprises a plurality of corrugated metal sheets 24 each having a substantially rectangular shape. The corrugated metal sheets 24 are arranged offset with respect to the insulating panels 2 of the secondary thermally insulating barrier 1 so that each of said corrugated metal sheets 24 extends jointly over four adjacent insulating panels 2.
[0075] Chaque tôle métallique ondulée 24 présente une première série d'ondulations 25 parallèles s’étendant selon la direction transversale et une seconde série d'ondulations 26 parallèles s’étendant selon la direction longitudinale. Chacune des séries d’ondulations 25, 26 est parallèle à deux bords opposés de la tôle métallique ondulée 24. Les ondulationsEach corrugated metal sheet 24 has a first series of parallel corrugations 25 extending in the transverse direction and a second series of parallel corrugations 26 extending in the longitudinal direction. Each of the series of corrugations 25, 26 is parallel to two opposite edges of the corrugated metal sheet 24. The corrugations
25, 26 font saillies vers l’extérieur de la cuve, c’est-à-dire en direction de la structure porteuse 3. La tôle métallique ondulée 24 comporte entre les ondulations 25, 26, une pluralité de surfaces planes. Au niveau de chaque croisement entre deux ondulations 25,25, 26 project outwards from the tank, that is to say in the direction of the support structure 3. The corrugated metal sheet 24 comprises between the corrugations 25, 26, a plurality of flat surfaces. At each crossing between two undulations 25,
26, la tôle métallique comporte une zone de nœud. Dans le mode de réalisation représenté, les ondulations 25, 26 de la première série et de la seconde série présentent des hauteurs identiques. Il est toutefois possible de prévoir que les ondulations 25 de la première série présentent une hauteur supérieure aux ondulations 26 de la seconde série ou inversement. 26, the sheet metal has a knot area. In the embodiment shown, the undulations 25, 26 of the first series and of the second series have identical heights. It is however possible to provide that the undulations 25 of the first series have a greater height than the undulations 26 of the second series or vice versa.
[0076] Comme représenté sur la figure 9, les ondulations 25, 26 des tôles métalliques ondulées 24 sont logées dans les rainures 14, 15 ménagées dans la plaque interne 10 des panneaux isolants 2. Les tôles métalliques ondulées 24 adjacentes sont soudées entre elles à recouvrement. L’ancrage des tôles métalliques ondulées 24 sur les platines métalliques 17, 18 est réalisé par des soudures de pointage. As shown in Figure 9, the corrugations 25, 26 of the corrugated metal sheets 24 are housed in the grooves 14, 15 made in the inner plate 10 of the insulating panels 2. The adjacent corrugated metal sheets 24 are welded together at recovery. The anchoring of the corrugated metal sheets 24 on the metal plates 17, 18 is carried out by tacking welds.
[0077] Les tôles métalliques ondulées 24 sont, par exemple, réalisées en Invar® : c’est-à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1 ,2.10-6 et 2.10-6 K-1 , ou dans un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l’ordre de 7.10-6 K-1 . De manière alternative, les tôles métalliques ondulées 24 peuvent également être réalisées en acier inoxydable ou en aluminium. The corrugated metal sheets 24 are, for example, made of Invar®: that is to say an alloy of iron and nickel whose coefficient of expansion is typically between 1, 2.10-6 and 2.10-6 K-1 , or in an iron alloy with a high manganese content whose coefficient of expansion is typically of the order of 7.10-6 K-1 . Alternatively, the corrugated metal sheets 24 can also be made of stainless steel or aluminum.
[0078] La barrière thermiquement isolante primaire 5 comporte une pluralité de panneaux isolants 6 de forme sensiblement parallélépipédique rectangle. Les panneaux isolants 6 sont ici décalés par rapport aux panneaux isolants 2 de la barrière thermiquement isolante secondaire 1 de telle sorte que chaque panneau isolant 6 s’étende sur quatre panneaux isolants 2 de la barrière thermiquement isolante secondaire 1. Un panneau isolant 6 comporte une structure analogue à un panneau isolant 2 de la barrière thermiquement isolante secondaire 1 . The primary thermally insulating barrier 5 comprises a plurality of insulating panels 6 of substantially rectangular parallelepipedic shape. The insulating panels 6 are offset here with respect to the insulating panels 2 of the secondary thermally insulating barrier 1 so that each insulating panel 6 extends over four insulating panels 2 of the secondary thermally insulating barrier 1. An insulating panel 6 comprises a structure analogous to an insulating panel 2 of the secondary thermally insulating barrier 1 .
[0079] La membrane d’étanchéité primaire 7, visible en figure 1 , est obtenue par assemblage d’une pluralité de tôles métalliques ondulées 27. Chaque tôle métallique ondulée 27 comporte une première série d'ondulations 28 parallèles, dite hautes, s’étendant selon la direction longitudinale et une seconde série d'ondulations 29 parallèles, dites basses, s’étendant selon la direction transversale. Les zones de nœud présentent une structure proche de celle des zones de nœud des tôles métalliques ondulées 24 de la membrane d’étanchéité secondaire 4. Les ondulations 28, 29 font saillies vers l’intérieur de la cuve. Les tôles métalliques ondulées 27 sont, par exemple, réalisées en acier inoxydable ou en aluminium. [0079] The primary sealing membrane 7, visible in Figure 1, is obtained by assembling a plurality of corrugated metal sheets 27. Each corrugated metal sheet 27 comprises a first series of parallel undulations 28, called high, s' extending in the longitudinal direction and a second series of parallel undulations 29, called low, extending in the transverse direction. The node zones have a structure close to that of the node zones of the corrugated metal sheets 24 of the secondary sealing membrane 4. The corrugations 28, 29 protrude towards the inside of the tank. The corrugated metal sheets 27 are, for example, made of stainless steel or aluminum.
[0080] Lors de la fabrication de la cuve, les rainures 14, 15 sont dimensionnées pour constituer une zone de réglage de l’agencement des ondulations 25, 26 dans la cuve. En particulier, ces rainures 14, 15 doivent être dimensionnées pour permettre des variations de dimensions des ondulations 25, 26 liées aux tolérances de fabrication desdites ondulations 25, 26 dans les tôles métalliques ondulées 24. En outre, Ces dimensionnement doivent prendre en compte les tolérances de positionnement des panneaux isolants 2 ainsi que des tôles métalliques ondulées 24 les uns par rapport aux autres. [0080] During manufacture of the tank, the grooves 14, 15 are sized to form a zone for adjusting the arrangement of the corrugations 25, 26 in the tank. In particular, these grooves 14, 15 must be dimensioned to allow variations in the dimensions of the corrugations 25, 26 linked to the manufacturing tolerances of said corrugations 25, 26 in the corrugated metal sheets 24. In addition, these dimensioning must take into account the tolerances positioning insulating panels 2 and corrugated metal sheets 24 relative to each other.
[0081] La figure 2 illustre une position centrale 35 et des positions extrêmes 36 définissant une plage de positions possibles d’une ondulation 25, 26 logée dans une rainure 14, 15. De façon préférentielle, la rainure 14, 15 est dimensionnée de manière à présenter une largeur 37, prise selon une direction transversale perpendiculaire à une direction longitudinale de l’ondulation 25, 26 et parallèle à une face interne de la plaque interne 10, supérieure ou égale à une largeur 38 de l’ondulation 25, 26 selon ladite direction, augmentée d’une dimension de tolérance prédéterminée correspondant à deux fois la tolérance de positionnement de l’ondulation 25, 26 dans la rainure 14, 15 de part et d’autre de la position centrale 35. [0082] Du fait de ces dimensionnements, un espace demeure dans les rainures 14, 25 entre la barrière thermiquement isolante 1 et la membrane d’étanchéité 4. Ces rainures 14, 15 pourraient donc constituer un réseau de canaux de circulation. De tels canaux se développant de façon continue entre la membrane d’étanchéité et la barrière thermiquement isolante dans toute la paroi de cuve favoriseraient les mouvements de convection, en particulier sur les parois de cuves ayant une composante verticale importante telles que les parois de cuve transversales. Un tel réseau de canaux continus pourrait générer des phénomènes de thermosiphon favorisant les transferts de chaleur par convection gazeuse dans la barrière thermiquement isolante. [0081] Figure 2 illustrates a central position 35 and end positions 36 defining a range of possible positions of an undulation 25, 26 housed in a groove 14, 15. Preferably, the groove 14, 15 is dimensioned so to have a width 37, taken in a transverse direction perpendicular to a longitudinal direction of the corrugation 25, 26 and parallel to an internal face of the internal plate 10, greater than or equal to a width 38 of the corrugation 25, 26 according to said direction, increased by a predetermined tolerance dimension corresponding to twice the positioning tolerance of the corrugation 25, 26 in the groove 14, 15 on either side of the central position 35. Due to these dimensions, a space remains in the grooves 14, 25 between the thermally insulating barrier 1 and the sealing membrane 4. These grooves 14, 15 could therefore constitute a network of circulation channels. Such channels developing continuously between the sealing membrane and the thermally insulating barrier throughout the vessel wall would promote convection movements, in particular on vessel walls having a significant vertical component such as transverse vessel walls. . Such a network of continuous channels could generate thermosiphon phenomena promoting heat transfer by gas convection in the thermally insulating barrier.
[0083] Un aspect de l’invention part de l’idée d’empêcher ces mouvements de convection dans les parois de la cuve. Pour cela, un aspect de l’invention part de l’idée de limiter la longueur des canaux formés par les rainures 14, 15 de la barrière thermiquement isolante. One aspect of the invention starts from the idea of preventing these convection movements in the walls of the tank. For this, one aspect of the invention starts from the idea of limiting the length of the channels formed by the grooves 14, 15 of the thermally insulating barrier.
[0084] Selon un mode de réalisation, des obturateurs d’onde 32 sont insérés dans une, certaines, ou toutes les rainures 14, 15 de la barrière thermiquement isolante. Ces obturateurs d’onde 32 sont disposés dans les rainures 14, 15 afin d’être agencés entre la membrane d’étanchéité 4 et la barrière thermiquement isolante 1 . According to one embodiment, wave shutters 32 are inserted into one, some, or all of the grooves 14, 15 of the thermally insulating barrier. These wave shutters 32 are arranged in the grooves 14, 15 in order to be arranged between the sealing membrane 4 and the thermally insulating barrier 1.
[0085] Les obturateurs d’onde 32 vont être décrits par la suite en relation avec la barrière thermiquement isolante secondaire 1 et la membrane d’étanchéité secondaire 4 décrites ci-dessus. Il est bien évident que les obturateurs d’onde peuvent également être utilisés au niveau du primaire entre la barrière thermiquement isolante primaire 5 et la membrane d’étanchéité primaire 7 dans le cas d’ondulations 25, 26 saillants vers l’extérieur de la cuve, ou encore entre la barrière thermiquement isolante primaire 5 et la membrane d’étanchéité secondaire 4 dans le cas d’ondulations 25, 26 saillants vers l’intérieur de la cuve. Enfin, ces obturateurs d’onde 32 pourraient également être utilisés pour une cuve munie d’une unique membrane d’étanchéité. The wave shutters 32 will be described below in relation to the secondary thermally insulating barrier 1 and the secondary sealing membrane 4 described above. It is obvious that the wave shutters can also be used at the level of the primary between the primary thermally insulating barrier 5 and the primary sealing membrane 7 in the case of undulations 25, 26 projecting towards the outside of the tank. , or even between the primary thermally insulating barrier 5 and the secondary sealing membrane 4 in the case of undulations 25, 26 projecting towards the inside of the tank. Finally, these wave shutters 32 could also be used for a tank provided with a single sealing membrane.
[0086] La figure 3 représente un premier mode de réalisation avec une barrière thermiquement isolante secondaire 1 comportant une pluralité de panneaux isolants 2 juxtaposés munis des séries de rainures 14, 15. Dans ce mode de réalisation, des obturateurs d’onde 32 sont logés dans une pluralité de rainures 14 de la première série de rainures d’un même panneau isolant 2 à distance de l’espace inter-panneaux 12 de sorte à être supporté par la couche de mousse polymère isolante 9 et à être encadré par deux parties de la plaque rigide interne 10. [0086] Figure 3 shows a first embodiment with a secondary thermally insulating barrier 1 comprising a plurality of juxtaposed insulating panels 2 provided with series of grooves 14, 15. In this embodiment, wave shutters 32 are housed in a plurality of grooves 14 of the first series of grooves of the same insulating panel 2 at a distance from the inter-panel space 12 so as to be supported by the layer of insulating polymer foam 9 and to be framed by two parts of the internal rigid plate 10.
[0087] Dans cette illustration, les obturateurs 32 sont alignés dans la direction transversale de sorte à former une ligne d’obturation sur le panneau isolant 2. Dans un autre mode de réalisation, les obturateurs 32 pourraient être positionnés en quinconce ou bien encore être logés dans une rainure 14 sur deux. [0087] In this illustration, the shutters 32 are aligned in the transverse direction so as to form a shutter line on the insulating panel 2. In another mode of realization, the shutters 32 could be positioned staggered or even be housed in a groove 14 out of two.
[0088] Dans le mode de réalisation représenté, les rainures 14 d’un même panneau isolant 2 comporte un seul obturateur 32 de sorte que le pas entre deux obturateurs d’une rainure 14 de la barrière thermiquement isolante secondaire 1 est égal à la dimension du panneau isolant 2 dans la direction longitudinale des ondulations 25. Il est bien évident que dans un autre mode de réalisation, ce pas pourrait être différent par exemple en logeant deux obturateurs 32 dans une rainure 14 d’un même panneau isolant 2. In the embodiment shown, the grooves 14 of the same insulating panel 2 comprises a single shutter 32 so that the pitch between two shutters of a groove 14 of the secondary thermally insulating barrier 1 is equal to the dimension of the insulating panel 2 in the longitudinal direction of the corrugations 25. It is obvious that in another embodiment, this pitch could be different, for example by housing two shutters 32 in a groove 14 of the same insulating panel 2.
[0089] Comme illustré notamment sur les figures 4 à 6, l’obturateur d’onde 32 est formé d’un noyau 33 en matériau compressible et d’une enveloppe 34 recouvrant entièrement le noyau 33. Le noyau 33 est par exemple formé de laine minérale, de mousse de mélamine, de fibres polyamides, de fibres acryliques, d’ouate de polyéthylène ou d’ouate de polyesters, et permet de créer une perte de charge dans la rainure 14 tout en rendant déformable l’obturateur d’onde 32 afin de s’adapter à l’espace laissé libre entre l’ondulation 25 et la rainure 14. En effet, avec l’incertitude de placement de l’ondulation dans la rainure 14 due notamment aux tolérances de montage et de fabrication, il est avantageux de placer un obturateur d’onde 32 de plus grande dimension, fortement déformable, et d’une forme globalement complémentaire à l’espace subsistant entre l’ondulation et la rainure 14 pour qu’il soit ainsi comprimé de sorte à remplir tout l’espace. As illustrated in particular in Figures 4 to 6, the wave shutter 32 is formed of a core 33 of compressible material and an envelope 34 completely covering the core 33. The core 33 is for example formed of mineral wool, melamine foam, polyamide fibers, acrylic fibers, polyethylene wadding or polyester wadding, and makes it possible to create a pressure drop in the groove 14 while making the wave shutter deformable 32 in order to adapt to the space left free between the corrugation 25 and the groove 14. Indeed, with the uncertainty of placement of the corrugation in the groove 14 due in particular to the assembly and manufacturing tolerances, it It is advantageous to place a wave shutter 32 of larger dimension, highly deformable, and of a generally complementary shape to the space remaining between the corrugation and the groove 14 so that it is thus compressed so as to fill all space.
[0090] L’enveloppe 34 est quant à elle réalisée par exemple en tissu de fibres de verre et joue un rôle de contenant pour le noyau 33 et un rôle de perte charge additionnelle pour l’écoulement de fluide passant par le canal formé entre l’ondulation et la rainure 14. En effet, le matériau de l’enveloppe 34 peut être choisi plus ou moins filtrant de sorte à fixer la perte de charge d’un écoulement la traversant. Ainsi, un obturateur d’onde 32 avec une telle enveloppe 34 peut réaliser par exemple une perte de charge de l’ordre de 3 à 5 Pa dans les conditions d’exploitation normales de la cuve. Dans ce mode de réalisation, l’enveloppe 34 est formée d’une nappe interne 41 en contact avec la membrane d’étanchéité secondaire 4 et d’une nappe externe 39 en contact avec le panneau isolant 2. Les deux nappes 39, 41 sont par exemple fixées l’une à l’autre sur tout leur pourtour de sorte à former le contenant fermé pour le noyau 33 en matériau compressible. De plus, il a été constaté qu’il pouvait être plus avantageux de réaliser une nappe interne 41 plus flexible que la nappe externe 39 de sorte que la nappe interne 41 puisse être déformée plus facilement au contact de l’ondulation 25 et que la nappe externe 39 continue à jouer son rôle de support et de maintien dans la rainure 14. La nappe externe 39 de l’obturateur d’onde 32 est par exemple collée ou agrafée sur les deux parties de la plaques rigides internes 10. [0090] The envelope 34 is for its part made for example of glass fiber fabric and acts as a container for the core 33 and an additional pressure loss role for the flow of fluid passing through the channel formed between the corrugation and the groove 14. Indeed, the material of the casing 34 can be chosen more or less filtering so as to fix the pressure drop of a flow passing through it. Thus, a wave shutter 32 with such an envelope 34 can achieve, for example, a pressure drop of the order of 3 to 5 Pa under normal operating conditions of the vessel. In this embodiment, the casing 34 is formed of an internal layer 41 in contact with the secondary sealing membrane 4 and an outer layer 39 in contact with the insulating panel 2. The two layers 39, 41 are for example fixed to each other over their entire periphery so as to form the closed container for the core 33 of compressible material. In addition, it has been found that it could be more advantageous to make an inner ply 41 more flexible than the outer ply 39 so that the inner ply 41 can be deformed more easily in contact with the corrugation 25 and that the ply external 39 continues to play its role of support and maintenance in the groove 14. The external ply 39 of the shutter wave 32 is for example glued or stapled on the two parts of the internal rigid plates 10.
[0091] Dans un mode de réalisation non représenté, une nappe flexible supplémentaire peut être située sous la nappe externe 39 de sorte que le rôle de maintien dans la rainure 14 soit reportée sur cette nappe flexible supplémentaire et non sur la nappe externe 39 formant le contenant pour le noyau 33. [0091] In an embodiment not shown, an additional flexible ply can be located under the outer ply 39 so that the role of maintaining in the groove 14 is transferred to this additional flexible ply and not to the outer ply 39 forming the container for the core 33.
[0092] Les figures 4 à 6 représentent un obturateur d’onde 32 dans une rainure 14 d’un panneau isolant 2 à différentes étapes de l’assemblage de la paroi de cuve et selon différents placements de l’ondulation 25 dans la rainure 14. [0092] Figures 4 to 6 show a wave shutter 32 in a groove 14 of an insulating panel 2 at different stages of the assembly of the vessel wall and according to different placements of the corrugation 25 in the groove 14 .
[0093] En effet, la figure 4 représente l’obturateur d’onde 32 avant que la membrane d’étanchéité secondaire 4 soit installée de sorte l’obturateur d’onde est dans un état non comprimé. Les figures 5 et 6 représentent quant à elle l’obturateur d’onde 32 après le positionnement de la membrane d’étanchéité secondaire 4 et donc d’une ondulation 25 dans la rainure 14 où est logé l’obturateur d’onde 32, l’obturateur d’onde 32 étant ainsi dans un état comprimé. En référence à la plage de positons possibles illustrée en figure 2, la figure 5 représente un premier cas dans lequel l’ondulation 25 est dans une position centrale 35 tandis que la figure 6 représente un deuxième cas dans lequel l’ondulation 25 est dans une position extrême 36. Indeed, Figure 4 shows the wave shutter 32 before the secondary sealing membrane 4 is installed so the wave shutter is in an uncompressed state. Figures 5 and 6 represent the wave shutter 32 after the positioning of the secondary sealing membrane 4 and therefore of an undulation 25 in the groove 14 where the wave shutter 32 is housed, the the wave shutter 32 thus being in a compressed state. With reference to the range of possible positions illustrated in FIG. 2, FIG. 5 represents a first case in which the corrugation 25 is in a central position 35 while FIG. 6 represents a second case in which the corrugation 25 is in a extreme position 36.
[0094] Sur la figure 4, l’obturateur d’onde 32 est fixé par les deux extrémités de la nappe externe 39 à la plaque rigide interne 10 du panneau isolant 2 tandis que la partie centrale de la nappe externe 39 repose sur la couche de mousse 9. L’obturateur d’onde 30 est ainsi fixé dans la rainure 14 et obture déjà en grande partie la rainure 14 en formant un obturateur d’onde 30 à section en U. Le noyau 33 en matériau compressible est ici dans un état non comprimé de sorte que l’obturateur d’onde 32 a une épaisseur initiale globalement constante. In Figure 4, the wave shutter 32 is fixed by the two ends of the outer layer 39 to the inner rigid plate 10 of the insulating panel 2 while the central part of the outer layer 39 rests on the layer of foam 9. The corrugation stopper 30 is thus fixed in the groove 14 and already largely closes off the groove 14 by forming a corrugation stopper 30 with a U-section. The core 33 of compressible material is here in a uncompressed state so that the wave shutter 32 has a generally constant initial thickness.
[0095] Sur la figure 5, l’ondulation 25 a été placée dans une position centrale 35 à l’intérieur de la rainure 14. L’ondulation 25 a ainsi comprimé de manière plus importante la partie centrale 42 de l’obturateur d’onde 32 au droit de la crête de l’ondulation 25 de sorte à localement diminuer fortement l’épaisseur de l’obturateur d’onde 32, par exemple de l’ordre de 50 % par rapport à sa valeur initiale. L’obturateur à l’aide de son noyau 33 en matériau compressible ainsi comprimé vient ainsi obstruer l’espace laissé libre entre le panneau isolant 2 et la membrane d’étanchéité 4 en s’adaptant à la position de l’ondulation 25. [0096] De manière similaire sur la figure 6, l’ondulation 25 a été placée dans une position extrême 36 (ici côté droit de la rainure 14) à l’intérieur de la rainure 14. L’ondulation 25 a ainsi comprimé de manière plus importante une première partie 43 de l’obturateur d’onde 32 située à droite de l’ondulation tandis qu’une deuxième partie 44 de l’obturateur d’onde 32 n’est quant à elle pas comprimée. Ainsi la partie droite 43 a vu diminuer fortement son épaisseur par rapport à sa valeur initiale, par exemple de l’ordre de 50 %. Dans l’exemple représenté, la partie gauche 44 a quant à elle vu son épaisseur légèrement augmentée au vu du report par fluage dans cette partie du matériau compressible du noyau 33. Dès lors, l’obturateur à l’aide de son noyau 33 en matériau compressible ainsi comprimé vient ainsi obstruer l’espace laissé libre entre le panneau isolant 2 et la membrane d’étanchéité 4 en s’adaptant à la position de l’ondulation 25. In Figure 5, the corrugation 25 has been placed in a central position 35 inside the groove 14. The corrugation 25 has thus compressed more significantly the central portion 42 of the obturator of corrugation 32 in line with the crest of corrugation 25 so as to locally greatly reduce the thickness of corrugation shutter 32, for example of the order of 50% relative to its initial value. The shutter, using its core 33 of compressible material thus compressed, thus obstructs the space left free between the insulating panel 2 and the sealing membrane 4 by adapting to the position of the corrugation 25. Similarly in Figure 6, the corrugation 25 has been placed in an extreme position 36 (here right side of the groove 14) inside the groove 14. The corrugation 25 has thus compressed so more important a first part 43 of the wave shutter 32 located to the right of the undulation while a second part 44 of the wave shutter 32 is not compressed. Thus the straight part 43 has had its thickness greatly reduced compared to its initial value, for example of the order of 50%. In the example shown, the left part 44 has seen its thickness slightly increased in view of the transfer by creep in this part of the compressible material of the core 33. Therefore, the shutter using its core 33 in compressible material thus compressed thus obstructs the space left free between the insulating panel 2 and the sealing membrane 4 by adapting to the position of the corrugation 25.
[0097] Les éléments de pontage 20 sont notamment représentés sur les figures 7 à 10. Sur ces figures, les éléments de pontage 20 comportent chacun une plaque de pontage 22 qui est disposée à cheval entre deux panneaux isolants 2 adjacents, en enjambant l’espace inter-panneaux 12 entre les panneaux isolants 2. Chaque plaque de pontage 22 est fixée contre chacun des deux panneaux isolants 2 adjacents de manière à s’opposer à leur écartement mutuel. Les plaques de pontage 22 présentent une forme parallélépipédique rectangle et sont par exemple constituées d’une plaque de bois contreplaqué. The bridging elements 20 are shown in particular in Figures 7 to 10. In these figures, the bridging elements 20 each comprise a bridging plate 22 which is arranged astride between two adjacent insulating panels 2, spanning the inter-panel space 12 between the insulating panels 2. Each bridging plate 22 is fixed against each of the two adjacent insulating panels 2 so as to oppose their mutual spacing. The bridging plates 22 have a rectangular parallelepipedal shape and are for example made of a plywood plate.
[0098] La face externe des plaques de pontage 22 est fixée contre le fond des décrochements 21. La profondeur des décrochements 21 est sensiblement égale à l’épaisseur des plaques de pontage 22 de telle sorte que la face interne des plaques de pontage 22 parvienne sensiblement au niveau des autres zones planes de la plaque interne 10 du panneau isolant 2. Ainsi, les plaques de pontage 22 sont en mesure d’assurer une continuité dans le portage de la membrane d’étanchéité secondaire 4. The outer face of the bridging plates 22 is fixed against the bottom of the recesses 21. The depth of the recesses 21 is substantially equal to the thickness of the bridging plates 22 so that the inner face of the bridging plates 22 reaches substantially at the level of the other flat zones of the internal plate 10 of the insulating panel 2. Thus, the bridging plates 22 are able to ensure continuity in the carrying of the secondary sealing membrane 4.
[0099] De manière à assurer une bonne répartition des efforts de liaison entre les panneaux adjacents, une pluralité de plaques de pontage 22 s’étend le long de chaque bord de la plaque interne 10 des panneaux isolants 2, une plaque de pontage 22 étant disposée dans chaque intervalle entre deux rainures voisines 14, 15 d’une série de rainures parallèles. In order to ensure a good distribution of the connection forces between the adjacent panels, a plurality of bridging plates 22 extend along each edge of the internal plate 10 of the insulating panels 2, a bridging plate 22 being disposed in each interval between two adjacent grooves 14, 15 of a series of parallel grooves.
[0100] De manière avantageuse, les plaques de pontage 22 s’étendent sur sensiblement toute la longueur de l’intervalle entre deux rainures voisines 14, 15. De plus, les décrochements 21 de part et d’autre de l’espace inter-panneau 12 forment un logement pour la plaque de pontage 22, c’est-à-dire l’espace formé entre dans les bords des décrochements 21 de deux panneaux isolant 2. Le logement présente une dimension transversale légèrement supérieure à la dimension transversale de la plaque de pontage 22 de sorte à s’affranchir des tolérances de montage et/ou fabrication lors de l’insertion de la plaque de pontage 22 dans le logement. [0100] Advantageously, the bridging plates 22 extend over substantially the entire length of the interval between two adjacent grooves 14, 15. In addition, the recesses 21 on either side of the interspace panel 12 form a housing for the bridging plate 22, that is to say the space formed between the edges of the recesses 21 of two insulating panels 2. The housing has a transverse dimension slightly greater than the transverse dimension of the bridging plate 22 so as to overcome assembly and/or manufacturing tolerances when inserting the bridging plate 22 into the housing.
[0101] Les plaques de pontage 22 peuvent être fixées contre la plaque interne 10 des panneaux isolants 2 par tous moyens appropriés. Par exemple et comme représenté en figure 3, l’application d’une colle 40 dans le décrochement 21 entre la face externe des plaques de pontage 22 et la plaque interne 10 des panneaux isolants 2 permet de fixer les plaques de pontage 22 aux panneaux isolants 2 de manière satisfaisante. The bridging plates 22 can be fixed against the inner plate 10 of the insulating panels 2 by any suitable means. For example and as represented in FIG. 3, the application of an adhesive 40 in the recess 21 between the external face of the bridging plates 22 and the internal plate 10 of the insulating panels 2 makes it possible to fix the bridging plates 22 to the insulating panels 2 satisfactorily.
[0102] Les éléments de pontage 20 comportent également chacun une bande isolante 23 fixée à la face externe des plaques de pontage 22, par exemple par collage. Lors de l’assemblage des éléments de pontage 20 avec les panneaux isolants 2, la bande isolanteThe bridging elements 20 also each comprise an insulating strip 23 fixed to the outer face of the bridging plates 22, for example by gluing. When assembling the bridging elements 20 with the insulating panels 2, the insulating strip
23 est logée dans l’espace inter-panneaux 12 entre la plaque de pontage 22 et le joint isolant 13, et vient être comprimée entre ces deux éléments. Afin d’être logée aisément dans l’espace inter-panneaux 12, la bande isolante 23 comporte une dimension dans la direction transversale de l’espace inter-panneaux 12 égale à la dimension de l’espace inter-panneaux 12 dans la direction transversale de l’espace inter-panneaux 12. La bande isolante 23 est par exemple réalisée en une mousse polymère telle que la mousse polyuréthane. La bande isolante 23 comporte par exemple une dimension longitudinale égale à celle de la plaque de pontage 22. 23 is housed in the inter-panel space 12 between the bridging plate 22 and the insulating joint 13, and is compressed between these two elements. In order to be easily accommodated in the inter-panel space 12, the insulating strip 23 has a dimension in the transverse direction of the inter-panel space 12 equal to the dimension of the inter-panel space 12 in the transverse direction. of the inter-panel space 12. The insulating strip 23 is for example made of a polymer foam such as polyurethane foam. The insulating strip 23 has for example a longitudinal dimension equal to that of the bridging plate 22.
[0103] De plus, comme représenté dans le mode de réalisation illustré sur les figures 7 et 8 notamment, les éléments de pontage 20 chevauchant les deux mêmes panneaux isolants adjacents 2 sont reliés deux à deux de sorte à former une chaine d’éléments de pontage 30 s’étendant dans la direction longitudinale de l’espace inter-panneaux 12. Toutefois, dans un autre mode de réalisation non représenté, les éléments de pontage 20 peuvent être tous indépendants les uns des autres. In addition, as shown in the embodiment illustrated in Figures 7 and 8 in particular, the bridging elements 20 overlapping the same two adjacent insulating panels 2 are connected in pairs so as to form a chain of bridging 30 extending in the longitudinal direction of the inter-panel space 12. However, in another embodiment not shown, the bridging elements 20 may all be independent of one another.
[0104] Deux éléments de pontage 20 adjacents de la chaîne d’éléments de pontage 30 sont fixés l’un à l’autre à l’aide d’un obturateur d’onde 32, comme visible notamment en figures 7 et 8. Plus particulièrement, la nappe externe 39 de l’obturateur d’onde 32 est fixée aux plaques internes 10 des deux panneaux isolants 2, par exemple par agrafage ou collage. Dans ce mode de réalisation l’obturateur d’onde 32 est ainsi placé au niveau de l’espace inter-panneaux et dans le prolongement de deux rainures 14 de sorte à venir se positionner entre une ondulation et le joint isolant 13. [0104] Two adjacent bridging elements 20 of the chain of bridging elements 30 are fixed to each other using a wave shutter 32, as can be seen in particular in FIGS. 7 and 8. More in particular, the outer ply 39 of the wave shutter 32 is fixed to the inner plates 10 of the two insulating panels 2, for example by stapling or gluing. In this embodiment the corrugation shutter 32 is thus placed at the level of the inter-panel space and in the extension of two grooves 14 so as to be positioned between a corrugation and the insulating joint 13.
[0105] Dans un mode de réalisation non représenté, deux éléments de pontage 20 adjacents de la chaîne d’éléments de pontage 30 sont fixés l’un à l’autre à l’aide d’une nappe flexible 31 , par exemple par agrafage. Sur la nappe flexible 31 , un obturateur d’onde 32 est fixé, par exemple par collage. [0106] Par ailleurs, selon un mode de réalisation notamment illustré en figure 7, les plaques de pontage 22 se situant dans le prolongement des directions des platines métalliques 17, 18 fixées sur les panneaux isolants 2 sont équipées de bandes de protection thermique 45, fixées contre la face interne desdites plaques de pontage 22 et destinés à protéger la plaque de pontage 22 lors de la soudure des tôles formant la membrane d’étanchéité. [0105] In an embodiment not shown, two adjacent bridging elements 20 of the chain of bridging elements 30 are fixed to each other using a flexible web 31, for example by stapling . On the flexible sheet 31, a wave shutter 32 is fixed, for example by gluing. [0106] Furthermore, according to one embodiment particularly illustrated in Figure 7, the bridging plates 22 located in the extension of the directions of the metal plates 17, 18 fixed on the insulating panels 2 are equipped with thermal protection strips 45, fixed against the inner face of said bridging plates 22 and intended to protect the bridging plate 22 during the welding of the sheets forming the sealing membrane.
[0107] Sur la figure 7, la chaîne d’éléments de pontage 30 a été illustré lors de l’étape de collage avec la colle 40 sur les panneaux isolants 2 au niveau des décrochements 21 tandis que sur la figure 8, la chaîne d’éléments de pontage 30 est déjà fixé sur les panneaux isolants 2. In Figure 7, the chain of bridging elements 30 has been illustrated during the step of gluing with the glue 40 on the insulating panels 2 at the level of the recesses 21 while in Figure 8, the chain of bridging elements 30 is already fixed on the insulating panels 2.
[0108] Les figures 9 et 10 sont des illustrations en coupe de la figure 8 permettant de mieux distinguer l’agencement relatif des différents éléments les uns par rapport aux autres selon deux directions de coupe différentes. [0108] Figures 9 and 10 are sectional illustrations of Figure 8 to better distinguish the relative arrangement of the various elements relative to each other in two different cutting directions.
[0109] Sur la figure 9, il a été également illustré les tôles métalliques ondulées 24 de la membrane d’étanchéité secondaire 4 dont les ondulations 25 et 26 sont disposés dans les rainures 14, 15 des panneaux isolants 2 de la barrière thermiquement isolante secondaire 1 . La figure 9 est ainsi une coupe réalisée dans la direction longitudinale de l’espace interpanneaux au niveau dudit espace inter-panneaux 12. In Figure 9, the corrugated metal sheets 24 of the secondary sealing membrane 4 have also been illustrated, the corrugations 25 and 26 of which are arranged in the grooves 14, 15 of the insulating panels 2 of the secondary thermally insulating barrier 1 . Figure 9 is thus a section taken in the longitudinal direction of the interpanel space at the level of said interpanel space 12.
[01 10] Ainsi, il est possible de distinguer les plaques de pontage 22 sur lesquelles les extrémités ont été biseautés, les nappes externes 39 étant agrafées ou collées sur ces surfaces biseautés. La bande isolante 23 prolonge à ses extrémités l’extrémité biseauté des plaques de pontage 22 de sorte à obtenir une nappe externe 39 de section en V dont le fond du V repose sur le joint isolant 13. La nappe externe 39 relie ainsi bien par leurs extrémités deux plaques de pontage 22 adjacentes. L’obturateur d’onde 32 est placé sur la nappe flexible 31 et vient être comprimé entre la nappe flexible 31 et l’ondulation 25. [01 10] Thus, it is possible to distinguish the bridging plates 22 on which the ends have been beveled, the outer layers 39 being stapled or glued to these beveled surfaces. The insulating strip 23 extends at its ends the beveled end of the bridging plates 22 so as to obtain an external ply 39 of V-section, the bottom of the V of which rests on the insulating joint 13. The external ply 39 thus connects well by their ends two adjacent bridging plates 22. Wave shutter 32 is placed on flexible sheet 31 and is compressed between flexible sheet 31 and corrugation 25.
[01 1 1] La figure 10 est une coupe réalisée dans la direction transversale de l’espace interpanneaux 12. Sur cette figure, il est ainsi possible de distinguer la bande isolante 23 qui est comprimée entre la plaque de pontage 22 et le joint isolant 13 et qui remplit tout l’espace laissé libre par le joint isolant 13 dans la direction d’épaisseur et dans la direction transversale. La plaque de pontage 22 est logée de part et d’autre de celle-ci dans deux décrochements 21 des deux panneaux isolants 2 adjacents. [01 1 1] Figure 10 is a section taken in the transverse direction of the interpanel space 12. In this figure, it is thus possible to distinguish the insulating strip 23 which is compressed between the bridging plate 22 and the insulating joint 13 and which fills all the space left free by the insulating joint 13 in the direction of thickness and in the transverse direction. The bridging plate 22 is housed on either side thereof in two recesses 21 of the two adjacent insulating panels 2.
[01 12] Dans le premier mode de réalisation des figures 2 à 10, l’obturateur d’onde 32 est logé dans une rainure 15 de sorte à être comprimé entre une ondulation et le fond d’une rainure 15. L’obturateur d’onde 32 est de plus collé ou agrafé sur les parois de la rainure formée par les plaques rigides 10. Ce mode de réalisation correspond notamment au cas où les ondulations de la membrane d’étanchéité font saillies vers l’extérieur de la cuve et sont logées dans une rainure. [01 12] In the first embodiment of Figures 2 to 10, the wave shutter 32 is housed in a groove 15 so as to be compressed between a corrugation and the bottom of a groove 15. The shutter of wave 32 is also glued or stapled to the walls of the groove formed by the rigid plates 10. This embodiment corresponds in particular to the case where the corrugations of the waterproofing membrane protrude outward from the tank and are housed in a groove.
[01 13] Les figures 1 1 et 12 correspondent à un deuxième mode de réalisation qui diffère du premier mode de réalisation en ce que l’obturateur 32 est cette fois collé à l’intérieur de l’ondulation et est comprimé entre une ondulation et la plaque rigide 10 plane d’un panneau isolant 2, 6. De plus, ce deuxième mode de réalisation correspond notamment au cas où les ondulations de la membrane d’étanchéité font saillies vers l’intérieur de la cuve 71 . [01 13] Figures 1 1 and 12 correspond to a second embodiment which differs from the first embodiment in that the shutter 32 is this time stuck inside the corrugation and is compressed between a corrugation and the flat rigid plate 10 of an insulating panel 2, 6. In addition, this second embodiment corresponds in particular to the case where the undulations of the sealing membrane protrude towards the inside of the tank 71 .
[01 14] La figure 1 1 représente ainsi de manière schématique un obturateur d’onde 32 logé dans une ondulation et avant compression de sorte que l’obturateur d’onde présente une hauteur plus importante que la hauteur de crête de l’ondulation. De plus, avant compression, l’obturateur d’onde 32 ne présente pas nécessairement une forme complémentaire à l’ondulation. [01 14] Figure 1 1 thus schematically represents a wave shutter 32 housed in a corrugation and before compression so that the wave shutter has a greater height than the peak height of the corrugation. Moreover, before compression, the wave shutter 32 does not necessarily have a shape complementary to the wave.
[01 15] La figure 12 représente également de manière schématique un obturateur d’onde 32 logé dans une ondulation mais cette fois après compression entre la plaque rigide 10 plane d’un panneau isolant 2, 6 et l’ondulation de la membrane d’étanchéité 4, 7. L’obturateur d’onde 32 a été ainsi comprimé et déformé de sorte à remplir tout l’espace laissé libre entre l’ondulation de l’une des séries d’ondulations 25, 26 et la plaque rigide 10. [01 15] Figure 12 also schematically shows a wave shutter 32 housed in a corrugation but this time after compression between the flat rigid plate 10 of an insulating panel 2, 6 and the corrugation of the membrane of sealing 4, 7. The wave shutter 32 has thus been compressed and deformed so as to fill all the space left free between the corrugation of one of the series of corrugations 25, 26 and the rigid plate 10.
[01 16] En référence à la figure 13, une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72. [01 16] Referring to Figure 13, a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship. The wall of the tank 71 comprises a primary leaktight barrier intended to be in contact with the LNG contained in the tank, a secondary leaktight barrier arranged between the primary leaktight barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double hull 72.
[01 17] De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71 . [01 17] In a manner known per se, loading/unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of LNG from or to the tub 71 .
[01 18] La figure 13 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement. [01 18] Figure 13 shows an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and a shore installation 77. The loading and unloading station 75 is a fixed installation off- shore comprising a movable arm 74 and a tower 78 which supports the movable arm 74. The movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the pipes loading/unloading 73. The adjustable mobile arm 74 adapts to all sizes of LNG carriers. A connecting pipe, not shown, extends inside the tower 78. The loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the shore installation 77. This comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75. The underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
[01 19] Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en oeuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75. [01 19] To generate the pressure necessary for the transfer of the liquefied gas, pumps on board the ship 70 and/or pumps fitted to the shore installation 77 and/or pumps fitted to the loading and unloading 75.
[0120] Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention. Although the invention has been described in connection with several particular embodiments, it is obvious that it is in no way limited thereto and that it includes all the technical equivalents of the means described as well as their combinations if these fall within the scope of the invention.
[0121] L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication. [0121] The use of the verb "to comprise", "to understand" or "to include" and of its conjugated forms does not exclude the presence of other elements or other steps than those set out in a claim.
[0122] Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication. [0122] In the claims, any reference sign in parentheses cannot be interpreted as a limitation of the claim.

Claims

Revendications Claims
[Revendication 1 ] [Cuve étanche et thermiquement isolante de stockage d’un fluide fixée à une structure porteuse, dans laquelle une paroi de cuve comporte au moins une barrière thermiquement isolante (1 , 5) et au moins une membrane d’étanchéité (4, 7), la membrane d’étanchéité comportant une série d’ondulations (25, 26) parallèles présentant une direction longitudinale, et des portions planes situées entre lesdites ondulations (25, 26), lesdites ondulations (25, 26) faisant saillies des portions planes, ladite barrière thermiquement isolante (1 , 5) étant située contre la membrane d’étanchéité (4, 7), la barrière thermiquement isolante (1 , 5) comportant des panneaux isolants (2, 6), les panneaux isolants (2, 6) étant juxtaposés les uns aux autres, dans laquelle la cuve comporte au moins un obturateur d’onde (32) situé au droit d’une ondulation de la série d’ondulations (25, 26), entre une ondulation de la série d’ondulations (25, 26) et l’un des panneaux isolants (2, 6), l’obturateur d’onde (32) étant configuré pour obturer un espace laissé libre entre ladite ondulation et ladite rainure dans laquelle ladite ondulation est logée, dans laquelle l’obturateur d’onde (32) comporte un noyau en matériau compressible, et une enveloppe souple recouvrant entièrement ledit noyau de sorte à former un contenant pour le noyau en matériau compressible, l’obturateur d’onde (32) étant comprimé ou flué entre la membrane d’étanchéité et la barrière thermiquement isolante. [Claim 1] [Sealed and thermally insulating tank for storing a fluid fixed to a supporting structure, in which a wall of the tank comprises at least one thermally insulating barrier (1, 5) and at least one sealing membrane (4 , 7), the sealing membrane comprising a series of parallel undulations (25, 26) having a longitudinal direction, and flat portions located between said undulations (25, 26), said undulations (25, 26) protruding from flat portions, said thermally insulating barrier (1, 5) being located against the sealing membrane (4, 7), the thermally insulating barrier (1, 5) comprising insulating panels (2, 6), the insulating panels (2 , 6) being juxtaposed to each other, in which the tank comprises at least one corrugation (32) located in line with a corrugation of the series of corrugations (25, 26), between a corrugation of the series corrugations (25, 26) and one of the insulating panels (2, 6), the obturateu r wave (32) being configured to close a space left free between said corrugation and said groove in which said corrugation is housed, in which the wave shutter (32) comprises a core of compressible material, and a flexible envelope completely covering said core so as to form a container for the core of compressible material, the wave shutter (32) being compressed or flowed between the sealing membrane and the thermally insulating barrier.
[Revendication 2] Cuve selon la revendication 1 , dans laquelle lesdites ondulations (25, 26) font saillies des portions planes sur un côté saillant de la membrane d’étanchéité, ladite barrière thermiquement isolante (1 , 5) étant située du côté saillant de la membrane d’étanchéité, la barrière thermiquement isolante (1 , 5) comportant une série de rainures (14, 15) parallèles recevant la série d’ondulations (25, 26), ledit obturateur d’onde (32) étant situé au droit d’une ondulation de la série d’ondulations (25, 26), entre une ondulation de la série d’ondulations (25, 26) et un fond d’une rainure de la série de rainures (14, 15).[Claim 2] Tank according to claim 1, wherein said corrugations (25, 26) project from flat portions on a projecting side of the sealing membrane, said thermally insulating barrier (1, 5) being located on the projecting side of the sealing membrane, the thermally insulating barrier (1, 5) comprising a series of parallel grooves (14, 15) receiving the series of undulations (25, 26), said wave shutter (32) being located to the right of a corrugation of the series of corrugations (25, 26), between a corrugation of the series of corrugations (25, 26) and a bottom of a groove of the series of grooves (14, 15).
[Revendication 3] Cuve selon la revendication 2, dans laquelle les panneaux isolants sont munis de rainures formant la série de rainures de sorte que les rainures (14, 15) de deux panneaux isolants (2, 6) adjacents sont alignées dans la direction longitudinale, l’au moins un obturateur d’onde (32) étant logée dans la rainure de l’un des panneaux isolants. [Claim 3] A tank according to claim 2, wherein the insulating panels are provided with grooves forming the series of grooves such that the grooves (14, 15) of two adjacent insulating panels (2, 6) are aligned in the longitudinal direction , the at least one wave shutter (32) being housed in the groove of one of the insulating panels.
[Revendication 4] Cuve selon la revendication 2 ou la revendication 3, dans laquelle la barrière thermiquement isolante (1 ) est une première barrière thermiquement isolante et la cuve comporte une deuxième barrière thermiquement isolante située à l’opposé du côté saillant de la membrane d’étanchéité, et dans laquelle la cuve comporte au moins un obturateur d’onde complémentaire situé en regard de l’au moins un obturateur d’onde (32) de sorte à prendre en sandwich une ondulation de la membrane d’étanchéité entre l’obturateur d’onde et l’obturateur d’onde complémentaire, l’obturateur d’onde complémentaire étant configuré pour obturer un espace laissé libre entre ladite ondulation et la deuxième barrière thermiquement isolante. [Claim 4] Tank according to claim 2 or claim 3, in which the thermally insulating barrier (1) is a first barrier thermally insulating and the tank comprises a second thermally insulating barrier located opposite the projecting side of the sealing membrane, and in which the tank comprises at least one complementary wave shutter located opposite the at least one shutter corrugation (32) so as to sandwich a corrugation of the sealing membrane between the corrugation shutter and the complementary corrugation shutter, the complementary corrugation shutter being configured to obturate a space left free between said corrugation and the second thermally insulating barrier.
[Revendication 5] Cuve selon I l’une des revendications 2 à 4, dans laquelle la barrière thermiquement isolante comporte une surface interne, la série de rainures (14, 15) étant réalisée sur la surface interne et les ondulations faisant saillies vers l’extérieur de la cuve. [Claim 5] Tank according to one of Claims 2 to 4, in which the thermally insulating barrier comprises an internal surface, the series of grooves (14, 15) being formed on the internal surface and the corrugations projecting towards exterior of the tank.
[Revendication 6] Cuve selon l’une des revendications 2 à 4, dans laquelle la membrane d’étanchéité est une membrane d’étanchéité secondaire (4), la barrière thermiquement isolante est une barrière thermiquement isolante primaire (5), les ondulations faisant saille vers l’intérieur de la cuve, et dans laquelle la cuve comporte une barrière thermiquement isolante secondaire (1 ) retenue sur la structure porteuse et portant la membrane d’étanchéité secondaire (4), la barrière thermiquement isolante primaire (5) étant portée par la membrane d’étanchéité secondaire (4), la cuve comportant une membrane d’étanchéité primaire (7) portée par la barrière thermiquement isolante primaire (5) et destinée à être en contact avec le fluide dans la cuve, la série de rainures (14, 15) étant formée sur une surface externe de la barrière thermiquement isolante primaire (5). [Claim 6] Tank according to one of Claims 2 to 4, in which the sealing membrane is a secondary sealing membrane (4), the thermally insulating barrier is a primary thermally insulating barrier (5), the corrugations forming projects towards the interior of the tank, and in which the tank comprises a secondary thermally insulating barrier (1) retained on the supporting structure and carrying the secondary sealing membrane (4), the primary thermally insulating barrier (5) being carried by the secondary sealing membrane (4), the tank comprising a primary sealing membrane (7) carried by the primary thermally insulating barrier (5) and intended to be in contact with the fluid in the tank, the series of grooves (14, 15) being formed on an outer surface of the primary thermally insulating barrier (5).
[Revendication 7] Cuve selon l’une des revendications 2 à 6, dans laquelle chaque panneau isolant (2) comporte une couche de mousse polymère isolante (9) et une plaque rigide (10) formant la face en contact avec la membrane d’étanchéité, la rainure de la série de rainures (14, 15) étant formée dans la plaque rigide. [Claim 7] Tank according to one of Claims 2 to 6, in which each insulating panel (2) comprises a layer of insulating polymer foam (9) and a rigid plate (10) forming the face in contact with the membrane of sealing, the groove of the series of grooves (14, 15) being formed in the rigid plate.
[Revendication 8] Cuve selon la revendication 1 , dans laquelle la barrière thermiquement isolante (1 , 5) est située entre la membrane d’étanchéité (4, 7) et la structure porteuse, les ondulations faisant saillies vers l’intérieur de la cuve, chaque panneau isolant (2) comportant une plaque rigide plane (10) formant la face en contact avec la membrane d’étanchéité, l’obturateur d’onde (32) étant situé entre une ondulation de la série d’ondulations (25, 26) et une plaque rigide (10) d’un panneau isolant (2). [Claim 8] Tank according to claim 1, in which the thermally insulating barrier (1, 5) is located between the sealing membrane (4, 7) and the support structure, the corrugations projecting towards the inside of the tank , each insulating panel (2) comprising a flat rigid plate (10) forming the face in contact with the sealing membrane, the wave shutter (32) being located between a corrugation of the series of corrugations (25, 26) and a rigid plate (10) of an insulating panel (2).
[Revendication 9] Cuve selon l’une des revendications 1 à 8, dans laquelle l’obturateur d’onde (32) est comprimé par la membrane d’étanchéité de sorte à ce que la dimension dans une direction d’épaisseur diminue localement d’au moins 20% entre l’épaisseur avant compression et l’épaisseur après compression. [Claim 9] Tank according to one of Claims 1 to 8, in which the wave shutter (32) is compressed by the sealing membrane so that that the dimension in a direction of thickness decreases locally by at least 20% between the thickness before compression and the thickness after compression.
[Revendication 10] Cuve selon l’une des revendications 1 à 9, dans laquelle l’enveloppe (34) comporte une première nappe (41 ) et une deuxième nappe (39), la première nappe étant située au contact de la membrane d’étanchéité, la première nappe et la deuxième nappe étant fixées l’une à l’autre sur au moins une partie d’un pourtour de la première nappe et de la deuxième nappe de sorte à former le contenant pour le noyau en matériau compressible, la première nappe étant réalisée dans un matériau plus flexible que le matériau de la deuxième nappe. [Claim 10] Tank according to one of claims 1 to 9, in which the casing (34) comprises a first ply (41) and a second ply (39), the first ply being located in contact with the membrane of sealing, the first ply and the second ply being fixed to each other over at least part of a circumference of the first ply and of the second ply so as to form the container for the core of compressible material, the first ply being made of a more flexible material than the material of the second ply.
[Revendication 1 1 ] Cuve selon l’une des revendications 1 à 9, dans laquelle l’enveloppe (34) comporte une unique nappe comprenant une surface interne située au contact de la membrane d’étanchéité, l’unique nappe étant réalisée sous la forme d’un cylindre flexible de sorte à former le contenant pour le noyau en matériau compressible. [Claim 1 1] Tank according to one of claims 1 to 9, in which the envelope (34) comprises a single ply comprising an internal surface located in contact with the sealing membrane, the single ply being produced under the form of a flexible cylinder so as to form the container for the core of compressible material.
[Revendication 12] Cuve selon la revendication 10 ou 11 , dans laquelle l’unique nappe, la première nappe (41 ) et/ou la deuxième nappe (39) comporte au moins une perforation. [Claim 12] Tank according to claim 10 or 11, in which the single ply, the first ply (41) and/or the second ply (39) comprises at least one perforation.
[Revendication 13] Cuve selon l’une des revendications 1 à 12, dans laquelle le noyau (33) représente au moins 90% en volume de l’obturateur d’onde (32), dans l’état comprimé ou dans l’état avant compression. [Claim 13] Vessel according to one of Claims 1 to 12, in which the core (33) represents at least 90% by volume of the wave shutter (32), in the compressed state or in the before compression.
[Revendication 14] Cuve selon l’une des revendications 1 à 13, dans laquelle le noyau (33) est réalisé dans un matériau fibreux non tissé, poudreux ou en mousse, choisi de préférence parmi : la laine minérale, la mousse de mélamine, l’ouate de polyesters, l’ouate de polyéthylène, la mousse synthétique de plastique, les fibres polyamides, les fibres acryliques ou leurs combinaisons. [Claim 14] Tank according to one of Claims 1 to 13, in which the core (33) is made of a non-woven, powdery or foamed fibrous material, preferably chosen from: mineral wool, melamine foam, polyester wadding, polyethylene wadding, synthetic plastic foam, polyamide fibers, acrylic fibers or combinations thereof.
[Revendication 15] Cuve selon l’une des revendications 1 à 14, dans laquelle l’enveloppe (34) comporte une nappe textile tissée ou non tissée, constituée de fibres minérales et/ou synthétiques. [Claim 15] Tank according to one of Claims 1 to 14, in which the casing (34) comprises a woven or non-woven textile web, consisting of mineral and/or synthetic fibres.
[Revendication 16] Cuve selon l’une des revendications 1 à 15, dans laquelle la cuve comporte une pluralité d’obturateurs d’onde (32), chaque obturateur d’onde (32) étant situé entre une ondulation et un panneau isolant. [Claim 16] Tank according to one of Claims 1 to 15, in which the tank comprises a plurality of wave shutters (32), each wave shutter (32) being located between a corrugation and an insulating panel.
[Revendication 17] Cuve selon l’une des revendications 1 à 16, dans laquelle la cuve comporte une pluralité d’obturateurs d’onde (32) situés au droit d’une ondulation de la série d’ondulations (25, 26), entre une ondulation de la série d’ondulations (25, 26) et un panneau isolant formé au droit de l’ondulation, chaque obturateur d’onde (32) étant configuré pour obturer un espace laissé libre entre ladite ondulation et ledit panneau isolant, les obturateurs d’onde (32) étant espacés régulièrement les uns des autres dans la direction longitudinale d’une série d’ondulations. [Claim 17] Tank according to one of Claims 1 to 16, in which the tank comprises a plurality of wave shutters (32) located in line with a corrugation of the series of corrugations (25, 26), between a corrugation of the series of corrugations (25, 26) and an insulating panel formed in line with the corrugation, each corrugation shutter (32) being configured to close a space left free between said corrugation and said insulating panel, the corrugation shutters (32) being regularly spaced from each other in the longitudinal direction of a series of corrugations.
[Revendication 18] Navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque (72) et une cuve (71 ) selon l’une des revendications[Claim 18] Vessel (70) for transporting a cold liquid product, the vessel comprising a double hull (72) and a tank (71) according to one of the claims
1 à 17 disposée dans la double coque. 1 to 17 arranged in the double hull.
[Revendication 19] Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication la revendication 18, des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve (71 ) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire. [Claim 19] Transfer system for a cold liquid product, the system comprising a vessel (70) according to claim 18, insulated pipes (73, 79, 76, 81) arranged so as to connect the tank (71) installed in the ship's hull at a floating or onshore storage facility (77) and a pump for driving a flow of cold liquid product through the insulated pipes to or from the floating or onshore storage facility to or from the tank of the vessel.
[Revendication 20] Procédé de chargement ou déchargement d’un navire (70) selon la revendication 18, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71 ). ] [Claim 20] A method of loading or unloading a ship (70) according to claim 18, in which a cold liquid product is conveyed through insulated pipes (73, 79, 76, 81) from or to a storage installation floating or land (77) to or from the ship's tank (71). ]
EP21844002.2A 2020-12-23 2021-12-22 Sealed and thermally insulating tank comprising a wave stopper Pending EP4267881A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2014017A FR3118119B1 (en) 2020-12-23 2020-12-23 Watertight and thermally insulating tank comprising a wave shutter
PCT/EP2021/087394 WO2022136599A1 (en) 2020-12-23 2021-12-22 Sealed and thermally insulating tank comprising a wave stopper

Publications (1)

Publication Number Publication Date
EP4267881A1 true EP4267881A1 (en) 2023-11-01

Family

ID=74759070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21844002.2A Pending EP4267881A1 (en) 2020-12-23 2021-12-22 Sealed and thermally insulating tank comprising a wave stopper

Country Status (5)

Country Link
EP (1) EP4267881A1 (en)
KR (1) KR20230122047A (en)
CN (1) CN116783421A (en)
FR (1) FR3118119B1 (en)
WO (1) WO2022136599A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261110B1 (en) * 2008-03-03 2019-08-21 Samsung Heavy IND. CO., LTD. Reinforcement member for membrane of liquefied natural gas cargo, membrane assembly having same, and construction method for same
KR101059997B1 (en) * 2009-02-11 2011-08-29 삼성중공업 주식회사 Metal Membrane Assembly and Manufacturing Method Thereof
FR3074253B1 (en) 2017-11-27 2019-11-01 Gaztransport Et Technigaz SEALED AND THERMALLY INSULATED TANK
FR3103023B1 (en) * 2019-11-13 2021-10-08 Gaztransport Et Technigaz Sealed and thermally insulating tank with anti-convective insulating gaskets

Also Published As

Publication number Publication date
FR3118119A1 (en) 2022-06-24
WO2022136599A1 (en) 2022-06-30
CN116783421A (en) 2023-09-19
KR20230122047A (en) 2023-08-22
FR3118119B1 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
EP3320256B1 (en) Sealed and thermally insulated tank having a secondary sealing membrane equipped with a corner arrangement with corrugated metal sheets
EP3198186B1 (en) Sealed and insulating vessel comprising a bridging element between the panels of the secondary insulation barrier
FR3070745B1 (en) SEALED AND THERMALLY INSULATING TANK WITH ANTI-CONVICTIVE FILLING ELEMENT
WO2019043349A1 (en) Sealed and thermally insulating tank comprising an anti-convective covering strip
EP2984383A2 (en) Sealed and thermally insulating tank for storing a fluid
EP3365592B1 (en) Vessel including insulating corner blocks provided with stress relief slots
EP3114387B1 (en) Sealed and insulating vessel comprising a deflection element allowing the flow of gas at a corner
FR3074253B1 (en) SEALED AND THERMALLY INSULATED TANK
WO2019043348A1 (en) Sealed and thermally insulating vessel having an anti-convective filler plate
WO2021186049A1 (en) Sealed and thermally insulating tank
FR3084346A1 (en) WATERPROOF WALL WITH REINFORCED CORRUGATED MEMBRANE
WO2022090341A1 (en) Sealed and thermally insulating tank
FR3118118A1 (en) Sealed and thermally insulating tank comprising a bridging element
EP4267881A1 (en) Sealed and thermally insulating tank comprising a wave stopper
WO2021094493A1 (en) Sealed and thermally insulating tank having anti-convection insulating seals
WO2022013031A1 (en) Sealed and thermally insulating tank
FR3112587A1 (en) Watertight and thermally insulated tank
FR3087873A1 (en) WATERPROOF AND THERMALLY INSULATING TANK
FR3115853A1 (en) Watertight and thermally insulated tank

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)